
The 30 Year HorizonManuel Bronstein William Burge Timothy DalyJames Davenport Mi
hael Dewar Martin DunstanAlbre
ht Fortenba
her Patrizia Gianni Johannes GrabmeierJo
elyn Guidry Ri
hard Jenks Larry LambeMi
hael Monagan S
ott Morrison William SitJonathan Steinba
h Robert Sutor Barry TragerStephen Watt Jim Wen Clifton WilliamsonVOLUME 1: TUTORIAL

iPortions Copyright (
) 2005 Timothy DalyThe Blue Bayou image Copyright (
) 2004 Jo
elyn GuidryPortions Copyright (
) 2004 Martin DunstanPortions Copyright (
) 1991-2002, The Numeri
al ALgorithms Group Ltd.All rights reserved.This book and the Axiom software is li
ensed as follows:Redistribution and use in sour
e and binary forms, with or withoutmodifi
ation, are permitted provided that the following
onditions aremet:- Redistributions of sour
e
ode must retain the above
opyrightnoti
e, this list of
onditions and the following dis
laimer.- Redistributions in binary form must reprodu
e the above
opyrightnoti
e, this list of
onditions and the following dis
laimer inthe do
umentation and/or other materials provided with thedistribution.- Neither the name of The Numeri
al ALgorithms Group Ltd. nor thenames of its
ontributors may be used to endorse or promote produ
tsderived from this software without spe
ifi
 prior written permission.THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITEDTO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR APARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNEROR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, ORPROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OFLIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDINGNEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THISSOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.In
lusion of names in the list of
redits is based on histori
al informationand is as a

urate as possible. In
lusion of names does not in any way imply anendorsement but represents histori
al in
uen
e on Axiom development.

ii Cyril Alberga Roy Adler Ri
hard AndersonGeorge Andrews Henry Baker Stephen Balza
Yurij Baransky David R. Barton Gerald BaumgartnerGilbert Baumslag Fred Blair Vladimir BondarenkoMark Bot
h Alexandre Bouyer Peter A. BroadberyMartin Bro
k Manuel Bronstein Florian Bunds
huhWilliam Burge Quentin Carpent Bob CavinessBru
e Char Cheekai Chin David V. ChudnovskyGregory V. Chudnovsky Josh Cohen Christophe ConilDon Coppersmith George Corliss Robert CorlessGary Cornell Meino Cramer Claire Di Cres
enzoTimothy Daly Sr. Timothy Daly Jr. James H. DavenportJean Della Dora Gabriel Dos Reis Mi
hael DewarClaire DiCres
endo Sam Dooley Lionel Du
osMartin Dunstan Brian Dupee Dominique DuvalRobert Edwards Heow Eide-Goodman Lars Eri
ksonRi
hard Fateman Bertfried Fauser Stuart FeldmanBrian Ford Albre
ht Fortenba
her George Fran
esConstantine Frangos Timothy Freeman Korrinn FuMar
 Gaetano Rudiger Gebauer Kathy GerberPatri
ia Gianni Holger Gollan Teresa Gomez-DiazLaureano Gonzalez-Vega Stephen Gortler Johannes GrabmeierMatt Grayson James Griesmer Vladimir GrinbergOswald Gs
hnitzer Jo
elyn Guidry Steve HagueVilya Harvey Satoshi Hamagu
hi Martin HassnerRalf Hemme
ke Henderson Antoine HersenPietro Iglio Ri
hard Jenks Kai KaminskiGrant Keady Tony Kennedy Paul KosinskiKlaus Kus
he Bernhard Kutzler Larry LambeFrederi
 Lehobey Mi
hel Levaud Howard LevyRudiger Loos Mi
hael Lu
ks Ri
hard Lu
zakCamm Maguire Bob M
Elrath Mi
hael M
Gettri
kIan Meikle David Mentre Vi
tor S. MillerGerard Milmeister Mohammed Mobarak H. Mi
hael MoellerMi
hael Monagan Mar
 Moreno-Maza S
ott MorrisonMark Murray William Naylor C. Andrew Ne�John Nelder Godfrey Nolan Arthur NormanJinzhong Niu Mi
hael O'Connor Kostas OikonomouJulian A. Padget Bill Page Jaap WeelSusan Pelzel Mi
hel Petitot Didier Pin
honClaude Quitte Norman Ramsey Mi
hael Ri
hardsonRenaud Rioboo Jean Rivlin Ni
olas RobidouxSimon Robinson Mi
hael Rothstein Martin RubeyPhilip Santas Alfred S
heerhorn William S
helterGerhard S
hneider Martin S
hoenert Marshall S
horFritz S
hwarz Ni
k Simi
i
h William SitElena Smirnova Jonathan Steinba
h Christine SundaresanRobert Sutor Moss E. Sweedler Eugene SurowitzJames That
her Baldir Thomas Mike ThomasDylan Thurston Barry Trager Themos T. TsikasGregory Vanuxem Bernhard Wall Stephen WattJuergen Weiss M. Weller Mark WegmanJames Wen Thorsten Werther Mi
hael WesterJohn M. Wiley Berhard Will Clifton J. WilliamsonStephen Wilson Shmuel Winograd Robert WisbauerSandra Wityak Waldemar Wiwianka Knut WolfCli�ord Yapp David Yun Ri
hard ZippelEvelyn Zoerna
k Bruno Zuer
her Dan Zwillinger

Contents
1 Axiom Features 11.1 Introdu
tion to Axiom . 11.1.1 Symboli
 Computation . 11.1.2 Numeri
 Computation . 21.1.3 Mathemati
al Stru
tures 31.1.4 HyperDo
 . 41.1.5 Intera
tive Programming 51.1.6 Graphi
s . 61.1.7 Data Stru
tures . 71.1.8 Pattern Mat
hing . 91.1.9 Polymorphi
 Algorithms 101.1.10 Extensibility . 111.1.11 Open Sour
e . 112 Ten Fundamental Ideas 132.0.12 Types are De�ned by Abstra
t Datatype Programs 142.0.13 The Type of Basi
 Obje
ts is a Domain or Subdomain . . 142.0.14 Domains Have Types Called Categories 152.0.15 Operations Can Refer To Abstra
t Types 152.0.16 Categories Form Hierar
hies 162.0.17 Domains Belong to Categories by Assertion 162.0.18 Pa
kages Are Clusters of Polymorphi
 Operations 172.0.19 The Interpreter Builds Domains Dynami
ally 172.0.20 Axiom Code is Compiled 182.0.21 Axiom is Extensible . 183 Starting Axiom 213.1 Starting Up and Winding Down 213.1.1 Clef . 223.1.2 Typographi
 Conventions 233.2 The Axiom Language . 233.2.1 Arithmeti
 Expressions 233.2.2 Previous Results . 243.2.3 Some Types . 25iii

iv CONTENTS3.2.4 Symbols, Variables, Assignments, and De
larations 263.2.5 Conversion . 293.2.6 Calling Fun
tions . 303.2.7 Some Prede�ned Ma
ros 313.2.8 Long Lines . 313.2.9 Comments . 323.3 Using Axiom as a Po
ket Cal
ulator 323.3.1 Basi
 Arithmeti
 . 323.3.2 Type Conversion . 343.3.3 Useful Fun
tions . 363.4 Using Axiom as a Symboli
 Cal
ulator 393.4.1 Expressions Involving Symbols 393.4.2 Complex Numbers . 413.4.3 Number Representations 423.4.4 Modular Arithmeti
 . 463.5 General Points about Axiom . 473.5.1 Computation Without Output 473.5.2 A

essing Earlier Results 483.5.3 Splitting Expressions Over Several Lines 483.5.4 Comments and Des
riptions 493.5.5 Control of Result Types 493.5.6 Using system
ommands 503.5.7 Using undo . 513.6 Data Stru
tures in Axiom . 543.6.1 Lists . 543.6.2 Segmented Lists . 633.6.3 Streams . 643.6.4 Arrays, Ve
tors, Strings, and Bits 663.6.5 Flexible Arrays . 693.7 Fun
tions, Choi
es, and Loops 713.7.1 Reading Code from a File 713.7.2 Blo
ks . 723.7.3 Fun
tions . 753.7.4 Choi
es . 783.7.5 Loops . 793.8 Numbers . 893.9 Data Stru
tures . 973.10 Expanding to Higher Dimensions 1053.11 Writing Your Own Fun
tions . 1063.12 Polynomials . 1123.13 Limits . 1143.14 Series . 1153.15 Derivatives . 1183.16 Integration . 1213.17 Di�erential Equations . 1243.18 Solution of Equations . 127

CONTENTS v4 Graphi
s 1314.0.1 Plotting 2D graphs . 1324.0.2 Palette . 1374.0.3 Two-Dimensional Control-Panel 1384.0.4 Operations for Two-Dimensional Graphi
s 1414.0.5 Building Two-Dimensional Graphs Manually 1444.0.6 Appending a Graph to a Viewport Window Containing aGraph . 1534.0.7 Plotting 3D Graphs . 1544.0.8 Three-Dimensional Options 1574.0.9 Three-Dimensional Control-Panel 1594.0.10 Operations for Three-Dimensional Graphi
s 1634.0.11 Customization using .Xdefaults 1675 Using Types and Modes 1695.1 The Basi
 Idea . 1695.1.1 Domain Constru
tors . 1715.2 Writing Types and Modes . 1765.2.1 Types with No Arguments 1775.2.2 Types with One Argument 1785.2.3 Types with More Than One Argument 1795.2.4 Modes . 1795.2.5 Abbreviations . 1805.3 De
larations . 1815.4 Re
ords . 1845.5 Unions . 1885.5.1 Unions Without Sele
tors 1885.5.2 Unions With Sele
tors . 1925.6 The \Any" Domain . 1935.7 Conversion . 1945.8 Subdomains Again . 1985.9 Pa
kage Calling and Target Types 2015.10 Resolving Types . 2055.11 Exposing Domains and Pa
kages 2075.12 Commands for Snooping . 2096 Using HyperDo
 2136.1 Headings . 2146.2 Key De�nitions . 2146.3 S
roll Bars . 2156.4 Input Areas . 2156.5 Radio Buttons and Toggles . 2166.6 Sear
h Strings . 2166.6.1 Logi
al Sear
hes . 2176.7 Example Pages . 2176.8 X Window Resour
es for HyperDo
 218

vi CONTENTS7 Input Files and Output Styles 2217.1 Input Files . 2217.2 The .axiom.input File . 2227.3 Common Features of Using Output Formats 2237.4 Monospa
e Two-Dimensional Mathemati
al Format 2247.5 TeX Format . 2257.6 IBM S
ript Formula Format . 2267.7 FORTRAN Format . 2268 Axiom System Commands 2338.1 Introdu
tion . 2338.2)abbreviation . 2358.3)boot . 2368.4)
d . 2368.5)
lose . 2378.6)
lear . 2388.7)
ompile . 2398.8)display . 2458.9)edit . 2468.10)�n . 2478.11)frame . 2478.12)hd . 2498.13)help . 2498.14)history . 2508.15)library . 2528.16)lisp . 2538.17)ltra
e . 2548.18)pquit . 2548.19)quit . 2558.20)read . 2558.21)set . 2568.22)show . 2578.23)spool . 2588.24)synonym . 2588.25)system . 2598.26)tra
e . 2608.27)undo . 2648.28)what . 2658.29 Make�le . 267

CONTENTS viiNew ForewordOn O
tober 1, 2001 Axiom was withdrawn from the market and ended life asa
ommer
ial produ
t. On September 3, 2002 Axiom was released under theModi�ed BSD li
ense, in
luding this do
ument. On August 27, 2003 Axiom wasreleased as free and open sour
e software available for download from the FreeSoftware Foundation's website, Savannah.Work on Axiom has had the generous support of the Center for Algorithmsand Intera
tive S
ienti�
 Computation (CAISS) at City College of New York.Spe
ial thanks go to Dr. Gilbert Baumslag for his support of the long termgoal.The online version of this do
umentation is roughly 1000 pages. In order tomake printed versions we've broken it up into three volumes. The �rst volumeis tutorial in nature. The se
ond volume is for programmers. The third volume isreferen
e material. We've also added a fourth volume for developers. All of these
hanges represent an experiment in print-on-demand delivery of do
umentation.Time will tell whether the experiment su

eeded.Axiom has been in existen
e for over thirty years. It is estimated to
ontainabout three hundred man-years of resear
h and has, as of September 3, 2003,143 people listed in the
redits. All of these people have
ontributed dire
tlyor indire
tly to making Axiom available. Axiom is being passed to the nextgeneration. I'm looking forward to future milestones.With that in mind I've introdu
ed the theme of the \30 year horizon". Wemust invent the tools that support the Computational Mathemati
ian working30 years from now. How will resear
h be done when every bit of mathemati
alknowledge is online and instantly available? What happens when we s
ale Ax-iom by a fa
tor of 100, giving us 1.1 million domains? How
an we integratetheory with
ode? How will we integrate theorems and proofs of the mathemat-i
s with spa
e-time
omplexity proofs and running
ode? What visualizationtools are needed? How do we support the
on
eptual stru
tures and seman-ti
s of mathemati
s in e�e
tive ways? How do we support results from thes
ien
es? How do we tea
h the next generation to be e�e
tive ComputationalMathemati
ians?The \30 year horizon" is mu
h nearer than it appears.Tim DalyCAISS, City College of New YorkNovember 10, 2003 ((iHy))

Chapter 1Axiom Features
1.1 Introdu
tion to AxiomWel
ome to the world of Axiom. We
all Axiom a s
ienti�

omputation system:a self-
ontained toolbox designed to meet your s
ienti�
 programming needs,from symboli
s, to numeri
s, to graphi
s.This introdu
tion is a qui
k overview of some of the features Axiom o�ers.1.1.1 Symboli
 ComputationAxiom provides a wide range of simple
ommands for symboli
 mathemati
alproblem solving. Do you need to solve an equation, to expand a series, or toobtain an integral? If so, just ask Axiom to do it.Given Z 1(x3 (a+ bx)1=3)! dxwe would enter this into Axiom as:integrate(1/(x**3 * (a+b*x)**(1/3)),x)

1

2 CHAPTER 1. AXIOM FEATURESwhi
h would give the result:0BBBBBBBBBBBBB�
�2 b2 x2 p3 log� 3pa 3pb x+ a2 + 3pa2 3pb x+ a+ a�+4 b2 x2 p3 log� 3pa2 3pb x+ a� a�+12 b2 x2 ar
tan 2 p3 3pa2 3pb x+ a+ a p33 a !+(12 b x� 9 a) p3 3pa 3pb x+ a2

1CCCCCCCCCCCCCA18 a2 x2 p3 3paType: Union(Expression Integer,...)Axiom provides state-of-the-art algebrai
 ma
hinery to handle your most ad-van
ed symboli
 problems.1.1.2 Numeri
 ComputationAxiom has a numeri
al library that in
ludes operations for linear algebra, solu-tion of equations, and spe
ial fun
tions. For many of these operations, you
ansele
t any number of
oating point digits to be
arried out in the
omputation.Solve x49�49x4+9 to 49 digits of a

ura
y. First we need to
hange the defaultoutput length of numbers:digits(49)and then we exe
ute the
ommand:solve(x**49-49*x**4+9 = 0,1.e-49)[x = �0:6546536706904271136718122105095984761851224331556;x = 1:086921395653859508493939035954893289009213388763;x = 0:6546536707255271739694686066136764835361487607661℄Type: List Equation Polynomial FloatThe output of a
omputation
an be
onverted to FORTRAN to be used in alater numeri
al
omputation. Besides
oating point numbers, Axiom provides

1.1. INTRODUCTION TO AXIOM 3literally dozens of kinds of numbers to
ompute with. These range from var-ious kinds of integers, to fra
tions,
omplex numbers, quaternions,
ontinuedfra
tions, and to numbers represented with an arbitrary base.What is 10 to the 90-th power in base 32?radix(10**90,32)returns:FMM3O955CSEIV0ILKH820CN3I7PICQU0OQMDOFV6TP000000000000000000Type: RadixExpansion 32The Axiom numeri
al library
an be enhan
ed with a substantial number offun
tions from the NAG library of numeri
al and statisti
al algorithms. Thesefun
tions will provide
overage of a wide range of areas in
luding roots of fun
-tions, Fourier transforms, quadrature, di�erential equations, data approxima-tion, non-linear optimization, linear algebra, basi
 statisti
s, step-wise regres-sion, analysis of varian
e, time series analysis, mathemati
al programming, andspe
ial fun
tions. Conta
t the Numeri
al Algorithms Group Limited, Oxford,England.1.1.3 Mathemati
al Stru
turesAxiom also has many kinds of mathemati
al stru
tures. These range fromsimple ones (like polynomials and matri
es) to more esoteri
 ones (like idealsand Cli�ord algebras). Most stru
tures allow the
onstru
tion of arbitrarily
ompli
ated \types."Even a simple input expression
an result in a type with several levels.matrix [[x + %i,0℄, [1,-2℄ ℄� x+ i 01 �2 �Type: Matrix Polynomial Complex IntegerThe \%i" is Axiom's notation for p�1.The Axiom interpreter builds types in response to user input. Often, the typeof the result is
hanged in order to be appli
able to an operation.The inverse operation requires that elements of the above matri
es are fra
tions.However the original elements are polynomials with
oeÆ
ients whi
h are
om-plex numbers (Complex(Integer)) in Axiom terms. Inverse will
oer
e theseto fra
tions whose numerator and denominator are polynomials with
oeÆ
ientswhi
h are
omplex numbers.

4 CHAPTER 1. AXIOM FEATURESinverse(%) � 1x+i 012 x+2 i �12 �Type: Union(Matrix Fra
tion Polynomial Complex Integer,...)1.1.4 HyperDo

Figure 1.1: Hyperdo
 opening menuHyperDo
 presents you windows on the world of Axiom, o�ering on-line help,examples, tutorials, a browser, and referen
e material. HyperDo
 gives you on-line a

ess to this do
ument in a \hypertext" format. Words that appear in adi�erent font (for example, Matrix, fa
tor, and
ategory) are generally mouse-a
tive; if you
li
k on one with your mouse, HyperDo
 shows you a new windowfor that word.As another example of a HyperDo
 fa
ility, suppose that you want to
omputethe roots of x49�49x4+9 to 49 digits (as in our previous example) and you don't

1.1. INTRODUCTION TO AXIOM 5know how to tell Axiom to do this. The \basi

ommand" fa
ility of HyperDo
leads the way. Through the series of HyperDo
 windows and mouse
li
ks, youand HyperDo
 generate the
orre
t
ommand to issue to
ompute the answer.1.1.5 Intera
tive ProgrammingAxiom's intera
tive programming language lets you de�ne your own fun
tions.A simple example of a user-de�ned fun
tion is one that
omputes the su

essiveLegendre polynomials. Axiom lets you de�ne these polynomials in a pie
e-wiseway. The �rst Legendre polynomial.p(0) == 1 Type: VoidThe se
ond Legendre polynomial.p(1) == x Type: VoidThe n-th Legendre polynomial for (n > 1).p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n Type: VoidIn addition to letting you de�ne simple fun
tions like this, the intera
tive lan-guage
an be used to
reate entire appli
ation pa
kages.The above de�nitions for p do no
omputation|they simply tell Axiom how to
ompute p(k) for some positive integer k.To a
tually get a value of a Legendre polynomial, you ask for it.What is the tenth Legendre polynomial?p(10)Compiling fun
tion p with type Integer -> Polynomial Fra
tionIntegerCompiling fun
tion p as a re
urren
e relation.

6 CHAPTER 1. AXIOM FEATURES46189256 x10 � 109395256 x8 + 45045128 x6 � 15015128 x4 + 3465256 x2 � 63256Type: Polynomial Fra
tion IntegerAxiom applies the above pie
es for p to obtain the value of p(10). But it doesmore: it
reates an optimized,
ompiled fun
tion for p. The fun
tion is formedby putting the pie
es together into a single pie
e of
ode. By
ompiled, we meanthat the fun
tion is translated into basi
 ma
hine-
ode. By optimized, we meanthat
ertain transformations are performed on that
ode to make it run faster.For p, Axiom a
tually translates the original de�nition that is re
ursive (onethat
alls itself) to one that is iterative (one that
onsists of a simple loop).What is the
oeÆ
ient of x90 in p(90)?
oeffi
ient(p(90),x,90)568826554205201782222345823742658185356149744909517577371252455336267181195264Type: Polynomial Fra
tion IntegerIn general, a user fun
tion is type-analyzed and
ompiled on �rst use. Later, ifyou use it with a di�erent kind of obje
t, the fun
tion is re
ompiled if ne
essary.1.1.6 Graphi
sYou may often want to visualize a symboli
 formula or draw a graph from a setof numeri
al values. To do this, you
an
all upon the Axiom graphi
s
apability.Axiom is
apable of displaying graphs in two or three dimensions and multiple
urves
an be drawn on the same graph. The whole graphi
s pa
kage
an bedriven from intera
tive
ommands.Graphs in Axiom are intera
tive obje
ts you
an manipulate with your mouse.Just
li
k on the graph, and a
ontrol panel pops up. Using this mouse andthe
ontrol panel, you
an translate, rotate, zoom,
hange the
oloring, lighting,shading, and perspe
tive on the pi
ture. You
an also generate a PostS
ript
opy of your graph to produ
e hard-
opy output.The graphi
s pa
kage runs as a separate pro
ess. It intera
ts with both theAxiom interpreter and the Hyperdo
 fa
ility. In Hyperdo
 you
an
li
k on anembedded graph and it will be
ome \live" so you
an rotate and translate it.For example, there is a di�erential equation known as Bessel's equation whi
his z2 d2ydz2 + z dydz + (z2 � v2)y = 0We
an plot a solution to this equation in Axiom with the
ommand:

1.1. INTRODUCTION TO AXIOM 7draw(5*besselJ(0,sqrt(x**2+y**2)), x=-20..20, y=-20..20)

Figure 1.2: J0(px2 + y2) for �20 � x; y � 20Draw J0(px2 + y2) for �20 � x; y � 20.1.1.7 Data Stru
turesA variety of data stru
tures are available for intera
tive use. These in
ludestrings, lists, ve
tors, sets, multisets, and hash tables. A parti
ularly usefulstru
ture for intera
tive use is the in�nite stream:Create the in�nite stream of derivatives of Legendre polynomials.[D(p(i),x) for i in 1..℄

8 CHAPTER 1. AXIOM FEATURES�1; 3 x; 152 x2 � 32 ; 352 x3 � 152 x; 3158 x4 � 1054 x2 + 158 ;6938 x5 � 3154 x3 + 1058 x; 300316 x6 � 346516 x4 + 94516 x2 � 3516 ;643516 x7 � 900916 x5 + 346516 x3 � 31516 x;109395128 x8 � 4504532 x6 + 4504564 x4 � 346532 x2 + 315128 ;230945128 x9 � 10939532 x7 + 13513564 x5 � 1501532 x3 + 3465128 x; : : :�Type: Stream Polynomial Fra
tion IntegerStreams display only a few of their initial elements. Otherwise, they are \lazy":they only
ompute elements when you ask for them.Data stru
tures are an important
omponent for building appli
ation software.Advan
ed users
an represent data for appli
ations in an optimal fashion. Inall, Axiom o�ers over forty kinds of aggregate data stru
tures, ranging frommutable stru
tures (su
h as
y
li
 lists and
exible arrays) to storage eÆ
ientstru
tures (su
h as bit ve
tors). As an example, streams are used as the internaldata stru
ture for power series.What is the series expansion of log(
ot(x)) about x = �=2?series(log(
ot(x)),x = %pi/2)log��2 x+ �2 �+ 13 �x� �2�2 + 790 �x� �2�4 + 622835 �x� �2�6+12718900 �x� �2�8 + 14666825 �x� �2�10 +O��x� �2�11�Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)Series and streams make no attempt to
ompute all their elements! Rather,they stand ready to deliver elements on demand.What is the
oeÆ
ient of the 50-th term of this series?
oeffi
ient(%,50)445907889010160300524472423008565509656447131469286438669111584090881309360354581359130859375

1.1. INTRODUCTION TO AXIOM 9Type: Expression IntegerNote the use of \%" here. This means the value of the last expression we
omputed. In this
ase it is the long expression above.1.1.8 Pattern Mat
hingA
onvenient fa
ility for symboli

omputation is \pattern mat
hing." Supposeyou have a trigonometri
 expression and you want to transform it to someequivalent form. Use a rule
ommand to des
ribe the transformation rules youneed. Then give the rules a name and apply that name as a fun
tion to yourtrigonometri
 expression.Here we introdu
e two rewrite rules. These are given in a \pile" syntax usingindentation. We store them in a �le in the following form:sinCosExpandRules := rulesin(x+y) == sin(x)*
os(y) + sin(y)*
os(x)
os(x+y) ==
os(x)*
os(y) - sin(x)*sin(y)sin(2*x) == 2*sin(x)*
os(x)
os(2*x) ==
os(x)**2 - sin(x)**2Then we use the)read
ommand to read the input �le. The)read
ommandyields:{sin(y + x) ==
os(x)sin(y) +
os(y)sin(x),
os(y + x) == - sin(x)sin(y) +
os(x)
os(y),sin(2x) == 2
os(x)sin(x),2 2
os(2x) == - sin(x) +
os(x) }Type: Ruleset(Integer,Integer,Expression Integer)Now we
an apply the rules to a simple trigonometri
 expression.sinCosExpandRules(sin(a+2*b+
))��
os (a) sin (b)2 � 2
os (b) sin (a) sin (b) +
os (a)
os (b)2� sin (
)�
os (
) sin (a) sin (b)2 + 2
os (a)
os (b)
os (
) sin (b)+
os (b)2
os (
) sin (a) Type: Expression Integer

10 CHAPTER 1. AXIOM FEATURESUsing input �les and the)read
ommand, you
an
reate your own libraryof transformation rules relevant to your appli
ations, then sele
tively apply therules you need.1.1.9 Polymorphi
 AlgorithmsAll
omponents of the Axiom algebra library are written in the Axiom librarylanguage
alled Spad.1 This language is similar to the intera
tive languageex
ept for proto
ols that authors are obliged to follow. The library languagepermits you to write \polymorphi
 algorithms," algorithms de�ned to work intheir most natural settings and over a variety of types.Here we de�ne a system of polynomial equations S.S := [3*x**3 + y + 1 = 0,y**2 = 4℄�y + 3 x3 + 1 = 0; y2 = 4�Type: List Equation Polynomial IntegerAnd then we solve the system S using rational number arithmeti
 and 30 digitsof a

ura
y.solve(S,1/10**30)��y = �2; x = 17578796712111842452830704145072535301200456458802993406410752�; [y = 2; x = �1℄�Type: List List Equation Polynomial Fra
tion IntegerOr we
an solve S with the solutions expressed in radi
als.radi
alSolve(S)�[y = 2; x = �1℄; �y = 2; x = �p�3 + 12 �;�y = 2; x = p�3 + 12 �; �y = �2; x = 13p3�;"y = �2; x = p�1 p3� 12 3p3 #;"y = �2; x = �p�1 p3� 12 3p3 ##1Spad is short for S
rat
hpad whi
h was the original name of the Axiom system

1.1. INTRODUCTION TO AXIOM 11Type: List List Equation Expression IntegerWhile these solutions look very di�erent, the results were produ
ed by the sameinternal algorithm! The internal algorithm a
tually works with equations overany \�eld." Examples of �elds are the rational numbers,
oating point numbers,rational fun
tions, power series, and general expressions involving radi
als.1.1.10 ExtensibilityUsers and system developers alike
an augment the Axiom library, all using one
ommon language. Library
ode, like interpreter
ode, is
ompiled into ma
hinebinary
ode for run-time eÆ
ien
y.Using this language, you
an
reate new
omputational types and new algorith-mi
 pa
kages. All library
ode is polymorphi
, des
ribed in terms of a databaseof algebrai
 properties. By following the language proto
ols, there is an au-tomati
, guaranteed intera
tion between your
ode and that of
olleagues andsystem implementers.1.1.11 Open Sour
eAxiom is
ompletely open sour
e. All of the algebra and all of the sour
e
odefor the interpreter,
ompiler, graphi
s, browser, and numeri
s is shipped withthe system. There are several websites that host Axiom sour
e
ode.Axiom is written using Literate Programming[2℄ so ea
h �le is a
tually a do
-ument rather than just ma
hine sour
e
ode. The goal is to make the wholesystem
ompletely literate so people
an a
tually read the system and under-stand it. This is the �rst volume in a series of books that will attempt to rea
hthat goal.The primary site is the Axiom wiki (http://wiki.axiom-developer.org). The wikiis the general support site for Axiom. Wikis allow users to intera
tively modifyweb pages. On the Axiom site it is possible to type Axiom
ode dire
tly intothe browser to
reate modi�ed pages whi
h are re
omputed on the
y.The wiki also
ontains links to the Axiom do
umentation, the Axiom mailinglist (axiom-developer�nongnu.org), and many other fa
ilities.Axiom is hosted at the Free Software Foundation site whi
h is(http://savannah.nongnu.org/proje
ts/axiom).Axiom is hosted at the Sour
eforge site whi
h is(http://sour
eforge.net/proje
ts/axiom).

12 CHAPTER 1. AXIOM FEATURES

Chapter 2Ten Fundamental IdeasAxiom has both an intera
tive language for user intera
tions and a programminglanguage for building library modules. Like Modula 2, PASCAL, FORTRAN,and Ada, the programming language emphasizes stri
t type-
he
king. Unlikethese languages, types in Axiom are dynami
 obje
ts: they are
reated at run-time in response to user
ommands.Here is the idea of the Axiom programming language in a nutshell. Axiomtypes range from algebrai
 ones (like polynomials, matri
es, and power series)to data stru
tures (like lists, di
tionaries, and input �les). Types
ombine in anymeaningful way. You
an build polynomials of matri
es, matri
es of polynomialsof power series, hash tables with symboli
 keys and rational fun
tion entries,and so on.Categories de�ne algebrai
 properties to ensure mathemati
al
orre
tness. Theyensure, for example, that matri
es of polynomials are OK, but matri
es of input�les are not. Through
ategories, programs
an dis
over that polynomials of
ontinued fra
tions have a
ommutative multipli
ation whereas polynomials ofmatri
es do not.Categories allow algorithms to be de�ned in their most natural setting. Forexample, an algorithm
an be de�ned to solve polynomial equations over any�eld. Likewise a greatest
ommon divisor
an
ompute the \g
d" of two elementsfrom any Eu
lidean domain. Categories foil attempts to
ompute meaningless\g
ds", for example, of two hashtables. Categories also enable algorithms to be
ompiled into ma
hine
ode that
an be run with arbitrary types.The Axiom intera
tive language is oriented towards ease-of-use. The Axiominterpreter uses type-inferen
ing to dedu
e the type of an obje
t from userinput. Type de
larations
an generally be omitted for
ommon types in theintera
tive language.So mu
h for the nutshell. Here are these basi
 ideas des
ribed by ten designprin
iples: 13

14 CHAPTER 2. TEN FUNDAMENTAL IDEAS2.0.12 Types are De�ned by Abstra
t Datatype ProgramsBasi
 types are
alled domains of
omputation, or, simply, domains. Domainsare de�ned by Axiom programs of the form:Name(...): Exports == ImplementationEa
h domain has a
apitalized Name that is used to refer to the
lass of itsmembers. For example, Integer denotes \the
lass of integers," Float, \the
lass of
oating point numbers," and String, \the
lass of strings."The \..." part following Name lists zero or more parameters to the
on-stru
tor. Some basi
 ones like Integer take no parameters. Others, likeMatrix, Polynomial and List, take a single parameter that again must be adomain. For example, Matrix(Integer) denotes \matri
es over the integers,"Polynomial (Float) denotes \polynomial with
oating point
oeÆ
ients," andList (Matrix (Polynomial (Integer))) denotes \lists of matri
es of poly-nomials over the integers." There is no restri
tion on the number or type ofparameters of a domain
onstru
tor.SquareMatrix(2,Integer) is an example of a domain
onstru
tor that a

eptsboth a parti
ular data value as well as an integer. In this
ase the number2 spe
i�es the number of rows and
olumns the square matrix will
ontain.Elements of the matri
ies are integers.The Exports part spe
i�es operations for
reating and manipulating obje
ts ofthe domain. For example, type Integer exports
onstants 0 and 1, and op-erations \+", \-", and *". While these operations are
ommon, others su
has odd? and bit? are not. In addition the Exports se
tion
an
ontain sym-bols that represent properties that
an be tested. For example, the CategoryEntireRing has the symbol noZeroDivisors whi
h asserts that if a produ
t iszero then one of the fa
tors must be zero.The Implementation part de�nes fun
tions that implement the exported op-erations of the domain. These fun
tions are frequently des
ribed in terms ofanother lower-level domain used to represent the obje
ts of the domain. Thusthe operation of adding two ve
tors of real numbers
an be des
ribed and im-plemented using the addition operation from Float.2.0.13 The Type of Basi
 Obje
ts is a Domain or Subdo-mainEvery Axiom obje
t belongs to a unique domain. The domain of an obje
t is also
alled its type. Thus the integer 7 has type Integer and the string "daniel"has type String.The type of an obje
t, however, is not unique. The type of integer 7 is not onlyInteger but NonNegativeInteger, PositiveInteger, and possibly, in general,

15any other \subdomain" of the domain Integer. A subdomain is a domain witha \membership predi
ate". PositiveInteger is a subdomain of Integer withthe predi
ate \is the integer > 0?".Subdomains with names are de�ned by abstra
t datatype programs similar tothose for domains. The Export part of a subdomain, however, must list a subsetof the exports of the domain. The Implementation part optionally gives spe
ialde�nitions for subdomain obje
ts.2.0.14 Domains Have Types Called CategoriesDomain and subdomains in Axiom are themselves obje
ts that have types. Thetype of a domain or subdomain is
alled a
ategory. Categories are des
ribedby programs of the form:Name(...): Category == ExportsThe type of every
ategory is the distinguished symbol Category. The
ategoryName is used to designate the
lass of domains of that type. For example,
ategory Ring designates the
lass of all rings. Like domains,
ategories
antake zero or more parameters as indi
ated by the \..." part following Name.Two examples are Module(R) and MatrixCategory(R,Row,Col).The Exports part de�nes a set of operations. For example, Ring exports the op-erations \0", \1", \+", \-", and *". Many algebrai
 domains su
h as Integerand Polynomial (Float) are rings. String and List (R) (for any domain R)are not.Categories serve to ensure the type-
orre
tness. The de�nition of matri
es statesMatrix(R: Ring) requiring its single parameter R to be a ring. Thus a \matrixof polynomials" is allowed, but \matrix of lists" is not.Categories say nothing about representation. Domains, whi
h are instan
es of
ategory types, spe
ify representations.2.0.15 Operations Can Refer To Abstra
t TypesAll operations have pres
ribed sour
e and target types. Types
an be denotedby symbols that stand for domains,
alled \symboli
 domains." The followinglines of Axiom
ode use a symboli
 domain R:R: Ringpower: (R, NonNegativeInteger): R -> Rpower(x, n) == x ** nLine 1 de
lares the symbol R to be a ring. Line 2 de
lares the type of powerin terms of R. From the de�nition on line 3, power(3; 2) produ
es 9 for x = 3

16 CHAPTER 2. TEN FUNDAMENTAL IDEASand R = Integer. Also, power(3:0; 2) produ
es 9:0 for x = 3:0 and R = Float.power("oxford"; 2) however fails sin
e "oxford" has type String whi
h is nota ring.Using symboli
 domains, algorithms
an be de�ned in their most natural orgeneral setting.2.0.16 Categories Form Hierar
hiesCategories form hierar
hies (te
hni
ally, dire
ted-a
y
li
 graphs). A simpli�edhierar
hi
al world of algebrai

ategories is shown below. At the top of this worldis SetCategory, the
lass of algebrai
 sets. The notions of parents, an
estors,and des
endants is
lear. Thus ordered sets (domains of
ategory OrderedSet)and rings are also algebrai
 sets. Likewise, �elds and integral domains are ringsand algebrai
 sets. However �elds and integral domains are not ordered sets.SetCategory +---- Ring ---- IntegralDomain ---- Field|+---- Finite ---+| \+---- OrderedSet -----+ OrderedFiniteFigure 1. A simpli�ed
ategory hierar
hy.2.0.17 Domains Belong to Categories by AssertionA
ategory designates a
lass of domains. Whi
h domains? You might thinkthat Ring designates the
lass of all domains that export 0, 1, \+", \-", and*". But this is not so. Ea
h domain must assert whi
h
ategories it belongsto.The Export part of the de�nition for Integer reads, for example:Join(OrderedSet, IntegralDomain, ...) with ...This de�nition asserts that Integer is both an ordered set and an integraldomain. In fa
t, Integer does not expli
itly export
onstants 0 and 1 andoperations \+", \-" and *" at all: it inherits them all from Ring! Sin
eIntegralDomain is a des
endant of Ring, Integer is therefore also a ring.Assertions
an be
onditional. For example, Complex(R) de�nes its exports by:Ring with ... if R has Field then Field ...Thus Complex(Float) is a �eld but Complex(Integer) is not sin
e Integer isnot a �eld.

17You may wonder: \Why not simply let the set of operations determine whethera domain belongs to a given
ategory?". Axiom allows operation names (forexample, norm) to have very di�erent meanings in di�erent
ontexts. Themeaning of an operation in Axiom is determined by
ontext. By asso
iatingoperations with
ategories, operation names
an be reused whenever appropriateor
onvenient to do so. As a simple example, the operation < might be used todenote lexi
ographi
-
omparison in an algorithm. However, it is wrong to usethe same < with this de�nition of absolute-value:abs(x) == if x < 0 then� x else xSu
h a de�nition for abs in Axiom is prote
ted by
ontext: argument x isrequired to be a member of a domain of
ategory OrderedSet.2.0.18 Pa
kages Are Clusters of Polymorphi
 OperationsIn Axiom, fa
ilities for symboli
 integration, solution of equations, and the likeare pla
ed in \pa
kages". A pa
kage is a spe
ial kind of domain: one whoseexported operations depend solely on the parameters of the
onstru
tor and/orexpli
it domains. Pa
kages, unlike Domains, do not spe
ify the representation.If you want to use Axiom, for example, to de�ne some algorithms for solvingequations of polynomials over an arbitrary �eld F , you
an do so with a pa
kageof the form:MySolve(F: Field): Exports == Implementationwhere Exports spe
i�es the solve operations you wish to export from the do-main and the Implementation de�nes fun
tions for implementing your algo-rithms. On
e Axiom has
ompiled your pa
kage, your algorithms
an thenbe used for any F:
oating-point numbers, rational numbers,
omplex rationalfun
tions, and power series, to name a few.2.0.19 The Interpreter Builds Domains Dynami
allyThe Axiom interpreter reads user input then builds whatever types it needs toperform the indi
ated
omputations. For example, to
reate the matrixM = �x2 + 1 00 x=2�using the
ommand:M = [[x**2+1,0℄,[0,x / 2℄ ℄::Matrix(POLY(FRAC(INT)))M = � x2 + 1 00 x=2 �

18 CHAPTER 2. TEN FUNDAMENTAL IDEASType: Matrix Polynomial Fra
tion Integerthe interpreter �rst loads the modules Matrix, Polynomial, Fra
tion, andInteger from the library, then builds the domain tower \matri
es of polynomialsof rational numbers (i.e. fra
tions of integers)".You
an wat
h the loading pro
ess by �rst typing)set message autoload onIn addition to the named domains above many additional domains and
ate-gories are loaded. Most systems are preloaded with su
h
ommon types. ForeÆ
ien
y reasons the most
ommon domains are preloaded but most (there aremore than 1100 domains,
ategories, and pa
kages) are not. On
e these domainsare loaded they are immediately available to the interpreter.On
e a domain tower is built, it
ontains all the operations spe
i�
 to thetype. Computation pro
eeds by
alling operations that exist in the tower. Forexample, suppose that the user asks to square the above matrix. To do this,the fun
tion *" from Matrix is passed the matrix M to
ompute M � M .The fun
tion is also passed an environment
ontaining R that, in this
ase, isPolynomial (Fra
tion (Integer)). This results in the su

essive
alling ofthe *" operations from Polynomial, then from Fra
tion, and then �nally fromInteger.Categories play a poli
ing role in the building of domains. Be
ause the argumentof Matrix is required to be a Ring, Axiom will not build nonsensi
al types su
has \matri
es of input �les".2.0.20 Axiom Code is CompiledAxiom programs are stati
ally
ompiled to ma
hine
ode, then pla
ed into li-brary modules. Categories provide an important role in obtaining eÆ
ient obje
t
ode by enabling:� stati
 type-
he
king at
ompile time;� fast linkage to operations in domain-valued parameters;� optimization te
hniques to be used for partially spe
i�ed types (opera-tions for \ve
tors of R", for instan
e,
an be open-
oded even though R isunknown).2.0.21 Axiom is ExtensibleUsers and system implementers alike use the Axiom language to add fa
ilitiesto the Axiom library. The entire Axiom library is in fa
t written in the Axiomsour
e
ode and available for user modi�
ation and/or extension.

19Axiom's use of abstra
t datatypes
learly separates the exports of a domain(what operations are de�ned) from its implementation (how the obje
ts arerepresented and operations are de�ned). Users of a domain
an thus only
reateand manipulate obje
ts through these exported operations. This allows imple-menters to \remove and repla
e" parts of the library safely by newly upgraded(and, we hope,
orre
t) implementations without
onsequen
e to its users.Categories prote
t names by
ontext, making the same names available for usein other
ontexts. Categories also provide for
ode-e
onomy. Algorithms
an beparameterized
ategori
ally to
hara
terize their
orre
t and most general
on-text. On
e
ompiled, the same ma
hine
ode is appli
able in all su
h
ontexts.Finally, Axiom provides an automati
, guaranteed intera
tion between new andold
ode. For example:� if you write a new algorithm that requires a parameter to be a �eld, thenyour algorithm will work automati
ally with every �eld de�ned in thesystem; past, present, or future.� if you introdu
e a new domain
onstru
tor that produ
es a �eld, then theobje
ts of that domain
an be used as parameters to any algorithm using�eld obje
ts de�ned in the system; past, present, or future.Before embarking on the tour, we need to brief those readers working intera
-tively with Axiom on some details.

20 CHAPTER 2. TEN FUNDAMENTAL IDEAS

Chapter 3Starting AxiomWel
ome to the Axiom environment for intera
tive
omputation and problemsolving. Consider this
hapter a brief, whirlwind tour of the Axiom world. Weintrodu
e you to Axiom's graphi
s and the Axiom language. Then we give asampling of the large variety of fa
ilities in the Axiom system, ranging fromthe various kinds of numbers, to data types (like lists, arrays, and sets) andmathemati
al obje
ts (like matri
es, integrals, and di�erential equations). Wein
lude a dis
ussion of system
ommands and an intera
tive \undo."3.1 Starting Up and Winding DownYou need to know how to start the Axiom system and how to stop it. Weassume that Axiom has been
orre
tly installed on your ma
hine. Informationon how to install Axiom is available on the wiki website[3℄.To begin using Axiom, issue the
ommand axiom to the operating system shell.There is a brief pause, some start-up messages, and then one or more windowsappear.If you are not running Axiom under the X Window System, there is only onewindow (the
onsole). At the lower left of the s
reen there is a prompt thatlooks like(1) ->When you want to enter input to Axiom, you do so on the same line afterthe prompt. The \1" in \(1)", also
alled the equation number, is the
om-putation step number and is in
remented after you enter Axiom statements.Note, however, that a system
ommand su
h as)
lear all may
hange thestep number in other ways. We talk about step numbers more when we dis
usssystem
ommands and the workspa
e history fa
ility.21

22 CHAPTER 3. STARTING AXIOMIf you are running Axiom under the X Window System, there may be twowindows: the
onsole window (as just des
ribed) and the HyperDo
 main menu.HyperDo
 is a multiple-window hypertext system that lets you view Axiomdo
umentation and examples on-line, exe
ute Axiom expressions, and generategraphi
s. If you are in a graphi
al windowing environment, it is usually startedautomati
ally when Axiom begins. If it is not running, issue)hd to start it.To interrupt an Axiom
omputation, hold down the Ctrl (
ontrol) key and press
. This brings you ba
k to the Axiom prompt.To exit from Axiom, move to the
onsole window, type)quit at the inputprompt and press the Enter key. You will probably be prompted with thefollowing message:Please enter y or yes if you really want to leave theintera
tive environment and return to the operating systemYou should respond yes, for example, to exit Axiom.We are purposely vague in des
ribing exa
tly what your s
reen looks like orwhat messages Axiom displays. Axiom runs on a number of di�erent ma
hines,operating systems and window environments, and these di�eren
es all a�e
t thephysi
al look of the system. You
an also
hange the way that Axiom behavesvia system
ommands des
ribed later in this
hapter and in the Axiom SystemCommands. (Chapter 8 on page 233) System
ommands are spe
ial
ommands,like)set, that begin with a
losing parenthesis and are used to
hange yourenvironment. For example, you
an set a system variable so that you are notprompted for
on�rmation when you want to leave Axiom.3.1.1 ClefIf you are using Axiom under the X Window System, the Clef
ommand lineeditor is probably available and installed. With this editor you
an re
all pre-vious lines with the up and down arrow keys. To move forward and ba
kwardon a line, use the right and left arrows. You
an use the Insert key to toggleinsert mode on or o�. When you are in insert mode, the
ursor appears as alarge blo
k and if you type anything, the
hara
ters are inserted into the linewithout deleting the previous ones.If you press the Home key, the
ursor moves to the beginning of the line andif you press the End key, the
ursor moves to the end of the line. PressingCtrl-End deletes all the text from the
ursor to the end of the line.Clef also provides Axiom operation name
ompletion for a limited set of oper-ations. If you enter a few letters and then press the Tab key, Clef tries to usethose letters as the pre�x of an Axiom operation name. If a name appears andit is not what you want, press Tab again to see another name.

3.2. THE AXIOM LANGUAGE 233.1.2 Typographi
 ConventionsIn this do
ument we have followed these typographi
al
onventions:� Categories, domains and pa
kages are displayed in this font: Ring, Integer,DiophantineSolutionPa
kage.� Pre�x operators, in�x operators, and pun
tuation symbols in the Axiomlanguage are displayed in the text like this: +, $, +->.� Axiom expressions or expression fragments are displayed in this font:in
(x) == x + 1.� For
larity of presentation, TEX is often used to format expressionsg(x) = x2 + 1.� Fun
tion names and HyperDo
 button names are displayed in the text inthis font: fa
tor, integrate, Lighting.� Itali
s are used for emphasis and for words de�ned in the glossary:
ategory.This do
ument
ontains over many examples of Axiom input and output. Allexamples were run though Axiom and their output was
reated in TEX form.We have deleted system messages from the example output if those messagesare not important for the dis
ussions in whi
h the examples appear.3.2 The Axiom LanguageThe Axiom language is a ri
h language for performing intera
tive
omputationsand for building
omponents of the Axiom library. Here we present only somebasi
 aspe
ts of the language that you need to know for the rest of this
hapter.Our dis
ussion here is intentionally informal, with details unveiled on an \asneeded" basis. For more information on a parti
ular
onstru
t, we suggest you
onsult the index.3.2.1 Arithmeti
 ExpressionsFor arithmeti
 expressions, use the \+" and \-" operator as in mathemati
s. Use*" for multipli
ation, and **" for exponentiation. To
reate a fra
tion, use\/". When an expression
ontains several operators, those of highest pre
eden
eare evaluated �rst. For arithmeti
 operators, **" has highest pre
eden
e, *"and \/" have the next highest pre
eden
e, and \+" and \-" have the lowestpre
eden
e.Axiom puts impli
it parentheses around operations of higher pre
eden
e, andgroups those of equal pre
eden
e from left to right.

24 CHAPTER 3. STARTING AXIOM1 + 2 - 3 / 4 * 3 ** 2 - 1 �194 Type: Fra
tion IntegerThe above expression is equivalent to this.((1 + 2) - ((3 / 4) * (3 ** 2))) - 1�194 Type: Fra
tion IntegerIf an expression
ontains subexpressions en
losed in parentheses, the parenthe-sized subexpressions are evaluated �rst (from left to right, from inside out).1 + 2 - 3/ (4 * 3 ** (2 - 1)) 114 Type: Fra
tion Integer3.2.2 Previous ResultsUse the per
ent sign \%" to refer to the last result. Also, use \%%' to referto previous results. \%%(-1)" is equivalent to \%", \%%(-2)" returns the nextto the last result, and so on. \%%(1)" returns the result from step number1, \%%(2)" returns the result from step number 2, and so on. \%%(0)" is notde�ned.This is ten to the tenth power.10 ** 10 10000000000 Type: PositiveIntegerThis is the last result minus one.% - 1

3.2. THE AXIOM LANGUAGE 259999999999 Type: PositiveIntegerThis is the last result.%%(-1) 9999999999 Type: PositiveIntegerThis is the result from step number 1.%%(1) 10000000000 Type: PositiveInteger3.2.3 Some TypesEverything in Axiom has a type. The type determines what operations you
anperform on an obje
t and how the obje
t
an be used.Positive integers are given type PositiveInteger.8 8 Type: PositiveIntegerNegative ones are given type Integer. This �ne distin
tion is helpful to theAxiom interpreter.-8 �8 Type: IntegerHere a positive integer exponent gives a polynomial result.

26 CHAPTER 3. STARTING AXIOMx**8 x8 Type: Polynomial IntegerHere a negative integer exponent produ
es a fra
tion.x**(-8) 1x8Type: Fra
tion Polynomial Integer3.2.4 Symbols, Variables, Assignments, and De
larationsA symbol is a literal used for the input of things like the \variables" in polyno-mials and power series.We use the three symbols x, y, and z in entering this polynomial.(x - y*z)**2 y2 z2 � 2 x y z + x2Type: Polynomial IntegerA symbol has a name beginning with an upper
ase or lower
ase alphabeti

hara
ter, \%", or \!". Su

essive
hara
ters (if any)
an be any of the above,digits, or \?". Case is distinguished: the symbol points is di�erent from thesymbol Points.A symbol
an also be used in Axiom as a variable. A variable refers to a value.To assign a value to a variable, the operator \:=" is used. Axiom a
tually hastwo forms of assignment: immediate assignment, as dis
ussed here, and delayedassignment. A variable initially has no restri
tions on the kinds of values towhi
h it
an refer.This assignment gives the value 4 (an integer) to a variable named x.x := 4 4 Type: PositiveInteger

3.2. THE AXIOM LANGUAGE 27This gives the value z + 3=5 (a polynomial) to x.x := z + 3/5 z + 35Type: Polynomial Fra
tion IntegerTo restri
t the types of obje
ts that
an be assigned to a variable, use a de
la-rationy : Integer Type: VoidAfter a variable is de
lared to be of some type, only values of that type
an beassigned to that variable.y := 89 89 Type: IntegerThe de
laration for y for
es values assigned to y to be
onverted to integervalues.y := sin %pi 0 Type: IntegerIf no su
h
onversion is possible, Axiom refuses to assign a value to y.y := 2/3Cannot
onvert right-hand side of assignment2-3 to an obje
t of the type Integer of the left-hand side.

28 CHAPTER 3. STARTING AXIOMA type de
laration
an also be given together with an assignment. The de
la-ration
an assist Axiom in
hoosing the
orre
t operations to apply.f : Float := 2/3 0:6666666666 6666666667 Type: FloatAny number of expressions
an be given on input line. Just separate them bysemi
olons. Only the result of evaluating the last expression is displayed.These two expressions have the same e�e
t as the previous single expression.f : Float; f := 2/3 0:6666666666 6666666667 Type: FloatThe type of a symbol is either Symbol or Variable(name) where name is thename of the symbol.By default, the interpreter gives this symbol the type Variable(q).q q Type: Variable qWhen multiple symbols are involved, Symbol is used.[q, r℄ [q; r℄Type: List OrderedVariableList [q,r℄What happens when you try to use a symbol that is the name of a variable?f 0:6666666666 6666666667

3.2. THE AXIOM LANGUAGE 29Type: FloatUse a single quote \'" before the name to get the symbol.'f f Type: Variable fQuoting a name
reates a symbol by preventing evaluation of the name as avariable. Experien
e will tea
h you when you are most likely going to need touse a quote. We try to point out the lo
ation of su
h trouble spots.3.2.5 ConversionObje
ts of one type
an usually be \
onverted" to obje
ts of several other types.To
onvert an obje
t to a new type, use the \::" in�x operator. For example,to display an obje
t, it is ne
essary to
onvert the obje
t to type OutputForm.This produ
es a polynomial with rational number
oeÆ
ients.p := r**2 + 2/3 r2 + 23Type: Polynomial Fra
tion IntegerCreate a quotient of polynomials with integer
oeÆ
ients by using \::".p :: Fra
tion Polynomial Integer3 r2 + 23Type: Fra
tion Polynomial IntegerSome
onversions
an be performed automati
ally when Axiom tries to evaluateyour input. Others
onversions must be expli
itly requested.

30 CHAPTER 3. STARTING AXIOM3.2.6 Calling Fun
tionsAs we saw earlier, when you want to add or subtra
t two values, you pla
ethe arithmeti
 operator \+" or \-" between the two arguments denoting thevalues. To use most other Axiom operations, however, you use another syntax:write the name of the operation �rst, then an open parenthesis, then ea
h ofthe arguments separated by
ommas, and, �nally, a
losing parenthesis. If theoperation takes only one argument and the argument is a number or a symbol,you
an omit the parentheses.This
alls the operation fa
tor with the single integer argument 120.fa
tor(120) 23 3 5 Type: Fa
tored IntegerThis is a
all to divide with the two integer arguments 125 and 7.divide(125,7) [quotient = 17; remainder = 6℄Type: Re
ord(quotient: Integer, remainder: Integer)This
alls quatern with four
oating-point arguments.quatern(3.4,5.6,2.9,0.1)3:4 + 5:6 i+ 2:9 j + 0:1 kType: Quaternion FloatThis is the same as fa
torial(10).fa
torial 10 3628800 Type: PositiveInteger

3.2. THE AXIOM LANGUAGE 31An operations that returns a Boolean value (that is, true or false) frequentlyhas a name suÆxed with a question mark (\?"). For example, the even? oper-ation returns true if its integer argument is an even number, false otherwise.An operation that
an be destru
tive on one or more arguments usually hasa name ending in a ex
lamation point (\!"). This a
tually means that it isallowed to update its arguments but it is not required to do so. For example,the underlying representation of a
olle
tion type may not allow the very lastelement to removed and so an empty obje
t may be returned instead. Therefore,it is important that you use the obje
t returned by the operation and not relyon a physi
al
hange having o

urred within the obje
t. Usually, destru
tiveoperations are provided for eÆ
ien
y reasons.3.2.7 Some Prede�ned Ma
rosAxiom provides several ma
ros for your
onvenien
e. Ma
ros are names (orforms) that expand to larger expressions for
ommonly used values.%i The square root of -1.%e The base of the natural logarithm.%pi �.%in�nity 1.%plusIn�nity +1.%minusIn�nity �1.To display all the ma
ros (along with anything you have de�ned in the workspa
e),issue the system
ommand)display all.3.2.8 Long LinesWhen you enter Axiom expressions from your keyboard, there will be timeswhen they are too long to �t on one line. Axiom does not
are how long yourlines are, so you
an let them
ontinue from the right margin to the left side ofthe next line.Alternatively, you may want to enter several shorter lines and have Axiom gluethem together. To get this glue, put an unders
ore () at the end of ea
h lineyou wish to
ontinue.2_+_3is the same as if you had entered2+3

32 CHAPTER 3. STARTING AXIOMAxiom statements in an input �le
an use indentation to indi
ate the programstru
ture .3.2.9 CommentsComment statements begin with two
onse
utive hyphens or two
onse
utiveplus signs and
ontinue until the end of the line.The
omment beginning with \--" is ignored by Axiom.2 + 3 -- this is rather simple, no?5 Type: PositiveIntegerThere is no way to write long multi-line
omments other than starting ea
h linewith \--" or \++".3.3 Using Axiom as a Po
ket Cal
ulatorAt the simplest level Axiom
an be used as a po
ket
al
ulator where expressionsinvolving numbers and operators are entered dire
tly in in�x notation. In thissense the more advan
ed features of the
al
ulator
an be regarded as operators(e.g sin,
os, et
).3.3.1 Basi
 Arithmeti
An example of this might be to
al
ulate the
osine of 2.45 (in radians). To dothis one would type:(1)->
os 2.45 �0:7702312540473073417 Type: FloatBefore pro
eeding any further it would be best to explain the previous threelines. Axiom presents a \(1) -> " prompt (shown here but omitted elsewhere)when intera
ting with the user. The full prompt has other text pre
eding thisbut it is not relevant here. The number in parenthesis is the step number of theinput whi
h may be used to refer to the results of previous
al
ulations. Thestep number appears at the start of the se
ond line to tell you whi
h step the

3.3. USING AXIOM AS A POCKET CALCULATOR 33result belongs to. Sin
e the interpreter probably loaded numerous libraries to
al
ulate the result given above and listed ea
h one in the pr
ess, there
ouldeasily be several pages of text between your input and the answer.The last line
ontains the type of the result. The type Float is used to representreal numbers of arbitrary size and pre
ision (where the user is able to de�ne howbig arbitrary is { the default is 20 digits but
an be as large as your
omputersystem
an handle). The type of the result
an help tra
k down mistakes inyour input if you don't get the answer you expe
ted.Other arithmeti
 operations su
h as addition, subtra
tion, and multipli
ationbehave as expe
ted:6.93 * 4.1328 28:640304 Type: Float6.93 / 4.1328 1:6768292682926829268 Type: Floatbut integer division isn't quite so obvious. For example, if one types:4/6 23 Type: Fra
tion Integera fra
tional result is obtained. The fun
tion used to display fra
tions attemptsto produ
e the most readable answer. In the example:4/2 2 Type: Fra
tion Integerthe result is stored as the fra
tion 2/1 but is displayed as the integer 2. Thisfra
tion
ould be
onverted to type Integer with no loss of information butAxiom will not do so automati
ally.

34 CHAPTER 3. STARTING AXIOM3.3.2 Type ConversionTo obtain the
oating point value of a fra
tion one must
onvert (
onver-sions are applied by the user and
oer
ions are applied automati
ally by theinterpreter) the result to type Float using the \::" operator as follows:(4.6)::Float 4:6 Type: FloatAlthough Axiom
an
onvert this ba
k to a fra
tion it might not be the samefra
tion you started with due to rounding errors. For example, the following
onversion appears to be without error but others might not:%::Fra
tion Integer 235 Type: Fra
tion Integerwhere \%" represents the previous result (not the
al
ulation).Although Axiom has the ability to work with
oating-point numbers to a veryhigh pre
ision it must be remembered that
al
ulations with these numbers arenot exa
t. Sin
e Axiom is a
omputer algebra pa
kage and not a numeri
alsolutions pa
kage this should not
reate too many problems. The idea is thatthe user should use Axiom to do all the ne
essary symboli
 manipulation andonly at the end should a
tual numeri
al results be extra
ted.If you bear in mind that Axiom appears to store expressions just as you havetyped them and does not perform any evalutation of them unless for
ed to thenprogramming in the system will be mu
h easier. It means that anything youask Axiom to do (within reason) will be
arried out with
omplete a

ura
y.In the previous examples the \::" operator was used to
onvert values from onetype to another. This type
onversion is not possible for all values. For instan
e,it is not possible to
onvert the number 3.4 to an integer type sin
e it
an't berepresented as an integer. The number 4.0
an be
onverted to an integer typesin
e it has no fra
tional part.Conversion from
oating point values to integers is performed using the fun
-tions round and trun
ate. The �rst of these rounds a
oating point number tothe nearest integer while the other trun
ates (i.e. removes the fra
tional part).Both fun
tions return the result as a
oating point number. To extra
t the

3.3. USING AXIOM AS A POCKET CALCULATOR 35fra
tional part of a
oating point number use the fun
tion fra
tionPart butnote that the sign of the result depends on the sign of the argument. Axiomobtains the fra
tional partof x using x� trun
ate(x):round(3.77623) 4:0 Type: Floatround(-3.77623) �4:0 Type: Floattrun
ate(9.235) 9:0 Type: Floattrun
ate(-9.654) �9:0 Type: Floatfra
tionPart(-3.77623) �0:77623 Type: Float

36 CHAPTER 3. STARTING AXIOM3.3.3 Useful Fun
tionsTo obtain the absolute value of a number the abs fun
tion
an be used. Thistakes a single argument whi
h is usually an integer or a
oating point value butdoesn't ne
essarily have to be. The sign of a value
an be obtained via the signfun
tion whi
h returns �1, 0, or 1 depending on the sign of the argument.abs(4) 4 Type: PositiveIntegerabs(-3) 3 Type: PositiveIntegerabs(-34254.12314) 34254:12314 Type: Floatsign(-49543.2345346) �1 Type: Integersign(0) 0 Type: NonNegativeIntegersign(234235.42354) 1

3.3. USING AXIOM AS A POCKET CALCULATOR 37Type: PositiveIntegerTests on values
an be done using various fun
tions whi
h are generally moreeÆ
ient than using relational operators su
h as = parti
ularly if the value is amatrix. Examples of some of these fun
tions are:positive?(-234) false Type: Booleannegative?(-234) true Type: Booleanzero?(42) false Type: Booleanone?(1) true Type: Booleanodd?(23) true Type: Booleanodd?(9.435) false

38 CHAPTER 3. STARTING AXIOMType: Booleaneven?(-42) true Type: Booleanprime?(37) true Type: Booleanprime?(-37) false Type: BooleanSome other fun
tions that are quite useful for manipulating numeri
al valuesare:sin(x) Sine of x
os(x) Cosine of xtan(x) Tangent of xasin(x) Ar
sin of xa
os(x) Ar

os of xatan(x) Ar
tangent of xg
d(x,y) Greatest
ommon divisor of x and yl
m(x,y) Lowest
ommon multiple of x and ymax(x,y) Maximum of x and ymin(x,y) Minimum of x and yfa
torial(x) Fa
torial of xfa
tor(x) Prime fa
tors of xdivide(x,y) Quotient and remainder of x/ySome simple in�x and pre�x operators:

3.4. USING AXIOM AS A SYMBOLIC CALCULATOR 39+ Addition - Subtra
tion- Numeri
al Negation ~ Logi
al Negation/\ Conjun
tion (AND) \/ Disjun
tion (OR)and Logi
al AND (/\) or Logi
al OR (\/)not Logi
al Negation ** Exponentiation* Multipli
ation / Divisionquo Quotient rem Remainder< less than > greater than<= less than or equal >= greater than or equalSome useful Axiom ma
ros:%i The square root of -1%e The base of the natural logarithm%pi Pi%infinity Infinity%plusInfinity Positive Infinity%minusInfinity Negative Infinity3.4 Using Axiom as a Symboli
 Cal
ulatorIn the previous se
tion all the examples involved numbers and simple fun
tions.Also none of the expressions entered were assigned to anything. In this se
tionwe will move on to simple algebra (i.e. expressions involving symbols and otherfeatures available on more sophisti
ated
al
ulators).3.4.1 Expressions Involving SymbolsExpressions involving symbols are entered just as they are written down, forexample:xSquared := x**2 x2 Type: Polynomial Integerwhere the assignment operator \:=" represents immediate assignment. Laterit will be seen that this form of assignment is not always desirable and theuse of the delayed assignment operator \==" will be introdu
ed. The type ofthe result is Polynomial Integer whi
h is used to represent polynomials withinteger
oeÆ
ients. Some other examples along similar lines are:xDummy := 3.21*x**2

40 CHAPTER 3. STARTING AXIOM3:21 x2 Type: Polynomial FloatxDummy := x**2.5 x2 px Type: Expression FloatxDummy := x**3.3 x3 10px3 Type: Expression FloatxyDummy := x**2 - y**2 �y2 + x2 Type: Polynomial IntegerGiven that we
an de�ne expressions involving symbols, how do we a
tually
ompute the result when the symbols are assigned values? The answer is to usethe eval fun
tion whi
h takes an expression as its �rst argument followed bya list of assignments. For example, to evaluate the expressions XDummy andxyDummy resulting from their respe
tive assignments above we type:eval(xDummy,x=3) 37:540507598529552193Type: Expression Floateval(xyDummy, [x=3, y=2.1℄) 4:59 Type: Polynomial Float

3.4. USING AXIOM AS A SYMBOLIC CALCULATOR 413.4.2 Complex NumbersFor many s
ienti�

al
ulations real numbers aren't suÆ
ient and support for
omplex numbers is also required. Complex numbers are handled in an intuitivemanner. Axiom uses the %i ma
ro to represent the square root of �1. Thusexpressions involving
omplex numbers are entered just like other expressions.(2/3 + %i)**3 �4627 + 13 iType: Complex Fra
tion IntegerThe real and imaginary parts of a
omplex number
an be extra
ted usingthe real and imag fun
tions and the
omplex
onjugate of a number
an beobtained using
onjugate:real(3 + 2*%i) 3 Type: PositiveIntegerimag(3+ 2*%i) 2 Type: PositiveInteger
onjugate(3 + 2*%i) 3� 2 i Type: Complex IntegerThe fun
tion fa
tor
an also be applied to
omplex numbers but the resultsaren't quite so obvious as for fa
toring integer:144 + 24*%i 144 + 24 i

42 CHAPTER 3. STARTING AXIOMType: Complex Integerfa
tor(%) i (1 + i)6 3 (6 + i)Type: Fa
tored Complex Integer3.4.3 Number RepresentationsBy default all numeri
al results are displayed in de
imal with real numbersshown to 20 signi�
ant �gures. If the integer part of a number is longer than 20digits then nothing after the de
imal point is shown and the integer part is givenin full. To alter the number of digits shown the fun
tion digits
an be
alled.The result returned by this fun
tion is the previous setting. For example, to�nd the value of � to 40 digits we type:digits(40) 20 Type: PositiveInteger%pi::Float 3:1415926535 8979323846 2643383279 502884197 Type: FloatAs
an be seen in the example above, there is a gap after every ten digits. This
an be
hanged using the outputSpa
ing fun
tion where the argument is thenumber of digits to be displayed before a spa
e is inserted. If no spa
es aredesired then use the value 0. Two other fun
tions
ontrolling the appearan
eof real numbers are outputFloating and outputFixed. The former
ausesAxiom to display
oating-point values in exponent notation and the latter
ausesit to use �xed-point notation. For example:outputFloating(); %0:3141592653589793238462643383279502884197E1

3.4. USING AXIOM AS A SYMBOLIC CALCULATOR 43Type: FloatoutputFloating(3); 0.00345 0:345E � 2 Type: FloatoutputFixed(); % 0:00345 Type: FloatoutputFixed(3); % 0:003 Type: FloatoutputGeneral(); % 0:00345 Type: FloatNote that the semi
olon \;" in the examples above allows several expressions tobe entered on one line. The result of the last expression is displayed. rememberalso that the per
ent symbol \%" is used to represent the result of a previous
al
ulation.To display rational numbers in a base other than 10 the fun
tion radix is used.The �rst argument of this fun
tion is the expression to be displayed and these
ond is the base to be used.radix(10**10,32) 9A0NP00 Type: RadixExpansion 32

44 CHAPTER 3. STARTING AXIOMradix(3/21,5) 0:032412 Type: RadixExpansion 5Rational numbers
an be represented as a repeated de
imal expansion using thede
imal fun
tion or as a
ontinued fra
tion using
ontinuedFra
tion. Anyattempt to
all these fun
tions with irrational values will fail.de
imal(22/7) 3:142857 Type: De
imalExpansion
ontinuedFra
tion(6543/210)31 + 1jj6 + 1jj2 + 1jj1 + 1jj3Type: ContinuedFra
tion IntegerFinally, partial fra
tions in
ompa
t and expanded form are available via thefun
tions partialFra
tion and padi
Fra
tion respe
tively. The former takestwo arguments, the �rst being the numerator of the fra
tion and the se
ondbeing the denominator. The latter fun
tion takes a fra
tion and expands itfurther while the fun
tion
ompa
tFra
tion does the reverse:partialFra
tion(234,40) 6� 322 + 35Type: PartialFra
tion Integerpadi
Fra
tion(%) 6� 12 � 122 + 35Type: PartialFra
tion Integer

3.4. USING AXIOM AS A SYMBOLIC CALCULATOR 45
ompa
tFra
tion(%) 6� 322 + 35Type: PartialFra
tion Integerpadi
Fra
tion(234/40) 11720Type: PartialFra
tion Fra
tion IntegerTo extra
t parts of a partial fra
tion the fun
tion nthFra
tionalTerm is avail-able and returns a partial fra
tion of one term. To de
ompose this further thenumerator
an be obtained using �rstNumer and the denominator with �rst-Denom. The whole part of a partial fra
tion
an be retrieved using wholePartand the number of fra
tional parts
an be found using the fun
tion numberOfFra
tionalTerms:t := partialFra
tion(234,40)6� 322 + 35Type: PartialFra
tion IntegerwholePart(t) 6 Type: PositiveIntegernumberOfFra
tionalTerms(t) 2 Type: PositiveIntegerp := nthFra
tionalTerm(t,1)

46 CHAPTER 3. STARTING AXIOM� 322 Type: PartialFra
tion IntegerfirstNumer(p) �3 Type: IntegerfirstDenom(p) 22 Type: Fa
tored Integer3.4.4 Modular Arithmeti
By using the type
onstru
tor PrimeField it is possible to do arithmeti
 modulosome prime number. For example, arithmeti
 module 7
an be performed asfollows:x : PrimeField 7 := 5 5 Type: PrimeField 7x**5 + 6 2 Type: PrimeField 71/x 3 Type: PrimeField 7

3.5. GENERAL POINTS ABOUT AXIOM 47The �rst example should be read as:Let x be of type PrimeField(7) and assign to it the value 5Note that it is only possible to invert non-zero values if the arithmeti
 is per-formed modulo a prime number. Thus arithmeti
 modulo a non-prime integeris possible but the re
ipro
al operation is unde�ned and will generate an error.Attempting to use the PrimeField type
onstru
tor with a non-prime argumentwill generate an error. An example of non-prime modulo arithmeti
 is:y : IntegerMod 8 := 11 3 Type: IntegerMod 8y*4 + 27 7 Type: IntegerMod 8Note that polynomials
an be
onstru
ted in a similar way:(3*a**4 + 27*a - 36)::Polynomial PrimeField 73 a4 + 6 a+ 6Type: Polynomial PrimeField 73.5 General Points about Axiom3.5.1 Computation Without OutputIt is sometimes desirable to enter an expression and prevent Axiom from display-ing the result. To do this the expression should be terminated with a semi
olon\;". In a previous se
tion it was mentioned that a set of expressions separatedby semi
olons would be evaluated and the result of the last one displayed. Thusif a single expression is followed by a semi
olon no output will be produ
ed(ex
ept for its type):2 + 4*5; Type: PositiveInteger

48 CHAPTER 3. STARTING AXIOM3.5.2 A

essing Earlier ResultsThe \%" ma
ro represents the result of the previous
omputation. The \%%"ma
ro is available whi
h takes a single integer argument. If the argument ispositive then it refers to the step number of the
al
ulation where the numberingbegins from one and
an be seen at the end of ea
h prompt (the number inparentheses). If the argument is negative then it refers to previous results
ounting ba
kwards from the last result. That is, \%%(-1)" is the same as \%".The value of \%%(0)" is not de�ned and will generate an error if requested.3.5.3 Splitting Expressions Over Several LinesAlthough Axiom will quite happily a

ept expressions that are longer than thewidth of the s
reen (just keep typing without pressing the Return key) itis often preferable to split the expression being entered at a point where itwould result in more readable input. To do this the unders
ore \ " symbol ispla
ed before the break point and then the Return key is pressed. The restof the expression is typed on the next line,
an be pre
eeded by any number ofwhitespa
e
hars, for example:2_+_3 5 Type: PositiveIntegerThe unders
ore symbol is an es
ape
hara
ter and its presen
e alters the mean-ing of the
hara
ters that follow it. As mentions above whitespa
e following anunders
ore is ignored (the Return key generates a whitespa
e
hara
ter). Anyother
hara
ter following an unders
ore loses whatever spe
ial meaning it mayhave had. Thus one
an
reate the identi�er \a+b" by typing \a +b" althoughthis might lead to
onfusions. Also note the result of the following example:ThisIsAVeryLongVariableName ThisIsAV eryLongV ariableNameType: Variable ThisIsAVeryLongVariableName

3.5. GENERAL POINTS ABOUT AXIOM 493.5.4 Comments and Des
riptionsComments and des
riptions are really only of use in �les of Axiom
ode but
an be used when the output of an intera
tive session is being spooled to a �le(via the system
ommand)spool). A
omment begins with two dashes \- -"and
ontinues until the end of the line. Multi-line
omments are only possibleif ea
h individual line begins with two dashes.Des
riptions are the same as
omments ex
ept that the Axiom
ompiler willin
lude them in the obje
t �les produ
ed and make them available to the enduser for do
umentation purposes.A des
ription is pla
ed before a
al
ulation begins with three \+++" signsand a des
ription pla
ed after a
al
ulation begins with two plus signs \++".The so-
alled \plus plus"
omments are used within the algebra �les and arepro
essed by the
ompiler to add to the do
umentation. The so-
alled \minusminus"
omments are ignored everywhere.3.5.5 Control of Result TypesIn earlier se
tions the type of an expression was
onverted to another via the\::" operator. However, this is not the only method for
onverting betweentypes and two other operators need to be introdu
ed and explained.The �rst operator is \$" and is used to spe
ify the pa
kage to be used to
al
ulatethe result. Thus:(2/3)$Float 0:6666666666 6666666667 Type: Floattells Axiom to use the \/" operator from the Float pa
kage to evaluate theexpression 2=3. This does not ne
essarily mean that the result will be of thesame type as the domain from whi
h the operator was taken. In the followingexample the sign operator is taken from the Float pa
kage but the result is oftype Integer.sign(2.3)$Float 1 Type: Integer

50 CHAPTER 3. STARTING AXIOMThe other operator is \�" whi
h is used to tell Axiom what the desired type ofthe result of the
al
ulation is. In most situations all three operators yield thesame results but the example below should help distinguish them.(2 + 3)::String "5" Type: String(2 + 3)�StringAn expression involving � String a
tually evaluated to one oftype PositiveInteger . Perhaps you should use :: String .(2 + 3)$StringThe fun
tion + is not implemented in String .If an expression X is
onverted using one of the three operators to type T theinterpretations are::: means expli
itly
onvert X to type T if possible.$ means use the available operators for type T to
ompute X.� means
hoose operators to
ompute X so that the result is of type T.3.5.6 Using system
ommandsWe
on
lude our tour of Axiom with a brief dis
ussion of system
ommands.System
ommands are spe
ial statements that start with a
losing parenthesis()). They are used to
ontrol or display your Axiom environment, start theHyperDo
 system, issue operating system
ommands and leave Axiom. Forexample,)system is used to issue
ommands to the operating system fromAxiom. Here is a brief des
ription of some of these
ommands.Perhaps the most important user
ommand is the)
lear all
ommand thatinitializes your environment. Every se
tion and subse
tion in this do
ument hasan invisible)
lear all that is read prior to the examples given in the se
tion.)
lear all gives you a fresh, empty environment with no user variables de�nedand the step number reset to 1. The)
lear
ommand
an also be used tosele
tively
lear values and properties of system variables.Another useful system
ommand is)read. A preferred way to develop an appli-
ation in Axiom is to put your intera
tive
ommands into a �le, say my.input

3.5. GENERAL POINTS ABOUT AXIOM 51�le. To get Axiom to read this �le, you use the system
ommand)readmy.input. If you need to make
hanges to your approa
h or de�nitions, gointo your favorite editor,
hange my.input, then)read my.input again.Other system
ommands in
lude:)history, to display previous input and/oroutput lines;)display, to display properties and values of workspa
e variables;and)what.Issue)what to get a list of Axiom obje
ts that
ontain a given substring in theirname.)what operations integrateOperations whose names satisfy the above pattern(s):HermiteIntegrate algintegrate
omplexIntegrateexpintegrate extendedIntegrate fintegrateinfieldIntegrate integrate internalIntegrateinternalIntegrate0 lazyGintegrate lazyIntegratelfintegrate limitedIntegrate monomialIntegratenagPolygonIntegrate palgintegrate pmComplexintegratepmintegrate primintegrate tanintegrateTo get more information about an operation su
h aslimitedIntegrate , issue the
ommand)display op limitedIntegrate3.5.7 Using undoA useful system
ommand is)undo. Sometimes while
omputing intera
tivelywith Axiom, you make a mistake and enter an in
orre
t de�nition or assignment.Or perhaps you need to try one of several alternative approa
hes, one afteranother, to �nd the best way to approa
h an appli
ation. For this, you will �ndthe undo fa
ility of Axiom helpful.System
ommand)undo n means \undo ba
k to step n"; it restores the valuesof user variables to those that existed immediately after input expression nwas evaluated. Similarly,)undo -n undoes
hanges
aused by the last n inputexpressions. On
e you have done an)undo, you
an
ontinue on from there, ormake a
hange and redo all your input expressions from the point of the)undoforward. The)undo is
ompletely general: it
hanges the environment like anyuser expression. Thus you
an)undo any previous undo.Here is a sample dialogue between user and Axiom.\Let me de�ne two mutually dependent fun
tions f and g pie
e-wise."

52 CHAPTER 3. STARTING AXIOMf(0) == 1; g(0) == 1 Type: Void\Here is the general term for f ."f(n) == e/2*f(n-1) - x*g(n-1) Type: Void\And here is the general term for g."g(n) == -x*f(n-1) + d/3*g(n-1) Type: Void\What is value of f(3)?"f(3) �x3 +�e+ 13 d� x2 +��14 e2 � 16 d e� 19 d2� x+ 18 e3Type: Polynomial Fra
tion Integer\Hmm, I think I want to de�ne f di�erently. Undo to the environment rightafter I de�ned f .")undo 2\Here is how I think I want f to be de�ned instead."f(n) == d/3*f(n-1) - x*g(n-1)1 old definition(s) deleted for fun
tion or rule f Type: VoidRedo the
omputation from expression 3 forward.)undo)redo

3.5. GENERAL POINTS ABOUT AXIOM 53g(n) == -x*f(n-1) + d/3*g(n-1) Type: Voidf(3)Compiling fun
tion g with type Integer -> Polynomial Fra
tionIntegerCompiling fun
tion g as a re
urren
e relation.+++ |*1;g;1;G82322;AUX| redefined+++ |*1;g;1;G82322| redefinedCompiling fun
tion g with type Integer -> Polynomial Fra
tionIntegerCompiling fun
tion g as a re
urren
e relation.+++ |*1;g;1;G82322;AUX| redefined+++ |*1;g;1;G82322| redefinedCompiling fun
tion f with type Integer -> Polynomial Fra
tionIntegerCompiling fun
tion f as a re
urren
e relation.+++ |*1;f;1;G82322;AUX| redefined+++ |*1;f;1;G82322| redefined�x3 + d x2 � 13 d2 x+ 127 d3Type: Polynomial Fra
tion Integer\I want my old de�nition of f after all. Undo the undo and restore the envi-ronment to that immediately after (4).")undo 4\Che
k that the value of f(3) is restored."f(3)Compiling fun
tion g with type Integer -> Polynomial Fra
tionIntegerCompiling fun
tion g as a re
urren
e relation.

54 CHAPTER 3. STARTING AXIOM+++ |*1;g;1;G82322;AUX| redefined+++ |*1;g;1;G82322| redefinedCompiling fun
tion g with type Integer -> Polynomial Fra
tionIntegerCompiling fun
tion g as a re
urren
e relation.+++ |*1;g;1;G82322;AUX| redefined+++ |*1;g;1;G82322| redefinedCompiling fun
tion f with type Integer -> Polynomial Fra
tionIntegerCompiling fun
tion f as a re
urren
e relation.+++ |*1;f;1;G82322;AUX| redefined+++ |*1;f;1;G82322| redefined�x3 +�e+ 13 d� x2 +��14 e2 � 16 d e� 19 d2� x+ 18 e3Type: Polynomial Fra
tion IntegerAfter you have gone o� on several tangents, then ba
ktra
ked to previous pointsin your
onversation using)undo, you might want to save all the \
orre
t"input
ommands you issued, disregarding those undone. The system
ommand)history)write mynew.input writes a
lean straight-line program onto the�le mynew.input on your disk.3.6 Data Stru
tures in AxiomThis
hapter is an overview of some of the data stru
tures provided by Axiom.3.6.1 ListsThe Axiom List type
onstru
tor is used to
reate homogenous lists of �nitesize. The notation for lists and the names of the fun
tions that operate overthem are similar to those found in fun
tional languages su
h as ML.Lists
an be
reated by pla
ing a
omma separated list of values inside squarebra
kets or if a list with just one element is desired then the fun
tion list isavailable:[4℄

3.6. DATA STRUCTURES IN AXIOM 55[4℄ Type: List PositiveIntegerlist(4) [4℄ Type: List PositiveInteger[1,2,3,5,7,11℄ [1; 2; 3; 5; 7; 11℄Type: List PositiveIntegerThe fun
tion append takes two lists as arguments and returns the list
onsistingof the se
ond argument appended to the �rst. A single element
an be addedto the front of a list using
ons:append([1,2,3,5℄,[7,11℄) [1; 2; 3; 5; 7; 11℄Type: List PositiveInteger
ons(23,[65,42,19℄) [23; 65; 42; 19℄Type: List PositiveIntegerLists are a

essed sequentially so if Axiom is asked for the value of the twentiethelement in the list it will move from the start of the list over nineteen elementsbefore it rea
hes the desired element. Ea
h element of a list is stored as a node
onsisting of the value of the element and a pointer to the rest of the list. As aresult the two main operations on a list are
alled �rst and rest. Both of thesefun
tions take a se
ond optional argument whi
h spe
i�es the length of the �rstpart of the list:first([1,5,6,2,3℄)

56 CHAPTER 3. STARTING AXIOM1 Type: PositiveIntegerfirst([1,5,6,2,3℄,2) [1; 5℄ Type: List PositiveIntegerrest([1,5,6,2,3℄) [5; 6; 2; 3℄ Type: List PositiveIntegerrest([1,5,6,2,3℄,2) [6; 2; 3℄ Type: List PositiveIntegerOther fun
tions are empty? whi
h tests to see if a list
ontains no elements,member? whi
h tests to see if the �rst argument is a member of the se
ond,reverse whi
h reverses the order of the list, sort whi
h sorts a list, and re-moveDupli
ates whi
h removes any dupli
ates. The length of a list
an beobtained using the \#" operator.empty?([7,2,-1,2℄) false Type: Booleanmember?(-1,[7,2,-1,2℄) true Type: Boolean

3.6. DATA STRUCTURES IN AXIOM 57reverse([7,2,-1,2℄) [2;�1; 2; 7℄ Type: List Integersort([7,2,-1,2℄) [�1; 2; 2; 7℄ Type: List IntegerremoveDupli
ates([1,5,3,5,1,1,2℄)[1; 5; 3; 2℄ Type: List PositiveInteger#[7,2,-1,2℄ 4 Type: PositiveIntegerLists in Axiom are mutable and so their
ontents (the elements and the links)
an be modi�ed in pla
e. Fun
tions that operate over lists in this way havenames ending in the symbol \!". For example,
on
at! takes two lists asarguments and appends the se
ond argument to the �rst (ex
ept when the �rstargument is an empty list) and setrest!
hanges the link emanating from the�rst argument to point to the se
ond argument:u := [9,2,4,7℄ [9; 2; 4; 7℄ Type: List PositiveInteger
on
at!(u,[1,5,42℄); u

58 CHAPTER 3. STARTING AXIOM[9; 2; 4; 7; 1; 5; 42℄Type: List PositiveIntegerendOfu := rest(u,4) [1; 5; 42℄ Type: List PositiveIntegerpartOfu := rest(u,2) [4; 7; 1; 5; 42℄ Type: List PositiveIntegersetrest!(endOfu,partOfu); u �9; 2; 4; 7; 1� Type: List PositiveIntegerFrom this it
an be seen that the lists returned by �rst and rest are pointersto the original list and not a
opy. Thus great
are must be taken when dealingwith lists in Axiom.Although the nth element of the list l
an be obtained by applying the �rstfun
tion to n� 1 appli
ations of rest to l, Axiom provides a more useful a

essmethod in the form of the \." operator:u.3 4 Type: PositiveIntegeru.5 1 Type: PositiveInteger

3.6. DATA STRUCTURES IN AXIOM 59u.6 4 Type: PositiveIntegerfirst rest rest u -- Same as u.3 4 Type: PositiveIntegeru.first 9 Type: PositiveIntegeru(3) 4 Type: PositiveIntegerThe operation u.i is referred to as indexing into u or elting into u. The latterterm
omes from the elt fun
tion whi
h is used to extra
t elements (the �rstelement of the list is at index 1).elt(u,4) 7 Type: PositiveIntegerIf a list has no
y
les then any attempt to a

ess an element beyond the endof the list will generate an error. However, in the example above there was a
y
le starting at the third element so the a

ess to the sixth element wrappedaround to give the third element. Sin
e lists are mutable it is possible to modifyelements dire
tly:u.3 := 42; u

60 CHAPTER 3. STARTING AXIOM�9; 2; 42; 7; 1� Type: List PositiveIntegerOther list operations are:L := [9,3,4,7℄; #L 4 Type: PositiveIntegerlast(L) 7 Type: PositiveIntegerL.last 7 Type: PositiveIntegerL.(#L - 1) 4 Type: PositiveIntegerNote that using the \#" operator on a list with
y
les
auses Axiom to enteran in�nite loop.Note that any operation on a list L that returns a list LL0 will, in general, besu
h that any
hanges to LL0 will have the side-e�e
t of altering L. For example:m := rest(L,2) [4; 7℄ Type: List PositiveInteger

3.6. DATA STRUCTURES IN AXIOM 61m.1 := 20; L [9; 3; 20; 7℄ Type: List PositiveIntegern := L [9; 3; 20; 7℄ Type: List PositiveIntegern.2 := 99; L [9; 99; 20; 7℄ Type: List PositiveIntegern [9; 99; 20; 7℄ Type: List PositiveIntegerThus the only safe way of
opying lists is to
opy ea
h element from one toanother and not use the assignment operator:p := [i for i in n℄ -- Same as `p :=
opy(n)'[9; 99; 20; 7℄ Type: List PositiveIntegerp.2 := 5; p [9; 5; 20; 7℄ Type: List PositiveIntegern

62 CHAPTER 3. STARTING AXIOM[9; 99; 20; 7℄ Type: List PositiveIntegerIn the previous example a new way of
onstru
ting lists was given. This is apowerful method whi
h gives the reader more information about the
ontentsof the list than before and whi
h is extremely
exible. The example[i for i in 1..10℄ [1; 2; 3; 4; 5; 6; 7; 8; 9; 10℄Type: List PositiveIntegershould be read as\Using the expression i, generate ea
h element of the list by iterating thesymbol i over the range of integers [1,10℄"To generate the list of the squares of the �rst ten elements we just use:[i**2 for i in 1..10℄[1; 4; 9; 16; 25; 36; 49; 64; 81; 100℄Type: List PositiveIntegerFor more
omplex lists we
an apply a
ondition to the elements that are to bepla
ed into the list to obtain a list of even numbers between 0 and 11:[i for i in 1..10 | even?(i)℄[2; 4; 6; 8; 10℄ Type: List PositiveIntegerThis example should be read as:\Using the expression i, generate ea
h element of the list by iterating thesymbol i over the range of integers [1,10℄ su
h that i is even"The following a
hieves the same result:[i for i in 2..10 by 2℄ [2; 4; 6; 8; 10℄ Type: List PositiveInteger

3.6. DATA STRUCTURES IN AXIOM 633.6.2 Segmented ListsA segmented list is one in whi
h some of the elements are ranges of values. Theexpand fun
tion
onverts lists of this type into ordinary lists:[1..10℄ [1::10℄Type: List Segment PositiveInteger[1..3,5,6,8..10℄ [1::3; 5::5; 6::6; 8::10℄Type: List Segment PositiveIntegerexpand(%) [1; 2; 3; 5; 6; 8; 9; 10℄ Type: List IntegerIf the upper bound of a segment is omitted then a di�erent type of segmentedlist is obtained and expanding it will produ
e a stream (whi
h will be
onsideredin the next se
tion):[1..℄ [1::℄Type: List UniversalSegment PositiveIntegerexpand(%) [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; : : :℄ Type: Stream Integer

64 CHAPTER 3. STARTING AXIOM3.6.3 StreamsStreams are in�nite lists whi
h have the ability to
al
ulate the next elementshould it be required. For example, a stream of positive integers and a list ofprime numbers
an be generated by:[i for i in 1..℄ [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; : : :℄Type: Stream PositiveInteger[i for i in 1.. | prime?(i)℄[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; : : :℄Type: Stream PositiveIntegerIn ea
h
ase the �rst few elements of the stream are
al
ulated for displaypurposes but the rest of the stream remains unevaluated. The value of itemsin a stream are only
al
ulated when they are needed whi
h gives rise to theiralternative name of \lazy lists".Another method of
reating streams is to use the generate(f,a) fun
tion. Thisapplies its �rst argument repeatedly onto its se
ond to produ
e the stream[a; f(a); f(f(a)); f(f(f(a))) : : :℄. Given that the fun
tion nextPrime returnsthe lowest prime number greater than its argument we
an generate a streamof primes as follows:generate(nextPrime,2)$Stream Integer[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; : : :℄Type: Stream IntegerAs a longer example a stream of Fibona

i numbers will be
omputed. TheFibona

i numbers start at 1 and ea
h following number is the addition of thetwo numbers that pre
ede it so the Fibona

i sequen
e is:1; 1; 2; 3; 5; 8; : : :.Sin
e the generation of any Fibona

i number only relies on knowing the previ-ous two numbers we
an look at the series through a window of two elements.

3.6. DATA STRUCTURES IN AXIOM 65To
reate the series the window is pla
ed at the start over the values [1; 1℄ andtheir sum obtained. The window is now shifted to the right by one position andthe sum pla
ed into the empty slot of the window; the pro
ess is then repeated.To implement this we require a fun
tion that takes a list of two elements (the
urrent view of the window), adds them, and outputs the new window. Theresult is the fun
tion [a; b℄ -> [b; a+ b℄:win : List Integer -> List Integer Type: Voidwin(x) == [x.2, x.1 + x.2℄ Type: Voidwin([1,1℄) [1; 2℄ Type: List Integerwin(%) [2; 3℄ Type: List IntegerThus it
an be seen that by repeatedly applying win to the results of theprevious invo
ation ea
h element of the series is obtained. Clearly win is anideal fun
tion to
onstru
t streams using the generate fun
tion:fibs := [generate(win,[1,1℄)℄[[1; 1℄; [1; 2℄; [2; 3℄; [3; 5℄; [5; 8℄; [8; 13℄; [13; 21℄; [21; 34℄; [34; 55℄; [55; 89℄; : : :℄Type: Stream List IntegerThis isn't quite what is wanted { we need to extra
t the �rst element of ea
hlist and pla
e that in our series:

66 CHAPTER 3. STARTING AXIOMfibs := [i.1 for i in [generate(win,[1,1℄)℄ ℄[1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : :℄Type: Stream IntegerObtaining the 200th Fibona

i number is trivial:fibs.200 280571172992510140037611932413038677189525Type: PositiveIntegerOne other fun
tion of interest is
omplete whi
h expands a �nite stream derivedfrom an in�nite one (and thus was still stored as an in�nite stream) to form a�nite stream.3.6.4 Arrays, Ve
tors, Strings, and BitsThe simplest array data stru
ture is the one-dimensional array whi
h
an beobtained by applying the oneDimensionalArray fun
tion to a list:oneDimensionalArray([7,2,5,4,1,9℄)[7; 2; 5; 4; 1; 9℄Type: OneDimensionalArray PositiveIntegerOne-dimensional array are homogenous (all elements must have the same type)and mutable (elements
an be
hanged) like lists but unlike lists they are
on-stant in size and have uniform a

ess times (it is just as qui
k to read the lastelement of a one-dimensional array as it is to read the �rst; this is not true forlists).Sin
e these arrays are mutable all the warnings that apply to lists apply toarrays. That is, it is possible to modify an element in a
opy of an array and
hange the original:x := oneDimensionalArray([7,2,5,4,1,9℄)[7; 2; 5; 4; 1; 9℄Type: OneDimensionalArray PositiveInteger

3.6. DATA STRUCTURES IN AXIOM 67y := x [7; 2; 5; 4; 1; 9℄Type: OneDimensionalArray PositiveIntegery.3 := 20 ; x [7; 2; 20; 4; 1; 9℄Type: OneDimensionalArray PositiveIntegerNote that be
ause these arrays are of �xed size the
on
at! fun
tion
annot beapplied to them without generating an error. If arrays of this type are requireduse the FlexibleArray
onstru
tor.One-dimensional arrays
an be
reated using new whi
h spe
i�es the size of thearray and the initial value for ea
h of the elements. Other operations that
anbe applied to one-dimensional arrays are map! whi
h applies a mapping ontoea
h element, swap! whi
h swaps two elements and
opyInto!(a,b,
) whi
h
opies the array b onto a starting at position
.a : ARRAY1 PositiveInteger := new(10,3)[3; 3; 3; 3; 3; 3; 3; 3; 3; 3℄Type: OneDimensionalArray PositiveInteger(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.)Other types based on one-dimensional arrays are Ve
tor, String, and Bits.map!(i +-> i+1,a); a [4; 4; 4; 4; 4; 4; 4; 4; 4; 4℄Type: OneDimensionalArray PositiveIntegerb := oneDimensionalArray([2,3,4,5,6℄)[2; 3; 4; 5; 6℄Type: OneDimensionalArray PositiveInteger

68 CHAPTER 3. STARTING AXIOMswap!(b,2,3); b [2; 4; 3; 5; 6℄Type: OneDimensionalArray PositiveInteger
opyInto!(a,b,3) [4; 4; 2; 4; 3; 5; 6; 4; 4; 4℄Type: OneDimensionalArray PositiveIntegera [4; 4; 2; 4; 3; 5; 6; 4; 4; 4℄Type: OneDimensionalArray PositiveIntegerve
tor([1/2,1/3,1/14℄) �12 ; 13 ; 114�Type: Ve
tor Fra
tion Integer"Hello, World" "Hello, World" Type: Stringbits(8,true) "11111111" Type: BitsA ve
tor is similar to a one-dimensional array ex
ept that if its
omponentsbelong to a ring then arithmeti
 operations are provided.

3.6. DATA STRUCTURES IN AXIOM 693.6.5 Flexible ArraysFlexible arrays are designed to provide the eÆ
ien
y of one-dimensional arrayswhile retaining the
exibility of lists. They are implemented by allo
ating a�xed blo
k of storage for the array. If the array needs to be expanded then alarger blo
k of storage is allo
ated and the
ontents of the old blo
k are
opiedinto the new one.There are several operations that
an be applied to this type, most of whi
hmodify the array in pla
e. As a result these fun
tions all have names endingin \!". The physi
alLength returns the a
tual length of the array as storedin memory while the physi
alLength! allows this value to be
hanged by theuser.f : FARRAY INT := new(6,1) [1; 1; 1; 1; 1; 1℄Type: FlexibleArray Integerf.1:=4; f.2:=3 ; f.3:=8 ; f.5:=2 ; f[4; 3; 8; 1; 2; 1℄Type: FlexibleArray Integerinsert!(42,f,3); f [4; 3; 42; 8; 1; 2; 1℄Type: FlexibleArray Integerinsert!(28,f,8); f [4; 3; 42; 8; 1; 2; 1; 28℄Type: FlexibleArray IntegerremoveDupli
ates!(f) [4; 3; 42; 8; 1; 2; 28℄

70 CHAPTER 3. STARTING AXIOMType: FlexibleArray Integerdelete!(f,5) [4; 3; 42; 8; 2; 28℄Type: FlexibleArray Integerg:=f(3..5) [42; 8; 2℄ Type: FlexibleArray Integerg.2:=7; f [4; 3; 42; 8; 2; 28℄Type: FlexibleArray Integerinsert!(g,f,1) [42; 7; 2; 4; 3; 42; 8; 2; 28℄Type: FlexibleArray Integerphysi
alLength(f) 10 Type: PositiveIntegerphysi
alLength!(f,20) [42; 7; 2; 4; 3; 42; 8; 2; 28℄Type: FlexibleArray Integer

3.7. FUNCTIONS, CHOICES, AND LOOPS 71merge!(sort!(f),sort!(g))[2; 2; 2; 3; 4; 7; 7; 8; 28; 42; 42; 42℄Type: FlexibleArray Integershrinkable(false)$FlexibleArray(Integer)true Type: BooleanThere are several things to point out
on
erning these examples. First, although
exible arrays are mutable, making
opies of these arrays
reates separate en-tities. This
an be seen by the fa
t that the modi�
ation of element g.2 abovedid not alter f. Se
ond, the merge! fun
tion
an take an extra argument be-fore the two arrays are merged. The argument is a
omparison fun
tion anddefaults to \<=" if omitted. Lastly, shrinkable tells the system whether or notto let
exible arrays
ontra
t when elements are deleted from them. An expli
itpa
kage referen
e must be given as in the example above.3.7 Fun
tions, Choi
es, and LoopsBy now the reader should be able to
onstru
t simple one-line expressions involv-ing variables and di�erent data stru
tures. This se
tion builds on this knowledgeand shows how to use iteration, make
hoi
es, and build fun
tions in Axiom.At the moment it is assumed that the reader has a rough idea of how types arespe
i�ed and
onstru
ted so that they
an follow the examples given.From this point on most examples will be taken from input �les.3.7.1 Reading Code from a FileInput �les
ontain
ode that will be fed to the
ommand prompt. The primarydi�erent between the
ommand line and an input �le is that indentation matters.In an input �le you
an spe
ify \piles" of
ode by using indentation.The names of all input �les in Axiom should end in \.input" otherwise Axiomwill refuse to read them.If an input �le is named foo.input you
an feed the
ontents of the �le to the
ommand prompt (as though you typed them) by writing:)read foo.input.It is good pra
ti
e to start ea
h input �le with the)
lear all
ommand so thatall fun
tions and variables in the
urrent environment are erased.

72 CHAPTER 3. STARTING AXIOM3.7.2 Blo
ksThe Axiom
onstru
ts that provide looping,
hoi
es, and user-de�ned fun
tionsall rely on the notion of blo
ks. A blo
k is a sequen
e of expressions whi
h areevaluated in the order that they appear ex
ept when it is modi�ed by
ontrolexpressions su
h as loops. To leave a blo
k prematurely use an expression of theform: BoolExpr => Expr where BoolExpr is any Axiom expression that has typeBoolean. The value and type of Expr determines the value and type returnedby the blo
k.If blo
ks are entered at the keyboard (as opposed to reading them from a text�le) then there is only one way of
reating them. The syntax is:(expression1; expression2; : : : ; expressionN)In an input �le a blo
k
an be
onstru
ted as above or by pla
ing all the state-ments at the same indentation level. When indentation is used to indi
ateprogram stru
ture the blo
k is
alled a pile. As an example of a simple blo
k alist of three integers
an be
onstru
ted using parentheses:(a:=4; b:=1;
:=9; L:=[a,b,
℄)[4; 1; 9℄ Type: List PositiveIntegerDoing the same thing using piles in an input �le you
ould type:L :=a:=4b:=1
:=9[a,b,
℄ [4; 1; 9℄ Type: List PositiveIntegerSin
e blo
ks have a type and a value they
an be used as arguments to fun
tionsor as part of other expressions. It should be pointed out that the followingexample is not re
ommended pra
ti
e but helps to illustrate the idea of blo
ksand their ability to return values:sqrt(4.0 +a:=3.0b:=1.0

3.7. FUNCTIONS, CHOICES, AND LOOPS 73
:=a + b
) 2:8284271247 461900976 Type: FloatNote that indentation is extremely important. If the example above had thepile starting at \a:=" moved left by two spa
es so that the \a" was under the\(" of the �rst line then the interpreter would signal an error. Furthermore ifthe
losing parenthesis \)" is moved up to givesqrt(4.0 +a:=3.0b:=1.0
:=a + b
)Line 1: sqrt(4.0 +....AError A: Missing mate.Line 2: a:=3.0Line 3: b:=1.0Line 4:
:=a + bLine 5:
).........ABError A: (from A up to B) Ignored.Error B: Improper syntax.Error B: syntax error at top levelError B: Possibly missing a)5 error(s) parsingthen the parser will generate errors. If the parenthesis is shifted right by severalspa
es so that it is in line with the \
" thus:sqrt(4.0 +a:=3.0b:=1.0
:=a + b
)Line 1: sqrt(4.0 +....A

74 CHAPTER 3. STARTING AXIOMError A: Missing mate.Line 2: a:=3.0Line 3: b:=1.0Line 4:
:=a + bLine 5:
Line 6:).........AError A: (from A up to A) Ignored.Error A: Improper syntax.Error A: syntax error at top levelError A: Possibly missing a)5 error(s) parsinga similar error will be raised. Finally, the \)" must be indented by at least onespa
e relative to the sqrt thus:sqrt(4.0 +a:=3.0b:=1.0
:=a + b
) 2:8284271247 461900976 Type: Floator an error will be generated.It
an be seen that great
are needs to be taken when
onstru
ting input �les
onsisting of piles of expressions. It would seem prudent to add one pile ata time and
he
k if it is a

eptable before adding more, parti
ularly if pilesare nested. However, it should be pointed out that the use of piles as valuesfor fun
tions is not very readable and so perhaps the deli
ate nature of theirinterpretation should deter programmers from using them in these situations.Using piles should really be restri
ted to
onstru
ting fun
tions, et
. and asmall amount of rewriting
an remove the need to use them as arguments. Forexample, the previous blo
k
ould easily be implemented as:a:=3.0b:=1.0
:=a + bsqrt(4.0 +
)the)read yields:a:=3.0

3.7. FUNCTIONS, CHOICES, AND LOOPS 753:0 Type: Floatb:=1.0 1:0 Type: Float
:=a + b 4:0 Type: Floatsqrt(4.0 +
) 2:8284271247 461900976 Type: Floatwhi
h a
hieves the same result and is easier to understand. Note that this isstill a pile but it is not as fragile as the previous version.3.7.3 Fun
tionsDe�nitions of fun
tions in Axiom are quite simple providing two things areobserved. First, the type of the fun
tion must either be
ompletely spe
i�edor
ompletely unspe
i�ed. Se
ond, the body of the fun
tion is assigned to thefun
tion identi�er using the delayed assignment operator \==".To spe
ify the type of something the \:" operator is used. Thus to de�ne avariable x to be of type Fra
tion Integer we enter:x : Fra
tion Integer Type: VoidFor fun
tions the method is the same ex
ept that the arguments are pla
ed inparentheses and the return type is pla
ed after the symbol \->". Some examplesof fun
tion de�nitions taking zero, one, two, or three arguments and returninga list of integers are:

76 CHAPTER 3. STARTING AXIOMf : () -> List Integer Type: Voidg : (Integer) -> List Integer Type: Voidh : (Integer, Integer) -> List Integer Type: Voidk : (Integer, Integer, Integer) -> List Integer Type: VoidNow the a
tual fun
tion de�nitions might be:f() == [℄ Type: Voidg(a) == [a℄ Type: Voidh(a,b) == [a,b℄ Type: Voidk(a,b,
) == [a,b,
℄ Type: Void

3.7. FUNCTIONS, CHOICES, AND LOOPS 77with some invo
ations of these fun
tions:f()Compiling fun
tion f with type () -> List Integer[℄ Type: List Integerg(4)Compiling fun
tion g with type Integer -> List Integer[4℄ Type: List Integerh(2,9)Compiling fun
tion h with type (Integer,Integer) -> List Integer[2; 9℄ Type: List Integerk(-3,42,100)Compiling fun
tion k with type (Integer,Integer,Integer) -> ListInteger [�3; 42; 100℄ Type: List IntegerThe value returned by a fun
tion is either the value of the last expression eval-uated or the result of a return statement. For example, the following aree�e
tively the same:

78 CHAPTER 3. STARTING AXIOMp : Integer -> Integer Type: Voidp x == (a:=1; b:=2; a+b+x) Type: Voidp x == (a:=1; b:=2; return(a+b+x)) Type: VoidNote that a blo
k (pile) is assigned to the fun
tion identi�er p and thus allthe rules about blo
ks apply to fun
tion de�nitions. Also there was only oneargument so the parenthese are not needed.This is basi
ally all that one needs to know about de�ning fun
tions in Axiom{ �rst spe
ify the
omplete type and then assign a blo
k to the fun
tion name.The rest of this se
tion is
on
erned with de�ning more
omplex blo
ks thanthose in this se
tion and as a result fun
tion de�nitions will
rop up
ontinuallyparti
ularly sin
e they are a good way of testing examples. Sin
e the blo
kstru
ture is more
omplex we will use the pile notation and thus have to useinput �les to read the piles.3.7.4 Choi
esApart from the \=>" operator that allows a blo
k to exit before the end Axiomprovides the standard if-then-else
onstru
t. The general syntax is:if BooleanExpr then Expr1 else Expr2where \else Expr2"
an be omitted. If the expression BooleanExpr evaluates totrue then Expr1 is exe
uted otherwise Expr2 (if present) will be exe
uted. Anexample of piles and if-then-else is: (read from an input �le)h := 2.0if h > 3.1 then1.0elsez:=
os(h)max(x,0.5)

3.7. FUNCTIONS, CHOICES, AND LOOPS 79the)read yields:h := 2.0 2:0 Type: Floatif h > 3.1 then1.0elsez:=
os(h)max(x,0.5) x Type: Polynomial FloatNote the indentation { the \else" must be indented relative to the \if" otherwiseit will generate an error (Axiom will think there are two piles, the se
ond onebeginning with \else").Any expression that has type Boolean
an be used as BooleanExpr and themost
ommon will be those involving the relational operators \>", \<", and\=". Usually the type of an expression involving the equality operator \=" willbe Boolean but in those situations when it isn't you may need to use the \�"operator to ensure that it is.3.7.5 LoopsLoops in Axiom are regarded as expressions
ontaining another expression
alledthe loop body. The loop body is exe
uted zero or more times depending on thekind of loop. Loops
an be nested to any depth.The repeat loopThe simplest kind of loop provided by Axiom is the repeat loop. The generalsyntax of this is:repeat loopBodyThis will
ause Axiom to exe
ute loopBody repeatedly until either a breakor return statement is en
ountered. If loopBody
ontains neither of thesestatements then it will loop forever. The following pie
e of
ode will display thenumbers from 1 to 4:

80 CHAPTER 3. STARTING AXIOMi:=1repeatif i > 4 then breakoutput(i)i:=i+1the)read yields:i:=1 1 Type: PositiveIntegerrepeatif i > 4 then breakoutput(i)i:=i+11234 Type: VoidIt was mentioned that loops will only be left when either a break or returnstatement is en
ountered so why
an't one use the \=>" operator? The reasonis that the \=>" operator tells Axiom to leave the
urrent blo
k whereas breakleaves the
urrent loop. The return statement leaves the
urrent fun
tion.To skip the rest of a loop body and
ontinue the next iteration of the loop usethe iterate statement (the { starts a
omment in Axiom)i := 0repeati := i + 1if i > 6 then break-- Return to start if i is oddif odd?(i) then iterateoutput(i)the)read yields:i := 0

3.7. FUNCTIONS, CHOICES, AND LOOPS 810 Type: NonNegativeIntegerrepeati := i + 1if i > 6 then break-- Return to start if i is oddif odd?(i) then iterateoutput(i)246 Type: VoidThe while loopThe while statement extends the basi
 repeat loop to pla
e the
ontrol ofleaving the loop at the start rather than have it buried in the middle. Sin
ethe body of the loop is still part of a repeat loop, break and \=>" work in thesame way as in the previous se
tion. The general syntax of a while loop is:while BoolExpr repeat loopBodyAs before, BoolExpr must be an expression of type Boolean. Before the bodyof the loop is exe
uted BoolExpr is tested. If it evaluates to true then theloop body is entered otherwise the loop is terminated. Multiple
onditions
anbe applied using the logi
al operators su
h as and or by using several whilestatements before the repeat.By using and in the test we getx:=1y:=1while x < 4 and y < 10 repeatoutput [x,y℄x := x + 1y := y + 2the)read yields:x:=1 1

82 CHAPTER 3. STARTING AXIOMType: PositiveIntegery:=1 1 Type: PositiveIntegerwhile x < 4 and y < 10 repeatoutput [x,y℄x := x + 1y := y + 2[1,1℄[2,3℄[3,5℄ Type: VoidWe
ould use two parallel whilesx:=1y:=1while x < 4 while y < 10 repeatoutput [x,y℄x := x + 1y := y + 2the)read yields:x:=1 1 Type: PositiveIntegery:=1 1 Type: PositiveInteger

3.7. FUNCTIONS, CHOICES, AND LOOPS 83while x < 4 while y < 10 repeatoutput [x,y℄x := x + 1y := y + 2[1,1℄[2,3℄[3,5℄ Type: VoidNote that the last example using two while statements is not a nested loop butthe following one is:x:=1y:=1while x < 4 repeatwhile y < 10 repeatoutput [x,y℄x := x + 1y := y + 2the)read yields: 1 Type: PositiveIntegery:=1 1 Type: PositiveIntegerwhile x < 4 repeatwhile y < 10 repeatoutput [x,y℄x := x + 1y := y + 2[1,1℄[2,3℄[3,5℄[4,7℄[5,9℄

84 CHAPTER 3. STARTING AXIOMType: VoidSuppose that, given a matrix of arbitrary size, we �nd the position and value ofthe �rst negative element by examining the matrix in row-major order:m := matrix [[21, 37, 53, 14 ℄,_[8, 22,-24, 16 ℄,_[2, 10, 15, 14 ℄,_[26, 33, 55,-13 ℄ ℄lastrow := nrows(m)last
ol := n
ols(m)r := 1while r <= lastrow repeat
 := 1 -- Index of first
olumnwhile
 <= last
ol repeatif elt(m,r,
) < 0 thenoutput [r,
,elt(m,r,
)℄r := lastrowbreak -- Don't look any further
 :=
 + 1r := r + 1the)read yields:m := matrix [[21, 37, 53, 14 ℄,_[8, 22,-24, 16 ℄,_[2, 10, 15, 14 ℄,_[26, 33, 55,-13 ℄ ℄2664 21 37 53 148 22 �24 162 10 15 1426 33 55 �13 3775 Type: Matrix Integerlastrow := nrows(m) 4 Type: PositiveIntegerlast
ol := n
ols(m)

3.7. FUNCTIONS, CHOICES, AND LOOPS 854 Type: PositiveIntegerr := 1 1 Type: PositiveIntegerwhile r <= lastrow repeat
 := 1 -- Index of first
olumnwhile
 <= last
ol repeatif elt(m,r,
) < 0 thenoutput [r,
,elt(m,r,
)℄r := lastrowbreak -- Don't look any further
 :=
 + 1r := r + 1[2,3,- 24℄ Type: VoidThe for loopThe last loop statement of interest is the for loop. There are two ways of
reating a for loop. The �rst way uses either a list or a segment:for var in seg repeat loopBodyfor var in list repeat loopBodywhere var is an index variable whi
h is iterated over the values in seg or list.The value seg is a segment su
h as 1 : : : 10 or 1 : : : and list is a list of some type.For example:We
an iterate the blo
k thus:for i in 1..10 repeat~prime?(i) => iterateoutput(i)the)read yields:

86 CHAPTER 3. STARTING AXIOMfor i in 1..10 repeat~prime?(i) => iterateoutput(i)2357 Type: VoidWe
an iterate over a listfor w in ["This", "is", "your", "life!"℄ repeatoutput(w)the)read yields:for w in ["This", "is", "your", "life!"℄ repeatoutput(w)Thisisyourlife! Type: VoidThe se
ond form of the for loop syntax in
ludes a \su
h that"
lause whi
hmust be of type Boolean:for var | BoolExpr in seg repeat loopBodyfor var | BoolExpr in list repeat loopBodyWe
an iterate over a segmentfor i in 1..10 | prime?(i) repeatoutput(i)the)read yields:for i in 1..10 | prime?(i) repeatoutput(i)2357

3.7. FUNCTIONS, CHOICES, AND LOOPS 87Type: Voidor over a listfor i in [1,2,3,4,5,6,7,8,9,10℄ | prime?(i) repeatoutput(i)the)read yields:for i in [1,2,3,4,5,6,7,8,9,10℄ | prime?(i) repeatoutput(i)2357 Type: VoidYou
an also use a while
lause:for i in 1.. while i < 7 repeatif even?(i) then output(i)the)read yields:for i in 1.. while i < 7 repeatif even?(i) then output(i)246 Type: VoidUsing the \su
h that"
lause makes this appear simpler:for i in 1.. | even?(i) while i < 7 repeatoutput(i)the)read yields:for i in 1.. | even?(i) while i < 7 repeatoutput(i)246

88 CHAPTER 3. STARTING AXIOMType: VoidYou
an use multiple for
lauses to iterate over several sequen
es in parallel:for a in 1..4 for b in 5..8 repeatoutput [a,b℄the)read yields:for a in 1..4 for b in 5..8 repeatoutput [a,b℄[1,5℄[2,6℄[3,7℄[4,8℄ Type: VoidAs a general point it should be noted that any symbols referred to in the \su
hthat" and while
lauses must be pre-de�ned. This either means that the sym-bols must have been de�ned in an outer level (e.g. in an en
losing loop) or in afor
lause appearing before the \su
h that" or while. For example:for a in 1..4 repeatfor b in 7..9 | prime?(a+b) repeatoutput [a,b,a+b℄the)read yields:for a in 1..4 repeatfor b in 7..9 | prime?(a+b) repeatoutput [a,b,a+b℄[2,9,11℄[3,8,11℄[4,7,11℄[4,9,13℄ Type: VoidFinally, the for statement has a by
lause to spe
ify the step size. This makesit possible to iterate over the segment in reverse order:for a in 1..4 for b in 8..5 by -1 repeatoutput [a,b℄

3.8. NUMBERS 89the)read yields:for a in 1..4 for b in 8..5 by -1 repeatoutput [a,b℄[1,8℄[2,7℄[3,6℄[4,5℄ Type: VoidNote that without the \by -1" the segment 8..5 is empty so there is nothing toiterate over and the loop exits immediately.3.8 NumbersAxiom distinguishes very
arefully between di�erent kinds of numbers, how theyare represented and what their properties are. Here are a sampling of some ofthese kinds of numbers and some things you
an do with them.Integer arithmeti
 is always exa
t.11**13 * 13**11 * 17**7 - 19**5 * 23**325387751112538918594666224484237298Type: PositiveIntegerIntegers
an be represented in fa
tored form.fa
tor 6432380707485690237205944125517043441455707632431113 1311 177 195 233 292Type: Fa
tored IntegerResults stay fa
tored when you do arithmeti
. Note that the 12 is automati
allyfa
tored for you.% * 12 22 3 1113 1311 177 195 233 292

90 CHAPTER 3. STARTING AXIOMType: Fa
tored IntegerIntegers
an also be displayed to bases other than 10. This is an integer in base11.radix(25937424601,11) 10000000000 Type: RadixExpansion 11Roman numerals are also available for those spe
ial o

asions.roman(1992) MCMXCII Type: RomanNumeralRational number arithmeti
 is also exa
t.r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9557392520 Type: Fra
tion IntegerTo fa
tor fra
tions, you have to pmap fa
tor onto the numerator and denomi-nator.map(fa
tor,r) 139 40123 32 5 7Type: Fra
tion Fa
tored IntegerSingleInteger refers to ma
hine word-length integers. In English, this expres-sion means \11 as a small integer".11�SingleInteger 11

3.8. NUMBERS 91Type: SingleIntegerMa
hine double-pre
ision
oating-point numbers are also available for numeri
and graphi
al appli
ations.123.21�DoubleFloat 123:21000000000001 Type: DoubleFloatThe normal
oating-point type in Axiom, Float, is a software implementationof
oating-point numbers in whi
h the exponent and the mantissa may have anynumber of digits. The types Complex(Float) and Complex(DoubleFloat) arethe
orresponding software implementations of
omplex
oating-point numbers.This is a
oating-point approximation to about twenty digits. The \::" is usedhere to
hange from one kind of obje
t (here, a rational number) to another (a
oating-point number).r :: Float 22:118650793650793651 Type: FloatUse digits to
hange the number of digits in the representation. This operationreturns the previous value so you
an reset it later.digits(22) 20 Type: PositiveIntegerTo 22 digits of pre
ision, the number e�p163:0 appears to be an integer.exp(%pi * sqrt 163.0) 262537412640768744:0 Type: FloatIn
rease the pre
ision to forty digits and try again.

92 CHAPTER 3. STARTING AXIOMdigits(40); exp(%pi * sqrt 163.0)26253741 2640768743:9999999999 9925007259 76 Type: FloatHere are
omplex numbers with rational numbers as real and imaginary parts.(2/3 + %i)**3 �4627 + 13 iType: Complex Fra
tion IntegerThe standard operations on
omplex numbers are available.
onjugate % �4627 � 13 iType: Complex Fra
tion IntegerYou
an fa
tor
omplex integers.fa
tor(89 - 23 * %i) �(1 + i) (2 + i)2 (3 + 2 i)2Type: Fa
tored Complex IntegerComplex numbers with
oating point parts are also available.exp(%pi/4.0 * %i)0:7071067811 8654752440 0844362104 8490392849+0:7071067811 8654752440 0844362104 8490392848 iType: Complex FloatThe real and imaginary parts
an be symboli
.
omplex(u,v)

3.8. NUMBERS 93u+ v iType: Complex Polynomial IntegerOf
ourse, you
an do
omplex arithmeti
 with these also.% ** 2 �v2 + u2 + 2 u v iType: Complex Polynomial IntegerEvery rational number has an exa
t representation as a repeating de
imal ex-pansionde
imal(1/352) 0:0028409 Type: De
imalExpansionA rational number
an also be expressed as a
ontinued fra
tion.
ontinuedFra
tion(6543/210)31 + 1jj6 + 1jj2 + 1jj1 + 1jj3Type: ContinuedFra
tion IntegerAlso, partial fra
tions
an be used and
an be displayed in a
ompa
t formatpartialFra
tion(1,fa
torial(10))15928 � 2334 � 1252 + 17Type: PartialFra
tion Integeror expanded format.padi
Fra
tion(%)12 + 124 + 125 + 126 + 127 + 128 � 232 � 133 � 234 � 25 � 252 + 17

94 CHAPTER 3. STARTING AXIOMType: PartialFra
tion IntegerLike integers, bases (radi
es) other than ten
an be used for rational numbers.Here we use base eight.radix(4/7, 8) 0:4 Type: RadixExpansion 8Of
ourse, there are
omplex versions of these as well. Axiom de
ides to makethe result a
omplex rational number.% + 2/3*%i 47 + 23 iType: Complex Fra
tion IntegerYou
an also use Axiom to manipulate fra
tional powers.(5 + sqrt 63 + sqrt 847)**(1/3)3q14 p7 + 5 Type: Algebrai
NumberYou
an also
ompute with integers modulo a prime.x : PrimeField 7 := 5 5 Type: PrimeField 7Arithmeti
 is then done modulo 7.x**3 6 Type: PrimeField 7

3.8. NUMBERS 95Sin
e 7 is prime, you
an invert nonzero values.1/x 3 Type: PrimeField 7You
an also
ompute modulo an integer that is not a prime.y : IntegerMod 6 := 5 5 Type: IntegerMod 6All of the usual arithmeti
 operations are available.y**3 5 Type: IntegerMod 6Inversion is not available if the modulus is not a prime number.1/yThere are 12 exposed and 13 unexposed library operations named /having 2 argument(s) but none was determined to be appli
able.Use HyperDo
 Browse, or issue)display op /to learn more about the available operations. Perhapspa
kage-
alling the operation or using
oer
ions on the argumentswill allow you to apply the operation.Cannot find a definition or appli
able library operation named /with argument type(s) PositiveIntegerIntegerMod 6Perhaps you should use "�" to indi
ate the required return type,or "$" to spe
ify whi
h version of the fun
tion you need.

96 CHAPTER 3. STARTING AXIOMThis de�nes a to be an algebrai
 number, that is, a root of a polynomial equa-tion.a := rootOf(a**5 + a**3 + a**2 + 3,a)a Type: Expression IntegerComputations with a are redu
ed a

ording to the polynomial equation.(a + 1)**10 �85 a4 � 264 a3 � 378 a2 � 458 a� 287Type: Expression IntegerDe�ne b to be an algebrai
 number involving a.b := rootOf(b**4 + a,b) b Type: Expression IntegerDo some arithmeti
.2/(b - 1) 2b� 1 Type: Expression IntegerTo expand and simplify this,
all ratDenom to rationalize the denominator.ratDenom(%)�a4 � a3 + 2 a2 � a+ 1� b3 + �a4 � a3 + 2 a2 � a+ 1� b2+�a4 � a3 + 2 a2 � a+ 1� b+ a4 � a3 + 2 a2 � a+ 1Type: Expression IntegerIf we do this, we should get b.

3.9. DATA STRUCTURES 972/%+1 0��a4 � a3 + 2 a2 � a+ 1� b3 + �a4 � a3 + 2 a2 � a+ 1� b2+�a4 � a3 + 2 a2 � a+ 1� b+ a4 � a3 + 2 a2 � a+ 3 1A0��a4 � a3 + 2 a2 � a+ 1� b3 + �a4 � a3 + 2 a2 � a+ 1� b2+�a4 � a3 + 2 a2 � a+ 1� b+ a4 � a3 + 2 a2 � a+ 1 1AType: Expression IntegerBut we need to rationalize the denominator again.ratDenom(%) b Type: Expression IntegerTypes Quaternion and O
tonion are also available. Multipli
ation of quater-nions is non-
ommutative, as expe
ted.q:=quatern(1,2,3,4)*quatern(5,6,7,8) -quatern(5,6,7,8)*quatern(1,2,3,4)�8 i+ 16 j � 8 k Type: Quaternion Integer3.9 Data Stru
turesAxiom has a large variety of data stru
tures available. Many data stru
turesare parti
ularly useful for intera
tive
omputation and others are useful forbuilding appli
ations. The data stru
tures of Axiom are organized into
ategoryhierar
hies.A list is the most
ommonly used data stru
ture in Axiom for holding obje
tsall of the same type. The name list is short for \linked-list of nodes." Ea
hnode
onsists of a value (�rst) and a link (rest) that points to the next node,or to a distinguished value denoting the empty list. To get to, say, the thirdelement, Axiom starts at the front of the list, then traverses a
ross two links tothe third node.Write a list of elements using square bra
kets with
ommas separating the ele-ments.

98 CHAPTER 3. STARTING AXIOMu := [1,-7,11℄ [1;�7; 11℄ Type: List IntegerThis is the value at the third node. Alternatively, you
an say u:3.first rest rest u 11 Type: PositiveIntegerMany operations are de�ned on lists, su
h as: empty?, to test that a list hasno elements;
ons(x; l), to
reate a new list with �rst element x and rest l;reverse, to
reate a new list with elements in reverse order; and sort, to arrangeelements in order.An important point about lists is that they are \mutable": their
onstituentelements and links
an be
hanged \in pla
e." To do this, use any of theoperations whose names end with the
hara
ter \!".The operation
on
at!(u; v) repla
es the last link of the list u to point to someother list v. Sin
e u refers to the original list, this
hange is seen by u.
on
at!(u,[9,1,3,-4℄); u [1;�7; 11; 9; 1; 3;�4℄ Type: List IntegerA
y
li
 list is a list with a \
y
le": a link pointing ba
k to an earlier node ofthe list. To
reate a
y
le, �rst get a node somewhere down the list.lastnode := rest(u,3) [9; 1; 3;�4℄ Type: List IntegerUse setrest! to
hange the link emanating from that node to point ba
k to anearlier part of the list.setrest!(lastnode,rest(u,2)); u

3.9. DATA STRUCTURES 99�1;�7; 11; 9� Type: List IntegerA stream is a stru
ture that (potentially) has an in�nite number of distin
telements. Think of a stream as an \in�nite list" where elements are
omputedsu

essively.Create an in�nite stream of fa
tored integers. Only a
ertain number of initialelements are
omputed and displayed.[fa
tor(i) for i in 2.. by 2℄�2; 22; 2 3; 23; 2 5; 22 3; 2 7; 24; 2 32; 22 5; : : :�Type: Stream Fa
tored IntegerAxiom represents streams by a
olle
tion of already-
omputed elements togetherwith a fun
tion to
ompute the next element \on demand." Asking for the n-thelement
auses elements 1 through n to be evaluated.%.36 23 32 Type: Fa
tored IntegerStreams
an also be �nite or
y
li
. They are implemented by a linked liststru
ture similar to lists and have many of the same operations. For example,�rst and rest are used to a

ess elements and su

essive nodes of a stream.A one-dimensional array is another data stru
ture used to hold obje
ts of thesame type. Unlike lists, one-dimensional arrays are in
exible|they are imple-mented using a �xed blo
k of storage. Their advantage is that they give qui
kand equal a

ess time to any element.A simple way to
reate a one-dimensional array is to apply the operation oneD-imensionalArray to a list of elements.a := oneDimensionalArray [1, -7, 3, 3/2℄�1;�7; 3; 32�Type: OneDimensionalArray Fra
tion Integer

100 CHAPTER 3. STARTING AXIOMOne-dimensional arrays are also mutable: you
an
hange their
onstituentelements \in pla
e."a.3 := 11; a �1;�7; 11; 32�Type: OneDimensionalArray Fra
tion IntegerHowever, one-dimensional arrays are not
exible stru
tures. You
annot de-stru
tively
on
at! them together.
on
at!(a,oneDimensionalArray [1,-2℄)There are 5 exposed and 0 unexposed library operations named
on
at!having 2 argument(s) but none was determined to be appli
able.Use HyperDo
 Browse, or issue)display op
on
at!to learn more about the available operations. Perhapspa
kage-
alling the operation or using
oer
ions on the argumentswill allow you to apply the operation.Cannot find a definition or appli
able library operation named
on
at! with argument type(s)OneDimensionalArray Fra
tion IntegerOneDimensionalArray IntegerPerhaps you should use "�" to indi
ate the required return type,or "$" to spe
ify whi
h version of the fun
tion you need.Examples of datatypes similar to OneDimensionalArray are: Ve
tor (ve
torsare mathemati
al stru
tures implemented by one-dimensional arrays), String(arrays of \
hara
ters," represented by byte ve
tors), and Bits (represented by\bit ve
tors").A ve
tor of 32 bits, ea
h representing the Boolean value true.bits(32,true) "11111111111111111111111111111111" Type: Bits

3.9. DATA STRUCTURES 101A
exible array is a
ross between a list and a one-dimensional array. Like a one-dimensional array, a
exible array o

upies a �xed blo
k of storage. Its blo
kof storage, however, has room to expand. When it gets full, it grows (a new,larger blo
k of storage is allo
ated); when it has too mu
h room, it
ontra
ts.Create a
exible array of three elements.f := flexibleArray [2, 7, -5℄ [2; 7;�5℄ Type: FlexibleArray IntegerInsert some elements between the se
ond and third elements.insert!(flexibleArray [11, -3℄,f,2)[2; 11;�3; 7;�5℄Type: FlexibleArray IntegerFlexible arrays are used to implement \heaps." A heap is an example of a datastru
ture
alled a priority queue, where elements are ordered with respe
t toone another. A heap is organized so as to optimize insertion and extra
tion ofmaximum elements. The extra
t! operation returns the maximum element ofthe heap, after destru
tively removing that element and reorganizing the heapso that the next maximum element is ready to be delivered.An easy way to
reate a heap is to apply the operation heap to a list of values.h := heap [-4,7,11,3,4,-7℄[11; 4; 7;�4; 3;�7℄ Type: Heap IntegerThis loop extra
ts elements one-at-a-time from h until the heap is exhausted,returning the elements as a list in the order they were extra
ted.[extra
t!(h) while not empty?(h)℄[11; 7; 4; 3;�4;�7℄ Type: List Integer

102 CHAPTER 3. STARTING AXIOMA binary tree is a \tree" with at most two bran
hes per node: it is either empty,or else is a node
onsisting of a value, and a left and right subtree (again, binarytrees). Examples of binary tree types are BinarySear
hTree, PendantTree,TournamentTree, and Balan
edBinaryTree.A binary sear
h tree is a binary tree su
h that, for ea
h node, the value of thenode is greater than all values (if any) in the left subtree, and less than or equalall values (if any) in the right subtree.binarySear
hTree [5,3,2,9,4,7,11℄[[2; 3; 4℄; 5; [7; 9; 11℄℄Type: BinarySear
hTree PositiveIntegerA balan
ed binary tree is useful for doing modular
omputations. Given a listlm of moduli,modTree(a; lm) produ
es a balan
ed binary tree with the valuesa mod m at its leaves.modTree(8,[2,3,5,7℄) [0; 2; 3; 1℄ Type: List IntegerA set is a
olle
tion of elements where dupli
ation and order is irrelevant. Setsare always �nite and have no
orresponding stru
ture like streams for in�nite
olle
tions.Create sets using bra
es \f\ and \g" rather than bra
kets.fs := set[1/3,4/5,-1/3,4/5℄ ��13 ; 13 ; 45� Type: Set Fra
tion IntegerA multiset is a set that keeps tra
k of the number of dupli
ate values.For all the primes p between 2 and 1000, �nd the distribution of p mod 5.multiset [x rem 5 for x in primes(2,1000)℄f0; 42: 3; 40: 1; 38: 4; 47: 2g

3.9. DATA STRUCTURES 103Type: Multiset IntegerA table is
on
eptually a set of \key{value" pairs and is a generalization of amultiset. For examples of tables, see Asso
iationList, HashTable, KeyedA

essFile,Library, SparseTable, StringTable, and Table. The domain Table(Key,Entry) provides a general-purpose type for tables with values of type Entryindexed by keys of type Key.Compute the above distribution of primes using tables. First, let t denote anempty table of keys and values, ea
h of type Integer.t : Table(Integer,Integer) := empty()table() Type: Table(Integer,Integer)We de�ne a fun
tion howMany to return the number of values of a givenmodulus k seen so far. It
alls sear
h(k; t) whi
h returns the number of valuesstored under the key k in table t, or ``failed'' if no su
h value is yet storedin t under k.In English, this says \De�ne howMany(k) as follows. First, let n be the valueof sear
h(k; t). Then, if n has the value "failed", return the value 1; otherwisereturn n+ 1."howMany(k) == (n:=sear
h(k,t); n
ase "failed" => 1; n+1)Type: VoidRun through the primes to
reate the table, then print the table. The expressiont.m := howMany(m) updates the value in table t stored under key m.for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); tCompiling fun
tion howMany with type Integer -> Integertable (2 = 47; 4 = 38; 1 = 40; 3 = 42; 0 = 1)Type: Table(Integer,Integer)A re
ord is an example of an inhomogeneous
olle
tion of obje
ts.A re
ord
on-sists of a set of named sele
tors that
an be used to a

ess its
omponents.De
lare that daniel
an only be assigned a re
ord with two pres
ribed �elds.

104 CHAPTER 3. STARTING AXIOMdaniel : Re
ord(age : Integer, salary : Float) Type: VoidGive daniel a value, using square bra
kets to en
lose the values of the �elds.daniel := [28, 32005.12℄[age = 28; salary = 32005:12℄Type: Re
ord(age: Integer,salary: Float)Give daniel a raise.daniel.salary := 35000; daniel[age = 28; salary = 35000:0℄Type: Re
ord(age: Integer,salary: Float)A union is a data stru
ture used when obje
ts have multiple types.Let dog be either an integer or a string value.dog: Union(li
enseNumber: Integer, name: String) Type: VoidGive dog a name.dog := "Whisper" "Whisper"Type: Union(name: String,...)All told, there are over forty di�erent data stru
tures in Axiom. Using thedomain
onstru
tors you
an add your own data stru
ture or extend an existingone. Choosing the right data stru
ture for your appli
ation may be the key toobtaining good performan
e.

3.10. EXPANDING TO HIGHER DIMENSIONS 1053.10 Expanding to Higher DimensionsTo get higher dimensional aggregates, you
an
reate one-dimensional aggregateswith elements that are themselves aggregates, for example, lists of lists, one-dimensional arrays of lists of multisets, and so on. For appli
ations requiringtwo-dimensional homogeneous aggregates, you will likely �nd two-dimensionalarrays and matri
es most useful.The entries in TwoDimensionalArray and Matrix obje
ts are all the same type,ex
ept that those for Matrix must belong to a Ring. You
reate and a

esselements in roughly the same way. Sin
e matri
es have an understood alge-brai
 stru
ture,
ertain algebrai
 operations are available for matri
es but notfor arrays. Be
ause of this, we limit our dis
ussion here to Matrix, that
an beregarded as an extension of TwoDimensionalArray. See TwoDimensionalArrayfor more information about arrays. There are also Axiom's linear algebra fa
il-ities like, see Matrix, Permanent, SquareMatrix, Ve
tor,You
an
reate a matrix from a list of lists, where ea
h of the inner lists repre-sents a row of the matrix.m := matrix([[1,2℄, [3,4℄ ℄)� 1 23 4 � Type: Matrix IntegerThe \
olle
tions"
onstru
t is useful for
reating matri
es whose entries aregiven by formulas.matrix([[1/(i + j - x) for i in 1..4℄ for j in 1..4℄)2664 � 1x�2 � 1x�3 � 1x�4 � 1x�5� 1x�3 � 1x�4 � 1x�5 � 1x�6� 1x�4 � 1x�5 � 1x�6 � 1x�7� 1x�5 � 1x�6 � 1x�7 � 1x�8 3775Type: Matrix Fra
tion Polynomial IntegerLet vm denote the three by three Vandermonde matrix.vm := matrix [[1,1,1℄, [x,y,z℄, [x*x,y*y,z*z℄ ℄24 1 1 1x y zx2 y2 z2 35

106 CHAPTER 3. STARTING AXIOMType: Matrix Polynomial IntegerUse this syntax to extra
t an entry in the matrix.vm(3,3) z2 Type: Polynomial IntegerYou
an also pull out a row or a
olumn.
olumn(vm,2) �1; y; y2�Type: Ve
tor Polynomial IntegerYou
an do arithmeti
.vm * vm 24 x2 + x+ 1 y2 + y + 1 z2 + z + 1x2 z + x y + x y2 z + y2 + x z3 + y z + xx2 z2 + x y2 + x2 y2 z2 + y3 + x2 z4 + y2 z + x2 35Type: Matrix Polynomial IntegerYou
an perform operations su
h as transpose, tra
e, and determinant.fa
tor determinant vm (y � x) (z � y) (z � x)Type: Fa
tored Polynomial Integer3.11 Writing Your Own Fun
tionsAxiom provides you with a very large library of prede�ned operations and ob-je
ts to
ompute with. You
an use the Axiom library of
onstru
tors to
reatenew obje
ts dynami
ally of quite arbitrary
omplexity. For example, you
anmake lists of matri
es of fra
tions of polynomials with
omplex
oating point

3.11. WRITING YOUR OWN FUNCTIONS 107numbers as
oeÆ
ients. Moreover, the library provides a wealth of operationsthat allow you to
reate and manipulate these obje
ts.For many appli
ations, you need to intera
t with the interpreter and write someAxiom programs to ta
kle your appli
ation. Axiom allows you to write fun
tionsintera
tively, thereby e�e
tively extending the system library. Here we give afew simple examples.We begin by looking at several ways that you
an de�ne the \fa
torial" fun
tionin Axiom. The �rst way is to give a pie
e-wise de�nition of the fun
tion. Thismethod is best for a general re
urren
e relation sin
e the pie
es are gatheredtogether and
ompiled into an eÆ
ient iterative fun
tion. Furthermore, enoughpreviously
omputed values are automati
ally saved so that a subsequent
allto the fun
tion
an pi
k up from where it left o�.De�ne the value of fa
t at 0.fa
t(0) == 1 Type: VoidDe�ne the value of fa
t(n) for general n.fa
t(n) == n*fa
t(n-1) Type: VoidAsk for the value at 50. The resulting fun
tion
reated by Axiom
omputes thevalue by iteration.fa
t(50)Compiling fun
tion fa
t with type Integer -> IntegerCompiling fun
tion fa
t as a re
urren
e relation.30414093201713378043612608166064768844377641568960512000000000000Type: PositiveIntegerA se
ond de�nition uses an if-then-else and re
ursion.fa
(n) == if n < 3 then n else n * fa
(n - 1) Type: Void

108 CHAPTER 3. STARTING AXIOMThis fun
tion is less eÆ
ient than the previous version sin
e ea
h iteration in-volves a re
ursive fun
tion
all.fa
(50)30414093201713378043612608166064768844377641568960512000000000000Type: PositiveIntegerA third version dire
tly uses iteration.fa(n) == (a := 1; for i in 2..n repeat a := a*i; a) Type: VoidThis is the least spa
e-
onsumptive version.fa(50)Compiling fun
tion fa
 with type Integer -> Integer30414093201713378043612608166064768844377641568960512000000000000Type: PositiveIntegerA �nal version appears to
onstru
t a large list and then redu
es over it withmultipli
ation.f(n) == redu
e(*,[i for i in 2..n℄) Type: VoidIn fa
t, the resulting
omputation is optimized into an eÆ
ient iteration loopequivalent to that of the third version.f(50)Compiling fun
tion f with typePositiveInteger -> PositiveInteger30414093201713378043612608166064768844377641568960512000000000000

3.11. WRITING YOUR OWN FUNCTIONS 109Type: PositiveIntegerThe library version uses an algorithm that is di�erent from the four abovebe
ause it highly optimizes the re
urren
e relation de�nition of fa
torial.fa
torial(50)30414093201713378043612608166064768844377641568960512000000000000Type: PositiveIntegerRemember you are not limited to one-line fun
tions in Axiom. If you pla
e yourfun
tion de�nitions in .input �les , you
an have multi-line fun
tions that useindentation for grouping.Given n elements, diagonalMatrix
reates an n by n matrix with those ele-ments down the diagonal. This fun
tion uses a permutation matrix that inter-
hanges the ith and jth rows of a matrix by whi
h it is right-multiplied.This fun
tion de�nition shows a style of de�nition that
an be used in .in-put �les. Indentation is used to
reate blo
ks: sequen
es of expressions thatare evaluated in sequen
e ex
ept as modi�ed by
ontrol statements su
h asif-then-else and return.permMat(n, i, j) ==m := diagonalMatrix[(if i = k or j = k then 0 else 1)for k in 1..n℄m(i,j) := 1m(j,i) := 1mThis
reates a four by four matrix that inter
hanges the se
ond and third rows.p := permMat(4,2,3)Compiling fun
tion permMat with type (PositiveInteger,PositiveInteger,PositiveInteger) -> Matrix Integer2664 1 0 0 00 0 1 00 1 0 00 0 0 1 3775 Type: Matrix Integer

110 CHAPTER 3. STARTING AXIOMCreate an example matrix to permute.m := matrix [[4*i + j for j in 1..4℄ for i in 0..3℄2664 1 2 3 45 6 7 89 10 11 1213 14 15 16 3775 Type: Matrix IntegerInter
hange the se
ond and third rows of m.permMat(4,2,3) * m 2664 1 2 3 49 10 11 125 6 7 813 14 15 16 3775 Type: Matrix IntegerA fun
tion
an also be passed as an argument to another fun
tion, whi
h thenapplies the fun
tion or passes it o� to some other fun
tion that does. You oftenhave to de
lare the type of a fun
tion that has fun
tional arguments.This de
lares t to be a two-argument fun
tion that returns a Float. The �rstargument is a fun
tion that takes one Float argument and returns a Float.t : (Float -> Float, Float) -> Float Type: VoidThis is the de�nition of t.t(fun, x) == fun(x)**2 + sin(x)**2 Type: VoidWe have not de�ned a
os in the workspa
e. The one from the Axiom librarywill do.t(
os, 5.2058)

3.11. WRITING YOUR OWN FUNCTIONS 1111:0 Type: FloatHere we de�ne our own (user-de�ned) fun
tion.
osinv(y) ==
os(1/y) Type: VoidPass this fun
tion as an argument to t.t(
osinv, 5.2058)1:7392237241 8005164925 4147684772 932520785 Type: FloatAxiom also has pattern mat
hing
apabilities for simpli�
ation of expressionsand for de�ning new fun
tions by rules. For example, suppose that you want toapply regularly a transformation that groups together produ
ts of radi
als:papb 7! pab; (8a)(8b)Note that su
h a transformation is not generally
orre
t. Axiom never uses itautomati
ally.Give this rule the name groupSqrt.groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))%C pa pb== %C pa bType: RewriteRule(Integer,Integer,Expression Integer)Here is a test expression.a := (sqrt(x) + sqrt(y) + sqrt(z))**4�(4 z + 4 y + 12 x) py + (4 z + 12 y + 4 x) px� pz+(12 z + 4 y + 4 x) px py + z2 + (6 y + 6 x) z + y2 + 6 x y + x2Type: Expression Integer

112 CHAPTER 3. STARTING AXIOMThe rule groupSqrt su

essfully simpli�es the expression.groupSqrt a(4 z + 4 y + 12 x) py z + (4 z + 12 y + 4 x) px z+(12 z + 4 y + 4 x) px y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2Type: Expression Integer3.12 PolynomialsPolynomials are the
ommonly used algebrai
 types in symboli

omputation.Intera
tive users of Axiom generally only see one type of polynomial they
anuse: Polynomial(R). This type represents polynomials in any number of un-spe
i�ed variables over a parti
ular
oeÆ
ient domain R. This type representsits
oeÆ
ients sparsely: only terms with non-zero
oeÆ
ients are represented.In building appli
ations, many other kinds of polynomial representations areuseful. Polynomials may have one variable or multiple variables, the variables
an be named or unnamed, the
oeÆ
ients
an be stored sparsely or densely. So-
alled \distributed multivariate polynomials" store polynomials as
oeÆ
ientspaired with ve
tors of exponents. This type is parti
ularly eÆ
ient for use inalgorithms for solving systems of non-linear polynomial equations.The polynomial
onstru
tor most familiar to the intera
tive user is Polynomial.(x**2 - x*y**3 +3*y)**2x2 y6 � 6 x y4 � 2 x3 y3 + 9 y2 + 6 x2 y + x4Type: Polynomial IntegerIf you wish to restri
t the variables used, UnivariatePolynomial provides poly-nomials in one variable.p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)18 x3 + 60 x2 � 46 x+ 8Type: UnivariatePolynomial(x,Integer)The
onstru
tor MultivariatePolynomial, whi
h
an be abbreviated as MPOLY,provides polynomials in one or more spe
i�ed variables.

3.12. POLYNOMIALS 113m: MPOLY([x,y℄,INT) := (x**2-x*y**3+3*y)**2x4 � 2 y3 x3 + �y6 + 6 y� x2 � 6 y4 x+ 9 y2Type: MultivariatePolynomial([x,y℄,Integer)You
an
hange the way the polynomial appears by modifying the variableordering in the expli
it list.m :: MPOLY([y,x℄,INT)x2 y6 � 6 x y4 � 2 x3 y3 + 9 y2 + 6 x2 y + x4Type: MultivariatePolynomial([y,x℄,Integer)The
onstru
tor DistributedMultivariatePolynomial, whi
h
an be abbre-viated as DMP, provides polynomials in one or more spe
i�ed variables withthe monomials ordered lexi
ographi
ally.m :: DMP([y,x℄,INT)y6 x2 � 6 y4 x� 2 y3 x3 + 9 y2 + 6 y x2 + x4Type: DistributedMultivariatePolynomial([y,x℄,Integer)The
onstru
tor HomogeneousDistributedMultivariatePolynomial, whi
h
anbe abbreviated as HDMP, is similar ex
ept that the monomials are ordered bytotal order re�ned by reverse lexi
ographi
 order.m :: HDMP([y,x℄,INT)y6 x2 � 2 y3 x3 � 6 y4 x+ x4 + 6 y x2 + 9 y2 Type:HomogeneousDistributedMultivariatePolynomial([y,x℄,Integer)More generally, the domain
onstru
tor GeneralDistributedMultivariatePolynomialallows the user to provide an arbitrary predi
ate to de�ne his own term ordering.These last three
onstru
tors are typi
ally used in Gr�obner basis appli
ationsand when a
at (that is, non-re
ursive) display is wanted and the term orderingis
riti
al for
ontrolling the
omputation.

114 CHAPTER 3. STARTING AXIOM3.13 LimitsAxiom's limit fun
tion is usually used to evaluate limits of quotients where thenumerator and denominator both tend to zero or both tend to in�nity. To �ndthe limit of an expression f as a real variable x tends to a limit value a, enterlimit(f, x=a). Use
omplexLimit if the variable is
omplex.You
an take limits of fun
tions with parameters.g :=
s
(a*x) /
s
h(b*x)
s
 (a x)
s
h (b x) Type: Expression IntegerAs you
an see, the limit is expressed in terms of the parameters.limit(g,x=0) baType: Union(OrderedCompletion Expression Integer,...)A variable may also approa
h plus or minus in�nity:h := (1 + k/x)**x x+ kx x Type: Expression IntegerUse %plusInfinity and %minusInfinity to denote 1 and �1.limit(h,x=%plusInfinity) ekType: Union(OrderedCompletion Expression Integer,...)A fun
tion
an be de�ned on both sides of a parti
ular value, but may tend todi�erent limits as its variable approa
hes that value from the left and from theright.

3.14. SERIES 115limit(sqrt(y**2)/y,y = 0)[leftHandLimit = �1; rightHandLimit = 1℄Type: Union(Re
ord(leftHandLimit: Union(OrderedCompletionExpression Integer,"failed"),rightHandLimit:Union(OrderedCompletion Expression Integer,"failed")),...)As x approa
hes 0 along the real axis, exp(-1/x**2) tends to 0.limit(exp(-1/x**2),x = 0) 0Type: Union(OrderedCompletion Expression Integer,...)However, if x is allowed to approa
h 0 along any path in the
omplex plane,the limiting value of exp(-1/x**2) depends on the path taken be
ause thefun
tion has an essential singularity at x = 0. This is re
e
ted in the errormessage returned by the fun
tion.
omplexLimit(exp(-1/x**2),x = 0)"failed" Type: Union("failed",...)3.14 SeriesAxiom also provides power series. By default, Axiom tries to
ompute anddisplay the �rst ten elements of a series. Use)set streams
al
ulate to
hange the default value to something else. For the purposes of this do
ument,we have used this system
ommand to display fewer than ten terms.You
an
onvert a fun
tional expression to a power series by using the operationseries. In this example, sin(a*x) is expanded in powers of (x� 0), that is, inpowers of x.series(sin(a*x),x = 0)a x� a36 x3 + a5120 x5 � a75040 x7 + a9362880 x9 � a1139916800 x11 +O �x12�

116 CHAPTER 3. STARTING AXIOMType: UnivariatePuiseuxSeries(Expression Integer,x,0)This expression expands sin(a*x) in powers of (x - %pi/4).series(sin(a*x),x = %pi/4)sin�a �4 �+ a
os�a �4 � �x� �4��a2 sin �a �4 �2 �x� �4�2 � a3
os �a �4 �6 �x� �4�3+a4 sin �a �4 �24 �x� �4�4 + a5
os �a �4 �120 �x� �4�5�a6 sin �a �4 �720 �x� �4�6 � a7
os �a �4 �5040 �x� �4�7+a8 sin �a �4 �40320 �x� �4�8 + a9
os �a �4 �362880 �x� �4�9�a10 sin �a �4 �3628800 �x� �4�10 +O��x� �4�11�Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)Axiom provides Puiseux series: series with rational number exponents. The �rstargument to series is an in-pla
e fun
tion that
omputes the n-th
oeÆ
ient.(Re
all that the \+->" is an in�x operator meaning \maps to.")series(n +-> (-1)**((3*n - 4)/6)/fa
torial(n - 1/3),x=0,4/3..,2)x 43 � 16 x 103 +O �x5�Type: UnivariatePuiseuxSeries(Expression Integer,x,0)On
e you have
reated a power series, you
an perform arithmeti
 operationson that series. We
ompute the Taylor expansion of 1=(1� x).f := series(1/(1-x),x = 0)1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O �x11�Type: UnivariatePuiseuxSeries(Expression Integer,x,0)Compute the square of the series.

3.14. SERIES 117f ** 21+2 x+3 x2+4 x3+5 x4+6 x5+7 x6+8 x7+9 x8+10 x9+11 x10+O �x11�Type: UnivariatePuiseuxSeries(Expression Integer,x,0)The usual elementary fun
tions (log, exp, trigonometri
 fun
tions, and so on)are de�ned for power series.f := series(1/(1-x),x = 0)1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O �x11�Type: UnivariatePuiseuxSeries(Expression Integer,x,0)g := log(f) x+ 12 x2 + 13 x3 + 14 x4 + 15 x5 + 16 x6 + 17 x7+18 x8 + 19 x9 + 110 x10 + 111 x11 +O �x12�Type: UnivariatePuiseuxSeries(Expression Integer,x,0)exp(g) 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O �x11�Type: UnivariatePuiseuxSeries(Expression Integer,x,0)Here is a way to obtain numeri
al approximations of e from the Taylor seriesexpansion of exp(x). First
reate the desired Taylor expansion.f := taylor(exp(x))1 + x+ 12 x2 + 16 x3 + 124 x4 + 1120 x5 + 1720 x6 +15040 x7 + 140320 x8 + 1362880 x9 + 13628800 x10 +O �x11�Type: UnivariateTaylorSeries(Expression Integer,x,0)

118 CHAPTER 3. STARTING AXIOMEvaluate the series at the value 1:0. As you see, you get a sequen
e of partialsums.eval(f,1.0)[1:0; 2:0; 2:5; 2:6666666666666666667;2:7083333333333333333; 2:7166666666666666667;2:7180555555555555556; 2:718253968253968254;2:7182787698412698413; 2:7182815255731922399; : : : ℄Type: Stream Expression Float3.15 DerivativesUse the Axiom fun
tion D to di�erentiate an expression.To �nd the derivative of an expression f with respe
t to a variable x, enter D(f,x).f := exp exp x eex Type: Expression IntegerD(f, x) ex eex Type: Expression IntegerAn optional third argument n in D asks Axiom for the n-th derivative of f .This �nds the fourth derivative of f with respe
t to x.D(f, x, 4) �ex4 + 6 ex3 + 7 ex2 + ex� eexType: Expression Integer

3.15. DERIVATIVES 119You
an also
ompute partial derivatives by spe
ifying the order of di�erentia-tion.g := sin(x**2 + y) sin �y + x2� Type: Expression IntegerD(g, y)
os �y + x2� Type: Expression IntegerD(g, [y, y, x, x℄) 4 x2 sin �y + x2�� 2
os �y + x2�Type: Expression IntegerAxiom
an manipulate the derivatives (partial and iterated) of expressions in-volving formal operators. All the dependen
ies must be expli
it.This returns 0 sin
e F (so far) does not expli
itly depend on x.D(F,x) 0 Type: Polynomial IntegerSuppose that we have F a fun
tion of x, y, and z, where x and y are themselvesfun
tions of z.Start by de
laring that F , x, and y are operators.F := operator 'F; x := operator 'x; y := operator 'yy Type: Basi
Operator

120 CHAPTER 3. STARTING AXIOMYou
an use F, x, and y in expressions.a := F(x z, y z, z**2) + x y(z+1)x (y (z + 1)) + F �x (z); y (z); z2�Type: Expression IntegerDi�erentiate formally with respe
t to z. The formal derivatives appearing indadz are not just formal symbols, but do represent the derivatives of x, y, andF.dadz := D(a, z)2 z F;3 �x (z); y (z); z2�+ y; (z) F;2 �x (z); y (z); z2�+x; (z) F;1 �x (z); y (z); z2�+ x; (y (z + 1)) y; (z + 1)Type: Expression IntegerYou
an evaluate the above for parti
ular fun
tional values of F, x, and y. Ifx(z) is exp(z) and y(z) is log(z+1), then evaluates dadz.eval(eval(dadz, 'x, z +-> exp z), 'y, z +-> log(z+1))0BBBB��2 z2 + 2 z� F;3 �ez ; log (z + 1); z2�+F;2 �ez; log (z + 1); z2�+(z + 1) ez F;1 �ez; log (z + 1); z2�+ z + 1 1CCCCAz + 1 Type: Expression IntegerYou obtain the same result by �rst evaluating a and then di�erentiating.eval(eval(a, 'x, z +-> exp z), 'y, z +-> log(z+1))F �ez; log (z + 1); z2�+ z + 2Type: Expression IntegerD(%, z)

3.16. INTEGRATION 1210BBBB��2 z2 + 2 z� F;3 �ez; log (z + 1); z2�+F;2 �ez; log (z + 1); z2�+(z + 1) ez F;1 �ez; log (z + 1); z2�+ z + 1 1CCCCAz + 1 Type: Expression Integer3.16 IntegrationAxiom has extensive library fa
ilities for integration.The �rst example is the integration of a fra
tion with denominator that fa
torsinto a quadrati
 and a quarti
 irredu
ible polynomial. The usual partial fra
tionapproa
h used by most other
omputer algebra systems either fails or introdu
esexpensive unneeded algebrai
 numbers.We use a fa
torization-free algorithm.integrate((x**2+2*x+1)/((x+1)**6+1),x)ar
tan �x3 + 3 x2 + 3 x+ 1�3Type: Union(Expression Integer,...)When real parameters are present, the form of the integral
an depend on thesigns of some expressions.Rather than query the user or make sign assumptions, Axiom returns all possibleanswers.integrate(1/(x**2 + a),x)2664 log� (x2�a) p�a+2 a xx2+a �2 p�a ; ar
tan�x paa �pa 3775Type: Union(List Expression Integer,...)The integrate operation generally assumes that all parameters are real. Theonly ex
eption is when the integrand has
omplex valued quantities.If the parameter is
omplex instead of real, then the notion of sign is unde�nedand there is a unique answer. You
an request this answer by \prepending" theword \
omplex" to the
ommand name:

122 CHAPTER 3. STARTING AXIOM
omplexIntegrate(1/(x**2 + a),x)log�x p�a+ap�a �� log�x p�a�ap�a �2 p�a Type: Expression IntegerThe following two examples illustrate the limitations of table-based approa
hes.The two integrands are very similar, but the answer to one of them requires theaddition of two new algebrai
 numbers.This one is the easy one. The next one looks very similar but the answer ismu
h more
ompli
ated.integrate(x**3 / (a+b*x)**(1/3),x)�120 b3 x3 � 135 a b2 x2 + 162 a2 b x� 243 a3� 3pb x+ a2440 b4Type: Union(Expression Integer,...)Only an algorithmi
 approa
h is guaranteed to �nd what new
onstants mustbe added in order to �nd a solution.integrate(1 / (x**3 * (a+b*x)**(1/3)),x)0BBBBBBBBBBBBB�
�2 b2 x2 p3 log� 3pa 3pb x+ a2 + 3pa2 3pb x+ a+ a�+4 b2 x2 p3 log� 3pa2 3pb x+ a� a�+12 b2 x2 ar
tan 2 p3 3pa2 3pb x+ a+ a p33 a !+(12 b x� 9 a) p3 3pa 3pb x+ a2

1CCCCCCCCCCCCCA18 a2 x2 p3 3paType: Union(Expression Integer,...)Some
omputer algebra systems use heuristi
s or table-driven approa
hes tointegration. When these systems
annot determine the answer to an integra-tion problem, they reply \I don't know." Axiom uses an algorithm whi
h is ade
ision pro
edure for integration. If Axiom returns the original integral that

3.16. INTEGRATION 123
on
lusively proves that an integral
annot be expressed in terms of elementaryfun
tions.When Axiom returns an integral sign, it has proved that no answer exists as anelementary fun
tion.integrate(log(1 + sqrt(a*x + b)) / x,x)Z x log�pb+%Q a+ 1�%Q d%QType: Union(Expression Integer,...)Axiom
an handle
ompli
ated mixed fun
tions mu
h beyond what you
an �ndin tables.Whenever possible, Axiom tries to express the answer using the fun
tions presentin the integrand.integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) * (x +
osh(1+sqrt(x + b)))), x)2 log �2
osh �px+ b+ 1�� 2 xsinh �px+ b+ 1��
osh �px+ b+ 1�!� 2 px+ bType: Union(Expression Integer,...)A strong stru
ture-
he
king algorithm in Axiom �nds hidden algebrai
 relation-ships between fun
tions.integrate(tan(atan(x)/3),x)0BBBB�8 log�3 tan� ar
tan(x)3 �2 � 1�� 3 tan� ar
tan(x)3 �2+18 x tan�ar
tan (x)3 � 1CCCCA18Type: Union(Expression Integer,...)The dis
overy of this algebrai
 relationship is ne
essary for
orre
t integrationof this fun
tion. Here are the details:

124 CHAPTER 3. STARTING AXIOM1. If x = tan t and g = tan(t=3) then the following algebrai
 relation is true:g3 � 3xg2 � 3g + x = 02. Integrate g using this algebrai
 relation; this produ
es:(24g2 � 8) log(3g2 � 1) + (81x2 + 24)g2 + 72xg � 27x2 � 1654g2 � 183. Rationalize the denominator, produ
ing:8 log(3g2 � 1)� 3g2 + 18xg + 1618Repla
e g by the initial de�nition g = tan(ar
tan(x)=3) to produ
e the�nal result.This is an example of a mixed fun
tion where the algebrai
 layer is over thetrans
endental one.integrate((x + 1) / (x*(x + log x) ** (3/2)), x)�2 plog (x) + xlog (x) + xType: Union(Expression Integer,...)While in
omplete for non-elementary fun
tions, Axiom
an handle some of them.integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) +1),x) (erf (x)� 1) p� log� erf(x)�1erf(x)+1�� 2 p�8 erf (x)� 8Type: Union(Expression Integer,...)3.17 Di�erential EquationsThe general approa
h used in integration also
arries over to the solution oflinear di�erential equations.Let's solve some di�erential equations. Let y be the unknown fun
tion in termsof x.

3.17. DIFFERENTIAL EQUATIONS 125y := operator 'y y Type: Basi
OperatorHere we solve a third order equation with polynomial
oeÆ
ients.deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x,x) + 2 * y x = 2 * x**4x3 y;;; (x) + x2 y;; (x)� 2 x y; (x) + 2 y (x) = 2 x4Type: Equation Expression Integersolve(deq, y, x)hparti
ular = x5�10 x3+20 x2+415 x ;basis = �2 x3 � 3 x2 + 1x ; x3 � 1x ; x3 � 3 x2 � 1x ��Type: Union(Re
ord(parti
ular: Expression Integer,basis: ListExpression Integer),...)Here we �nd all the algebrai
 fun
tion solutions of the equation.deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0�x2 + 1� y;; (x) + 3 x y; (x) + y (x) = 0Type: Equation Expression Integersolve(deq, y, x)"parti
ular = 0; basis = " 1px2 + 1 ; log �px2 + 1� x�px2 + 1 ##Type: Union(Re
ord(parti
ular: Expression Integer,basis: ListExpression Integer),...)

126 CHAPTER 3. STARTING AXIOMCoeÆ
ients of di�erential equations
an
ome from arbitrary
onstant �elds.For example,
oeÆ
ients
an
ontain algebrai
 numbers.This example has solutions whose logarithmi
 derivative is an algebrai
 fun
tionof degree two.eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x2 x3 y;; (x) + 3 x2 y; (x)� 2 y (x)Type: Expression Integersolve(eq,y,x).basis �e�� 2px�; e 2px �Type: List Expression IntegerHere's another di�erential equation to solve.deq := D(y x, x) = y(x) / (x + y(x) * log y x)y; (x) = y (x)y (x) log (y (x)) + xType: Equation Expression Integersolve(deq, y, x) y (x) log (y (x))2 � 2 x2 y (x)Type: Union(Expression Integer,...)Rather than attempting to get a
losed form solution of a di�erential equation,you instead might want to �nd an approximate solution in the form of a series.Let's solve a system of nonlinear �rst order equations and get a solution inpower series. Tell Axiom that x is also an operator.x := operator 'x x

3.18. SOLUTION OF EQUATIONS 127Type: Basi
OperatorHere are the two equations forming our system.eq1 := D(x(t), t) = 1 + x(t)**2x; (t) = x (t)2 + 1Type: Equation Expression Integereq2 := D(y(t), t) = x(t) * y(t)y; (t) = x (t) y (t)Type: Equation Expression IntegerWe
an solve the system around t = 0 with the initial
onditions x(0) = 0 andy(0) = 1. Noti
e that sin
e we give the unknowns in the order [x; y℄, the answeris a list of two series in the order [series for x(t); series for y(t)℄.seriesSolve([eq2, eq1℄, [x, y℄, t = 0, [y(0) = 1, x(0) = 0℄)� t+ 13 t3 + 215 t5 + 17315 t7 + 622835 t9 +O �t11�;1 + 12 t2 + 524 t4 + 61720 t6 + 2778064 t8 + 505213628800 t10 +O �t11��Type: List UnivariateTaylorSeries(Expression Integer,t,0)3.18 Solution of EquationsAxiom also has state-of-the-art algorithms for the solution of systems of poly-nomial equations. When the number of equations and unknowns is the same,and you have no symboli

oeÆ
ients, you
an use solve for real roots and
omplexSolve for
omplex roots. In ea
h
ase, you tell Axiom how a

urateyou want your result to be. All operations in the solve family return answers inthe form of a list of solution sets, where ea
h solution set is a list of equations.A system of two equations involving a symboli
 parameter t.S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5℄

128 CHAPTER 3. STARTING AXIOMType: VoidFind the real roots of S(19) with rational arithmeti
,
orre
t to within 1=1020.solve(S(19),1/10**20)��y = 5; x = �2451682632253093442511295147905179352825856 �;�y = 5; x = 2451682632253093442511295147905179352825856 ��Type: List List Equation Polynomial Fra
tion IntegerFind the
omplex roots of S(19) with
oating point
oeÆ
ients to 20 digitsa

ura
y in the mantissa.
omplexSolve(S(19),10.e-20)[[y = 5:0; x = 8:3066238629180748526℄;[y = 5:0; x = �8:3066238629180748526℄;[y = �3:0 i; x = 1:0℄; [y = 3:0 i; x = 1:0℄℄Type: List List Equation Polynomial Complex FloatIf a system of equations has symboli

oeÆ
ients and you want a solution inradi
als, try radi
alSolve.radi
alSolve(S(a),[x,y℄)��x = �pa+ 50; y = 5�; �x = pa+ 50; y = 5�;"x = 1; y =r�a+ 12 #;"x = 1; y = �r�a+ 12 ##Type: List List Equation Expression IntegerFor systems of equations with symboli

oeÆ
ients, you
an apply solve, listingthe variables that you want Axiom to solve for. For polynomial equations,a solution
annot usually be expressed solely in terms of the other variables.Instead, the solution is presented as a \triangular" system of equations, whereea
h polynomial has
oeÆ
ients involving only the su

eeding variables. Thisis analogous to
onverting a linear system of equations to \triangular form".A system of three equations in �ve variables.

3.18. SOLUTION OF EQUATIONS 129eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x℄�z � y + x2; x2 z � b y + x4; y2 z � b x� a�Type: List Polynomial IntegerSolve the system for unknowns [x; y; z℄, redu
ing the solution to triangular form.solve(eqns,[x,y,z℄)��x = �ab ; y = 0; z = �a2b2 �;hx = z3+2 b z2+b2 z�ab ; y = z + b;z6 + 4 b z5 + 6 b2 z4 + �4 b3 � 2 a� z3 + �b4 � 4 a b� z2 �2 a b2 z � b3 + a2 = 0�
3777775Type: List List Equation Fra
tion Polynomial Integer

130 CHAPTER 3. STARTING AXIOM

Chapter 4Graphi
s

Figure 4.1: An Axiom Graphi
Axiom has a two- and three-dimensional drawing and rendering pa
kage thatallows you to draw, shade,
olor, rotate, translate, map,
lip, s
ale and
ombinegraphi
 output of Axiom
omputations. The graphi
s interfa
e is
apable ofplotting fun
tions of one or more variables and plotting parametri
 surfa
es.On
e the graphi
s �gure appears in a window, move your mouse to the windowand
li
k. A
ontrol panel appears immediately and allows you to intera
tivelytransform the obje
t. Refer to the original Axiom book[1℄ and the input �lesin
luded with Axiom for additional examples.This is an example of Axiom's graphi
s. From the Control Panel you
an res
ale131

132 CHAPTER 4. GRAPHICSthe plot, turn axes and units on and o� and save the image, among otherthings. Axiom is
apable of many di�erent kinds of graphs in both 2D and 3Dsettings. Points, lines, planes, wireframe, solids, shaded solids, multiple graphs,parametri
 graphs, tubes, and many other kinds of obje
ts
an be
reated andmanipulated by the algebra and on the
ontrol panels.This is an example of Axiom's three-dimensional plotting. It is a graph of the
omplex ar
tangent fun
tion. The image displayed was rotated and had the\shade" and \outline" display options set from the 3D Control Panel. ThePostS
ript output was produ
ed by
li
king on the save 3D Control Panel but-ton and then
li
king on the PS button.draw((x,y) +-> real atan
omplex(x,y), -%pi..%pi, -%pi..%pi,
olorFun
tion == (x,y) +-> argument atan
omplex(x,y))

Figure 4.2: (x; y)! realatan
omplex(x; y);�� : : : �;�� : : : �4.0.1 Plotting 2D graphsThere are three kinds of 2D graphs of
urves de�ned by1. a fun
tion y = f(x) over a �nite interval of x (page 133)2. parametri
 equations x = f(t) y = g(t) (page 134)3. nonsingular solutions in a re
tangular region (page 135)PostS
ript output is available so that Axiom images
an be printed.11PostS
ript is a trademark of Adobe Systems In
orporated, registered in the United States.

133Plotting 2D graphs of 1 variableThe general format for drawing a fun
tion de�ned by a formula f(x) is:draw(f(x), x = a..b, options)where a::b de�nes the range of x, and where options pres
ribes zero ormore options as des
ribed in 4.0.1 on page 136. An example of an optionis
urveColor == brightred(): An alternative format involving fun
tions fand g is also available.Give the names of the fun
tions and drop the variable name spe
i�
ation in these
ond argument. Axiom supplies a default title if one is not given.draw(sin(tan(x)) - tan(sin(x)), x=0..6)

Figure 4.3: sin(tan(x))� tan(sin(x)); x = 0 : : : 6

134 CHAPTER 4. GRAPHICSPlotting 2D parametri
 plane
urvesThe general format for drawing a two-dimensional plane
urve de�ned byparametri
 formulas x = f(t) and y = g(t) is:draw(
urve(f(t), g(t)), t = a..b, options)where a::b de�nes the range of the independent variable t, and where optionspres
ribes zero or more options as des
ribed in 4.0.8 on page 157. Anexample of an option is
urveColor == brightred():The se
ond kind of two-dimensional graph are
urves produ
ed by parametri
equations. Let x = f(t) and y = g(t) be formulas of two fun
tions f and g asthe parameter t ranges over an interval [a; b℄. The fun
tion
urve takes the twofun
tions f and g as its parameters.draw(
urve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)),t = 0..2*%pi)

Figure 4.4:
urve(sin(t)�sin(2�t)�sin(3�t); sin(4�t)�sin(5�t)�sin(6�t)); t =0::2 � �

135Plotting 2D algebrai

urvesThe general format for drawing a non-singular solution
urve given by apolynomial of the form p(x; y) = 0 is:draw(p(x,y) = 0, x, y, range == [a..b,
..d℄, options)where the se
ond and third arguments name the �rst and se
ond independentvariables of p. A range option is always given to designate a boundingre
tangular region of the plane a � x � b;
 � y � d. Zero or more additionaloptions as des
ribed in 4.0.1 on page 136 may be given.A third kind of two-dimensional graph is a non-singular \solution
urve" in are
tangular region of the plane. For example:p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1)y4 + �2 x2 � 16 x� 6� y2 + x4 � 16 x3 + 58 x2 � 12 x� 6Type: Polynomial Integerdraw(p = 0, x, y, range == [-1..11, -7..7℄)

Figure 4.5: p = 0; x; y; range == [�1::11;�7::7℄A solution
urve is a
urve de�ned by a polynomial equation p(x; y) = 0. Non-singular means that the
urve is \smooth" in that it does not
ross itself or

136 CHAPTER 4. GRAPHICS
ome to a point (
usp). Algebrai
ally, this means that for any point (x; y) onthe
urve, that is, a point su
h that p(x; y) = 0, the partial derivatives �p�x (x; y)and �p�y (x; y) are not both zero. We require that the polynomial has rationalor integral
oeÆ
ients.The �rst argument is always expressed as an equation of the form p = 0 wherep is a polynomial.ColorsThe domain Color provides operations for manipulating
olors in two-dimen-sional graphs. Colors are obje
ts of Color. Ea
h
olor has a hue and a weight.Hues are represented by integers that range from 1 to the numberOfHues(),normally 27. Weights are
oats and have the value 1:0 by default.
olor (integer)
reates a
olor of hue integer and weight 1:0.hue (
olor)returns the hue of
olor as an integer.red ()blue(), green(), and yellow()
reate
olors of that hue with weight1:0.
olor1 +
olor2 returns the
olor that results from additively
ombining the in-di
ated
olor1 and
olor2. Color addition is not
ommutative:
hangingthe order of the arguments produ
es di�erent results.integer *
olor
hanges the weight of
olor by integer without a�e
ting its hue.For example, red() + 3 � yellow() produ
es a
olor
loser to yellow thanto red. Color multipli
ation is not asso
iative:
hanging the order ofgrouping produ
es di�erent results.These fun
tions
an be used to
hange the point and
urve
olors for two- andthree-dimensional graphs. Use the pointColor option for points.Two-Dimensional OptionsThe draw
ommands take an optional list of options, su
h as title shownabove. Ea
h option is given by the syntax: name == value. Here is a list of theavailable options in the order that they are des
ribed below.

137adaptive The adaptive option turns adaptive plotting on or o�.Adaptive plotting uses an algorithm that traverses a graphand
omputes more points for those parts of the graphwith high
urvature. The higher the
urvature of a region is,the more points the algorithm
omputes.adaptive == true or adaptive == false
lip The
lip option turns
lipping on or o�. If on,large values are
ut o� a

ording to
lipPointsDefault
lip == true or
lip == false or a range
lip == [-2*%pi..2*%pi,%pi..%pi℄unit The unit option sets the intervals to whi
h the axisunits are plotted a

ording to the indi
ated stepsunit == [2.0, 1.0℄
urveColor The
urveColor option sets the
olor of the graph
urvesor lines to be the indi
ated palette and
olor
urveColor == bright red() (see pp 136 and 137)range The range option sets the range of variables in a graphto be within the ranges for solving plane algebrai

urve plotsrange=[-2..2,-2..1℄toS
ale The toS
ale option does plotting to s
ale if trueor uses the entire viewport if false. The default
anbe determined using drawToS
aletoS
ale == true or toS
ale == falsepointColor The pointColor option sets the
olor of the graph
urvesor lines to be the indi
ated palette and
olorpointColor == bright red() (see page 136)
oordinates The
oordinates option indi
ates the
oordinate systemin whi
h the graph is plotted. This
an be one of:bipolar, bipolarCylindri
al,
artesian,
oni
al,
ylindri
al, ellipti
,ellipti
Cylindri
al, oblateSpheroidal,paraboli
, paraboli
Cylindri
al, paraboloidalpolar, prolateSpheroidal, spheri
al, andtoroidal
oordinates == polar4.0.2 PaletteDomain Palette is the domain of shades of
olors: dark, dim, bright, pastel,and light, designated by the integers 1 through 5, respe
tively.Colors are normally \bright."shade red() 3

138 CHAPTER 4. GRAPHICSType: PositiveIntegerTo
hange the shade of a
olor, apply the name of a shade to it.myFavoriteColor := dark blue()[Hue: 22Weight: 1:0℄ from the Darkpalette Type: PaletteThe expression shade(
olor) returns the value of a shade of
olor.shade myFavoriteColor 1 Type: PositiveIntegerThe expression hue(
olor) returns its hue.hue myFavoriteColor Hue: 22Weight: 1:0 Type: ColorPalettes
an be used in spe
ifying
olors in two-dimensional graphs.draw(x**2,x=-1..1,
urveColor == dark blue())4.0.3 Two-Dimensional Control-PanelOn
e you have
reated a viewport, move your mouse to the viewport and
li
kwith your left mouse button to display a
ontrol-panel. The panel is displayedon the side of the viewport
losest to where you
li
ked. Ea
h of the buttonswhi
h toggle on and o� show the
urrent state of the graph.

139

Figure 4.6: Two-dimensional
ontrol-panel.TransformationsObje
t transformations are exe
uted from the
ontrol-panel by mouse-a
tivatedpotentiometer windows.S
ale: To s
ale a graph,
li
k on a mouse button within the S
ale windowin the upper left
orner of the
ontrol-panel. The axes along whi
h thes
aling is to o

ur are indi
ated by setting the toggles above the arrow.With X On and Y On appearing, both axes are sele
ted and s
aling is

140 CHAPTER 4. GRAPHICSuniform. If either is not sele
ted, for example, if X Off appears, s
aling isnon-uniform.Translate: To translate a graph,
li
k the mouse in the Translate window inthe dire
tion you wish the graph to move. This window is lo
ated in theupper right
orner of the
ontrol-panel. Along the top of the Translatewindow are two buttons for sele
ting the dire
tion of translation. Trans-lation along both
oordinate axes results when X On and Y On appear oralong one axis when one is on, for example, X On and Y Off appear.MessagesThe window dire
tly below the transformation potentiometer windows is usedto display system messages relating to the viewport and the
ontrol-panel. Thefollowing format is displayed:[s
aleX, s
aleY℄ >graph< [translateX, translateY℄The two values to the left show the s
ale fa
tor along the X and Y
oordinateaxes. The two values to the right show the distan
e of translation from the
enter in the X and Y dire
tions. The number in the
enter shows whi
h graphin the viewport this data pertains to. When multiple graphs exist in the sameviewport, the graph must be sele
ted (see \Multiple Graphs," below) in orderfor its transformation data to be shown, otherwise the number is 1.Multiple GraphsThe Graphs window
ontains buttons that allow the pla
ement of two-dimen-sional graphs into one of nine available slots in any other two-dimensional view-port. In the
enter of the window are numeral buttons from one to nine thatshow whether a graph is displayed in the viewport. Below ea
h number buttonis a button showing whether a graph that is present is sele
ted for appli
ationof some transformation. When the
aret symbol is displayed, then the graphin that slot will be manipulated. Initially, the graph for whi
h the viewport is
reated o

upies the �rst slot, is displayed, and is sele
ted.Clear: The Clear button desele
ts every viewport graph slot. A graph slot isresele
ted by sele
ting the button below its number.Query: The Query button is used to display the s
ale and translate data forthe indi
ated graph. When this button is sele
ted the message \Cli
kon the graph to query" appears. Sele
t a slot number button from theGraphs window. The s
aling fa
tor and translation o�set of the graphare then displayed in the message window.

141Pi
k: The Pi
k button is used to sele
t a graph to be pla
ed or dropped intothe indi
ated viewport. When this button is sele
ted, the message \Cli
kon the graph to pi
k" appears. Cli
k on the slot with the graph numberof the desired graph. The graph information is held waiting for you toexe
ute a Drop in some other graph.Drop: On
e a graph has been pi
ked up using the Pi
k button, the Dropbutton pla
es it into a new viewport slot. The message \Cli
k on the graphto drop" appears in the message window when theDrop button is sele
ted.By sele
ting one of the slot number buttons in the Graphs window, thegraph
urrently being held is dropped into this slot and displayed.ButtonsAxes turns the
oordinate axes on or o�.Units turns the units along the x and y axis on or o�.Box en
loses the area of the viewport graph in a bounding box, or removes thebox if already en
losed.Pts turns on or o� the display of points.Lines turns on or o� the display of lines
onne
ting points.PS writes the
urrent viewport
ontents to a �le axiom2D.ps or to a namespe
i�ed in the user's .Xdefaults �le. The �le is pla
ed in the dire
toryfrom whi
h Axiom or the viewAlone program was invoked.Reset resets the obje
t transformation
hara
teristi
s and attributes ba
k totheir initial states.Hide makes the
ontrol-panel disappear.Quit queries whether the
urrent viewport session should be terminated.4.0.4 Operations for Two-Dimensional Graphi
sHere is a summary of useful Axiom operations for two-dimensional graphi
s.Ea
h operation name is followed by a list of arguments. Ea
h argument iswritten as a variable informally named a

ording to the type of the argument(for example, integer). If appropriate, a default value for an argument is givenin parentheses immediately following the name.adaptive ([boolean(true)℄)sets or indi
ates whether graphs are plotted a

ording to the adaptivere�nement algorithm.

142 CHAPTER 4. GRAPHICSaxesColorDefault ([
olor(dark blue())℄)sets or indi
ates the default
olor of the axes in a two-dimensional graphviewport.
lipPointsDefault ([boolean(false)℄)sets or indi
ates whether point
lipping is to be applied as the default forgraph plots.drawToS
ale ([boolean(false)℄)sets or indi
ates whether the plot of a graph is \to s
ale" or uses the entireviewport spa
e as the default.lineColorDefault ([
olor(pastel yellow())℄)sets or indi
ates the default
olor of the lines or
urves in a two-dimen-sional graph viewport.maxPoints ([integer(500)℄)sets or indi
ates the default maximum number of possible points to beused when
onstru
ting a two-dimensional graph.minPoints ([integer(21)℄)sets or indi
ates the default minimum number of possible points to beused when
onstru
ting a two-dimensional graph.pointColorDefault ([
olor(bright red())℄)sets or indi
ates the default
olor of the points in a two-dimensional graphviewport.pointSizeDefault ([integer(5)℄)sets or indi
ates the default size of the dot used to plot points in a two-dimensional graph.s
reenResolution ([integer(600)℄)sets or indi
ates the default s
reen resolution
onstant used in setting the
omputation limit of adaptively generated
urve plots.unitsColorDefault ([
olor(dim green())℄)sets or indi
ates the default
olor of the unit labels in a two-dimensionalgraph viewport.viewDefaults ()resets the default settings for the following attributes: point
olor, line
olor, axes
olor, units
olor, point size, viewport upper left-hand
ornerposition, and the viewport size.viewPosDefault ([list([100,100℄)℄)sets or indi
ates the default position of the upper left-hand
orner of atwo-dimensional viewport, relative to the display root window. The upperleft-hand
orner of the display is
onsidered to be at the (0, 0) position.

143viewSizeDefault ([list([200,200℄)℄)sets or indi
ates the default size in whi
h two dimensional viewport win-dows are shown. It is de�ned by a width and then a height.viewWriteAvailable ([list(["pixmap","bitmap", "posts
ript", "image"℄)℄)indi
ates the possible �le types that
an be
reated with the write fun
-tion.viewWriteDefault ([list([℄)℄)sets or indi
ates the default types of �les, in addition to the data �le, thatare
reated when a write fun
tion is exe
uted on a viewport.units (viewport, integer(1), string("off"))turns the units on or o� for the graph with index integer.axes (viewport, integer(1), string("on"))turns the axes on or o� for the graph with index integer.
lose (viewport)
loses viewport.
onne
t (viewport, integer(1), string("on"))de
lares whether lines
onne
ting the points are displayed or not.
ontrolPanel (viewport, string("off"))de
lares whether the two-dimensional
ontrol-panel is automati
ally dis-played or not.graphs (viewport)returns a list des
ribing the state of ea
h graph. If the graph state is notbeing used this is shown by "undefined", otherwise a des
ription of thegraph's
ontents is shown.graphStates (viewport)displays a list of all the graph states available for viewport, giving thevalues for every property.key (viewport)returns the pro
ess ID number for viewport.move (viewport, integerx(viewPosDefault), integery(viewPosDefault))moves viewport on the s
reen so that the upper left-hand
orner of viewportis at the position (x,y).options (viewport)returns a list of all the DrawOptions used by viewport.points (viewport, integer(1), string("on"))spe
i�es whether the graph points for graph integer are to be displayed ornot.

144 CHAPTER 4. GRAPHICSregion (viewport, integer(1), string("off"))de
lares whether graph integer is or is not to be displayed with a boundingre
tangle.reset (viewport)resets all the properties of viewport.resize (viewport, integerwidth,integerheight)resizes viewport with a new width and height.s
ale (viewport, integern(1), integerx(0.9), integery(0.9))s
ales values for the x and y
oordinates of graph n.show (viewport, integern(1), string("on"))indi
ates if graph n is shown or not.title (viewport, string("Axiom 2D"))designates the title for viewport.translate (viewport, integern(1), floatx(0.0), floaty(0.0))
auses graph n to be moved x and y units in the respe
tive dire
tions.write (viewport, stringdire
tory, [strings℄)if no third argument is given, writes the data �le onto the dire
tory withextension data. The third argument
an be a single string or a list ofstrings with some or all the entries "pixmap", "bitmap", "posts
ript",and "image".4.0.5 Building Two-Dimensional Graphs ManuallyIn this se
tion we demonstrate how to
reate two-dimensional graphs from listsof points and give an example showing how to read the lists of points from a�le.Creating a Two-Dimensional Viewport from a List of PointsAxiom
reates lists of points in a two-dimensional viewport by utilizing theGraphImage and TwoDimensionalViewport domains. ThemakeGraphImagefun
tion takes a list of lists of points parameter, a list of
olors for ea
h point inthe graph, a list of
olors for ea
h line in the graph, and a list of sizes for ea
hpoint in the graph.The following expressions
reate a list of lists of points whi
h will be read byAxiom and made into a two-dimensional viewport.p1 := point [1,1℄$(Point DFLOAT)[1:0; 1:0℄

145Type: Point DoubleFloatp2 := point [0,1℄$(Point DFLOAT)[0:0; 1:0℄ Type: Point DoubleFloatp3 := point [0,0℄$(Point DFLOAT)[0:0; 0:0℄ Type: Point DoubleFloatp4 := point [1,0℄$(Point DFLOAT)[1:0; 0:0℄ Type: Point DoubleFloatp5 := point [1,.5℄$(Point DFLOAT)[1:0; 0:5℄ Type: Point DoubleFloatp6 := point [.5,0℄$(Point DFLOAT)[0:5; 0:0℄ Type: Point DoubleFloatp7 := point [0,0.5℄$(Point DFLOAT)[0:0; 0:5℄ Type: Point DoubleFloat

146 CHAPTER 4. GRAPHICSp8 := point [.5,1℄$(Point DFLOAT)[0:5; 1:0℄ Type: Point DoubleFloatp9 := point [.25,.25℄$(Point DFLOAT)[0:25; 0:25℄ Type: Point DoubleFloatp10 := point [.25,.75℄$(Point DFLOAT)[0:25; 0:75℄ Type: Point DoubleFloatp11 := point [.75,.75℄$(Point DFLOAT)[0:75; 0:75℄ Type: Point DoubleFloatp12 := point [.75,.25℄$(Point DFLOAT)[0:75; 0:25℄ Type: Point DoubleFloatFinally, here is the list.llp := [[p1,p2℄, [p2,p3℄, [p3,p4℄, [p4,p1℄, [p5,p6℄, [p6,p7℄,[p7,p8℄, [p8,p5℄, [p9,p10℄, [p10,p11℄, [p11,p12℄, [p12,p9℄ ℄[[[1:0; 1:0℄; [0:0; 1:0℄℄; [[0:0; 1:0℄; [0:0; 0:0℄℄; [[0:0; 0:0℄; [1:0; 0:0℄℄;[[1:0; 0:0℄; [1:0; 1:0℄℄; [[1:0; 0:5℄; [0:5; 0:0℄℄; [[0:5; 0:0℄; [0:0; 0:5℄℄;[[0:0; 0:5℄; [0:5; 1:0℄℄; [[0:5; 1:0℄; [1:0; 0:5℄℄; [[0:25; 0:25℄; [0:25; 0:75℄℄;[[0:25; 0:75℄; [0:75; 0:75℄℄; [[0:75; 0:75℄; [0:75; 0:25℄℄; [[0:75; 0:25℄; [0:25; 0:25℄℄℄

147Type: List List Point DoubleFloatNow we set the point sizes for all
omponents of the graph.size1 := 6::PositiveInteger 6 Type: PositiveIntegersize2 := 8::PositiveInteger 8 Type: PositiveIntegersize3 := 10::PositiveIntegerlsize := [size1, size1, size1, size1, size2, size2, size2, size2,size3, size3, size3, size3℄[6; 6; 6; 6; 8; 8; 8; 8; 10; 10; 10; 10℄Type: List PositiveIntegerHere are the
olors for the points.p
1 := pastel red()[Hue: 1Weight: 1:0℄ from the Pastelpalette Type: Palettep
2 := dim green()[Hue: 14Weight: 1:0℄ from the Dimpalette Type: Palette

148 CHAPTER 4. GRAPHICSp
3 := pastel yellow()[Hue: 11Weight: 1:0℄ from the Pastelpalette Type: Palettelp
 := [p
1, p
1, p
1, p
1, p
2, p
2, p
2, p
2, p
3, p
3, p
3,p
3℄ [[Hue: 1Weight: 1:0℄ from the Pastelpalette;[Hue: 1Weight: 1:0℄ from the Pastelpalette;[Hue: 1Weight: 1:0℄ from the Pastelpalette;[Hue: 1Weight: 1:0℄ from the Pastelpalette;[Hue: 14Weight: 1:0℄ from the Dimpalette;[Hue: 14Weight: 1:0℄ from the Dimpalette;[Hue: 14Weight: 1:0℄ from the Dimpalette;[Hue: 14Weight: 1:0℄ from the Dimpalette;[Hue: 11Weight: 1:0℄ from the Pastelpalette;[Hue: 11Weight: 1:0℄ from the Pastelpalette;[Hue: 11Weight: 1:0℄ from the Pastelpalette;[Hue: 11Weight: 1:0℄ from the Pastelpalette℄Type: List PaletteHere are the
olors for the lines.l
 := [pastel blue(), light yellow(), dim green(), bright red(),light green(), dim yellow(), bright blue(), dark red(), pastelred(), light blue(), dim green(), light yellow()℄[[Hue: 22Weight: 1:0℄ from the Pastelpalette;[Hue: 11Weight: 1:0℄ from the Lightpalette;[Hue: 14Weight: 1:0℄ from the Dimpalette;[Hue: 1Weight: 1:0℄ from the Brightpalette;[Hue: 14Weight: 1:0℄ from the Lightpalette;[Hue: 11Weight: 1:0℄ from the Dimpalette;

149[Hue: 22Weight: 1:0℄ from the Brightpalette;[Hue: 1Weight: 1:0℄ from the Darkpalette;[Hue: 1Weight: 1:0℄ from the Pastelpalette;[Hue: 22Weight: 1:0℄ from the Lightpalette;[Hue: 14Weight: 1:0℄ from the Dimpalette;[Hue: 11Weight: 1:0℄ from the Lightpalette℄Type: List PaletteNow the GraphImage is
reated a

ording to the
omponent spe
i�
ations indi-
ated above.g := makeGraphImage(llp,lp
,l
,lsize)$GRIMAGEThe makeViewport2D fun
tion now
reates a TwoDimensionalViewport forthis graph a

ording to the list of options spe
i�ed within the bra
kets.makeViewport2D(g,[title("Lines")℄)$VIEW2D

Figure 4.7: The Hand Constru
ted Line GraphThis example demonstrates the use of the GraphImage fun
tions
omponentand appendPoint in adding points to an empty GraphImage.

150 CHAPTER 4. GRAPHICSg := graphImage()$GRIMAGEGraph with 0point lists Type: GraphImagep1 := point [0,0℄$(Point DFLOAT)[0:0; 0:0℄ Type: Point DoubleFloatp2 := point [.25,.25℄$(Point DFLOAT)[0:25; 0:25℄ Type: Point DoubleFloatp3 := point [.5,.5℄$(Point DFLOAT)[0:5; 0:5℄ Type: Point DoubleFloatp4 := point [.75,.75℄$(Point DFLOAT)[0:75; 0:75℄ Type: Point DoubleFloatp5 := point [1,1℄$(Point DFLOAT)[1:0; 1:0℄ Type: Point DoubleFloat
omponent(g,p1)$GRIMAGE

151Type: Void
omponent(g,p2)$GRIMAGE Type: VoidappendPoint(g,p3)$GRIMAGE Type: VoidappendPoint(g,p4)$GRIMAGE Type: VoidappendPoint(g,p5)$GRIMAGE Type: Voidg1 := makeGraphImage(g)$GRIMAGEmakeViewport2D(g1,[title("Graph Points")℄)$VIEW2D

Figure 4.8: Graph PointsA list of points
an also be made into a GraphImage by using the operation
oer
e. It is equivalent to adding ea
h point to g2 using
omponent.

152 CHAPTER 4. GRAPHICSg2 :=
oer
e([[p1℄,[p2℄,[p3℄,[p4℄,[p5℄ ℄)$GRIMAGENow,
reate an empty TwoDimensionalViewport.v := viewport2D()$VIEW2Doptions(v,[title("Just Points")℄)$VIEW2DPla
e the graph into the viewport.putGraph(v,g2,1)$VIEW2DTake a look.makeViewport2D(v)$VIEW2D

Figure 4.9: Just PointsCreating a Two-Dimensional Viewport of a List of Points from a FileThe following three fun
tions read a list of points from a �le and then draw thepoints and the
onne
ting lines. The points are stored in the �le in readable formas
oating point numbers (spe
i�
ally, DoubleFloat values) as an alternatingstream of x- and y-values. For example,0.0 0.0 1.0 1.0 2.0 4.03.0 9.0 4.0 16.0 5.0 25.0drawPoints(lp:List Point DoubleFloat):VIEW2D ==g := graphImage()$GRIMAGE

153for p in lp repeat
omponent(g,p,pointColorDefault(),lineColorDefault(),pointSizeDefault())gi := makeGraphImage(g)$GRIMAGEmakeViewport2D(gi,[title("Points")℄)$VIEW2DdrawLines(lp:List Point DoubleFloat):VIEW2D ==g := graphImage()$GRIMAGE
omponent(g, lp, pointColorDefault(), lineColorDefault(),pointSizeDefault())$GRIMAGEgi := makeGraphImage(g)$GRIMAGEmakeViewport2D(gi,[title("Points")℄)$VIEW2DplotData2D(name, title) ==f:File(DFLOAT) := open(name,"input")lp:LIST(Point DFLOAT) := empty()while ((x := readIfCan!(f))
ase DFLOAT) repeaty : DFLOAT := read!(f)lp :=
ons(point [x,y℄$(Point DFLOAT), lp)lp
lose!(f)drawPoints(lp)drawLines(lp)This
ommand will a
tually
reate the viewport and the graph if the point datais in the �le "file:data".plotData2D("file.data", "2D Data Plot")4.0.6 Appending a Graph to a Viewport Window Con-taining a GraphThis se
tion demonstrates how to append a two-dimensional graph to a viewportalready
ontaining other graphs. The default draw
ommand pla
es a graphinto the �rst GraphImage slot position of the TwoDimensionalViewport.We
reatea a graph in the �rst slot of a viewport.v1 := draw(sin(x),x=0..2*%pi)Then we
reate a se
ond graph.v2 := draw(
os(x),x=0..2*%pi,
urveColor==light red())The operation getGraph retrieves the GraphImage g1 from the �rst slot posi-tion in the viewport v1.

154 CHAPTER 4. GRAPHICSg1 := getGraph(v1,1)Now putGraph pla
es g1 into the the se
ond slot position of v2.putGraph(v2,g1,2)Display the new TwoDimensionalViewport
ontaining both graphs.makeViewport2D(v2)

Figure 4.10: Two graphs on one viewportIn general you
an plot up to 9 graphs on the 2D viewport. Ea
h graph
an bemanipulated separately using the 2D
ontrol panel.The Pi
k and Drop buttons on the 2D
ontrol panel work like
ut and pasteme
hanisms in a windowing environment (ex
ept that they don't use the
lip-board). So it is possible to pi
k one graph and drop it on a di�erent graph.4.0.7 Plotting 3D GraphsThere are 3 kinds of three dimensional graphs you
an generate:1. surfa
es de�ned by a fun
tion of two real variables (page 155)2. spa
e
urves and tubes de�ned by parametri
 equations (page 156)3. surfa
es de�ned by parametri
 equations (page 157)

155Plotting 3D fun
tions of 2 variablesThe general format for drawing a surfa
e de�ned by a formula f(x; y) of twovariables x and y is:draw(f(x,y), x = a..b, y =
..d, options)where a::b and
::d de�ne the range of x and y, and where options pres
ribeszero or more options as des
ribed in 4.0.8 on page 157. An example ofan option is title == "TitleofGraph": An alternative format involving afun
tion f is also available.The simplest way to plot a fun
tion of two variables is to use a formula. Withformulas you always pre
ede the range spe
i�
ations with the variable nameand an = sign.draw(
os(x*y),x=-3..3,y=-3..3)

Figure 4.11:
os(x � y); x = �3::3; y = �3::3

156 CHAPTER 4. GRAPHICSPlotting 3D parametri
 spa
e
urvesThe general format for drawing a three-dimensional spa
e
urve de�ned byparametri
 formulas x = f(t), y = g(t), and z = h(t) is:draw(
urve(f(t),g(t),h(t)), t = a..b, options)where a::b de�nes the range of the independent variable t, and where optionspres
ribes zero or more options as des
ribed in 4.0.8 on page 157. Anexample of an option is title == "TitleofGraph": An alternative formatinvolving fun
tions f , g and h is also available.If you use expli
it formulas to draw a spa
e
urve, always pre
ede the rangespe
i�
ation with the variable name and an = sign.draw(
urve(5*
os(t), 5*sin(t),t), t=-12..12)

Figure 4.12:
urve(5 �
os(t); 5 � sin(t); t); t = �12::12

157Plotting 3D parametri
 surfa
esThe general format for drawing a three-dimensional graph de�ned by para-metri
 formulas x = f(u; v), y = g(u; v), and z = h(u; v) is:draw(surfa
e(f(u,v),g(u,v),h(u,v)), u = a..b, v =
..d, options)where a::b and
::d de�ne the range of the independent variables u and v,and where options pres
ribes zero or more options as des
ribed in 4.0.8on page 157. An example of an option is title == "TitleofGraph": Analternative format involving fun
tions f , g and h is also available.This example draws a graph of a surfa
e plotted using the paraboli

ylindri
al
oordinate system option. The values of the fun
tions supplied to surfa
e areinterpreted in
oordinates as given by a
oordinates option, here as paraboli

ylindri
al
oordinates.draw(surfa
e(u*
os(v), u*sin(v), v*
os(u)), u=-4..4, v=0..%pi,
oordinates== paraboli
Cylindri
al)

Figure 4.13: surfa
e(u �
os(v); u � sin(v); v �
os(u)); u = �4::4; v = 0::�4.0.8 Three-Dimensional OptionsThe draw
ommands optionally take an optional list of options su
h as
oordinatesas shown in the last example. Ea
h option is given by the syntax: name ==

158 CHAPTER 4. GRAPHICSvalue. Here is a list of the available options in the order that they are des
ribedbelow:title The title option gives a title to the graphtitle == "Title of Graph"
oordinates The
oordinates option indi
ates the
oordinate systemin whi
h the graph is plotted. This
an be one of:bipolar, bipolarCylindri
al,
artesian,
oni
al,
ylindri
al, ellipti
,ellipti
Cylindri
al, oblateSpheroidal,paraboli
, paraboli
Cylindri
al, paraboloidalpolar, prolateSpheroidal, spheri
al, andtoroidal
oordinates == polarvar1Steps The var1Steps option spe
i�es the number of intervalsto divide a surfa
e plot for the �rst parametervar1Steps == 30var2Steps The var1Steps option spe
i�es the number of intervalsto divide a surfa
e plot for the se
ond parametervar2Steps == 30style The style determines whi
h of four rendering algorithmsis used for the graph. The
hoi
es are wireMesh,solid, shade, smoothstyle == "smooth"
olorFun
tion The
olorFun
tion names a fun
tion that will be
alledto determine the
olor of ea
h point. If we have the fun
tion
olor2(u,v) == u**2 - v**2 we
an
all it with
olorFun
tion ==
olor2tubeRadius The tubeRadius option spe
i�es the radius of the tubethat en
ir
les the spe
i�ed spa
e
urve.tubeRadius == .3tubePoints The tubePoints option spe
i�es the number of verti
esde�ning the polygon that is used to
reate a tube around thespe
i�ed spa
e
urve. The larger this number is the more
ylindri
al the tube be
omes.tubePoints == 3spa
e The spa
e option lets you build multiple graphs inthree spa
e. To use this option, �rst
reate an emptythree-spa
e obje
t
alling
reate3Spa
e as in:s:=
reate3Spa
e()$(ThreeSpa
e SF)and then use the spa
e option thereafter.spa
e == s

1594.0.9 Three-Dimensional Control-PanelOn
e you have
reated a viewport, move your mouse to the viewport and
li
kwith your left mouse button. This displays a
ontrol-panel on the side of theviewport that is
losest to where you
li
ked.

Figure 4.14: Three-dimensional
ontrol-panel.TransformationsWe re
ommend you �rst sele
t the Bounds button while exe
uting transfor-mations sin
e the bounding box displayed indi
ates the obje
t's position as it
hanges.Rotate: A rotation transformation o

urs by
li
king the mouse within theRotate window in the upper left
orner of the
ontrol-panel. The rotationis
omputed in spheri
al
oordinates, using the horizontal mouse positionto in
rement or de
rement the value of the longitudinal angle � within therange of 0 to 2� and the verti
al mouse position to in
rement or de
rementthe value of the latitudinal angle � within the range of -� to �. The a
tivemode of rotation is displayed in green on a
olor monitor or in
lear texton a bla
k and white monitor, while the ina
tive mode is displayed in redfor
olor display or a mottled pattern for bla
k and white.origin: The origin button indi
ates that the rotation is to o

ur withrespe
t to the origin of the viewing spa
e, that is indi
ated by theaxes.

160 CHAPTER 4. GRAPHICSobje
t: The obje
t button indi
ates that the rotation is to o

ur withrespe
t to the
enter of volume of the obje
t, independent of the axes'origin position.S
ale: A s
aling transformation o

urs by
li
king the mouse within the S
alewindow in the upper
enter of the
ontrol-panel,
ontaining a zoom arrow.The axes along whi
h the s
aling is to o

ur are indi
ated by sele
ting theappropriate button above the zoom arrow window. The sele
ted axes aredisplayed in green on a
olor monitor or in
lear text on a bla
k and whitemonitor, while the unsele
ted axes are displayed in red for a
olor displayor a mottled pattern for bla
k and white.uniform: Uniform s
aling along the x, y and z axes o

urs when all theaxes buttons are sele
ted.non-uniform: If any of the axes buttons are not sele
ted, non-uniforms
aling o

urs, that is, s
aling o

urs only in the dire
tion of the axesthat are sele
ted.Translate: Translation o

urs by indi
ating with the mouse in the Translatewindow the dire
tion you want the graph to move. This window is lo
atedin the upper right
orner of the
ontrol-panel and
ontains a potentiometerwith
rossed arrows pointing up, down, left and right. Along the top ofthe Translate window are three buttons (XY, XZ, and YZ) indi
atingthe three orthographi
 proje
tion planes. Ea
h orientates the group as aview into that plane. Any translation of the graph o

urs only along thisplane.MessagesThe window dire
tly below the potentiometer windows for transformations isused to display system messages relating to the viewport, the
ontrol-panel andthe
urrent graph displaying status.ColormapDire
tly below the message window is the
olormap range indi
ator window.The Axiom Colormap shows a sampling of the spe
trum from whi
h hues
anbe drawn to represent the
olors of a surfa
e. The Colormap is
omposed of�ve shades for ea
h of the hues along this spe
trum. By moving the markersabove and below the Colormap, the range of hues that are used to
olor theexisting surfa
e are set. The bottom marker shows the hue for the low end ofthe
olor range and the top marker shows the hue for the upper end of the range.Setting the bottom and top markers at the same hue results in mono
hromati
smooth shading of the graph when Smooth mode is sele
ted. At ea
h end of theColormap are + and - buttons. When
li
ked on, these in
rement or de
rementthe top or bottom marker.

161ButtonsBelow the Colormap window and to the left are lo
ated various buttons thatdetermine the
hara
teristi
s of a graph. The buttons along the bottom andright hand side all have spe
ial meanings; the remaining buttons in the �rstrow indi
ate the mode or style used to display the graph. The se
ond row aretoggles that turn on or o� a property of the graph. On a
olor monitor, theproperty is on if green (
lear text, on a mono
hrome monitor) and o� if red(mottled pattern, on a mono
hrome monitor). Here is a list of their fun
tions.Wire displays surfa
e and tube plots as a wireframe image in a single
olor(blue) with no hidden surfa
es removed, or displays spa
e
urve plots in
olors based upon their parametri
 variables. This is the fastest modefor displaying a graph. This is very useful when you want to �nd a goodorientation of your graph.Solid displays the graph with hidden surfa
es removed, drawing ea
h polygonbeginning with the furthest from the viewer. The edges of the polygonsare displayed in the hues spe
i�ed by the range in the Colormap window.Shade displays the graph with hidden surfa
es removed and with the polygonsshaded, drawing ea
h polygon beginning with the furthest from the viewer.Polygons are shaded in the hues spe
i�ed by the range in the Colormapwindow using the Phong illumination model.Smooth displays the graph using a renderer that
omputes the graph one lineat a time. The lo
ation and
olor of the graph at ea
h visible pointon the s
reen are determined and displayed using the Phong illuminationmodel. Smooth shading is done in one of two ways, depending on the rangesele
ted in the
olormap window and the number of
olors available fromthe hardware and/or window manager. When the top and bottom markersof the
olormap range are set to di�erent hues, the graph is renderedby dithering between the transitions in
olor hue. When the top andbottom markers of the
olormap range are set to the same hue, the graphis rendered using the Phong smooth shading model. However, if enough
olors
annot be allo
ated for this purpose, the renderer reverts to the
olor dithering method until a suÆ
ient
olor supply is available. For thisreason, it may not be possible to render multiple Phong smooth shadedgraphs at the same time on some systems.Bounds en
loses the entire volume of the viewgraph within a bounding box,or removes the box if previously sele
ted. The region that en
loses theentire volume of the viewport graph is displayed.Axes displays Cartesian
oordinate axes of the spa
e, or turns them o� if pre-viously sele
ted.Outline
auses quadrilateral polygons forming the graph surfa
e to be outlinedin bla
k when the graph is displayed in Shade mode.

162 CHAPTER 4. GRAPHICSBW
onverts a
olor viewport to bla
k and white, or vi
e-versa. When thisbutton is sele
ted the
ontrol-panel and viewport swit
h to an immutable
olormap
omposed of a range of grey s
ale patterns or tiles that are usedwherever shading is ne
essary.Light takes you to a
ontrol-panel des
ribed below.ViewVolume takes you to another
ontrol-panel as des
ribed below.Save
reates a menu of the possible �le types that
an be written using the
ontrol-panel. The Exit button leaves the save menu. The Pixmap but-ton writes an Axiom pixmap of the
urrent viewport
ontents. The �leis
alled axiom3D.pixmap and is lo
ated in the dire
tory from whi
hAxiom or viewAlone was started. The PS button writes the
urrentviewport
ontents to PostS
ript output rather than to the viewport win-dow. By default the �le is
alled axiom3D.ps; however, if a �le name isspe
i�ed in the user's .Xdefaults �le it is used. The �le is pla
ed in thedire
tory from whi
h the Axiom or viewAlone session was begun. Seealso the write fun
tion.Reset returns the obje
t transformation
hara
teristi
s ba
k to their initialstates.Hide
auses the
ontrol-panel for the
orresponding viewport to disappear fromthe s
reen.Quit queries whether the
urrent viewport session should be terminated.LightThe Light button
hanges the
ontrol-panel into the Lighting Control-Panel.At the top of this panel, the three axes are shown with the same orientation asthe obje
t. A light ve
tor from the origin of the axes shows the
urrent positionof the light sour
e relative to the obje
t. At the bottom of the panel is anAbortbutton that
an
els any
hanges to the lighting that were made, and a Returnbutton that
arries out the
urrent set of lighting
hanges on the graph.XY: TheXY lighting axes window is below the Lighting Control-Panel titleand to the left. This
hanges the light ve
tor within the XY view plane.Z: The Z lighting axis window is below the Lighting Control-Panel title andin the
enter. This
hanges the Z lo
ation of the light ve
tor.Intensity: Below the Lighting Control-Panel title and to the right is thelight intensity meter. Moving the intensity indi
ator down de
reases theamount of light emitted from the light sour
e. When the indi
ator is atthe top of the meter the light sour
e is emitting at 100% intensity. At thebottom of the meter the light sour
e is emitting at a level slightly aboveambient lighting.

163View VolumeThe View Volume button
hanges the
ontrol-panel into the Viewing Vol-ume Panel. At the bottom of the viewing panel is an Abort button that
an
els any
hanges to the viewing volume that were made and a Return buttonthat
arries out the
urrent set of viewing
hanges to the graph.Eye Referen
e: At the top of this panel is the Eye Referen
e window. Itshows a planar proje
tion of the viewing pyramid from the eye of theviewer relative to the lo
ation of the obje
t. This has a bounding regionrepresented by the re
tangle on the left. Below the obje
t re
tangle is theHither window. By moving the slider in this window the hither
lippingplane sets the front of the view volume. As a result of this depth
lippingall points of the obje
t
loser to the eye than this hither plane are notshown. The Eye Distan
e slider to the right of the Hither slider is usedto
hange the degree of perspe
tive in the image.Clip Volume: The Clip Volume window is at the bottom of the ViewingVolume Panel. On the right is a Settings menu. In this menu arebuttons to sele
t viewing attributes. Sele
ting the Perspe
tive button
omputes the image using perspe
tive proje
tion. The Show Regionbutton indi
ates whether the
lipping region of the volume is to be drawnin the viewport and the Clipping On button shows whether the viewvolume
lipping is to be in e�e
t when the image is drawn. The left sideof the Clip Volume window shows the
lipping boundary of the graph.Moving the knobs along the X, Y, and Z sliders adjusts the volume of the
lipping region a

ordingly.4.0.10 Operations for Three-Dimensional Graphi
sHere is a summary of useful Axiom operations for three-dimensional graphi
s.Ea
h operation name is followed by a list of arguments. Ea
h argument iswritten as a variable informally named a

ording to the type of the argument(for example, integer). If appropriate, a default value for an argument is givenin parentheses immediately following the name.adaptive3D? ()tests whether spa
e
urves are to be plotted a

ording to the adaptivere�nement algorithm.axes (viewport, string("on"))turns the axes on and o�.
lose (viewport)
loses the viewport.

164 CHAPTER 4. GRAPHICS
olorDef (viewport,
olor1(1),
olor2(27))sets the
olormap range to be from
olor1 to
olor2.
ontrolPanel (viewport, string("off"))de
lares whether the
ontrol-panel for the viewport is to be displayed ornot.diagonals (viewport, string("off"))de
lares whether the polygon outline in
ludes the diagonals or not.drawStyle (viewport, style)sele
ts whi
h of four drawing styles are used: "wireMesh", "solid","shade", or "smooth".eyeDistan
e (viewport,
oat(500))sets the distan
e of the eye from the origin of the obje
t for use in theperspe
tive.key (viewport)returns the operating system pro
ess ID number for the viewport.lighting (viewport, floatx(-0.5), floaty(0.5), floatz(0.5))sets the Cartesian
oordinates of the light sour
e.modifyPointData (viewport,integer,point)repla
es the
oordinates of the point with the index integer with point.move (viewport, integerx(viewPosDefault), integery(viewPosDefault))moves the upper left-hand
orner of the viewport to s
reen position(integerx, integery).options (viewport)returns a list of all
urrent draw options.outlineRender (viewport, string("off"))turns polygon outlining o� or on when drawing in "shade" mode.perspe
tive (viewport, string("on"))turns perspe
tive viewing on and o�.reset (viewport)resets the attributes of a viewport to their initial settings.resize (viewport, integerwidth (viewSizeDefault), integerheight(viewSizeDefault))resets the width and height values for a viewport.rotate (viewport, number�(viewThetaDefapult), number�(viewPhiDefault))rotates the viewport by rotation angles for longitude (�) and latitude (�).Angles designate radians if given as
oats, or degrees if given as integers.

165setAdaptive3D (boolean(true))sets whether spa
e
urves are to be plotted a

ording to the adaptivere�nement algorithm.setMaxPoints3D (integer(1000))sets the default maximum number of possible points to be used when
onstru
ting a three-dimensional spa
e
urve.setMinPoints3D (integer(49))sets the default minimum number of possible points to be used when
onstru
ting a three-dimensional spa
e
urve.setS
reenResolution3D (integer(49))sets the default s
reen resolution
onstant used in setting the
omputationlimit of adaptively generated three-dimensional spa
e
urve plots.showRegion (viewport, string("off"))de
lares whether the bounding box of a graph is shown or not.subspa
e (viewport)returns the spa
e
omponent.subspa
e (viewport, subspa
e)resets the spa
e
omponent to subspa
e.title (viewport, string)gives the viewport the title string.translate (viewport, floatx(viewDeltaXDefault), floaty(viewDeltaYDefault))translates the obje
t horizontally and verti
ally relative to the
enter ofthe viewport.intensity (viewport,
oat(1.0))resets the intensity I of the light sour
e, 0 � I � 1:tubePointsDefault ([integer(6)℄)sets or indi
ates the default number of verti
es de�ning the polygon thatis used to
reate a tube around a spa
e
urve.tubeRadiusDefault ([
oat(0.5)℄)sets or indi
ates the default radius of the tube that en
ir
les a spa
e
urve.var1StepsDefault ([integer(27)℄)sets or indi
ates the default number of in
rements into whi
h the gridde�ning a surfa
e plot is subdivided with respe
t to the �rst parameterde
lared in the surfa
e fun
tion.var2StepsDefault ([integer(27)℄)sets or indi
ates the default number of in
rements into whi
h the gridde�ning a surfa
e plot is subdivided with respe
t to the se
ond parameterde
lared in the surfa
e fun
tion.

166 CHAPTER 4. GRAPHICSviewDefaults ([integerpoint, integerline, integeraxes, integerunits, floatpoint,listposition, listsize℄)resets the default settings for the point
olor, line
olor, axes
olor, units
olor, point size, viewport upper left-hand
orner position, and the view-port size.viewDeltaXDefault ([
oat(0)℄)resets the default horizontal o�set from the
enter of the viewport, orreturns the
urrent default o�set if no argument is given.viewDeltaYDefault ([
oat(0)℄)resets the default verti
al o�set from the
enter of the viewport, or returnsthe
urrent default o�set if no argument is given.viewPhiDefault ([
oat(-�/4)℄)resets the default latitudinal view angle, or returns the
urrent defaultangle if no argument is given. � is set to this value.viewpoint (viewport, floatx, floaty, floatz)sets the viewing position in Cartesian
oordinates.viewpoint (viewport, float�, Float�)sets the viewing position in spheri
al
oordinates.viewpoint (viewport, F loat�, F loat�, F loats
aleFa
tor, FloatxOffset,F loatyOffset)sets the viewing position in spheri
al
oordinates, the s
ale fa
tor, ando�sets. � (longitude) and � (latitude) are in radians.viewPosDefault ([list([0,0℄)℄)sets or indi
ates the position of the upper left-hand
orner of a two-dimen-sional viewport, relative to the display root window (the upper left-hand
orner of the display is [0; 0℄).viewSizeDefault ([list([400,400℄)℄)sets or indi
ates the width and height dimensions of a viewport.viewThetaDefault ([
oat(�/4)℄)resets the default longitudinal view angle, or returns the
urrent defaultangle if no argument is given. When a parameter is spe
i�ed, the defaultlongitudinal view angle � is set to this value.viewWriteAvailable ([list(["pixmap", "bitmap", "posts
ript","image"℄)℄)indi
ates the possible �le types that
an be
reated with the writefun
tion.viewWriteDefault ([list([℄)℄)sets or indi
ates the default types of �les that are
reated in addition tothe data �le when a write
ommand is exe
uted on a viewport.

167viewS
aleDefault ([
oat℄)sets the default s
aling fa
tor, or returns the
urrent fa
tor if no argumentis given.write (viewport, dire
tory, [option℄)writes the �le data for viewport in the dire
tory dire
tory. An optionalthird argument spe
i�es a �le type (one of pixmap, bitmap, posts
ript,or image), or a list of �le types. An additional �le is written for ea
h �letype listed.s
ale (viewport,
oat(2.5))spe
i�es the s
aling fa
tor.4.0.11 Customization using .XdefaultsBoth the two-dimensional and three-dimensional drawing fa
ilities
onsult the.Xdefaults �le for various defaults. The list of defaults that are re
ognized bythe graphing routines is dis
ussed in this se
tion. These defaults are pre
ededby Axiom.3D. for three-dimensional viewport defaults, Axiom.2D. for two-di-mensional viewport defaults, or Axiom* (no dot) for those defaults that area

eptable to either viewport type.Axiom*buttonFont: fontThis indi
ates whi
h font type is used for the button text on the
ontrol-panel. Rom11Axiom.2D.graphFont: font (2D only)This indi
ates whi
h font type is used for displaying the graph numbersand slots in the Graphs se
tion of the two-dimensional
ontrol-panel.Rom22Axiom.3D.headerFont: fontThis indi
ates whi
h font type is used for the axes labels and potentiometerheader names on three-dimensional viewport windows. This is also usedfor two-dimensional
ontrol-panels for indi
ating whi
h font type is usedfor potentionmeter header names and multiple graph title headers. Itl14Axiom*inverse: swit
hThis indi
ates whether the ba
kground
olor is to be inverted from white tobla
k. If on, the graph viewports use bla
k as the ba
kground
olor. If offor no de
laration is made, the graph viewports use a white ba
kground.o�Axiom.3D.lightingFont: font (3D only)This indi
ates whi
h font type is used for the x, y, and z labels of the twolighting axes potentiometers, and for the Intensity title on the lighting
ontrol-panel. Rom10

168 CHAPTER 4. GRAPHICSAxiom.2D.messageFont, Axiom.3D.messageFont: fontThese indi
ate the font type to be used for the text in the
ontrol-panelmessage window. Rom14Axiom*mono
hrome: swit
hThis indi
ates whether the graph viewports are to be displayed as if themonitor is bla
k and white, that is, a 1 bit plane. If on is spe
i�ed, theviewport display is bla
k and white. If off is spe
i�ed, or no de
larationfor this default is given, the viewports are displayed in the normal fashionfor the monitor in use. o�Axiom.2D.postS
ript: �lenameThis spe
i�es the name of the �le that is generated when a 2D PostS
riptgraph is saved. axiom2D.psAxiom.3D.postS
ript: �lenameThis spe
i�es the name of the �le that is generated when a 3D PostS
riptgraph is saved. axiom3D.psAxiom*titleFont fontThis indi
ates whi
h font type is used for the title text and, for three-di-mensional graphs, in the lighting and viewing-volume
ontrol-panel win-dows. Rom14Axiom.2D.unitFont: font (2D only)This indi
ates whi
h font type is used for displaying the unit labels ontwo-dimensional viewport graphs. 6x10Axiom.3D.volumeFont: font (3D only)This indi
ates whi
h font type is used for the x, y, and z labels of the
lip-ping region sliders; for the Perspe
tive, Show Region, and ClippingOn buttons under Settings, and above the windows for the Hither andEye Distan
e sliders in the Viewing Volume Panel of the three-di-mensional
ontrol-panel. Rom8

Chapter 5Using Types and ModesIn this
hapter we look at the key notion of type and its generalization mode. Weshow that every Axiom obje
t has a type that determines what you
an do withthe obje
t. In parti
ular, we explain how to use types to
all spe
i�
 fun
tionsfrom parti
ular parts of the library and how types and modes
an be used to
reate new obje
ts from old. We also look at Re
ord and Union types and thespe
ial type Any . Finally, we give you an idea of how Axiom manipulates typesand modes internally to resolve ambiguities.5.1 The Basi
 IdeaThe Axiom world deals with many kinds of obje
ts. There are mathemati
alobje
ts su
h as numbers and polynomials, data stru
ture obje
ts su
h as listsand arrays, and graphi
s obje
ts su
h as points and graphi
 images. Fun
tionsare obje
ts too.Axiom organizes obje
ts using the notion of domain of
omputation, or simplydomain. Ea
h domain denotes a
lass of obje
ts. The
lass of obje
ts it denotesis usually given by the name of the domain: Integer for the integers, Floatfor
oating-point numbers, and so on. The
onvention is that the �rst letterof a domain name is
apitalized. Similarly, the domain Polynomial(Integer)denotes \polynomials with integer
oeÆ
ients." Also, Matrix(Float) denotes\matri
es with
oating-point entries."Every basi
 Axiom obje
t belongs to a unique domain. The integer 3 be-longs to the domain Integer and the polynomial x+ 3 belongs to the domainPolynomial(Integer). The domain of an obje
t is also
alled its type. Thuswe speak of \the type Integer" and \the type Polynomial(Integer)."After an Axiom
omputation, the type is displayed toward the right-hand sideof the page (or s
reen). 169

170 CHAPTER 5. USING TYPES AND MODES-3 �3 Type: IntegerHere we
reate a rational number but it looks like the last result. The typehowever tells you it is di�erent. You
annot identify the type of an obje
t byhow Axiom displays the obje
t.-3/1 �3 Type: Fra
tion IntegerWhen a
omputation produ
es a result of a simpler type, Axiom leaves the typeunsimpli�ed. Thus no information is lost.x + 3 - x 3 Type: Polynomial IntegerThis seldom matters sin
e Axiom retra
ts the answer to the simpler type if itis ne
essary.fa
torial(%) 6 Type: Expression IntegerWhen you issue a positive number, the type PositiveInteger is printed. Surely,3 also has type Integer! The
urious reader may now have two questions. First,is the type of an obje
t not unique? Se
ond, how is PositiveInteger relatedto Integer?3 3 Type: PositiveInteger

5.1. THE BASIC IDEA 171Any domain
an be re�ned to a subdomain by a membership predi
ate. Apredi
ate is a fun
tion that, when applied to an obje
t of the domain, re-turns either true or false. For example, the domain Integer
an be re�nedto the subdomain PositiveInteger, the set of integers x su
h that x > 0, bygiving the Axiom predi
ate x+� > x > 0. Similarly, Axiom
an de�ne subdo-mains su
h as \the subdomain of diagonal matri
es," \the subdomain of listsof length two," \the subdomain of moni
 irredu
ible polynomials in x," and soon. Trivially, any domain is a subdomain of itself.While an obje
t belongs to a unique domain, it
an belong to any number ofsubdomains. Any subdomain of the domain of an obje
t
an be used as the typeof that obje
t. The type of 3 is indeed both Integer and PositiveInteger aswell as any other subdomain of integer whose predi
ate is satis�ed, su
h as \theprime integers," \the odd positive integers between 3 and 17," and so on.5.1.1 Domain Constru
torsIn Axiom, domains are obje
ts. You
an
reate them, pass them to fun
tions,and, as we'll see later, test them for
ertain properties.You ask for a value of a fun
tion by applying its name to a set of arguments.To ask for \the fa
torial of 7" you enter this expression to Axiom. This appliesthe fun
tion fa
torial to the value 7 to
ompute the result.fa
torial(7) 5040 Type: PositiveIntegerEnter the type Polynomial (Integer) as an expression to Axiom. This looksmu
h like a fun
tion
all as well. It is! The result is appropriately stated to beof type Domain, whi
h a

ording to our usual
onvention, denotes the
lass ofall domains.Polynomial(Integer) Polynomial Integer Type: DomainThe most basi
 operation involving domains is that of building a new domainfrom a given one. To
reate the domain of \polynomials over the integers,"Axiom applies the fun
tion Polynomial to the domain Integer. A fun
tionlike Polynomial is
alled a domain
onstru
tor or, more simply, a
onstru
tor.

172 CHAPTER 5. USING TYPES AND MODESA domain
onstru
tor is a fun
tion that
reates a domain. An argument to adomain
onstru
tor
an be another domain or, in general, an arbitrary kind ofobje
t. Polynomial takes a single domain argument while SquareMatrix takesa positive integer as a �rst argument to give the matrix dimension and a domainas a se
ond argument to give the type of its
omponents.What kinds of domains
an you use as the argument to List or Polynomialor SquareMatrix? Well, the last two are mathemati
al in nature. You want tobe able to perform algebrai
 operations like \+" and *" on polynomials andsquare matri
es, and operations su
h as determinant on square matri
es. Soyou want to allow polynomials of integers and polynomials of square matri
eswith
omplex number
oeÆ
ients and, in general, anything that \makes sense."At the same time, you don't want Axiom to be able to build nonsense domainssu
h as \polynomials of strings!"In
ontrast to algebrai
 stru
tures, data stru
tures
an hold any kind of obje
t.Operations on lists su
h as insert, delete, and
on
at just manipulate the listitself without
hanging or operating on its elements. Thus you
an build Listover almost any datatype, in
luding itself.Create a
ompli
ated algebrai
 domain.List (List (Matrix (Polynomial (Complex (Fra
tion (Integer))))))List List Matrix Polynomial Complex Fra
tion IntegerType: DomainTry to
reate a meaningless domain.Polynomial(String)Polynomial String is not a valid type.Evidently from our last example, Axiom has some me
hanism that tells what a
onstru
tor
an use as an argument. This brings us to the notion of
ategory.As domains are obje
ts, they too have a domain. The domain of a domain is a
ategory. A
ategory is simply a type whose members are domains.A
ommon algebrai

ategory is Ring, the
lass of all domains that are \rings."A ring is an algebrai
 stru
ture with
onstants 0 and 1 and operations \+", \-",and *". These operations are assumed \
losed" with respe
t to the domain,meaning that they take two obje
ts of the domain and produ
e a result obje
talso in the domain. The operations are understood to satisfy
ertain \axioms,"
ertain mathemati
al prin
iples providing the algebrai
 foundation for rings.For example, the additive inverse axiom for rings states:Every element x has an additive inverse y su
h that x+ y = 0.

5.1. THE BASIC IDEA 173The prototypi
al example of a domain that is a ring is the integers. Keep themin mind whenever we mention Ring.Many algebrai
 domain
onstru
tors su
h as Complex, Polynomial, Fra
tion,take rings as arguments and return rings as values. You
an use the in�xoperator \has" to ask a domain if it belongs to a parti
ular
ategory.All numeri
al types are rings. Domain
onstru
tor Polynomial builds \the ringof polynomials over any other ring."Polynomial(Integer) has Ring true Type: BooleanConstru
tor List never produ
es a ring.List(Integer) has Ring false Type: BooleanThe
onstru
tor Matrix(R) builds \the domain of all matri
es over the ring R."This domain is never a ring sin
e the operations \+", \-", and *" on matri
esof arbitrary shapes are unde�ned.Matrix(Integer) has Ring false Type: BooleanThus you
an never build polynomials over matri
es.Polynomial(Matrix(Integer))Polynomial Matrix Integer is not a valid type.Use SquareMatrix(n,R) instead. For any positive integer n, it builds \the ringof n by n matri
es over R."Polynomial(SquareMatrix(7,Complex(Integer)))

174 CHAPTER 5. USING TYPES AND MODESPolynomial SquareMatrix(7,Complex Integer) Type: DomainAnother
ommon
ategory is Field, the
lass of all �elds. A �eld is a ring withadditional operations. For example, a �eld has
ommutative multipli
ation anda
losed operation \/" for the division of two elements. Integer is not a �eldsin
e, for example, 3=2 does not have an integer result. The prototypi
al exam-ple of a �eld is the rational numbers, that is, the domain Fra
tion(Integer).In general, the
onstru
tor Fra
tion takes an IntegralDomain, whi
h is a ringwith additional properties, as an argument and returns a �eld. Other domain
onstru
tors, su
h as Complex, build �elds only if their argument domain is a�eld.The
omplex integers (often
alled the \Gaussian integers") do not form a �eld.Complex(Integer) has Field false Type: BooleanBut fra
tions of
omplex integers do.Fra
tion(Complex(Integer)) has Fieldtrue Type: BooleanThe algebrai
ally equivalent domain of
omplex rational numbers is a �eld sin
edomain
onstru
tor Complex produ
es a �eld whenever its argument is a �eld.Complex(Fra
tion(Integer)) has Fieldtrue Type: BooleanThe most basi

ategory is Type. It denotes the
lass of all domains and sub-domains. Note
arefully that Type does not denote the
lass of all types. Thetype of all
ategories is Category. The type of Type itself is unde�ned. Domain
onstru
tor List is able to build \lists of elements from domain D" for arbitraryD simply by requiring that D belong to
ategory Type.Now, you may ask, what exa
tly is a
ategory? Like domains,
ategories
an bede�ned in the Axiom language. A
ategory is de�ned by three
omponents:

5.1. THE BASIC IDEA 1751. a name (for example, Ring), used to refer to the
lass of domains that the
ategory represents;2. a set of operations, used to refer to the operations that the domains ofthis
lass support (for example, \+", \-", and *" for rings); and3. an optional list of other
ategories that this
ategory extends.This last
omponent is a new idea. And it is key to the design of Axiom. Be
ause
ategories
an extend one another, they form hierar
hies. All
ategories areextensions of Type and that Field is an extension of Ring.The operations supported by the domains of a
ategory are
alled the exportsof that
ategory be
ause these are the operations made available for system-wide use. The exports of a domain of a given
ategory are not only the onesexpli
itly mentioned by the
ategory. Sin
e a
ategory extends other
ategories,the operations of these other
ategories|and all
ategories these other
ategoriesextend|are also exported by the domains.For example, polynomial domains belong to PolynomialCategory. This
at-egory expli
itly mentions some twenty-nine operations on polynomials, but itextends eleven other
ategories (in
luding Ring). As a result, the
urrent systemhas over one hundred operations on polynomials.If a domain belongs to a
ategory that extends, say, Ring, it is
onvenient tosay that the domain exports Ring. The name of the
ategory thus provides a
onvenient shorthand for the list of operations exported by the
ategory. Ratherthan listing operations su
h as \+" and *" of Ring ea
h time they are needed,the de�nition of a type simply asserts that it exports
ategory Ring.The
ategory name, however, is more than a shorthand. The name Ring, infa
t, implies that the operations exported by rings are required to satisfy a setof \axioms" asso
iated with the name Ring. This subtle but important featuredistinguishes Axiom from other abstra
t datatype designs.Why is it not
orre
t to assume that some type is a ring if it exports all ofthe operations of Ring? Here is why. Some languages su
h as APL denote theBoolean
onstants true and false by the integers 1 and 0 respe
tively, thenuse \+" and *" to denote the logi
al operators or and and. But with thesede�nitions Boolean is not a ring sin
e the additive inverse axiom is violated.That is, there is no inverse element a su
h that 1+a = 0, or, in the usual terms:true or a = false. This alternative de�nition of Boolean
an be easily and
orre
tly implemented in Axiom, sin
e Boolean simply does not assert that it isof
ategory Ring. This prevents the system from building meaningless domainssu
h as Polynomial(Boolean) and then wrongfully applying algorithms thatpresume that the ring axioms hold.Enough on
ategories. We now return to our dis
ussion of domains.Domains export a set of operations to make them available for system-wide use.Integer, for example, exports the operations \+" and \=" given by the signa-

176 CHAPTER 5. USING TYPES AND MODEStures \+": (Integer,Integer) ! Integer and \=": (Integer,Integer) ! Boolean,respe
tively. Ea
h of these operations takes two Integer arguments. The\+" operation also returns an Integer but \=" returns a Boolean: true orfalse. The operations exported by a domain usually manipulate obje
ts of thedomain|but not always.The operations of a domain may a
tually take as arguments, and return asvalues, obje
ts from any domain. For example, Fra
tion (Integer) exportsthe operations \/": (Integer,Integer) ! Fra
tion(Integer) and
hara
teristi
:! NonNegativeInteger.Suppose all operations of a domain take as arguments and return as values, onlyobje
ts from other domains. This kind of domain is what Axiom
alls a pa
kage.A pa
kage does not designate a
lass of obje
ts at all. Rather, a pa
kage is justa
olle
tion of operations. A
tually the bulk of the Axiom library of algorithms
onsists of pa
kages. The fa
ilities for fa
torization; integration; solution of lin-ear, polynomial, and di�erential equations;
omputation of limits; and so on,are all de�ned in pa
kages. Domains needed by algorithms
an be passed toa pa
kage as arguments or used by name if they are not \variable." Pa
kagesare useful for de�ning operations that
onvert obje
ts of one type to another,parti
ularly when these types have di�erent parameterizations. As an exam-ple, the pa
kage PolynomialFun
tion2(R,S) de�nes operations that
onvertpolynomials over a domain R to polynomials over S. To
onvert an obje
tfrom Polynomial(Integer) to Polynomial(Float), Axiom builds the pa
k-age PolynomialFun
tions2(Integer,Float) in order to
reate the required
onversion fun
tion. (This happens \behind the s
enes" for you.)Axiom
ategories, domains and pa
kages and all their
ontained fun
tions arewritten in the Axiom programming language,
alled the Spad language, andhave been
ompiled into ma
hine
ode. This is what
omprises the Axiomlibrary. We will show you how to use these domains and their fun
tions andhow to write your own fun
tions.There is a se
ond language,
alled Aldor[4℄ that is
ompatible with the Spadlanguage. They both
an
reate programs than
an exe
ute under Axiom. Aldoris a standalone version of the Spad language and
ontains some additionalsyntax to support standalone programs. In addition, Aldor in
ludes some newideas su
h as post-fa
to domain extensions.5.2 Writing Types and ModesWe have already seen in the last se
tion several examples of types. Most of theseexamples had either no arguments (for example, Integer) or one argument (forexample, Polynomial (Integer)). In this se
tion we give details about writingarbitrary types. We then de�ne modes and dis
uss how to write them. We
on
lude the se
tion with a dis
ussion on
onstru
tor abbreviations.

5.2. WRITING TYPES AND MODES 177When might you need to write a type or mode? You need to do so when youde
lare variables.a : PositiveInteger Type: VoidYou need to do so when you de
lare fun
tionsf : Integer -> String Type: VoidYou need to do so when you
onvert an obje
t from one type to another.fa
tor(2 :: Complex(Integer))�i (1 + i)2Type: Fa
tored Complex Integer(2 = 3)$Integer false Type: BooleanYou need to do so when you give
omputation target type information.(2 = 3)�Boolean false Type: Boolean5.2.1 Types with No ArgumentsA
onstru
tor with no arguments
an be written either with or without trailingopening and
losing parentheses \()".Boolean() is the same as BooleanInteger() is the same as IntegerString() is the same as StringVoid() is the same as VoidIt is
ustomary to omit the parentheses.

178 CHAPTER 5. USING TYPES AND MODES5.2.2 Types with One ArgumentA
onstru
tor with one argument
an frequently be written with no parentheses.Types nest from right to left so that Complex Fra
tion Polynomial Integeris the same as Complex (Fra
tion (Polynomial (Integer))). You need touse parentheses to for
e the appli
ation of a
onstru
tor to the
orre
t argument,but you need not use any more than is ne
essary to remove ambiguities.Here are some guidelines for using parentheses (they are possibly slightly morerestri
tive than they need to be).If the argument is an expression like 2 + 3 then you must en
lose the argumentin parentheses.e : PrimeField(2 + 3) Type: VoidIf the type is to be used with pa
kage
alling then you must en
lose the argumentin parentheses.
ontent(2)$Polynomial(Integer) 2 Type: IntegerAlternatively, you
an write the type without parentheses then en
lose the wholetype expression with parentheses.
ontent(2)$(Polynomial Complex Fra
tion Integer)2 Type: Complex Fra
tion IntegerIf you supply
omputation target type information then you should en
lose theargument in parentheses.(2/3)�Fra
tion(Polynomial(Integer))23Type: Fra
tion Polynomial Integer

5.2. WRITING TYPES AND MODES 179If the type itself has parentheses around it and we are not in the
ase of the�rst example above, then the parentheses
an usually be omitted.(2/3)�Fra
tion(Polynomial Integer)23Type: Fra
tion Polynomial IntegerIf the type is used in a de
laration and the argument is a single-word type,integer or symbol, then the parentheses
an usually be omitted.(d,f,g) : Complex Polynomial Integer Type: Void5.2.3 Types with More Than One ArgumentIf a
onstru
tor has more than one argument, you must use parentheses. Someexamples areUnivariatePolynomial(x, Float)MultivariatePolynomial([z,w,r℄, Complex Float)SquareMatrix(3, Integer)Fa
toredFun
tions2(Integer,Fra
tion Integer)5.2.4 ModesA mode is a type that possibly is a question mark (?) or
ontains one in anargument position. For example, the following are all modes.?Polynomial ?Matrix Polynomial ?SquareMatrix(3,?)IntegerOneDimensionalArray(Float)As is evident from these examples, a mode is a type with a part that is notspe
i�ed (indi
ated by a question mark). Only one \?" is allowed per modeand it must appear in the most deeply nested argument that is a type. Thus

180 CHAPTER 5. USING TYPES AND MODES?(Integer), Matrix(? (Polynomial)), SquareMatrix(?, Integer) (it re-quires a numeri
 argument) and SquareMatrix(?, ?) are all invalid. Thequestion mark must take the pla
e of a domain, not data. This rules out, forexample, the two SquareMatrix expressions.Modes
an be used for de
larations and
onversions. However, you
annot usea mode for pa
kage
alling or giving target type information.5.2.5 AbbreviationsEvery
onstru
tor has an abbreviation that you
an freely substitute for the
onstru
tor name. In some
ases, the abbreviation is nothing more than the
apitalized version of the
onstru
tor name.Aside from allowing types to be written more
on
isely, abbreviations areused by Axiom to name various system �les for
onstru
tors (su
h as library�lenames, test input �les and example �les). Here are some
ommon abbre-viations.COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloatEXPR abbreviates Expression FLOAT abbreviates FloatFRAC abbreviates Fra
tion INT abbreviates IntegerMATRIX abbreviates Matrix NNI abbreviates NonNegativeIntegerPI abbreviates PositiveInteger POLY abbreviates PolynomialSTRING abbreviates String UP abbreviates UnivariatePolynomialYou
an
ombine both full
onstru
tor names and abbreviations in a type ex-pression. Here are some types using abbreviations.POLY INT is the same as Polynomial(INT)POLY(Integer) is the same as Polynomial(Integer)POLY(Integer) is the same as Polynomial(INT)FRAC(COMPLEX(INT)) is the same as Fra
tion Complex IntegerFRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)There are several ways of �nding the names of
onstru
tors and their abbrevia-tions. For a spe
i�

onstru
tor, use)abbreviation query. You
an also usethe)what system
ommand to see the names and abbreviations of
onstru
tors.)abbreviation query
an be abbreviated (no pun intended) to)abb q.)abb q IntegerINT abbreviates domain Integer

5.3. DECLARATIONS 181The)abbreviation query
ommand lists the
onstru
tor name if you give theabbreviation. Issue)abb q if you want to see the names and abbreviations ofall Axiom
onstru
tors.)abb q DMPDMP abbreviates domain DistributedMultivariatePolynomialIssue this to see all pa
kages whose names
ontain the string \ode".)what pa
kages ode---------------------- Pa
kages -----------------------Pa
kages with names mat
hing patterns:odeEXPRODE ExpressionSpa
eODESolverFCPAK1 FortranCodePa
kage1GRAY GrayCodeLODEEF ElementaryFun
tionLODESolverNODE1 NonLinearFirstOrderODESolverODECONST ConstantLODEODEEF ElementaryFun
tionODESolverODEINT ODEIntegrationODEPAL PureAlgebrai
LODEODERAT RationalLODEODERED Redu
eLODEODESYS SystemODESolverODETOOLS ODEToolsUTSODE UnivariateTaylorSeriesODESolverUTSODETL UTSodetools5.3 De
larationsA de
laration is an expression used to restri
t the type of values that
an beassigned to variables. A
olon \:" is always used after a variable or list ofvariables to be de
lared.For a single variable, the syntax for de
laration isvariableName : typeOrModeFor multiple variables, the syntax is(variableName1, variableName2, ...variableNameN): typeOrMode

182 CHAPTER 5. USING TYPES AND MODESYou
an always
ombine a de
laration with an assignment. When you do, it isequivalent to �rst giving a de
laration statement, then giving an assignment.This de
lares one variable to have a type.a : Integer Type: VoidThis de
lares several variables to have a type.(b,
) : Integer Type: Voida, b and

an only hold integer values.a := 45 45 Type: IntegerIf a value
annot be
onverted to a de
lared type, an error message is displayed.b := 4/5Cannot
onvert right-hand side of assignment4-5 to an obje
t of the type Integer of the left-hand side.This de
lares a variable with a mode.n : Complex ? Type: VoidThis de
lares several variables with a mode.

5.3. DECLARATIONS 183(p,q,r) : Matrix Polynomial ? Type: VoidThis
omplex obje
t has integer real and imaginary parts.n := -36 + 9 * %i �36 + 9 i Type: Complex IntegerThis
omplex obje
t has fra
tional symboli
 real and imaginary parts.n :=
omplex(4/(x + y),y/x) 4y + x + yx iType: Complex Fra
tion Polynomial IntegerThis matrix has entries that are polynomials with integer
oeÆ
ients.p := [[1,2℄,[3,4℄,[5,6℄ ℄ 24 1 23 45 6 35Type: Matrix Polynomial IntegerThis matrix has a single entry that is a polynomial with rational number
oef-�
ients.q := [[x - 2/3℄ ℄ � x� 23 �Type: Matrix Polynomial Fra
tion IntegerThis matrix has entries that are polynomials with
omplex integer
oeÆ
ients.r := [[1-%i*x,7*y+4*%i℄ ℄

184 CHAPTER 5. USING TYPES AND MODES� �i x+ 1 7 y + 4 i �Type: Matrix Polynomial Complex IntegerNote the di�eren
e between this and the next example. This is a
omplex obje
twith polynomial real and imaginary parts.f : COMPLEX POLY ? := (x + y*%i)**2�y2 + x2 + 2 x y iType: Complex Polynomial IntegerThis is a polynomial with
omplex integer
oeÆ
ients. The obje
ts are
onvert-ible from one to the other.g : POLY COMPLEX ? := (x + y*%i)**2�y2 + 2 i x y + x2Type: Polynomial Complex Integer5.4 Re
ordsA Re
ord is an obje
t
omposed of one or more other obje
ts, ea
h of whi
h isreferen
ed with a sele
tor. Components
an all belong to the same type or ea
h
an have a di�erent type.The syntax for writing a Re
ord type isRe
ord(sele
tor1:type1, sele
tor2:type2, ..., sele
torN:typeN)You must be
areful if a sele
tor has the same name as a variable in theworkspa
e. If this o

urs, pre
ede the sele
tor name by a single quote.Re
ord
omponents are impli
itly ordered. All the
omponents of a re
ord
anbe set at on
e by assigning the re
ord a bra
keted tuple of values of the properlength. For example:r : Re
ord(a:Integer, b: String) := [1, "two"℄[a = 1; b = "two"℄

5.4. RECORDS 185Type: Re
ord(a: Integer,b: String)To a

ess a
omponent of a re
ord r, write the name r, followed by a period,followed by a sele
tor.The obje
t returned by this
omputation is a re
ord with two
omponents: aquotient part and a remainder part.u := divide(5,2) [quotient = 2; remainder = 1℄Type: Re
ord(quotient: Integer,remainder: Integer)This is the quotient part.u.quotient 2 Type: PositiveIntegerThis is the remainder part.u.remainder 1 Type: PositiveIntegerYou
an use sele
tor expressions on the left-hand side of an assignment to
hangedestru
tively the
omponents of a re
ord.u.quotient := 8978 8978 Type: PositiveIntegerThe sele
ted
omponent quotient has the value 8978, whi
h is what is returnedby the assignment. Che
k that the value of u was modi�ed.u [quotient = 8978; remainder = 1℄

186 CHAPTER 5. USING TYPES AND MODESType: Re
ord(quotient: Integer,remainder: Integer)Sele
tors are evaluated. Thus you
an use variables that evaluate to sele
torsinstead of the sele
tors themselves.s := 'quotient quotient Type: Variable quotientBe
areful! A sele
tor
ould have the same name as a variable in the workspa
e.If this o

urs, pre
ede the sele
tor name by a single quote, as in u:0quotient.divide(5,2).s 2 Type: PositiveIntegerHere we de
lare that the value of bd has two
omponents: a string, to be a

essedvia name, and an integer, to be a

essed via birthdayMonth.bd : Re
ord(name : String, birthdayMonth : Integer) Type: VoidYou must initially set the value of the entire Re
ord at on
e.bd := ["Judith", 3℄[name = "Judith"; birthdayMonth = 3℄Type: Re
ord(name: String,birthdayMonth: Integer)On
e set, you
an
hange any of the individual
omponents.bd.name := "Katie" "Katie" Type: String

5.4. RECORDS 187Re
ords may be nested and the sele
tor names
an be shared at di�erent levels.r : Re
ord(a : Re
ord(b: Integer,
: Integer), b: Integer)Type: VoidThe re
ord r has a b sele
tor at two di�erent levels. Here is an initial value forr.r := [[1,2℄, 3 ℄ [a = [b = 1;
 = 2℄; b = 3℄Type: Re
ord(a: Re
ord(b: Integer,
: Integer),b: Integer)This extra
ts the b
omponent from the a
omponent of r.r.a.b 1 Type: PositiveIntegerThis extra
ts the b
omponent from r.r.b 3 Type: PositiveIntegerYou
an also use spa
es or parentheses to refer to Re
ord
omponents. This isthe same as r:a.r(a) [b = 1;
 = 2℄Type: Re
ord(b: Integer,
: Integer)This is the same as r:b.r b

188 CHAPTER 5. USING TYPES AND MODES3 Type: PositiveIntegerThis is the same as r:b := 10.r(b) := 10 10 Type: PositiveIntegerLook at r to make sure it was modi�ed.r [a = [b = 1;
 = 2℄; b = 10℄Type: Re
ord(a: Re
ord(b: Integer,
: Integer),b: Integer)5.5 UnionsType Union is used for obje
ts that
an be of any of a spe
i�
 �nite set of types.Two versions of unions are available, one with sele
tors (like re
ords) and onewithout.5.5.1 Unions Without Sele
torsThe de
laration x : Union(Integer; String; F loat) states that x
an have valuesthat are integers, strings or \big"
oats. If, for example, the Union obje
t is aninteger, the obje
t is said to belong to the Integer bran
h of the Union. Notethat we are being a bit
areless with the language here. Te
hni
ally, the typeof x is always Union(Integer, String, Float). If it belongs to the Integerbran
h, x may be
onverted to an obje
t of type Integer.The syntax for writing a Union type without sele
tors isUnion(type1, type2, ..., type+N)The types in a union without sele
tors must be distin
t.

5.5. UNIONS 189It is possible to
reate unions like Union(Integer, PositiveInteger) but theyare diÆ
ult to work with be
ause of the overlap in the bran
h types. See belowfor the rules Axiom uses for
onverting something into a union obje
t.The
ase in�x operator returns a Boolean and
an be used to determine thebran
h in whi
h an obje
t lies.This fun
tion displays a message stating in whi
h bran
h of the Union the obje
t(de�ned as x above) lies.sayBran
h(x : Union(Integer,String,Float)) : Void ==outputx
ase Integer => "Integer bran
h"x
ase String => "String bran
h""Float bran
h"This tries sayBran
h with an integer.sayBran
h 1Compiling fun
tion sayBran
h with type Union(Integer,String,Float)-> VoidInteger bran
h Type: VoidThis tries sayBran
h with a string.sayBran
h "hello"String bran
h Type: VoidThis tries sayBran
h with a
oating-point number.sayBran
h 2.718281828Float bran
h Type: VoidThere are two things of interest about this parti
ular example to whi
h we wouldlike to draw your attention.

190 CHAPTER 5. USING TYPES AND MODES1. Axiom normally
onverts a result to the target value before passing it tothe fun
tion. If we left the de
laration information out of this fun
tionde�nition then the sayBran
h
all would have been attempted with anInteger rather than a Union, and an error would have resulted.2. The types in a Union are sear
hed in the order given. So if the type weregiven assayBran
h(x: Union(String,Integer,Float,Any)): Voidthen the result would have been \String bran
h" be
ause there is a
on-version from Integer to String.Sometimes Union types
an have extremely long names. Axiom therefore ab-breviates the names of unions by printing the type of the bran
h �rst withinthe Union and then eliding the remaining types with an ellipsis (...).Here the Integer bran
h is displayed �rst. Use \::" to
reate a Union obje
tfrom an obje
t.78 :: Union(Integer,String) 78 Type: Union(Integer,...)Here the String bran
h is displayed �rst.s := "string" :: Union(Integer,String)"string" Type: Union(String,...)Use typeOf to see the full and a
tual Union type.typeOf s Union(Integer; String) Type: DomainA
ommon operation that returns a union is exquo whi
h returns the \exa
tquotient" if the quotient is exa
t,three := exquo(6,2)

5.5. UNIONS 1913 Type: Union(Integer,...)and "failed" if the quotient is not exa
t.exquo(5,2) "failed" Type: Union("failed",...)A union with a "failed" is frequently used to indi
ate the failure or la
k ofappli
ability of an obje
t. As another example, assign an integer a variable rde
lared to be a rational number.r: FRAC INT := 3 3 Type: Fra
tion IntegerThe operation retra
tIfCan tries to retra
t the fra
tion to the underlyingdomain Integer. It produ
es a union obje
t. Here it su

eeds.retra
tIfCan(r) 3 Type: Union(Integer,...)Assign it a rational number.r := 3/2 32 Type: Fra
tion IntegerHere the retra
tion fails.retra
tIfCan(r) "failed" Type: Union("failed",...)

192 CHAPTER 5. USING TYPES AND MODES5.5.2 Unions With Sele
torsLike re
ords, you
an write Union types with sele
tors.The syntax for writing a Union type with sele
tors isUnion(sele
tor1:type1, sele
tor2:type2, ..., sele
torN:typeN)You must be
areful if a sele
tor has the same name as a variable in theworkspa
e. If this o

urs, pre
ede the sele
tor name by a single quote. Itis an error to use a sele
tor that does not
orrespond to the bran
h of theUnion in whi
h the element a
tually lies.Be sure to understand the di�eren
e between re
ords and unions with sele
tors.Re
ords
an have more than one
omponent and the sele
tors are used to referto the
omponents. Unions always have one
omponent but the type of thatone
omponent
an vary. An obje
t of type Re
ord(a: Integer, b: Float,
: String)
ontains an integer and a
oat and a string. An obje
t of typeUnion(a: Integer, b: Float,
: String)
ontains an integer or a
oator a string.Here is a version of the sayBran
h fun
tion that works with a union withsele
tors. It displays a message stating in whi
h bran
h of the Union the obje
tlies.sayBran
h(x:Union(i:Integer,s:String,f:Float)):Void==outputx
ase i => "Integer bran
h"x
ase s => "String bran
h""Float bran
h"Note that
ase uses the sele
tor name as its right-hand argument. If you a
-
identally use the bran
h type on the right-hand side of
ase, false will bereturned.De
lare variable u to have a union type with sele
tors.u : Union(i : Integer, s : String) Type: VoidGive an initial value to u.u := "good morning" "good morning"

5.6. THE \ANY" DOMAIN 193Type: Union(s: String,...)Use
ase to determine in whi
h bran
h of a Union an obje
t lies.u
ase i false Type: Booleanu
ase s true Type: BooleanTo a

ess the element in a parti
ular bran
h, use the sele
tor.u.s "good morning" Type: String5.6 The \Any" DomainWith the ex
eption of obje
ts of type Re
ord, all Axiom data stru
tures arehomogenous, that is, they hold obje
ts all of the same type. If you need to getaround this, you
an use type Any. Using Any, for example, you
an
reate listswhose elements are integers, rational numbers, strings, and even other lists.De
lare u to have type Any.u: Any Type: VoidAssign a list of mixed type values to uu := [1, 7.2, 3/2, x**2, "wally"℄

194 CHAPTER 5. USING TYPES AND MODES�1; 7:2; 32 ; x2; "wally"� Type: List AnyWhen we ask for the elements, Axiom displays these types.u.1 1 Type: PositiveIntegerA
tually, these obje
ts belong to Any but Axiom automati
ally
onverts themto their natural types for you.u.3 32 Type: Fra
tion IntegerSin
e type Any
an be anything, it
an only belong to type Type. Therefore it
annot be used in algebrai
 domains.v : Matrix(Any)Matrix Any is not a valid type.Perhaps you are wondering how Axiom internally represents obje
ts of typeAny. An obje
t of type Any
onsists not only a data part representing its nor-mal value, but also a type part (a badge) giving its type. For example, thevalue 1 of type PositiveInteger as an obje
t of type Any internally looks like[1; PositiveInteger()℄.When should you use Any instead of a Union type? For a Union, you must knowin advan
e exa
tly whi
h types you are going to allow. For Any, anything that
omes along
an be a

ommodated.5.7 ConversionConversion is the pro
ess of
hanging an obje
t of one type into an obje
t ofanother type. The syntax for
onversion is:obje
t ::newType

5.7. CONVERSION 195By default, 3 has the type PositiveInteger.3 3 Type: PositiveIntegerWe
an
hange this into an obje
t of type Fra
tion Integer by using \::".3 :: Fra
tion Integer 3 Type: Fra
tion IntegerA
oer
ion is a spe
ial kind of
onversion that Axiom is allowed to do automati-
ally when you enter an expression. Coer
ions are usually somewhat safer thanmore general
onversions. The Axiom library
ontains operations
alled
oer
eand
onvert. Only the
oer
e operations
an be used by the interpreter to
hange an obje
t into an obje
t of another type unless you expli
itly use a ::.By now you will be quite familiar with what types and modes look like. It isuseful to think of a type or mode as a pattern for what you want the result tobe.Let's start with a square matrix of polynomials with
omplex rational number
oeÆ
ients.m : SquareMatrix(2,POLY COMPLEX FRAC INT) Type: Voidm := matrix [[x-3/4*%i,z*y**2+1/2℄,[3/7*%i*y**4 - x,12-%i*9/5℄ ℄� x� 34 i y2 z + 1237 i y4 � x 12� 95 i �Type: SquareMatrix(2,Polynomial Complex Fra
tion Integer)We �rst want to inter
hange the Complex and Fra
tion layers. We do the
onversion by doing the inter
hange in the type expression.m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT)

196 CHAPTER 5. USING TYPES AND MODES� x� 3 i4 y2 z + 123 i7 y4 � x 60�9 i5 �Type: SquareMatrix(2,Polynomial Fra
tion Complex Integer)Inter
hange the Polynomial and the Fra
tion levels.m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT)" 4 x�3 i4 2 y2 z+123 i y4�7 x7 60�9 i5 #Type: SquareMatrix(2,Fra
tion Polynomial Complex Integer)Inter
hange the Polynomial and the Complex levels.m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)" 4 x�3 i4 2 y2 z+12�7 x+3 y4 i7 60�9 i5 #Type: SquareMatrix(2,Fra
tion Complex Polynomial Integer)All the entries have
hanged types, although in
omparing the last two resultsonly the entry in the lower left
orner looks di�erent. We did all the intermediatesteps to show you what Axiom
an do.In fa
t, we
ould have
ombined all these into one
onversion.m :: SquareMatrix(2,FRAC COMPLEX POLY INT)" 4 x�3 i4 2 y2 z+12�7 x+3 y4 i7 60�9 i5 #Type: SquareMatrix(2,Fra
tion Complex Polynomial Integer)There are times when Axiom is not be able to do the
onversion in one step.You may need to break up the transformation into several
onversions in orderto get an obje
t of the desired type.We
annot move either Fra
tion or Complex above (or to the left of, depend-ing on how you look at it) SquareMatrix be
ause ea
h of these levels requiresthat its argument type have
ommutative multipli
ation, whereas SquareMatrixdoes not. That is be
ause Fra
tion requires that its argument belong to the

5.7. CONVERSION 197
ategory IntegralDomain and Complex requires that its argument belong toCommutativeRing. The Integer level did not move anywhere be
ause it doesnot allow any arguments. We also did not move the SquareMatrix part any-where, but we
ould have.Re
all that m looks like this.m � x� 34 i y2 z + 1237 i y4 � x 12� 95 i �Type: SquareMatrix(2,Polynomial Complex Fra
tion Integer)If we want a polynomial with matrix
oeÆ
ients rather than a matrix withpolynomial entries, we
an just do the
onversion.m :: POLY SquareMatrix(2,COMPLEX FRAC INT)� 0 10 0 � y2 z + � 0 037 i 0 � y4 + � 1 0�1 0 � x+ � �34 i 120 12� 95 i �Type: Polynomial SquareMatrix(2,Complex Fra
tion Integer)We have not yet used modes for any
onversions. Modes are a great shorthandfor indi
ating the type of the obje
t you want. Instead of using the long typeexpression in the last example, we
ould have simply said this.m :: POLY ?� 0 10 0 � y2 z + � 0 037 i 0 � y4 + � 1 0�1 0 � x+ � �34 i 120 12� 95 i �Type: Polynomial SquareMatrix(2,Complex Fra
tion Integer)We
an also indi
ate more stru
ture if we want the entries of the matri
es to befra
tions.m :: POLY SquareMatrix(2,FRAC ?)� 0 10 0 � y2 z + � 0 03 i7 0 � y4 + � 1 0�1 0 � x+ � �3 i4 120 60�9 i5 �Type: Polynomial SquareMatrix(2,Fra
tion Complex Integer)

198 CHAPTER 5. USING TYPES AND MODES5.8 Subdomains AgainA subdomain S of a domain D is a domain
onsisting of1. those elements of D that satisfy some predi
ate (that is, a test that returnstrue or false) and2. a subset of the operations of D.Every domain is a subdomain of itself, trivially satisfying the membership test:true.Currently, there are only two system-de�ned subdomains in Axiom that re-
eive substantial use. PositiveInteger and NonNegativeInteger are subdo-mains of Integer. An element x of NonNegativeInteger is an integer thatis greater than or equal to zero, that is, satis�es x >= 0. An element x ofPositiveInteger is a nonnegative integer that is, in fa
t, greater than zero,that is, satis�es x > 0. Not all operations from Integer are available for thesesubdomains. For example, negation and subtra
tion are not provided sin
e thesubdomains are not
losed under those operations. When you use an integer inan expression, Axiom assigns to it the type that is the most spe
i�
 subdomainwhose predi
ate is satis�ed.This is a positive integer.5 5 Type: PositiveIntegerThis is a nonnegative integer.0 0 Type: NonNegativeIntegerThis is neither of the above.-5 �5 Type: Integer

5.8. SUBDOMAINS AGAIN 199Furthermore, unless you are assigning an integer to a de
lared variable or usinga
onversion, any integer result has as type the most spe
i�
 subdomain.(-2) - (-3) 1 Type: PositiveInteger0 :: Integer 0 Type: Integerx : NonNegativeInteger := 5 5 Type: NonNegativeIntegerWhen ne
essary, Axiom
onverts an integer obje
t into one belonging to a lessspe
i�
 subdomain. For example, in 3 � 2, the arguments to \-" are bothelements of PositiveInteger, but this type does not provide a subtra
tionoperation. Neither does NonNegativeInteger, so 3 and 2 are viewed as elementsof Integer, where their di�eren
e
an be
al
ulated. The result is 1, whi
hAxiom then automati
ally assigns the type PositiveInteger.Certain operations are very sensitive to the subdomains to whi
h their argu-ments belong. This is an element of PositiveInteger.2 ** 2 4 Type: PositiveIntegerThis is an element of Fra
tion Integer.2 ** (-2) 14

200 CHAPTER 5. USING TYPES AND MODESType: Fra
tion IntegerIt makes sense then that this is a list of elements of PositiveInteger.[10**i for i in 2..5℄ [100; 1000; 10000; 100000℄Type: List PositiveIntegerWhat should the type of [10**(i-1) for i in 2..5℄ be? On one hand, i� 1is always an integer greater than zero as i ranges from 2 to 5 and so 10 � �i isalso always a positive integer. On the other, i � 1 is a very simple fun
tion ofi. Axiom does not try to analyze every su
h fun
tion over the index's range ofvalues to determine whether it is always positive or nowhere negative. For anarbitrary Axiom fun
tion, this analysis is not possible.So, to be
onsistent no su
h analysis is done and we get this.[10**(i-1) for i in 2..5℄[10; 100; 1000; 10000℄Type: List Fra
tion IntegerTo get a list of elements of PositiveInteger instead, you have two
hoi
es.You
an use a
onversion.[10**((i-1) :: PI) for i in 2..5℄Compiling fun
tion G82696 with type Integer -> BooleanCompiling fun
tion G82708 with type NonNegativeInteger -> Boolean[10; 100; 1000; 10000℄Type: List PositiveIntegerOr you
an use pretend.[10**((i-1) pretend PI) for i in 2..5℄[10; 100; 1000; 10000℄Type: List PositiveInteger

5.9. PACKAGE CALLING AND TARGET TYPES 201The operation pretend is used to defeat the Axiom type system. The expressionobje
t pretend D means \make a new obje
t (without
opying) of type D fromobje
t." If obje
t were an integer and you told Axiom to pretend it was a list,you would probably see a message about a fatal error being
aught and memorypossibly being damaged. Lists do not have the same internal representation asintegers!You use pretend at your peril.Use pretend with great
are! Axiom trusts you that the value is of the spe
i�edtype.(2/3) pretend Complex Integer 2 + 3 i Type: Complex Integer5.9 Pa
kage Calling and Target TypesAxiom works hard to �gure out what you mean by an expression without yourhaving to qualify it with type information. Nevertheless, there are times whenyou need to help it along by providing hints (or even orders!) to get Axiom todo what you want.De
larations using types and modes
ontrol the type of the results produ
ed.For example, we
an either produ
e a
omplex obje
t with polynomial real andimaginary parts or a polynomial with
omplex integer
oeÆ
ients, dependingon the de
laration.Pa
kage
alling is used to tell Axiom to use a parti
ular fun
tion from a parti
-ular part of the library.Use the \/" from Fra
tion Integer to
reate a fra
tion of two integers.2/3 23 Type: Fra
tion IntegerIf we wanted a
oating point number, we
an say \use the \/" in Float."(2/3)$Float 0:66666666666666666667

202 CHAPTER 5. USING TYPES AND MODESType: FloatPerhaps we a
tually wanted a fra
tion of
omplex integers.(2/3)$Fra
tion(Complex Integer) 23 Type: FloatIn ea
h
ase, Axiom used the indi
ated operations, sometimes �rst needing to
onvert the two integers into obje
ts of the appropriate type. In these examples,\/" is written as an in�x operator.To use pa
kage
alling with an in�x operator, use the following syntax:(arg1 op arg2)$typeWe used, for example, (2=3)$Float. The expression 2 + 3 + 4 is equivalent to(2+3)+4. Therefore in the expression (2+3+4)$Float the se
ond \+"
omesfrom the Float domain. The �rst \+"
omes from Float be
ause the pa
kage
all
auses Axiom to
onvert (2 + 3) and 4 to type Float. Before the sum is
onverted, it is given a target type of Float by Axiom and then evaluated. Thetarget type
auses the \+" from Float to be used.For an operator written before its arguments, you must use parenthesesaround the arguments (even if there is only one), and follow the
losingparenthesis by a \$" and then the type.fun (arg1; arg2; : : : ; argN)$typeFor example, to
all the \minimum" fun
tion from SmallFloat on two integers,you
ould write min(4,89)$SmallFloat. Another use of pa
kage
alling is totell Axiom to use a library fun
tion rather than a fun
tion you de�ned.Sometimes rather than spe
ifying where an operation
omes from, you just wantto say what type the result should be. We say that you provide a target type forthe expression. Instead of using a \$", use a \�" to spe
ify the requested targettype. Otherwise, the syntax is the same. Note that giving a target type is notthe same as expli
itly doing a
onversion. The �rst says \try to pi
k operationsso that the result has su
h-and-su
h a type." The se
ond says \
ompute theresult and then
onvert to an obje
t of su
h-and-su
h a type."

5.9. PACKAGE CALLING AND TARGET TYPES 203Sometimes it makes sense, as in this expression, to say \
hoose the operationsin this expression so that the �nal result is Float.(2/3)�Float 0:66666666666666666667 Type: FloatHere we used \�" to say that the target type of the left-hand side was Float. Inthis simple
ase, there was no real di�eren
e between using \$" and \�". You
an see the di�eren
e if you try the following.This says to try to
hoose \+" so that the result is a string. Axiom
annot dothis.(2 + 3)�StringAn expression involving � String a
tually evaluated to one oftype PositiveInteger . Perhaps you should use :: String .This says to get the + from String and apply it to the two integers. Axiom also
annot do this be
ause there is no + exported by String.(2 + 3)$StringThe fun
tion + is not implemented in String .(By the way, the operation
on
at or juxtaposition is used to
on
atenate twostrings.)When we have more than one operation in an expression, the di�eren
e is evenmore evident. The following two expressions show that Axiom uses the targettype to
reate di�erent obje
ts. The \+", *" and **" operations are all
hosenso that an obje
t of the
orre
t �nal type is
reated.This says that the operations should be
hosen so that the result is a Complexobje
t.((x + y * %i)**2)�(Complex Polynomial Integer)�y2 + x2 + 2 x y iType: Complex Polynomial Integer

204 CHAPTER 5. USING TYPES AND MODESThis says that the operations should be
hosen so that the result is a Polynomialobje
t.((x + y * %i)**2)�(Polynomial Complex Integer)�y2 + 2 i x y + x2Type: Polynomial Complex IntegerWhat do you think might happen if we left o� all target type and pa
kage
allinformation in this last example?(x + y * %i)**2 �y2 + 2 i x y + x2Type: Polynomial Complex IntegerWe
an
onvert it to Complex as an afterthought. But this is more work thanjust saying making what we want in the �rst pla
e.% :: Complex ? �y2 + x2 + 2 x y iType: Complex Polynomial IntegerFinally, another use of pa
kage
alling is to qualify fully an operation that ispassed as an argument to a fun
tion.Start with a small matrix of integers.h := matrix [[8,6℄,[-4,9℄ ℄� 8 6�4 9 � Type: Matrix IntegerWe want to produ
e a new matrix that has for entries the multipli
ative inversesof the entries of h. One way to do this is by
alling map with the inv fun
tionfrom Fra
tion (Integer).map(inv$Fra
tion(Integer),h)

5.10. RESOLVING TYPES 205� 18 16�14 19 �Type: Matrix Fra
tion IntegerWe
ould have been a bit less verbose and used abbreviations.map(inv$FRAC(INT),h) � 18 16�14 19 �Type: Matrix Fra
tion IntegerAs it turns out, Axiom is smart enough to know what we mean anyway. We
an just say this.map(inv,h) � 18 16�14 19 �Type: Matrix Fra
tion Integer5.10 Resolving TypesIn this se
tion we brie
y des
ribe an internal pro
ess by whi
h Axiom determinesa type to whi
h two obje
ts of possibly di�erent types
an be
onverted. We dothis to give you further insight into how Axiom takes your input, analyzes it,and produ
es a result.What happens when you enter x+1 to Axiom? Let's look at what you get fromthe two terms of this expression.This is a symboli
 obje
t whose type indi
ates the name.x x Type: Variable xThis is a positive integer.1

206 CHAPTER 5. USING TYPES AND MODES1 Type: PositiveIntegerThere are no operations in PositiveInteger that add positive integers to ob-je
ts of type Variable(x) nor are there any in Variable(x). Before it
anadd the two parts, Axiom must
ome up with a
ommon type to whi
h both xand 1
an be
onverted. We say that Axiom must resolve the two types into a
ommon type. In this example, the
ommon type is Polynomial(Integer).On
e this is determined, both parts are
onverted into polynomials, and theaddition operation from Polynomial(Integer) is used to get the answer.x + 1 x+ 1 Type: Polynomial IntegerAxiom
an always resolve two types: if nothing resembling the original types
an be found, then Any is be used. This is �ne and useful in some
ases.["string",3.14159℄ ["string"; 3:14159℄ Type: List AnyIn other
ases obje
ts of type Any
an't be used by the operations you spe
i�ed."string" + 3.14159There are 11 exposed and 5 unexposed library operations named +having 2 argument(s) but none was determined to be appli
able.Use HyperDo
 Browse, or issue)display op +to learn more about the available operations. Perhapspa
kage-
alling the operation or using
oer
ions on thearguments will allow you to apply the operation.Cannot find a definition or appli
able library operation named +with argument type(s) StringFloatPerhaps you should use "�" to indi
ate the required return type,or "$" to spe
ify whi
h version of the fun
tion you need.

5.11. EXPOSING DOMAINS AND PACKAGES 207Although this example was
ontrived, your expressions may need to be quali�edslightly to help Axiom resolve the types involved. You may need to de
lare afew variables, do some pa
kage
alling, provide some target type information ordo some expli
it
onversions.We suggest that you just enter the expression you want evaluated and see whatAxiom does. We think you will be impressed with its ability to \do what Imean." If Axiom is still being obtuse, give it some hints. As you work withAxiom, you will learn where it needs a little help to analyze qui
kly and performyour
omputations.5.11 Exposing Domains and Pa
kagesIn this se
tion we dis
uss how Axiom makes some operations available to youwhile hiding others that are meant to be used by developers or only in rare
ases. If you are a new user of Axiom, it is likely that everything you need isavailable by default and you may want to skip over this se
tion on �rst reading.Every domain and pa
kage in the Axiom library is either exposed (meaningthat you
an use its operations without doing anything spe
ial) or it is hidden(meaning you have to either pa
kage
all the operations it
ontains or expli
itlyexpose it to use the operations). The initial exposure status for a
onstru
toris set in the �le exposed.lsp (see the Installer's Note for Axiom if you need toknow the lo
ation of this �le). Constru
tors are
olle
ted together in exposuregroups. Categories are all in the exposure group \
ategories" and the bulk ofthe basi
 set of pa
kages and domains that are exposed are in the exposuregroup \basi
." Here is an abbreviated sample of the �le (without the Lispparentheses):basi
 Algebrai
Number ANAlgebraGivenByStru
turalConstants ALGSCAny ANYAnyFun
tions1 ANY1BinaryExpansion BINARYBoolean BOOLEANCardinalNumber CARDCartesianTensor CARTENChara
ter CHARChara
terClass CCLASSCliffordAlgebra CLIFColor COLORComplex COMPLEXContinuedFra
tion CONTFRACDe
imalExpansion DECIMAL...

208 CHAPTER 5. USING TYPES AND MODES
ategoriesAbelianGroup ABELGRPAbelianMonoid ABELMONAbelianMonoidRing AMRAbelianSemiGroup ABELSGAggregate AGGAlgebra ALGEBRAAlgebrai
allyClosedField ACFAlgebrai
allyClosedFun
tionSpa
e ACFSAr
Hyperboli
Fun
tionCategory AHYP...For ea
h
onstru
tor in a group, the full name and the abbreviation is given.There are other groups in exposed.lsp but initially only the
onstru
tors inexposure groups \basi
" \
ategories" \naglink" and \anna" are exposed.As an intera
tive user of Axiom, you do not need to modify this �le. Instead,use)set expose to expose, hide or query the exposure status of an individual
onstru
tor or exposure group. The reason for having exposure groups is tobe able to expose or hide multiple
onstru
tors with a single
ommand. Forexample, you might group together into exposure group \quantum" a numberof domains and pa
kages useful for quantum me
hani
al
omputations. Theseprobably should not be available to every user, but you want an easy way tomake the whole
olle
tion visible to Axiom when it is looking for operations toapply.If you wanted to hide all the basi

onstru
tors available by default, you wouldissue)set expose drop group basi
. We do not re
ommend that you dothis. If, however, you dis
over that you have hidden all the basi

onstru
-tors, you should issue)set expose add group basi
 to restore your defaultenvironment.It is more likely that you would want to expose or hide individual
onstru
tors.We use several operations from OutputForm, a domain usually hidden. To avoidpa
kage
alling every operation from OutputForm, we expose the domain andlet Axiom
on
lude that those operations should be used. Use)set exposeadd
onstru
tor and)set expose drop
onstru
tor to expose and hide a
onstru
tor, respe
tively. You should use the
onstru
tor name, not the abbre-viation. The)set expose
ommand guides you through these options.If you expose a previously hidden
onstru
tor, Axiom exhibits new behavior(that was your intention) though you might not expe
t the results that you get.OutputForm is, in fa
t, one of the worst o�enders in this regard. This domain ismeant to be used by other domains for
reating a stru
ture that Axiom knowshow to display. It has fun
tions like \+" that form output representations ratherthan do mathemati
al
al
ulations. Be
ause of the order in whi
h Axiom looksat
onstru
tors when it is de
iding what operation to apply, OutputForm mightbe used instead of what you expe
t.

5.12. COMMANDS FOR SNOOPING 209This is a polynomial.x + x 2 x Type: Polynomial IntegerExpose OutputForm.)set expose add
onstru
tor OutputFormOutputForm is now expli
itly exposed in frame G82322This is what we get when OutputForm is automati
ally available.x + x x+ x Type: OutputFormHide OutputForm so we don't run into problems with any later examples!)set expose drop
onstru
tor OutputFormOutputForm is now expli
itly hidden in frame G82322Finally, exposure is done on a frame-by-frame basis. A frame is one of pos-sibly several logi
al Axiom workspa
es within a physi
al one, ea
h having itsown environment (for example, variables and fun
tion de�nitions). If you haveseveral Axiom workspa
e windows on your s
reen, they are all di�erent frames,automati
ally
reated for you by HyperDo
. Frames
an be manually
reated,made a
tive and destroyed by the)frame system
ommand. They do not shareexposure information, so you need to use)set expose in ea
h one to add ordrop
onstru
tors from view.5.12 Commands for SnoopingTo
on
lude this
hapter, we introdu
e you to some system
ommands that you
an use for getting more information about domains, pa
kages,
ategories, and

210 CHAPTER 5. USING TYPES AND MODESoperations. The most powerful Axiom fa
ility for getting information about
onstru
tors and operations is the Browse
omponent of HyperDo
.Use the)what system
ommand to see lists of system obje
ts whose name
ontain a parti
ular substring (upper
ase or lower
ase is not signi�
ant).Issue this to see a list of all operations with \
omplex" in their names.)what operation
omplexOperations whose names satisfy the above pattern(s):
omplex
omplex?
omplexEigenvalues
omplexEigenve
tors
omplexElementary
omplexExpand
omplexForm
omplexIntegrate
omplexLimit
omplexNormalize
omplexNumeri

omplexNumeri
IfCan
omplexRoots
omplexSolve
omplexZeros
reateLowComplexityNormalBasis
reateLowComplexityTable doubleComplex?drawComplex drawComplexVe
torFieldfortranComplex fortranDoubleComplexpmComplexintegrateTo get more information about an operation su
h as
omplexZeros, issue the
ommand)display op
omplexZerosIf you want to see all domains with \matrix" in their names, issue this.)what domain matrix----------------------- Domains -----------------------Domains with names mat
hing patterns:matrixDHMATRIX DenavitHartenbergMatrixDPMM Dire
tProdu
tMatrixModuleIMATRIX IndexedMatrixLSQM LieSquareMatrixM3D ThreeDimensionalMatrixMATCAT- MatrixCategory&MATRIX Matrix

5.12. COMMANDS FOR SNOOPING 211RMATCAT- Re
tangularMatrixCategory&RMATRIX Re
tangularMatrixSMATCAT- SquareMatrixCategory&SQMATRIX SquareMatrixSimilarly, if you wish to see all pa
kages whose names
ontain \gauss", enterthis.)what pa
kage gauss---------------------- Pa
kages -----------------------Pa
kages with names mat
hing patterns:gaussGAUSSFAC GaussianFa
torizationPa
kageThis
ommand shows all the operations that Any provides. Wherever $ appears,it means \Any".)show AnyAny is a domain
onstru
torAbbreviation for Any is ANYThis
onstru
tor is exposed in this frame.Issue)edit /usr/lo
al/axiom/mnt/algebra/any.spadto see algebra sour
e
ode for ANY--------------------- Operations ----------------------?=? : (%,%) -> Booleanany : (SExpression,None) -> %
oer
e : % -> OutputFormdom : % -> SExpressiondomainOf : % -> OutputFormhash : % -> SingleIntegerlatex : % -> Stringobj : % -> Noneobje
tOf : % -> OutputForm?~=? : (%,%) -> BooleanshowTypeInOutput : Boolean -> StringThis displays all operations with the name
omplex.

212 CHAPTER 5. USING TYPES AND MODES)display operation
omplexThere is one exposed fun
tion
alled
omplex :[1℄ (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRINGLet's analyze this output.First we �nd out what some of the abbreviations mean.)abbreviation query COMPCATCOMPCAT abbreviates
ategory ComplexCategory)abbreviation query COMRINGCOMRING abbreviates
ategory CommutativeRingSo if D1 is a
ommutative ring (su
h as the integers or
oats) and D belongsto ComplexCategory D1, then there is an operation
alled
omplex that takestwo elements of D1 and
reates an element of D. The primary example of a
onstru
tor implementing domains belonging to ComplexCategory is Complex.

Chapter 6Using HyperDo

Figure 6.1: The HyperDo
 root window pageHyperDo
 is the gateway to Axiom. It's both an on-line tutorial and an on-linereferen
e manual. It also enables you to use Axiom simply by using the mouseand �lling in templates. HyperDo
 is available to you if you are running Axiomunder the X Window System.Pages usually have a
tive areas, marked in this font (bold fa
e). As you movethe mouse pointer to an a
tive area, the pointer
hanges from a �lled dot to anopen
ir
le. The a
tive areas are usually linked to other pages. When you
li
k213

214 CHAPTER 6. USING HYPERDOCon an a
tive area, you move to the linked page.6.1 HeadingsMost pages have a standard set of buttons at the top of the page. This is whatthey mean:Cli
k on this to get help. The button only appears if there is spe
i�
help for the page you are viewing. You
an get general help for HyperDo
by
li
king the help button on the home page.Cli
k here to go ba
k one page. By
li
king on this button repeatedly,you
an go ba
k several pages and then take o� in a new dire
tion.Go ba
k to the home page, that is, the page on whi
h you started. UseHyperDo
 to explore, to make forays into new topi
s. Don't worry abouthow to get ba
k. HyperDo
 remembers where you
ame from. Just
li
kon this button to return.From the root window (the one that is displayed when you startthe system) this button leaves the HyperDo
 program, and it must berestarted if you want to use it again. From any other HyperDo
 window,it just makes that one window go away. You must use this button to getrid of a window. If you use the window manager \Close" button, then allof HyperDo
 goes away.The buttons are not displayed if they are not appli
able to the page you areviewing. For example, there is no button on the top-level menu.6.2 Key De�nitionsThe following keyboard de�nitions are in e�e
t throughout HyperDo
.F1 Display the main help page.F3 Same as , makes the window go away if you are not at the top-levelwindow or quits the HyperDo
 fa
ility if you are at the top-level.F5 Rereads the HyperDo
 database, if ne
essary (for system developers).F9 Displays this information about key de�nitions.F12 Same as F3.Up Arrow S
roll up one line.

6.3. SCROLL BARS 215Down Arrow S
roll down one line.Page Up S
roll up one page.Page Down S
roll down one page.6.3 S
roll BarsWhenever there is too mu
h text to �t on a page, a s
roll bar automati
allyappears along the right side.With a s
roll bar, your page be
omes an aperture, that is, a window into alarger amount of text than
an be displayed at one time. The s
roll bar lets youmove up and down in the text to see di�erent parts. It also shows where theaperture is relative to the whole text. The aperture is indi
ated by a strip onthe s
roll bar.Move the
ursor with the mouse to the \down-arrow" at the bottom of the s
rollbar and
li
k. See that the aperture moves down one line. Do it several times.Ea
h time you
li
k, the aperture moves down one line. Move the mouse to the\up-arrow" at the top of the s
roll bar and
li
k. The aperture moves up oneline ea
h time you
li
k.Next move the mouse to any position along the middle of the s
roll bar and
li
k. HyperDo
 attempts to move the top of the aperture to this point in thetext.You
annot make the aperture go o� the bottom edge. When the aperture isabout half the size of text, the lowest you
an move the aperture is halfwaydown.To move up or down one s
reen at a time, use the PageUp and PageDownkeys on your keyboard. They move the visible part of the region up and downone page ea
h time you press them.If the HyperDo
 page does not
ontain an input area, you
an also use theHome and " and # arrow keys to navigate. When you press the Homekey, the s
reen is positioned at the very top of the page. Use the " and #arrow keys to move the s
reen up and down one line at a time, respe
tively.6.4 Input AreasInput areas are boxes where you
an put data.To enter
hara
ters, �rst move your mouse
ursor to somewhere within theHyperDo
 page. Chara
ters that you type are inserted in front of the unders
ore.This means that when you type
hara
ters at your keyboard, they go into this�rst input area.

216 CHAPTER 6. USING HYPERDOCThe input area grows to a

ommodate as many
hara
ters as you type. Use theBa
kspa
e key to erase
hara
ters to the left. To modify what you type, usethe right-arrow ! and left-arrow keys and the keys Insert , Delete ,Home and End . These keys are found immediately on the right of thestandard IBM keyboard.If you press the Home key, the
ursor moves to the beginning of the line andif you press the End key, the
ursor moves to the end of the line. PressingCtrl { End deletes all the text from the
ursor to the end of the line.A page may have more than one input area. Only one input area has an under-s
ore
ursor. When you �rst see apage, the top-most input area
ontains the
ursor. To type information into another input area, use the Enter or Tabkey to move from one input area to xanother. To move in the reverse order, useShift { Tab .You
an also move from one input area to another using your mouse. Noti
ethat ea
h input area is a
tive. Cli
k on one of the areas. As you
an see, theunders
ore
ursor moves to that window.6.5 Radio Buttons and TogglesSome pages have radio buttons and toggles. Radio buttons are a group of buttonslike those on
ar radios: you
an sele
t only one at a time.On
e you have sele
ted a button, it appears to be inverted and
ontains a
he
kmark. To
hange the sele
tion, move the
ursor with the mouse to adi�erent radio button and
li
k.A toggle is an independent button that displays some on/o� state. When \on",the button appears to be inverted and
ontains a
he
kmark. When \o�", thebutton is raised.Unlike radio buttons, you
an set a group of them any way you like. To
hangetoggle the sele
tion, move the
ursor with the mouse to the button and
li
k.6.6 Sear
h StringsA sear
h string is used for sear
hing some database. To learn about sear
hstrings, we suggest that you bring up the HyperDo
 glossary. To do this fromthe top-level page of HyperDo
:1. Cli
k on Referen
e, bringing up the Axiom Referen
e page.2. Cli
k on Glossary, bringing up the glossary.

6.7. EXAMPLE PAGES 217The glossary has an input area at its bottom. We review the various kinds ofsear
h strings you
an enter to sear
h the glossary.The simplest sear
h string is a word, for example, operation. A word onlymat
hes an entry having exa
tly that spelling. Enter the word operation intothe input area above then
li
k on Sear
h. As you
an see, operation mat
hesonly one entry, namely with operation itself.Normally mat
hing is insensitive to whether the alphabeti

hara
ters of yoursear
h string are in upper
ase or lower
ase. Thus operation and OperAtionboth have the same e�e
t.You will very often want to use the wild
ard *" in your sear
h string so asto mat
h multiple entries in the list. The sear
h key *" mat
hes every entryin the list. You
an also use *" anywhere within a sear
h string to mat
h anarbitrary substring. Try \
at*" for example: enter \
at*" into the input areaand
li
k on Sear
h. This mat
hes several entries.You use any number of wild
ards in a sear
h string as long as they are notadja
ent. Try sear
h strings su
h as *dom*". As you see, this sear
h stringmat
hes \domain", \domain
onstru
tor", \subdomain", and so on.6.6.1 Logi
al Sear
hesFor more
ompli
ated sear
hes, you
an use \and", \or", and \not" with ba-si
 sear
h strings; write logi
al expressions using these three operators just asin the Axiom language. For example, domain or pa
kage mat
hes the twoentries domain and pa
kage. Similarly, \dom* and *
on*" mat
hes \domain
onstru
tor" and others. Also \not *a*" mat
hes every entry that does not
ontain the letter \a" somewhere.Use parentheses for grouping. For example, \dom* and (not *
on*)" mat
hes\domain" but not \domain
onstru
tor".There is no limit to how
omplex your logi
al expression
an be. For example,a* or b* or
* or d* or e* and (not *a*)is a valid expression.6.7 Example PagesMany pages have Axiom example
ommands.Ea
h
ommand has an a
tive \button" along the left margin. When you
li
kon this button, the output for the
ommand is \pasted-in." Cli
k again on thebutton and you see that the pasted-in output disappears.Maybe you would like to run an example? To do so, just
li
k on any part of

218 CHAPTER 6. USING HYPERDOCits text! When you do, the example line is
opied into a new intera
tive Axiombu�er for this HyperDo
 page.Sometimes one example line
annot be run before you run an earlier one. Don'tworry|HyperDo
 automati
ally runs all the ne
essary lines in the right order!The new intera
tive Axiom bu�er disappears when you leave HyperDo
. Ifyou want to get rid of it beforehand, use the Can
el button of the X Windowmanager or issue the Axiom system
ommand)
lose.6.8 X Window Resour
es for HyperDo
You
an
ontrol the appearan
e of HyperDo
 while running under Version 11 ofthe X Window System by pla
ing the following resour
es in the �le .Xdefaultsin your home dire
tory. In what follows, font is any valid X11 font name (forexample, Rom14) and
olor is any valid X11
olor spe
i�
ation (for example,NavyBlue). For more information about fonts and
olors, refer to the X Windowdo
umentation for your system.Axiom.hyperdo
.RmFont: fontThis is the standard text font. The default value is Rom14Axiom.hyperdo
.RmColor:
olorThis is the standard text
olor. The default value is bla
kAxiom.hyperdo
.A
tiveFont: fontThis is the font used for HyperDo
 link buttons. The default value isBld14Axiom.hyperdo
.A
tiveColor:
olorThis is the
olor used for HyperDo
 link buttons. The default value isbla
kAxiom.hyperdo
.AxiomFont: fontThis is the font used for a
tive Axiom
ommands. The default value isBld14Axiom.hyperdo
.AxiomColor:
olorThis is the
olor used for a
tive Axiom
ommands. The default value isbla
kAxiom.hyperdo
.BoldFont: fontThis is the font used for bold fa
e. The default value is Bld14Axiom.hyperdo
.BoldColor:
olorThis is the
olor used for bold fa
e. The default value is bla
k

6.8. X WINDOW RESOURCES FOR HYPERDOC 219Axiom.hyperdo
.TtFont: fontThis is the font used for Axiom output in HyperDo
. This font must be�xed-width. The default value is Rom14Axiom.hyperdo
.TtColor:
olorThis is the
olor used for Axiom output in HyperDo
. The default valueis bla
kAxiom.hyperdo
.EmphasizeFont: fontThis is the font used for itali
s. The default value is Itl14Axiom.hyperdo
.EmphasizeColor:
olorThis is the
olor used for itali
s. The default value is bla
kAxiom.hyperdo
.InputBa
kground:
olorThis is the
olor used as the ba
kground for input areas. The default valueis bla
kAxiom.hyperdo
.InputForeground:
olorThis is the
olor used as the foreground for input areas. The default valueis whiteAxiom.hyperdo
.BorderColor:
olorThis is the
olor used for drawing border lines. The default value is bla
kAxiom.hyperdo
.Ba
kground:
olorThis is the
olor used for the ba
kground of all windows. The defaultvalue is white

220 CHAPTER 6. USING HYPERDOC

Chapter 7Input Files and OutputStylesIn this
hapter we dis
uss how to
olle
t Axiom statements and
ommandsinto �les and then read the
ontents into the workspa
e. We also show howto display the results of your
omputations in several di�erent styles in
ludingTEX, FORTRAN and monospa
e two-dimensional format.1The printed version of this book uses the Axiom TEX output formatter. Whenwe demonstrate a parti
ular output style, we will need to turn TEX formattingo� and the output style on so that the
orre
t output is shown in the text.7.1 Input FilesIn this se
tion we explain what an input �le is and why you would want to knowabout it. We dis
uss where Axiom looks for input �les and how you
an dire
tit to look elsewhere. We also show how to read the
ontents of an input �le intothe workspa
e and how to use the history fa
ility to generate an input �le fromthe statements you have entered dire
tly into the workspa
e.An input �le
ontains Axiom expressions and system
ommands. Anything thatyou
an enter dire
tly to Axiom
an be put into an input �le. This is how yousave input fun
tions and expressions that you wish to read into Axiom morethan one time.To read an input �le into Axiom, use the)read system
ommand. For example,you
an read a �le in a parti
ular dire
tory by issuing)read /spad/sr
/input/matrix.input1TEX is a trademark of the Ameri
an Mathemati
al So
iety.221

222 CHAPTER 7. INPUT FILES AND OUTPUT STYLESThe \.input" is optional; this also works:)read /spad/sr
/input/matrixWhat happens if you just enter)read matrix.input or even)read matrix?Axiom looks in your
urrent working dire
tory for input �les that are not qual-i�ed by a dire
tory name. Typi
ally, this dire
tory is the dire
tory from whi
hyou invoked Axiom.To
hange the
urrent working dire
tory, use the)
d system
ommand. The
ommand)
d by itself shows the
urrent working dire
tory. To
hange it to thesr
/input subdire
tory for user \babar", issue)
d /u/babar/sr
/inputAxiom looks �rst in this dire
tory for an input �le. If it is not found, it looks inthe system's dire
tories, assuming you meant some input �le that was providedwith Axiom.If you have the Axiom history fa
ility turned on (whi
h it is by default), you
an save all the lines you have entered into the workspa
e by entering)history)writeAxiom tells you what input �le to edit to see your statements. The �le is inyour home dire
tory or in the dire
tory you spe
i�ed with)
d.7.2 The .axiom.input FileWhen Axiom starts up, it tries to read the input �le .axiom.input2 from yourhome dire
tory. It there is no .axiom.input in your home dire
tory, it readsthe
opy lo
ated in its own sr
/input dire
tory. The �le usually
ontainssystem
ommands to personalize your Axiom environment. In the remainderof this se
tion we mention a few things that users frequently pla
e in their.axiom.input �les.In order to have FORTRAN output always produ
ed from your
omputations,pla
e the system
ommand)set output fortran on in .axiom.input. If youdo not want to be prompted for
on�rmation when you issue the)quit system
ommand, pla
e)set quit unprote
ted in .axiom.input. If you then de
idethat you do want to be prompted, issue)set quit prote
ted. This is thedefault setting so that new users do not leave Axiom inadvertently. The system
ommand)pquit always prompts you for
on�rmation.2.axiom.input used to be
alled axiom.input in the NAG version

7.3. COMMON FEATURES OF USING OUTPUT FORMATS 2237.3 Common Features of Using Output FormatsIn this se
tion we dis
uss how to start and stop the display of the di�erentoutput formats and how to send the output to the s
reen or to a �le. To �xideas, we use FORTRAN output format for most of the examples.You
an use the)set output system
ommand to toggle or redire
t the di�er-ent kinds of output. The name of the kind of output follows \output" in the
ommand. The names arefortran for FORTRAN output.algebra for monospa
e two-dimensional mathemati
al output.tex for TEX output.s
ript for IBM S
ript Formula Format output.For example, issue)set output fortran on to turn on FORTRAN formatand issue)set output fortran off to turn it o�. By default, algebra is onand all others are off. When output is started, it is sent to the s
reen. To sendthe output to a �le, give the �le name without dire
tory or extension. Axiomappends a �le extension depending on the kind of output being produ
ed.Issue this to redire
t FORTRAN output to, for example, the �le linalg.sfort.)set output fortran linalgFORTRAN output will be written to file linalg.sfort .You must also turn on the
reation of FORTRAN output. The above just sayswhere it goes if it is
reated.)set output fortran onIn what dire
tory is this output pla
ed? It goes into the dire
tory from whi
hyou started Axiom, or if you have used the)
d system
ommand, the one thatyou spe
i�ed with)
d. You should use)
d before you send the output to the�le.You
an always dire
t output ba
k to the s
reen by issuing this.)set output fortran
onsoleLet's make sure FORTRAN formatting is o� so that nothing we do from nowon produ
es FORTRAN output.)set output fortran offWe also delete the demonstrated output �le we
reated.

224 CHAPTER 7. INPUT FILES AND OUTPUT STYLES)system rm linalg.sfortYou
an abbreviate the words \on," \off," and \
onsole" to the minimal num-ber of
hara
ters needed to distinguish them. Be
ause of this, you
annot sendoutput to �les
alled on.sfort, o�.sfort, of.sfort,
onsole.sfort,
onsol.sfortand so on.The width of the output on the page is set by)set output length for all for-mats ex
ept FORTRAN. Use)set fortran fortlength to
hange the FOR-TRAN line length from its default value of 72.7.4 Monospa
e Two-Dimensional Mathemati
alFormatThis is the default output format for Axiom. It is usually on when you startthe system.If it is not, issue this.)set output algebra onSin
e the printed version of this book (as opposed to the HyperDo
 version)shows output produ
ed by the TEX output formatter, let us temporarily turno� TEX output.)set output tex offHere is an example of what it looks like.matrix [[i*x**i + j*%i*y**j for i in 1..2℄ for j in 3..4℄+ 3 3 2+|3%i y + x 3%i y + 2x |(1) | || 4 4 2|+4%i y + x 4%i y + 2x +Type: Matrix Polynomial Complex IntegerIssue this to turn o� this kind of formatting.)set output algebra off

7.5. TEX FORMAT 225Turn TEX output on again.)set output tex onThe
hara
ters used for the matrix bra
kets above are rather ugly. You get this
hara
ter set when you issue)set output
hara
ters plain. This
hara
terset should be used when you are running on a ma
hine that does not supportthe IBM extended ASCII
hara
ter set. If you are running on an IBM work-station, for example, issue)set output
hara
ters default to get betterlooking output.7.5 TeX FormatAxiom
an produ
e TEX output for your expressions. The output is produ
ed us-ing ma
ros from the LATEX do
ument preparation system by Leslie Lamport[5℄.The printed version of this book was produ
ed using this formatter.To turn on TEX output formatting, issue this.)set output tex onHere is an example of its output.matrix [[i*x**i + j*\%i*y**j for i in 1..2℄ for j in 3..4℄$$\left[\begin{array}{

}{{3 \ i \ {y \sp 3}}+x} &{{3 \ i \ {y \sp 3}}+{2 \ {x \sp 2}}} \\{{4 \ i \ {y \sp 4}}+x} &{{4 \ i \ {y \sp 4}}+{2 \ {x \sp 2}}}\end{array}\right℄$$This formats as � 3 i y3 + x 3 i y3 + 2 x24 i y4 + x 4 i y4 + 2 x2 �To turn TEX output formatting o�, issue)set output tex off. The LATEXma
rosin the output generated by Axiom are all standard ex
ept for the following def-initions:

226 CHAPTER 7. INPUT FILES AND OUTPUT STYLES\def\
s
h{\mathop{\rm
s
h}\nolimits}\def\erf{\mathop{\rm erf}\nolimits}\def\zag#1#2{{{\hfill \left. {#1} \right|}\over{\left| {#2} \right. \hfill}}}7.6 IBM S
ript Formula FormatAxiom
an produ
e IBM S
ript Formula Format output for your expressions.To turn IBM S
ript Formula Format on, issue this.)set output s
ript onHere is an example of its output.matrix [[i*x**i + j*%i*y**j for i in 1..2℄ for j in 3..4℄.eq set blank �:df.<left lb < < < <3 �� %i �� <y sup 3> >+x> here < <3 �� %i ��<y sup 3> >+<2 �� <x sup 2> > > > habove < < <4 �� %i ��<y sup 4> >+x> here < <4 �� %i �� <y sup 4> >+<2 ��<x up 2> > > > > right rb>:edf.To turn IBM S
ript Formula Format output formatting o�, issue this.)set output s
ript off7.7 FORTRAN FormatIn addition to turning FORTRAN output on and o� and stating where theoutput should be pla
ed, there are many options that
ontrol the appearan
e ofthe generated
ode. In this se
tion we des
ribe some of the basi
 options. Issue)set fortran to see a full list with their
urrent settings.The output FORTRAN expression usually begins in
olumn 7. If the expressionneeds more than one line, the ampersand
hara
ter & is used in
olumn 6.

7.7. FORTRAN FORMAT 227Sin
e some versions of FORTRAN have restri
tions on the number of linesper statement, Axiom breaks long expressions into segments with a maximumof 1320
hara
ters (20 lines of 66
hara
ters) per segment. If you want to
hange this, say, to 660
hara
ters, issue the system
ommand)set fortranexplength 660. You
an turn o� the line breaking by issuing)set fortransegment off. Various
ode optimization levels are available.FORTRAN output is produ
ed after you issue this.)set output fortran onFor the initial examples, we set the optimization level to 0, whi
h is the lowestlevel.)set fortran optlevel 0The output is usually in
olumns 7 through 72, although fewer
olumns are usedin the following examples so that the output �ts ni
ely on the page.)set fortran fortlength 60By default, the output goes to the s
reen and is displayed before the standardAxiom two-dimensional output. In this example, an assignment to the variableR1 was generated be
ause this is the result of step 1.(x+y)**3R1=y**3+3*x*y*y+3*x*x*y+x**3y3 + 3 x y2 + 3 x2 y + x3Type: Polynomial IntegerHere is an example that illustrates the line breaking.(x+y+z)**3R2=z**3+(3*y+3*x)*z*z+(3*y*y+6*x*y+3*x*x)*z+y**3+3*x*y&*y+3*x*x*y+x**3z3 + (3 y + 3 x) z2 + �3 y2 + 6 x y + 3 x2� z + y3 + 3 x y2 + 3 x2 y + x3Type: Polynomial Integer

228 CHAPTER 7. INPUT FILES AND OUTPUT STYLESNote in the above examples that integers are generally
onverted to
oatingpoint numbers, ex
ept in exponents. This is the default behavior but
an beturned o� by issuing)set fortran ints2floats off. The rules governingwhen the
onversion is done are:1. If an integer is an exponent,
onvert it to a
oating point number if it isgreater than 32767 in absolute value, otherwise leave it as an integer.2. Convert all other integers in an expression to
oating point numbers.These rules only govern integers in expressions. Numbers generated by Axiomfor DIMENSION statements are also integers.To set the type of generated FORTRAN data, use one of the following:)set fortran defaulttype REAL)set fortran defaulttype INTEGER)set fortran defaulttype COMPLEX)set fortran defaulttype LOGICAL)set fortran defaulttype CHARACTERWhen temporaries are
reated, they are given a default type of REAL. Also, theREAL versions of fun
tions are used by default.sin(x)R3=DSIN(x) sin (x) Type: Expression IntegerAt optimization level 1, Axiom removes
ommon subexpressions.)set fortran optlevel 1(x+y+z)**3T2=y*yT3=x*xR4=z**3+(3*y+3*x)*z*z+(3*T2+6*x*y+3*T3)*z+y**3+3*x*T2+&3*T3*y+x**3z3 + (3 y + 3 x) z2 + �3 y2 + 6 x y + 3 x2� z + y3 + 3 x y2 + 3 x2 y + x3

7.7. FORTRAN FORMAT 229Type: Polynomial IntegerThis
hanges the pre
ision to DOUBLE. Substitute single for double to returnto single pre
ision.)set fortran pre
ision doubleComplex
onstants display the pre
ision.2.3 + 5.6*%iR5=(2.3D0,5.6D0) 2:3 + 5:6 i Type: Complex FloatThe fun
tion names that Axiom generates depend on the
hosen pre
ision.sin %eR6=DSIN(DEXP(1)) sin (e) Type: Expression IntegerReset the pre
ision to single and look at these two examples again.)set fortran pre
ision single2.3 + 5.6*%iR7=(2.3,5.6) 2:3 + 5:6 i Type: Complex Floatsin %e

230 CHAPTER 7. INPUT FILES AND OUTPUT STYLESR8=SIN(EXP(1)) sin (e) Type: Expression IntegerExpressions that look like lists, streams, sets or matri
es
ause array
ode to begenerated.[x+1,y+1,z+1℄T1(1)=x+1T1(2)=y+1T1(3)=z+1R9=T1 [x+ 1; y + 1; z + 1℄Type: List Polynomial IntegerA temporary variable is generated to be the name of the array. This may haveto be
hanged in your parti
ular appli
ation.set[2,3,4,3,5℄T1(1)=2T1(2)=3T1(3)=4T1(4)=5R10=T1 f2; 3; 4; 5g Type: Set PositiveIntegerBy default, the starting index for generated FORTRAN arrays is 0.matrix [[2.3,9.7℄,[0.0,18.778℄ ℄T1(0,0)=2.3T1(0,1)=9.7T1(1,0)=0.0T1(1,1)=18.778T1

7.7. FORTRAN FORMAT 231� 2:3 9:70:0 18:778 � Type: Matrix FloatTo
hange the starting index for generated FORTRAN arrays to be 1, issue this.This value
an only be 0 or 1.)set fortran startindex 1Look at the
ode generated for the matrix again.matrix [[2.3,9.7℄,[0.0,18.778℄ ℄T1(1,1)=2.3T1(1,2)=9.7T1(2,1)=0.0T1(2,2)=18.778T1 � 2:3 9:70:0 18:778 � Type: Matrix Float

232 CHAPTER 7. INPUT FILES AND OUTPUT STYLES

Chapter 8Axiom System CommandsThis
hapter des
ribes system
ommands, the
ommand-line fa
ilities used to
ontrol the Axiom environment. The �rst se
tion is an introdu
tion and dis-
usses the
ommon syntax of the
ommands available.8.1 Introdu
tionSystem
ommands are used to perform Axiom environment management. Amongthe
ommands are those that display what has been de�ned or
omputed, setup multiple logi
al Axiom environments (frames),
lear de�nitions, read �les ofexpressions and
ommands, show what fun
tions are available, and terminateAxiom.Some
ommands are restri
ted: the
ommands)set userlevel interpreter)set userlevel
ompiler)set userlevel developmentset the user-a

ess level to the three possible
hoi
es. All
ommands are availableat development level and the fewest are available at interpreter level. Thedefault user-level is interpreter. In addition to the)set
ommand you
anuse the HyperDo
 settings fa
ility to
hange the user-level.Ea
h
ommand listing begins with one or more syntax pattern des
riptions plusexamples of related
ommands. The syntax des
riptions are intended to be easyto read and do not ne
essarily represent the most
ompa
t way of spe
ifying allpossible arguments and options; the des
riptions may o

asionally be redundant.All system
ommands begin with a right parenthesis whi
h should be in the �rstavailable
olumn of the input line (that is, immediately after the input prompt,233

234 CHAPTER 8. AXIOM SYSTEM COMMANDSif any). System
ommands may be issued dire
tly to Axiom or be in
luded in.input �les.A system
ommand argument is a word that dire
tly follows the
ommand nameand is not followed or pre
eded by a right parenthesis. A system
ommand op-tion follows the system
ommand and is dire
tly pre
eded by a right parenthesis.Options may have arguments: they dire
tly follow the option. This example maymake it easier to remember what is an option and what is an argument:)sys
md arg1 arg2)opt1 opt1arg1 opt1arg2)opt2 opt2arg1 ...In the system
ommand des
riptions, optional arguments and options are en-
losed in bra
kets (\[" and \℄"). If an argument or option name is in itali
s,it is meant to be a variable and must have some a
tual value substituted forit when the system
ommand
all is made. For example, the syntax patterndes
ription)read �leName [)quietly℄would imply that you must provide an a
tual �le name for �leName but neednot use the)quietly option. Thus)read matrix.inputis a valid instan
e of the above pattern.System
ommand names and options may be abbreviated and may be in upperor lower
ase. The
ase of a
tual arguments may be signi�
ant, depending onthe parti
ular situation (su
h as in �le names). System
ommand names andoptions may be abbreviated to the minimum number of starting letters so thatthe name or option is unique. Thus)s Integeris not a valid abbreviation for the)set
ommand, be
ause both)set and)show begin with the letter \s". Typi
ally, two or three letters are suÆ
ient fordisambiguating names. In our des
riptions of the
ommands, we have used noabbreviations for either
ommand names or options.In some syntax des
riptions we use a verti
al line \j" to indi
ate that you mustspe
ify one of the listed
hoi
es. For example, in)set output fortran on | offonly on and off are a

eptable words for following boot. We also sometimesuse \..." to indi
ate that additional arguments or options of the listed formare allowed. Finally, in the syntax des
riptions we may also list the syntax ofrelated
ommands.

8.2.)ABBREVIATION 2358.2)abbreviationUser Level Required:
ompilerCommand Syntax:)abbreviation query [nameOrAbbrev℄)abbreviation
ategory abbrev fullname [)quiet℄)abbreviation domain abbrev fullname [)quiet℄)abbreviation pa
kage abbrev fullname [)quiet℄)abbreviation remove nameOrAbbrevCommand Des
ription:This
ommand is used to query, set and remove abbreviations for
ategory,domain and pa
kage
onstru
tors. Every
onstru
tor must have a unique ab-breviation. This abbreviation is part of the name of the subdire
tory underwhi
h the
omponents of the
ompiled
onstru
tor are stored. Furthermore,by issuing this
ommand you let the system know what �le to load automati-
ally if you use a new
onstru
tor. Abbreviations must start with a letter andthen be followed by up to seven letters or digits. Any letters appearing in theabbreviation must be in upper
ase.When used with the query argument, this
ommand may be used to list thename asso
iated with a parti
ular abbreviation or the abbreviation for a
on-stru
tor. If no abbreviation or name is given, the names and
orrespondingabbreviations for all
onstru
tors are listed.The following shows the abbreviation for the
onstru
tor List:)abbreviation query ListThe following shows the
onstru
tor name
orresponding to the abbreviationNNI:)abbreviation query NNIThe following lists all
onstru
tor names and their abbreviations.)abbreviation queryTo add an abbreviation for a
onstru
tor, use this
ommand with
ategory,domain or pa
kage. The following add abbreviations to the system for a
ategory, domain and pa
kage, respe
tively:)abbreviation domain SET Set)abbreviation
ategory COMPCAT ComplexCategory)abbreviation pa
kage LIST2MAP ListToMap

236 CHAPTER 8. AXIOM SYSTEM COMMANDSIf the)quiet option is used, no output is displayed from this
ommand. Youwould normally only de�ne an abbreviation in a library sour
e �le. If this
om-mand is issued for a
onstru
tor that has already been loaded, the
onstru
torwill be reloaded next time it is referen
ed. In parti
ular, you
an use this
om-mand to for
e the automati
 reloading of
onstru
tors.To remove an abbreviation, the remove argument is used. This is usually onlyused to
orre
t a previous
ommand that set an abbreviation for a
onstru
torname. If, in fa
t, the abbreviation does exist, you are prompted for
on�rma-tion of the removal request. Either of the following
ommands will remove theabbreviation VECTOR2 and the
onstru
tor name Ve
torFun
tions2 from thesystem:)abbreviation remove VECTOR2)abbreviation remove Ve
torFun
tions2Also See:)
ompile8.3)bootUser Level Required: developmentCommand Syntax:)boot bootExpressionCommand Des
ription:This
ommand is used by Axiom system developers to exe
ute expressions writ-ten in the BOOT language. For example,)boot times3(x) == 3*x
reates and
ompiles the Common Lisp fun
tion \times3" obtained by translat-ing the BOOT
ode.Also See:)fin)lisp ,)set , and)system .8.4)
dUser Level Required: interpreterCommand Syntax:)
d dire
toryCommand Des
ription:This
ommand sets the Axiom working
urrent dire
tory. The
urrent dire
toryis used for looking for input �les (for)read), Axiom library sour
e �les (for

8.5.)CLOSE 237)
ompile), saved history environment �les (for)history)restore),
ompiledAxiom library �les (for)library), and �les to edit (for)edit). It is also usedfor writing spool �les (via)spool), writing history input �les (via)history)write) and history environment �les (via)history)save),and
ompiled Ax-iom library �les (via)
ompile).If issued with no argument, this
ommand sets the Axiom
urrent dire
tory toyour home dire
tory. If an argument is used, it must be a valid dire
tory name.Ex
ept for the \)" at the beginning of the
ommand, this has the same syntaxas the operating system
d
ommand.Also See:)
ompile ,)edit ,)history ,)library ,)read , and)spool .8.5)
loseUser Level Required: interpreterCommand Syntax:)
lose)
lose)quietlyCommand Des
ription:This
ommand is used to
lose down interpreter
lient pro
esses. Su
h pro
essesare started by HyperDo
 to run Axiom examples when you
li
k on their text.When you have �nished examining or modifying the example and you do notwant the extra window around anymore, issue)
loseto the Axiom prompt in the window.If you try to
lose down the last remaining interpreter
lient pro
ess, Axiom willo�er to
lose down the entire Axiom session and return you to the operatingsystem by displaying something likeThis is the last Axiom session. Do you want to kill Axiom?Type \y" (followed by the Return key) if this is what you had in mind. Type\n" (followed by the Return key) to
an
el the
ommand.You
an use the)quietly option to for
e Axiom to
lose down the interpreter
lient pro
ess without
losing down the entire Axiom session.Also See:)quit and)pquit

238 CHAPTER 8. AXIOM SYSTEM COMMANDS8.6)
learUser Level Required: interpreterCommand Syntax:)
lear all)
lear
ompletely)
lear properties all)
lear properties obj1 [obj2 ...℄)
lear value all)
lear value obj1 [obj2 ...℄)
lear mode all)
lear mode obj1 [obj2 ...℄Command Des
ription:This
ommand is used to remove fun
tion and variable de
larations, de�nitionsand values from the workspa
e. To empty the entire workspa
e and reset thestep
ounter to 1, issue)
lear allTo remove everything in the workspa
e but not reset the step
ounter, issue)
lear properties allTo remove everything about the obje
t x, issue)
lear properties xTo remove everything about the obje
ts x, y and f, issue)
lear properties x y fThe word properties may be abbreviated to the single letter \p".)
lear p all)
lear p x)
lear p x y fAll de�nitions of fun
tions and values of variables may be removed by either

8.7.)COMPILE 239)
lear value all)
lear v allThis retains whatever de
larations the obje
ts had. To remove de�nitions andvalues for the spe
i�
 obje
ts x, y and f, issue)
lear value x y f)
lear v x y fTo remove the de
larations of everything while leaving the de�nitions and values,issue)
lear mode all)
lear m allTo remove de
larations for the spe
i�
 obje
ts x, y and f, issue)
lear mode x y f)
lear m x y fThe)display names and)display properties
ommands may be used tosee what is
urrently in the workspa
e.The
ommand)
lear
ompletelydoes everything that)
lear all does, and also
lears the internal system fun
-tion and
onstru
tor
a
hes.Also See:)display ,)history , and)undo .8.7)
ompileUser Level Required:
ompilerCommand Syntax:)
ompile)
ompile �leName)
ompile �leName.as)
ompile dire
tory/�leName.as)
ompile �leName.ao)
ompile dire
tory/�leName.ao

240 CHAPTER 8. AXIOM SYSTEM COMMANDS)
ompile �leName.al)
ompile dire
tory/�leName.al)
ompile �leName.lsp)
ompile dire
tory/�leName.lsp)
ompile �leName.spad)
ompile dire
tory/�leName.spad)
ompile �leName)new)
ompile �leName)old)
ompile �leName)translate)
ompile �leName)quiet)
ompile �leName)noquiet)
ompile �leName)moreargs)
ompile �leName)onlyargs)
ompile �leName)break)
ompile �leName)nobreak)
ompile �leName)library)
ompile �leName)nolibrary)
ompile �leName)vartra
e)
ompile �leName)
onstru
tor nameOrAbbrevCommand Des
ription:You use this
ommand to invoke the Spad
ompiler or the Aldor
ompiler.The)
ompile system
ommand is a
tually a
ombination of Axiom pro
essingand a
all to the Aldor
ompiler. It is performing double-duty, a
ting as a front-end to both the Aldor
ompiler and the Spad
ompiler. (The Spad
ompiler iswritten in Lisp and is an integral part of the Axiom environment. The Aldor
ompiler is written in C and exe
uted by the operating system when
alled fromwithin Axiom.)The
ommand
ompiles �les with �le extensions .as, .ao and .al with the Aldor
ompiler and �les with �le extension .spad with the Spad
ompiler. It also
an
ompile �les with �le extension .lsp. These are assumed to be Lisp �lesgenererated by the Aldor
ompiler. If you omit the �le extension, the
ommandlooks to see if you have spe
i�ed the)new or)old option. If you have given oneof these options, the
orresponding
ompiler is used. Otherwise, the
ommand

8.7.)COMPILE 241�rst looks in the standard system dire
tories for �les with extension .as, .ao and.al and then �les with extension .spad. The �rst �le found has the appropriate
ompiler invoked on it. If the
ommand
annot �nd a mat
hing �le, an errormessage is displayed and the
ommand terminates.The)translate option is used to invoke a spe
ial version of the Spad
ompilerthat will translate a .spad �le to a .as �le. That is, the .spad �le will be parsedand analyzed and a �le using the new syntax will be
reated. By default,the .as �le is
reated in the same dire
tory as the .spad �le. If that dire
toryis not writable, the
urrent dire
tory is used. If the
urrent dire
tory is notwritable, an error message is given and the
ommand terminates. Note that)translate implies the)old option so the �le extension
an safely be omitted.If)translate is given, all other options are ignored. Please be aware that thetranslation is not ne
essarily one hundred per
ent
omplete or
orre
t. Youshould attempt to
ompile the output with the Aldor
ompiler and make anyne
essary
orre
tions.We now des
ribe the options for the new Aldor
ompiler.The �rst thing)
ompile does is look for a sour
e
ode �lename among itsarguments. Thus)
ompile my
ode.as)
ompile /u/jones/as/my
ode.as)
ompile my
odeall invoke)
ompiler on the �le /u/jones/as/my
ode.as if the
urrent Axiomworking dire
tory is /u/jones/as. (Re
all that you
an set the working dire
-tory via the)
d
ommand. If you don't set it expli
itly, it is the dire
tory fromwhi
h you started Axiom.)This is frequently all you need to
ompile your �le. This simple
ommand:1. Invokes the Aldor
ompiler and produ
es Lisp output.2. Calls the Lisp
ompiler if the Aldor
ompilation was su

essful.3. Uses the)library
ommand to tell Axiom about the
ontents of your
ompiled �le and arrange to have those
ontents loaded on demand.Should you not want the)library
ommand automati
ally invoked,
all)
ompilewith the)nolibrary option. For example,)
ompile my
ode.as)nolibraryThe general des
ription of Aldor
ommand line arguments is in the Aldor do
u-mentation. The default options used by the)
ompile
ommand
an be viewedand set using the)set
ompiler args Axiom system
ommand. The
urrentdefaults are

242 CHAPTER 8. AXIOM SYSTEM COMMANDS-O -Fasy -Fao -Flsp -laxiom -Mno-AXL_W_WillObsolete -DAxiomThese options mean:� -O: perform all optimizations,� -Fasy: generate a .asy �le,� -Fao: generate a .ao �le,� -Flsp: generate a .lsp (Lisp) �le,� -laxiom: use the axiom library libaxiom.al,� -Mno-AXL W WillObsolete: do not display messages about older gener-ated �les be
oming obsolete, and� -DAxiom: de�ne the global assertion Axiom so that the Aldor libraries forgenerating stand-alone
ode are not a

identally used with Axiom.To supplement these default arguments, use the)moreargs option on)
ompile.For example,)
ompile my
ode.as)moreargs "-v"uses the default arguments and appends the -v (verbose) argument
ag. Theadditional argument spe
i�
ation must be en
losed in double quotes.To
ompletely repla
e these default arguments for a parti
ular use of)
ompile,use the)onlyargs option. For example,)
ompile my
ode.as)onlyargs "-v -O"only uses the -v (verbose) and -O (optimize) arguments. The argument spe
i-�
ation must be en
losed in double quotes. In this example, Lisp
ode isnot produ
ed and so the
ompilation output will not be available to Axiom.To
ompletely repla
e the default arguments for all
alls to)
ompile withinyour Axiom session, use)set
ompiler args. For example, to use the abovearguments for all
ompilations, issue)set
ompiler args "-v -O"Make sure you in
lude the ne
essary -l and -Y arguments along with thoseneeded for Lisp �le
reation. As above, the argument spe
i�
ation mustbe en
losed in double quotes.By default, the)library system
ommand exposes all domains and
ategoriesit pro
esses. This means that the Axiom intepreter will
onsider those domainsand
ategories when it is trying to resolve a referen
e to a fun
tion. Sometimes

8.7.)COMPILE 243domains and
ategories should not be exposed. For example, a domain mayjust be used privately by another domain and may not be meant for top-leveluse. The)library
ommand should still be used, though, so that the
ode willbe loaded on demand. In this
ase, you should use the)nolibrary option on)
ompile and the)noexpose option in the)library
ommand. For example,)
ompile my
ode.as)nolibrary)library my
ode)noexposeOn
e you have established your own
olle
tion of
ompiled
ode, you may �nd ithandy to use the)dir option on the)library
ommand. This
auses)libraryto pro
ess all
ompiled
ode in the spe
i�ed dire
tory. For example,)library)dir /u/jones/as/quantumYou must give an expli
it dire
tory after)dir, even if you want all
ompiled
ode in the
urrent working dire
tory pro
essed, e.g.)library)dir .The)
ompile
ommand works with several �le extensions. We saw above whathappens when it is invoked on a �le with extension .as. A .ao �le is a portablebinary
ompiled version of a .as �le, and)
ompile simply passes the .ao �leonto Aldor. The generated Lisp �le is
ompiled and)library is automati
ally
alled, just as if you had spe
i�ed a .as �le.A .al �le is an ar
hive �le
ontaining .ao �les. The ar
hive is
reated (on Unixsystems) with the ar program. When)
ompile is given a .al �le, it
reates adire
tory whose name is based on that of the ar
hive. For example, if you issue)
ompile mylib.althe dire
tory mylib.axldir is
reated. All members of the ar
hive are unar-
hived into the dire
tory and)
ompile is
alled on ea
h .ao �le found. It isyour responsibility to remove the dire
tory and its
ontents, if you
hoose to doso.A .lsp �le is a Lisp sour
e �le, presumably, in our
ontext, generated by Aldorwhen
alled with the -Flsp option. When)
ompile is used with a .lsp �le,the Lisp �le is
ompiled and)library is
alled. You must also have present a.asy generated from the same sour
e �le.The following are des
riptions of options for the Spad
ompiler.You
an
ompile
ategory, domain, and pa
kage
onstru
tors
ontained in �leswith �le extension .spad. You
an
ompile individual
onstru
tors or every
onstru
tor in a �le.The full �lename is remembered between invo
ations of this
ommand and)edit
ommands. The sequen
e of
ommands

244 CHAPTER 8. AXIOM SYSTEM COMMANDS)
ompile matrix.spad)edit)
ompilewill
all the
ompiler, edit, and then
all the
ompiler again on the �le ma-trix.spad. If you do not spe
ify a dire
tory, the working
urrent dire
tory issear
hed for the �le. If the �le is not found, the standard system dire
tories aresear
hed.If you do not give any options, all
onstru
tors within a �le are
ompiled. Ea
h
onstru
tor should have an)abbreviation
ommand in the �le in whi
h it isde�ned. We suggest that you pla
e the)abbreviation
ommands at the top ofthe �le in the order in whi
h the
onstru
tors are de�ned. The list of
ommandsserves as a table of
ontents for the �le.The)library option
auses dire
tories
ontaining the
ompiled
ode for ea
h
onstru
tor to be
reated in the working
urrent dire
tory. The name of su
h adire
tory
onsists of the
onstru
tor abbreviation and the .NRLIB �le exten-sion. For example, the dire
tory
ontaining the
ompiled
ode for the MATRIX
onstru
tor is
alled MATRIX.NRLIB. The)nolibrary option says thatsu
h �les should not be
reated. The default is)library. Note that the se-manti
s of)library and)nolibrary for the new Aldor
ompiler and for theSpad
ompiler are
ompletely di�erent.The)vartra
e option
auses the
ompiler to generate extra
ode for the
on-stru
tor to support
onditional tra
ing of variable assignments. Without thisoption, this
ode is suppressed and one
annot use the)vars option for thetra
e
ommand.The)
onstru
tor option is used to spe
ify a parti
ular
onstru
tor to
om-pile. All other
onstru
tors in the �le are ignored. The
onstru
tor name orabbreviation follows)
onstru
tor. Thus either)
ompile matrix.spad)
onstru
tor Re
tangularMatrixor)
ompile matrix.spad)
onstru
tor RMATRIX
ompiles the Re
tangularMatrix
onstru
tor de�ned in matrix.spad.The)break and)nobreak options determine what the Spad
ompiler does whenit en
ounters an error.)break is the default and it indi
ates that pro
essingshould stop at the �rst error. The value of the)set break variable then
ontrolswhat happens.Also See:)abbreviation ,)edit , and)library .

8.8.)DISPLAY 2458.8)displayUser Level Required: interpreterCommand Syntax:)display all)display properties)display properties all)display properties [obj1 [obj2 ...℄℄)display value all)display value [obj1 [obj2 ...℄℄)display mode all)display mode [obj1 [obj2 ...℄℄)display names)display operations opNameCommand Des
ription:This
ommand is used to display the
ontents of the workspa
e and signaturesof fun
tions with a given name.The
ommand)display nameslists the names of all user-de�ned obje
ts in the workspa
e. This is useful if youdo not wish to see everything about the obje
ts and need only be reminded oftheir names.The
ommands)display all)display properties)display properties allall do the same thing: show the values and types and de
lared modes of allvariables in the workspa
e. If you have de�ned fun
tions, their signatures andde�nitions will also be displayed.To show all information about a parti
ular variable or user fun
tions, for exam-ple, something named d, issue)display properties d

246 CHAPTER 8. AXIOM SYSTEM COMMANDSTo just show the value (and the type) of d, issue)display value dTo just show the de
lared mode of d, issue)display mode dAll modemaps for a given operation may be displayed by using)display operations.A modemap is a
olle
tion of information about a parti
ular referen
e to an op-eration. This in
ludes the types of the arguments and the return value, thelo
ation of the implementation and any
onditions on the types. The modemapmay
ontain patterns. The following displays the modemaps for the operation
omplex:)d op
omplexAlso See:)
lear ,)history ,)set ,)show , and)what .8.9)editUser Level Required: interpreterCommand Syntax:)edit [�lename℄Command Des
ription:This
ommand is used to edit �les. It works in
onjun
tion with the)readand)
ompile
ommands to remember the name of the �le on whi
h you areworking. By spe
ifying the name fully, you
an edit any �le you wish. Thus)edit /u/julius/matrix.inputwill pla
e you in an editor looking at the �le /u/julius/matrix.input. Bydefault, the editor is vi, but if you have an EDITOR shell environment variablede�ned, that editor will be used. When Axiom is running under the X WindowSystem, it will try to open a separate xterm running your editor if it thinks oneis ne
essary. For example, under the Korn shell, if you issueexport EDITOR=ema
sthen the ema
s editor will be used by)edit.If you do not spe
ify a �le name, the last �le you edited, read or
ompiled willbe used. If there is no \last �le" you will be pla
ed in the editor editing anempty unnamed �le.It is possible to use the)system
ommand to edit a �le dire
tly. For example,

8.10.)FIN 247)system ema
s /et
/r
.t
pip
alls ema
s to edit the �le.Also See:)system ,)
ompile , and)read .8.10)�nUser Level Required: developmentCommand Syntax:)finCommand Des
ription:This
ommand is used by Axiom developers to leave the Axiom system andreturn to the underlying Common Lisp system. To return to Axiom, issue the\(|spad|)" fun
tion
all to Common Lisp.Also See:)pquit and)quit .8.11)frameUser Level Required: interpreterCommand Syntax:)frame new frameName)frame drop [frameName℄)frame next)frame last)frame names)frame import frameName [obje
tName1 [obje
tName2 ...℄℄)set message frame on | off)set message prompt frameCommand Des
ription:A frame
an be thought of as a logi
al session within the physi
al session thatyou get when you start the system. You
an have as many frames as youwant, within the limits of your
omputer's storage, paging spa
e, and so on.Ea
h frame has its own step number, environment and history. You
an havea variable named a in one frame and it will have nothing to do with anythingthat might be
alled a in any other frame.

248 CHAPTER 8. AXIOM SYSTEM COMMANDSSome frames are
reated by the HyperDo
 program and these
an have prettystrange names, sin
e they are generated automati
ally. To �nd out the namesof all frames, issue)frame namesIt will indi
ate the name of the
urrent frame.You
reate a new frame \quark" by issuing)frame new quarkThe history fa
ility
an be turned on by issuing either)set history on or)history)on. If the history fa
ility is on and you are saving history infor-mation in a �le rather than in the Axiom environment then a history �le with�lename quark.axh will be
reated as you enter
ommands. If you wish to goba
k to what you were doing in the \initial" frame, use)frame nextor)frame lastto
y
le through the ring of available frames to get ba
k to \initial".If you want to throw away a frame (say \quark"), issue)frame drop quarkIf you omit the name, the
urrent frame is dropped.If you do use frames with the history fa
ility on and writing to a �le, you maywant to delete some of the older history �les. These are dire
tories, so you maywant to issue a
ommand like rm -r quark.axh to the operating system.You
an bring things from another frame by using)frame import. For example,to bring the f and g from the frame \quark" to the
urrent frame, issue)frame import quark f gIf you want everything from the frame \quark", issue)frame import quarkYou will be asked to verify that you really want everything.There are two)set
ags to make it easier to tell where you are.)set message frame on | off

8.12.)HD 249will print more messages about frames when it is set on. By default, it is o�.)set message prompt framewill give a prompt that looks likeinitial (1) ->when you start up. In this
ase, the frame name and step make up the prompt.Also See:)history and)set .8.12)hdUser Level Required: interpreterCommand Syntax:)hdCommand Des
ription:This
ommand will start the HyperDo
 fa
ility if it is not running. Note thatif it issues the message:binding UNIX server so
ket: Address already in use(HyperDo
) Warning: Not
onne
ted to AXIOM Server!then you probably already had HyperDo
 running and the new
opy
annot
onne
t. In this
ir
umstan
e HyperDo
 will still work but
ertain intera
tionswith Axiom will not, su
h as the Basi
 Commands fa
ility.8.13)helpUser Level Required: interpreterCommand Syntax:)help)help
ommandNameCommand Des
ription:This
ommand displays help information about system
ommands. If you issue)helpthen this very text will be shown. You
an also give the name or abbreviationof a system
ommand to display information about it. For example,

250 CHAPTER 8. AXIOM SYSTEM COMMANDS)help
learwill display the des
ription of the)
lear system
ommand.All this material is available in the Axiom User Guide and in HyperDo
. InHyperDo
,
hoose the Commands item from the Referen
e menu.8.14)historyUser Level Required: interpreterCommand Syntax:)history)on)history)off)history)write historyInputFileName)history)show [n℄ [both℄)history)save savedHistoryName)history)restore [savedHistoryName℄)history)reset)history)
hange n)history)memory)history)file%%%(n))set history on | offCommand Des
ription:The history fa
ility within Axiom allows you to restore your environment tothat of another session and re
all previous
omputational results. Additional
ommands allow you to review previous input lines and to
reate an .input �leof the lines typed to Axiom.Axiom saves your input and output if the history fa
ility is turned on (whi
h isthe default). This information is saved if either of)set history on)history)on

8.14.)HISTORY 251has been issued. Issuing either)set history off)history)offwill dis
ontinue the re
ording of information.Whether the fa
ility is disabled or not, the value of % in Axiom always refersto the result of the last
omputation. If you have not yet entered anything, %evaluates to an obje
t of type Variable('%). The fun
tion %% may be usedto refer to other previous results if the history fa
ility is enabled. In that
ase,%%(n) is the output from step n if n > 0. If n < 0, the step is
omputed relativeto the
urrent step. Thus %%(-1) is also the previous step, %%(-2), is the stepbefore that, and so on. If an invalid step number is given, Axiom will signal anerror.The environment information
an either be saved in a �le or entirely in memory(the default). Ea
h frame has its own history database. When it is kept in a�le, some of it may also be kept in memory for eÆ
ien
y. When the informationis saved in a �le, the name of the �le is of the form FRAME.axh where\FRAME" is the name of the
urrent frame. The history �le is pla
ed in the
urrent working dire
tory. Note that these history database �les are not text�les (in fa
t, they are dire
tories themselves), and so are not in human-readableformat.The options to the)history
ommand are as follows:)
hange n will set the number of steps that are saved in memory to n. Thisoption only has e�e
t when the history data is maintained in a �le. If youhave issued)history)memory (or not
hanged the default) there is noneed to use)history)
hange.)on will start the re
ording of information. If the workspa
e is not empty, youwill be asked to
on�rm this request. If you do so, the workspa
e will be
leared and history data will begin being saved. You
an also turn thefa
ility on by issuing)set history on.)off will stop the re
ording of information. The)history)show
ommandwill not work after issuing this
ommand. Note that this
ommand may beissued to save time, as there is some performan
e penalty paid for savingthe environment data. You
an also turn the fa
ility o� by issuing)sethistory off.)file indi
ates that history data should be saved in an external �le on disk.)memory indi
ates that all history data should be kept in memory rather thansaved in a �le. Note that if you are
omputing with very large obje
ts itmay not be pra
ti
al to kept this data in memory.

252 CHAPTER 8. AXIOM SYSTEM COMMANDS)reset will
ush the internal list of the most re
ent workspa
e
al
ulationsso that the data stru
tures may be garbage
olle
ted by the underlyingCommon Lisp system. Like)history)
hange, this option only has reale�e
t when history data is being saved in a �le.)restore [savedHistoryName ℄
ompletely
lears the environment and restoresit to a saved session, if possible. The)save option below allows you tosave a session to a �le with a given name. If you had issued)history)save ja
obi the
ommand)history)restore ja
obi would
lear the
urrent workspa
e and load the
ontents of the named saved session. If nosaved session name is spe
i�ed, the system looks for a �le
alled last.axh.)save savedHistoryName is used to save a snapshot of the environment in a�le. This �le is pla
ed in the
urrent working dire
tory. Use)history)restore to restore the environment to the state preserved in the �le.This option also
reates an input �le
ontaining all the lines of input sin
eyou
reated the workspa
e frame (for example, by starting your Axiomsession) or last did a)
lear all or)
lear
ompletely.)show [n [both℄℄
an show previous input lines and output results.)show willdisplay up to twenty of the last input lines (fewer if you haven't typed intwenty lines).)show n will display up to n of the last input lines.)showboth will display up to �ve of the last input lines and output results.)shown both will display up to n of the last input lines and output results.)write historyInputFile
reates an .input �le with the input lines typed sin
ethe start of the session/frame or the last)
lear all or)
lear
ompletely.If historyInputFileName does not
ontain a period (\.") in the �lename,.input is appended to it. For example,)history)write
haos and)history)write
haos.input both write the input lines to a �le
alled
haos.input in your
urrent working dire
tory. If you issued one or more)undo
ommands,)history)write eliminates all input lines ba
ktra
kedover as a result of)undo. You
an edit this �le and then use)read tohave Axiom pro
ess the
ontents.Also See:)frame ,)read ,)set , and)undo .8.15)libraryUser Level Required: interpreterCommand Syntax:)library libName1 [libName2 ...℄)library)dir dirName)library)only objName1 [objlib2 ...℄

8.16.)LISP 253)library)noexposeCommand Des
ription:This
ommand repla
es the)load system
ommand that was available in Axiomreleases before version 2.0. The)library
ommand makes available to Axiomthe
ompiled obje
ts in the libraries listed.For example, if you)
ompile dopler.as in your home dire
tory, issue)librarydopler to have Axiom look at the library, determine the
ategory and domain
onstru
tors present, update the internal database with various properties ofthe
onstru
tors, and arrange for the
onstru
tors to be automati
ally loadedwhen needed. If the)noexpose option has not been given, the
onstru
tors willbe exposed (that is, available) in the
urrent frame.If you
ompiled a �le with the Spad
ompiler, you will have an NRLIB present,for example, DOPLER.NRLIB, where DOPLER is a
onstru
tor abbreviation.The
ommand)library DOPLER will then do the analysis and database updatesas above.To tell the system about all libraries in a dire
tory, use)library)dir dirNamewhere dirName is an expli
it dire
tory. You may spe
ify \." as the dire
tory,whi
h means the
urrent dire
tory from whi
h you started the system or theone you set via the)
d
ommand. The dire
tory name is required.You may only want to tell the system about parti
ular
onstru
tors within alibrary. In this
ase, use the)only option. The
ommand)library dopler)only Test1 will only
ause the Test1
onstru
tor to be analyzed, autoloaded,et
..Finally, ea
h
onstru
tor in a library are usually automati
ally exposed whenthe)library
ommand is used. Use the)noexpose option if you not wantthem exposed. At a later time you
an use)set expose add
onstru
tor toexpose any hidden
onstru
tors.Also See:)
d ,)
ompile ,)frame , and)set .8.16)lispUser Level Required: developmentCommand Syntax:)lisp [lispExpression℄Command Des
ription:This
ommand is used by Axiom system developers to have single expressionsevaluated by the Common Lisp system on whi
h Axiom is built. The lispExpres-sion is read by the Common Lisp reader and evaluated. If this expression is not
omplete (unbalan
ed parentheses, say), the reader will wait until a
ompleteexpression is entered.

254 CHAPTER 8. AXIOM SYSTEM COMMANDSSin
e this
ommand is only useful for evaluating single expressions, the)fin
ommand may be used to drop out of Axiom into Common Lisp.Also See:)system ,)boot , and)fin .8.17)ltra
eUser Level Required: developmentCommand Syntax:This
ommand has the same arguments as options as the)tra
e
ommand.Command Des
ription:This
ommand is used by Axiom system developers to tra
e Common Lisp orBOOT fun
tions. It is not supported for general use.Also See:)boot ,)lisp , and)tra
e .8.18)pquitUser Level Required: interpreterCommand Syntax:)pquitCommand Des
ription:This
ommand is used to terminate Axiom and return to the operating sys-tem. Other than by redoing all your
omputations or by using the)history)restore
ommand to try to restore your working environment, you
annotreturn to Axiom in the same state.)pquit di�ers from the)quit in that it always asks for
on�rmation that youwant to terminate Axiom (the \p" is for \prote
ted"). When you enter the)pquit
ommand, Axiom respondsPlease enter y or yes if you really want to leave the intera
tiveenvironment and return to the operating system:If you respond with y or yes, Axiom will terminate and return you to theoperating system (or the environment from whi
h you invoked the system). Ifyou responded with something other than y or yes, then the messageYou have
hosen to remain in the Axiom intera
tive environment.will be displayed and, indeed, Axiom would still be running.Also See:)fin ,)history ,)
lose ,)quit , and)system .

8.19.)QUIT 2558.19)quitUser Level Required: interpreterCommand Syntax:)quit)set quit prote
ted | unprote
tedCommand Des
ription:This
ommand is used to terminate Axiom and return to the operating sys-tem. Other than by redoing all your
omputations or by using the)history)restore
ommand to try to restore your working environment, you
annotreturn to Axiom in the same state.)quit di�ers from the)pquit in that it asks for
on�rmation only if the
om-mand)set quit prote
tedhas been issued. Otherwise,)quit will make Axiom terminate and return you tothe operating system (or the environment from whi
h you invoked the system).The default setting is)set quit prote
ted so that)quit and)pquit behavein the same way. If you do issue)set quit unprote
tedwe suggest that you do not (somehow) assign)quit to be exe
uted when youpress, say, a fun
tion key.Also See:)fin ,)history ,)
lose ,)pquit , and)system .8.20)readUser Level Required: interpreterCommand Syntax:)read [�leName℄)read [�leName℄ [)quiet℄ [)ifthere℄Command Des
ription:This
ommand is used to read .input �les into Axiom. The
ommand)read matrix.input

256 CHAPTER 8. AXIOM SYSTEM COMMANDSwill read the
ontents of the �le matrix.input into Axiom. The \.input" �leextension is optional.This
ommand remembers the previous �le you edited, read or
ompiled. If youdo not spe
ify a �le name, the previous �le will be read.The)ifthere option
he
ks to see whether the .input �le exists. If it doesnot, the)read
ommand does nothing. If you do not use this option and the�le does not exist, you are asked to give the name of an existing .input �le.The)quiet option suppresses output while the �le is being read.Also See:)
ompile ,)edit , and)history .8.21)setUser Level Required: interpreterCommand Syntax:)set)set label1 [... labelN℄)set label1 [... labelN℄ newValueCommand Des
ription:The)set
ommand is used to view or set system variables that
ontrol whatmessages are displayed, the type of output desired, the status of the historyfa
ility, the way Axiom user fun
tions are
a
hed, and so on. Sin
e this
olle
tionis very large, we will not dis
uss them here. Rather, we will show how the fa
ilityis used. We urge you to explore the)set options to familiarize yourself withhow you
an modify your Axiom working environment. There is a HyperDo
version of this same fa
ility available from the main HyperDo
 menu.The)set
ommand is
ommand-driven with a menu display. It is tree-stru
tured.To see all top-level nodes, issue)set by itself.)setVariables with values have them displayed near the right margin. Subtrees ofsele
tions have \..." displayed in the value �eld. For example, there are manykinds of messages, so issue)set message to see the
hoi
es.)set messageThe
urrent setting for the variable that displays whether
omputation timesare displayed is visible in the menu displayed by the last
ommand. To see moreinformation, issue

8.22.)SHOW 257)set message timeThis shows that time printing is on now. To turn it o�, issue)set message time offAs noted above, not all settings have so many quali�ers. For example, to
hangethe)quit
ommand to being unprote
ted (that is, you will not be promptedfor veri�
ation), you need only issue)set quit unprote
tedAlso See:)quit .8.22)showUser Level Required: interpreterCommand Syntax:)show nameOrAbbrev)show nameOrAbbrev)operations)show nameOrAbbrev)attributesCommand Des
ription: This
ommand displays information about Axiomdomain, pa
kage and
ategory
onstru
tors. If no options are given, then the)operations option is assumed. For example,)show POLY)show POLY)operations)show Polynomial)show Polynomial)operationsea
h display basi
 information about the Polynomial domain
onstru
tor andthen provide a listing of operations. Sin
e Polynomial requires a Ring (forexample, Integer) as argument, the above
ommands all refer to a unspe
i�edring R. In the list of operations, $ means Polynomial(R).The basi
 information displayed in
ludes the signature of the
onstru
tor (thename and arguments), the
onstru
tor abbreviation, the exposure status of the
onstru
tor, and the name of the library sour
e �le for the
onstru
tor.If operation information about a spe
i�
 domain is wanted, the full or abbrevi-ated domain name may be used. For example,)show POLY INT

258 CHAPTER 8. AXIOM SYSTEM COMMANDS)show POLY INT)operations)show Polynomial Integer)show Polynomial Integer)operationsare among the
ombinations that will display the operations exported by thedomain Polynomial(Integer) (as opposed to the general domain
onstru
torPolynomial). Attributes may be listed by using the)attributes option.Also See:)display ,)set , and)what .8.23)spoolUser Level Required: interpreterCommand Syntax:)spool [�leName℄)spoolCommand Des
ription:This
ommand is used to save (spool) all Axiom input and output into a �le,
alled a spool �le. You
an only have one spool �le a
tive at a time. To startspool, issue this
ommand with a �lename. For example,)spool integrate.outTo stop spooling, issue)spool with no �lename.If the �lename is quali�ed with a dire
tory, then the output will be pla
ed inthat dire
tory. If no dire
tory information is given, the spool �le will be pla
edin the
urrent dire
tory. The
urrent dire
tory is the dire
tory from whi
h youstarted Axiom or is the dire
tory you spe
i�ed using the)
d
ommand.Also See:)
d .8.24)synonymUser Level Required: interpreterCommand Syntax:)synonym)synonym synonym fullCommand)what synonymsCommand Des
ription:

8.25.)SYSTEM 259This
ommand is used to
reate short synonyms for system
ommand expres-sions. For example, the following synonyms might simplify
ommands you oftenuse.)synonym save history)save)synonym restore history)restore)synonym mail system mail)synonym ls system ls)synonym fortran set output fortranOn
e de�ned, synonyms
an be used in pla
e of the longer
ommand expressions.Thus)fortran onis the same as the longer)set fortran output onTo list all de�ned synonyms, issue either of)synonyms)what synonymsTo list, say, all synonyms that
ontain the substring \ap", issue)what synonyms apAlso See:)set and)what .8.25)systemUser Level Required: interpreterCommand Syntax:)system
mdExpressionCommand Des
ription:This
ommand may be used to issue
ommands to the operating system whileremaining in Axiom. The
mdExpression is passed to the operating system forexe
ution.To get an operating system shell, issue, for example,)system sh. When youenter the key
ombination, Ctrl { D (pressing and holding the Ctrl key andthen pressing the D key) the shell will terminate and you will return to Axiom.

260 CHAPTER 8. AXIOM SYSTEM COMMANDSWe do not re
ommend this way of
reating a shell be
ause Common Lisp may�eld some interrupts instead of the shell. If possible, use a shell running inanother window.If you exe
ute programs that misbehave you may not be able to return to Axiom.If this happens, you may have no other
hoi
e than to restart Axiom and restorethe environment via)history)restore, if possible.Also See:)boot ,)fin ,)lisp ,)pquit , and)quit .8.26)tra
eUser Level Required: interpreterCommand Syntax:)tra
e)tra
e)off)tra
e fun
tion [options℄)tra
e
onstru
tor [options ℄)tra
e domainOrPa
kage [options ℄where options
an be one or more of)after S-expression)before S-expression)break after)break before)
ond S-expression)
ount)
ount n)depth n)lo
al op1 [... opN ℄)nonquietly)nt)off)only listOfDataToDisplay

8.26.)TRACE 261)ops)ops op1 [... opN ℄)restore)stats)stats reset)timer)varbreak)varbreak var1 [... varN ℄)vars)vars var1 [... varN ℄)within exe
utingFun
tionCommand Des
ription:This
ommand is used to tra
e the exe
ution of fun
tions that make up theAxiom system, fun
tions de�ned by users, and fun
tions from the system library.Almost all options are available for ea
h type of fun
tion but ex
eptions will benoted below.To list all fun
tions,
onstru
tors, domains and pa
kages that are tra
ed,)issue)tra
eTo untra
e everything that is tra
ed, issue)tra
e)offWhen a fun
tion is tra
ed, the default system a
tion is to display the argumentsto the fun
tion and the return value when the fun
tion is exited. Note that if afun
tion is left via an a
tion su
h as a THROW, no return value will be displayed.Also, optimization of tail re
ursion may de
rease the number of times a fun
tionis a
tually invoked and so may
ause less tra
e information to be displayed.Other information
an be displayed or
olle
ted when a fun
tion is tra
ed andthis is
ontrolled by the various options. Most options will be of interest only toAxiom system developers. If a domain or pa
kage is tra
ed, the default a
tionis to tra
e all fun
tions exported.Individual interpreter, lisp or boot fun
tions
an be tra
ed by listing their namesafter)tra
e. Any options that are present must follow the fun
tions to betra
ed.)tra
e f

262 CHAPTER 8. AXIOM SYSTEM COMMANDStra
es the fun
tion f. To untra
e f, issue)tra
e f)offNote that if a fun
tion name
ontains a spe
ial
hara
ter, it will be ne
essaryto es
ape the
hara
ter with an unders
ore)tra
e _/D_,1To tra
e all domains or pa
kages that are or will be
reated from a parti
ular
onstru
tor, give the
onstru
tor name or abbreviation after)tra
e.)tra
e MATRIX)tra
e List IntegerThe �rst
ommand tra
es all domains
urrently instantiated with Matrix. Ifadditional domains are instantiated with this
onstru
tor (for example, if youhave used Matrix(Integer) and Matrix(Float)), they will be automati
allytra
ed. The se
ond
ommand tra
es List(Integer). It is possible to tra
eindividual fun
tions in a domain or pa
kage. See the)ops option below.The following are the general options for the)tra
e
ommand.)break after
auses a Common Lisp break loop to be entered after exitingthe tra
ed fun
tion.)break before
auses a Common Lisp break loop to be entered before enteringthe tra
ed fun
tion.)break is the same as)break before.)
ount
auses the system to keep a
ount of the number of times the tra
edfun
tion is entered. The total
an be displayed with)tra
e)stats and
leared with)tra
e)stats reset.)
ount n
auses information about the tra
ed fun
tion to be displayed for the�rst n exe
utions. After the n-th exe
ution, the fun
tion is untra
ed.)depth n
auses tra
e information to be shown for only n levels of re
ursion ofthe tra
ed fun
tion. The
ommand)tra
e fib)depth 10will
ause the display of only 10 levels of tra
e information for the re
ursiveexe
ution of a user fun
tion �b.)math
auses the fun
tion arguments and return value to be displayed in theAxiom monospa
e two-dimensional math format.

8.26.)TRACE 263)nonquietly
auses the display of additional messages when a fun
tion is tra
ed.)nt This suppresses all normal tra
e information. This option is useful if the)
ount or)timer options are used and you are interested in the statisti
sbut not the fun
tion
alling information.)off
auses untra
ing of all or spe
i�
 fun
tions. Without an argument, allfun
tions,
onstru
tors, domains and pa
kages are untra
ed. Otherwise,the given fun
tions and other obje
ts are untra
ed. To immediately retra
ethe untra
ed fun
tions, issue)tra
e)restore.)only listOfDataToDisplay
auses only spe
i�
 tra
e information to be shown.The items are listed by using the following abbreviations:a display all argumentsv display return value1 display �rst argument2 display se
ond argument15 display the 15th argument, and so on)restore
auses the last untra
ed fun
tions to be retra
ed. If additional op-tions are present, they are added to those previously in e�e
t.)stats
auses the display of statisti
s
olle
ted by the use of the)
ount and)timer options.)stats reset resets to 0 the statisti
s
olle
ted by the use of the)
ount and)timer options.)timer
auses the system to keep a
ount of exe
ution times for the tra
edfun
tion. The total
an be displayed with)tra
e)stats and
learedwith)tra
e)stats reset.)varbreak var1 [... varN ℄
auses a Common Lisp break loop to be enteredafter the assignment to any of the listed variables in the tra
ed fun
tion.)vars
auses the display of the value of any variable after it is assigned in thetra
ed fun
tion. Note that library
ode must have been
ompiled usingthe)vartra
e option in order to support this option.)vars var1 [... varN ℄
auses the display of the value of any of the spe
i�edvariables after they are assigned in the tra
ed fun
tion. Note that library
ode must have been
ompiled using the)vartra
e option in order tosupport this option.)within exe
utingFun
tion
auses the display of tra
e information only if thetra
ed fun
tion is
alled when the given exe
utingFun
tion is running.

264 CHAPTER 8. AXIOM SYSTEM COMMANDSThe following are the options for tra
ing
onstru
tors, domains and pa
kages.)lo
al [op1 [. . . opN℄℄
auses lo
al fun
tions of the
onstru
tor to be tra
ed.Note that to untra
e an individual lo
al fun
tion, you must use the fullyquali�ed internal name, using the es
ape
hara
ter before the semi
olon.)tra
e FRAC)lo
al)tra
e FRAC_;
an
elG
d)off)ops op1 [... opN ℄ By default, all operations from a domain or pa
kage aretra
ed when the domain or pa
kage is tra
ed. This option allows you tospe
ify that only parti
ular operations should be tra
ed. The
ommand)tra
e Integer)ops min max _+ _-tra
es four operations from the domain Integer. Sin
e + and - are spe
ial
hara
ters, it is ne
essary to es
ape them with an unders
ore.Also See:)boot ,)lisp , and)ltra
e .8.27)undoUser Level Required: interpreterCommand Syntax:)undo)undo integer)undo integer [option ℄)undo)redowhere option is one of)after)beforeCommand Des
ription:This
ommand is used to restore the state of the user environment to an earlierpoint in the intera
tive session. The argument of an)undo is an integer whi
hmust designate some step number in the intera
tive session.)undo n)undo n)after

8.28.)WHAT 265These
ommands return the state of the intera
tive environment to that imme-diately after step n. If n is a positive number, then n refers to step nummbern. If n is a negative number, it refers to the n-th previous
ommand (that is,undoes the e�e
ts of the last �n
ommands).A)
lear all resets the)undo fa
ility. Otherwise, an)undo undoes the e�e
tof)
lear with options properties, value, and mode, and that of a previousundo. If any su
h system
ommands are given between steps n and n+1 (n > 0),their e�e
t is undone for)undo m for any 0 < m � n..The
ommand)undo is equivalent to)undo -1 (it undoes the e�e
t of theprevious user expression). The
ommand)undo 0 undoes any of the abovesystem
ommands issued sin
e the last user expression.)undo n)beforeThis
ommand returns the state of the intera
tive environment to that immedi-ately before step n. Any)undo or)
lear system
ommands given before stepn will not be undone.)undo)redoThis
ommand reads the �le redo.input.
reated by the last)undo
ommand.This �le
onsists of all user input lines, ex
luding those ba
ktra
ked over due toa previous)undo.Also See:)history . The
ommand)history)write will eliminate the\undone"
ommand lines of your program.8.28)whatUser Level Required: interpreterCommand Syntax:)what
ategories pattern1 [pattern2 ...℄)what
ommands pattern1 [pattern2 ...℄)what domains pattern1 [pattern2 ...℄)what operations pattern1 [pattern2 ...℄)what pa
kages pattern1 [pattern2 ...℄)what synonym pattern1 [pattern2 ...℄)what things pattern1 [pattern2 ...℄

266 CHAPTER 8. AXIOM SYSTEM COMMANDS)apropos pattern1 [pattern2 ...℄Command Des
ription:This
ommand is used to display lists of things in the system. The patterns areall strings and, if present, restri
t the
ontents of the lists. Only those itemsthat
ontain one or more of the strings as substrings are displayed. For example,)what synonymdisplays all
ommand synonyms,)what synonym verdisplays all
ommand synonyms
ontaining the substring \ver",)what synonym ver prdisplays all
ommand synonyms
ontaining the substring \ver" or the substring\pr". Output similar to the following will be displayed---------------- System Command Synonyms -----------------user-defined synonyms satisfying patterns:ver pr)apr)what things)apropos)what things)prompt)set message prompt)version)lisp *yearweek*Several other things
an be listed with the)what
ommand:
ategories displays a list of
ategory
onstru
tors.
ommands displays a list of system
ommands available at your user-level. Youruser-level is set via the)set userlevel
ommand. To get a des
riptionof a parti
ular
ommand, su
h as \)what", issue)help what.domains displays a list of domain
onstru
tors.operations displays a list of operations in the system library. It is re
om-mended that you qualify this
ommand with one or more patterns, asthere are thousands of operations available. For example, say you arelooking for fun
tions that involve
omputation of eigenvalues. To �ndtheir names, try)what operations eig. A rather large list of operationsis loaded into the workspa
e when this
ommand is �rst issued. This listwill be deleted when you
lear the workspa
e via)
lear all or)
lear
ompletely. It will be re-
reated if it is needed again.

8.29. MAKEFILE 267pa
kages displays a list of pa
kage
onstru
tors.synonym lists system
ommand synonyms.things displays all of the above types for items
ontaining the pattern stringsas substrings. The
ommand synonym)apropos is equivalent to)whatthings.Also See:)display ,)set , and)show .8.29 Make�leThis book is a
tually a literate program[2℄ and
an
ontain exe
utable sour
e
ode. In parti
ular, the Make�le for this book is part of the sour
e of the bookand is in
luded below. Axiom uses the \noweb" literate programming systemby Norman Ramsey[6℄.h* i�PROJECT=bookvol1TANGLE=/usr/lo
al/bin/NOTANGLEWEAVE=/usr/lo
al/bin/NOWEAVELATEX=/usr/bin/latexMAKEINDEX=/usr/bin/makeindexall: ${WEAVE} -t8 -delay ${PROJECT}.pamphlet >${PROJECT}.tex${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null${MAKEINDEX} ${PROJECT}.idx${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

268 CHAPTER 8. AXIOM SYSTEM COMMANDS

Bibliography[1℄ Jenks, R.J. and Sutor, R.S. \Axiom { The S
ienti�
 Computation System"Springer-Verlag New York (1992) ISBN 0-387-97855-0[2℄ Knuth, Donald E., \Literate Programming" Center for the Study of Lan-guage and Information ISBN 0-937073-81-4 Stanford CA (1992)[3℄ Page, William, \The Axiom Wiki Website"http://wiki.axiom-developer.org[4℄ Watt, Stephen, \Aldor",http://www.aldor.org[5℄ Lamport, Leslie, \Latex { A Do
ument Preparation System", Addison-Wesley, New York ISBN 0-201-52983-1[6℄ Ramsey, Norman \Noweb { A Simple, Extensible Tool for Literate Pro-gramming"http://www.ee
s.harvard.edu/~nr/noweb

269

Index� Multipli
ation, 39�� Exponentiation, 39+ Addition, 39� Numeri
al Negation, 39� Subtra
tion, 39= Division, 39< less than, 39<= less than or equal, 39=> blo
k exit, 78, 80, 81> greater than, 39>= greater than or equal, 39~Logi
al Negation, 39)abb, 180)abbreviation, 180, 244)boot, 236, 254, 260, 264)
d, 236, 253, 258)
lear, 50, 238, 246)
lose, 237, 254, 255)
ompile, 237, 239, 247, 253, 256)display, 51, 239, 245, 258, 267)edit, 237, 244, 246, 256)�n, 236, 247, 254, 255, 260)frame, 247, 252, 253)hd, 249)help, 249)history, 51, 237, 239, 246, 249, 250,254{256, 265)library, 237, 244, 252)lisp, 236, 253, 254, 260, 264)ltra
e, 254, 264)pquit, 237, 247, 254, 255, 260)quit, 237, 247, 254, 255, 257, 260)read, 50, 71, 237, 247, 252, 255)set, 236, 246, 249, 252, 253, 256,258, 259, 267)set streams
al
ulate, 115)show, 246, 257, 267

)spool, 237, 258)synonym, 258)system, 50, 236, 247, 254, 255, 259)tra
e, 254, 260)undo, 51, 239, 252, 264)what, 51, 246, 258, 259, 265++
omments, 32, 49+++
omments, 32, 49{
omments, 32, 49. Re
ord sele
tor, 185: de
laration, 181::, 29::
onversion, 34, 49, 50, 177, 194:: failure, 34; output suppression, 43, 47# list length, 57$ pa
kage
all, 177, 201$ pa
kage
alling, 49, 50%, 9, 24, 34, 48%%, 24, 48%e, 31%i, 31%in�nity, 31%minusIn�nity, 31, 114%pi, 31, 91%plusIn�nity, 31, 114es
ape, 31, 48abbreviation, 180, 235, 244
onstru
tor, 180abbreviation
ategory, 235abbreviation domain, 235abbreviation pa
kage, 235abbreviation query, 235abbreviation remove, 236abs, 36a
os, 38270

INDEX 271Ada, 13adaptive, 137adaptive plotting, 141, 142, 163, 165Aldor, 176Spad, 176aldor, 240Any, 169, 193, 206APL, 175append, 55appendPoint , 149apropos, 267ar
tan, 124array
exible, 101one-dimensional, 99two-dimensional, 105asin, 38assignment, 26delayed, 26immediate, 26assignment delayed, 75assignment immediate, 39Asso
iationList, 103atan, 38, 123axiom, 21badge, 194balan
ed binary tree, 102Balan
edBinaryTree, 102Basi
Operator, 125binary sear
h tree, 102BinarySear
hTree, 102binarySear
hTree, 102bit? , 14Bits, 67, 100bits, 68, 100Blo
ks, 72blue, 136Boolean, 177boot, 236break, 79{81by for, 88
ase, 189, 192Category, 174
ategory, 15, 172, 174, 197

ategory exports, 175
d, 222, 223, 236, 258
hara
ter set, 225
hara
teristi
 , 176Choi
es, 78
lear, 238Clef, 22
lip, 137
lose, 218, 237
oeÆ
ient, 6, 8
oer
e , 151Color, 136
olor, 136, 218multipli
ation, 136shade, 138
olormap, 160Colors, 136
ommand line editor, 22CommutativeRing, 197
ompa
tFra
tion, 45
ompile, 237, 239
omplete, 66
omplex, 92
omplex , 246
omplex numbers, 41, 92Complex(Fra
tion(Integer)), 174Complex(Integer), 177ComplexCategory, 246
omplexIntegrate, 121
omplexLimit, 114, 115
omplexSolve, 127, 128
omponent , 149, 151
omputation timingsdisplaying, 256
on
at
on
at, 98
on
at , 172, 203
on
at 57, 98
onjugate, 92
onjugate,
omplex numbers, 41
ons, 55
onstru
torabbreviation, 180domain, 171exposed, 207

272 INDEXhidden, 207pa
kage, 176
ontinuedFra
tion, 44, 93
onversion, 29
oordinate systemparaboli

ylindri
al, 157
oordinates, 137
opy, 61
opyInto 68
os, 38
osh, 123
urvenon-singular, 136parametri
 plane, 134plane algebrai
, 135smooth, 136
urveColor, 137
y
li
 list, 98D Derivatives, 118de
imal, 44, 93De
imalExpansion, 44de
laration, 26de
larations, 181delayed assignment, 26, 75delete , 172delete 70derivative, 118Derivatives, 118destru
tive operations, 31determinant, 106diagonalMatrix, 109di�erentiation, 118formal, 119partial, 119digits, 91digits , 91digits fun
tion, 42dire
torydefault for sear
hing, 222for spool �les, 258display, 245display operation, 211DistributedMultivariatePolynomial,113dithering, 161

divide, 30, 38Domain, 171domain, 14, 169domain
onstru
tor, 171DoubleFloat, 91edit, 237, 246editing �les, 246elt, 59ema
s, 246, 247empty?, 56, 101Equation, 125erf, 124eval, 40, 118, 120even?, 38exiting Axiom, 22exp, 91, 92, 115, 117, 118, 124expand, 63exports
ategory, 175Domain, 175exposed
onstru
tor, 207exposed.lsp, 207exposuregroup, 207exquo , 190extra
t 101fa
tor, 30, 38, 89, 90, 92, 99, 106fa
tor,
omplex numbers, 42Fa
toredFun
tions2, 179fa
torial, 30, 38, 107, 109, 116, 171Fibona

i, 64Field, 174�eld, 174�le .Xdefaults, 218.Xdefaults, 141, 162, 167.axiom.input, 222exposed.lsp, 207history, 248input, 109, 221, 234, 250, 255where found, 222sending output to, 223spool, 258

INDEX 273start-up pro�le, 222�n, 247�rst, 55, 98�rst , 97�rstDenom, 46�rstNumer, 46Flexible Arrays, 69FlexibleArray, 67
exibleArray, 101Float, 91, 169, 201
oating point, 91font, 218for, 85for by, 88for list, 85for segment, 85FORTRAN, 13FORTRAN output format, 226arrays, 230breaking into multiple statements,227data types, 228integers vs.
oats, 228line length, 227optimization level, 228pre
ision, 229Fra
tion, 18, 174, 176, 191, 201, 204fra
tionpartial, 93Fra
tion(Complex(Integer)), 174Fra
tion(Integer), 174fra
tionPart, 35frame, 209, 247exposure and, 209frame drop, 248frame import, 248frame last, 248frame names, 248frame new, 248frame next, 248fun
tion, 107
alling, 30pie
e-wise de�nition, 107Gaussian Integers, 174g
d, 38

generate, 64getGraph , 153Gr�obner, 113graphi
s, 131.Xdefaults, 167button font, 167graph label font, 167graph number font, 167inverting ba
kground, 167lighting font, 167message font, 168mono
hrome, 168PostS
ript �le name, 141, 162,168title font, 168unit label font, 168volume label font, 1682D
ommandsaxes, 143
lose, 143
onne
t, 143graphs, 143key, 143move, 143options, 143points, 143resize, 144s
ale, 144state of graphs, 143translate, 1442D
ontrol-panel, 138axes, 141box, 141buttons, 141
lear, 140drop, 141hide, 141lines, 141messages, 140multiple graphs, 140pi
k, 141points, 141ps, 141query, 140quit, 141reset, 141

274 INDEXs
ale, 139transformations, 139translate, 140units, 1412D defaultsavailable viewport writes, 1433D
ommandsaxes, 163
lose, 163
ontrol-panel, 164de�ne
olor, 164deltaX default, 166deltaY default, 166diagonals, 164drawing style, 164eye distan
e, 164intensity, 165key, 164lighting, 164modify point data, 164move, 164outline, 164perspe
tive, 164phi default, 166reset, 164resize, 164rotate, 164s
ale, 167s
ale default, 167showRegion, 165subspa
e, 165theta default, 166title, 165translate, 165viewpoint, 1663D
ontrol-panel, 159axes, 161bounds, 161buttons, 161bw, 162
lip volume, 163
lipping on, 163
olor map, 160eye referen
e, 163hide, 162intensity, 162

light, 162messages, 160move xy, 162move z, 162outline, 161perspe
tive, 163pixmap, 162ps, 162quit, 162reset, 162rotate, 159save, 162s
ale, 160shade, 161show
lip region, 163smooth, 161solid, 161transformations, 159translate, 160view volume, 163wire, 1613D defaultsavailable viewport writes, 166reset viewport defaults, 166tube points, 165tube radius, 165var1 steps, 165var2 steps, 165viewport position, 166viewport size, 166viewport writes, 1663D options, 157
olor, 136
olor fun
tion, 136hue fun
tion, 136multiply fun
tion, 136number of hues, 136primary
olor fun
tions, 136palette, 137plot3d defaultsadaptive, 163set adaptive, 165set max points, 165set min points, 165set s
reen resolution, 165set 2D defaults

INDEX 275adaptive, 141axes
olor, 142
lip points, 142line
olor, 142max points, 142min points, 142point
olor, 142point size, 142reset viewport, 142s
reen resolution, 142to s
ale, 142units
olor, 142viewport position, 142viewport size, 143write viewport, 143Xdefaults2d, 168GraphImage, 144, 149, 151green, 136groupexposure, 207groupSqrt, 111HashTable, 103hd, 249heap, 101help, 249history, 250history)
hange, 251history)o�, 251history)on, 251history)restore, 237history)save, 237history)write, 222, 237hither
lipping plane, 163HomogeneousDistributedMultivariatePolynomial,113howMany, 103hue, 136HyperDo
, 22HyperDo
, 213HyperDo
 XWindow System defaults,218IBM S
ript Formula Format, 226if-then-else, 78

imag,
omplex numbers, 41immediate assignment, 26, 391 (= %in�nity), 31insert , 172insert 69, 101Integer, 14, 16, 169, 175{177, 190,199IntegerMod, 47, 95IntegralDomain, 174, 197integrate, 121, 123integration, 121interrupt, 22inv , 204iterate, 80, 85KeyedA

essFile, 103Korn shell, 246last, 60l
m, 38Legendre Polynomial, 5Legendre polynomials, 5Library, 103library, 252operations* , 14{16, 18, 172, 175+ , 14{16, 172, 175, 176, 208- , 14{16, 172, 199/ , 174, 176, 201= , 175, 1760 , 151 , 15limit, 114, 115of fun
tion with parameters, 114Lisp
ode generation, 242lisp, 253List, 97, 98, 172list, 55
y
li
, 98log, 117Loops, 79Loops repeat, 79ltra
e, 254ma
ro

276 INDEXprede�ned, 31makeGraphImage , 144makeViewport2D , 149map, 90map , 204map 67Matrix, 18, 105matrix, 105
reating, 105Hilbert, 105Matrix(Float), 169MatrixCategoryFun
tions2, 204max, 38member?, 56merge 70min, 38mode, 169, 179modTree, 102Modula 2, 13monospa
e 2D output format, 224multiset, 102MultivariatePolynomial, 112, 179negative?, 37nextPrime, 64non-singular
urve, 136not Logi
al Negation, 39nthFra
tionalTerm, 45numberOfFra
tionalTerms, 45numberOfHues() , 136O
tonion, 97odd?, 37odd? , 14one?, 37OneDimensionalArray, 66, 179oneDimensionalArray, 99operation name
ompletion, 22operator, 119operator fun
tion, 119, 124, 126OrderedCompletion, 114output formats
ommon features, 223FORTRAN, 226IBM S
ript Formula Format, 226line length, 224

monospa
e 2D, 224sending to �le, 223sending to s
reen, 223starting, 223stopping, 223TEX, 225outputFixed, 43outputFloating, 42OutputForm, 208outputGeneral, 43outputSpa
ing, 42pa
kage, 17, 176padi
Fra
tion, 44, 93Palette, 137Palettes, 136paraboli

ylindri
al
oordinate sys-tem, 157parametri
 plane
urve, 134parenthesesusing with types, 177{179partialFra
tion, 44, 93PASCAL, 13pattern mat
hing, 111PendantTree, 102%%, 24peril, 201Permanent, 105permutation matrix, 109perspe
tive , 164Phongillumination model, 161smooth shading model, 161physi
alLength, 70physi
alLength 70� (= %pi), 31pie
e-wise fun
tion de�nition, 107pile, 72, 78plane algebrai

urve, 135pointColor, 137polynomial, 112Polynomial(Integer), 169Polynomial(R), 112PolynomialFun
tion2(R,S), 176positive?, 37PositiveInteger, 170, 177

INDEX 277PostS
ript, 132, 141, 162, 168pquit, 254, 255pretend, 200prime?, 38PrimeField, 46, 94primes, 102, 103priority queue, 101prompt, 21with frame name, 249Puiseux series, 116putGraph , 154quatern, 30, 97Quaternion, 97quit, 222, 254, 255quo Quotient, 39quote, 29, 184, 192quote symbols, 29radi
al, 94radi
alSolve, 10, 128radix, 43, 90, 94RadixExpansion, 43range, 137ratDenom, 96read, 221, 237, 255real,
omplex numbers, 41Re
ord, 103, 169, 184Re
ord, 103re
ord, 103di�eren
e from union, 192sele
tor, 184red, 136redu
e, 108rem, 103rem Remainder, 39removeDupli
ates, 57removeDupli
ates 69repeat, 81repeat Loops, 79resolve, 205rest, 56, 98rest , 97resultprevious, 24retra
t, 170

retra
tIfCan , 191return, 79, 80reverse, 56Ring, 15, 16, 105, 172, 175roman, 90Roman numerals, 90rootOf, 96round, 35rule, 9, 111s
aling graphs, 167s
roll bar, 215sear
h, 103Segmented Lists, 63sele
torquoting, 186, 192re
ord, 184union, 192series, 8, 115power, 115Puiseux, 116Taylor, 116seriesSolve, 127set, 102, 256set expose, 208set expose add
onstru
tor, 208set expose add group, 208set expose drop
onstru
tor, 208set expose drop group, 208set fortran, 227set fortran explength, 227set fortran ints2
oats, 228set fortran optlevel, 227, 228set fortran pre
ision double, 229set fortran pre
ision single, 229set fortran segment, 227set fortran startindex, 231set history o�, 251set history on, 251set message frame, 248set message prompt frame, 249set message time, 257set output, 223set output algebra, 224set output
hara
ters, 225set output fortran, 223, 227

278 INDEXset output length, 224set output s
ript, 226set output tex, 225set quit prote
ted, 222, 255set quit unprote
ted, 222, 255, 257set userlevel, 266set userlevel
ompiler, 233set userlevel development, 233set userlevel interpreter, 233setrestsetrest, 98setrest 58, 98shade, 138show, 211, 257shrinkable, 71sign, 36simpli�
ation, 111sin, 38, 115, 119, 133SingleInteger, 90sinh, 123smooth
urve, 136solve, 10, 125, 126sort, 57sort 70Spad, 176Aldor, 176spad, 240SparseTable, 103spool, 237, 258sqrt, 91, 114, 123SquareMatrix, 105, 173, 179, 195start-up pro�le �le, 222step number, 21stopping Axiom, 22stream, 7, 99Streams, 64String, 67, 100, 177, 203StringTable, 103subdomain, 15, 171subdomains, 198su
h that, 86swap 67symbolnaming, 26symbol quoting, 29

synonym, 258system, 259Table, 103table, 103tan, 38, 123, 133target type, 177, 202taylor, 117TEX output format, 225ThreeDimensionalViewport, 162, 164,166timingsdisplaying, 256toS
ale, 137TournamentTree, 102tra
e, 106, 260transpose, 106tree, 102balan
ed binary, 102binary sear
h, 102trun
ate, 35TwoDimensionalArray, 105TwoDimensionalViewport, 143, 149,153, 154Type, 174type, 169using parentheses, 177{179type target, 50typeOf, 190undo, 264Union, 104, 169, 188Union, 104union, 104, 188di�eren
e from re
ord, 192sele
tor, 192unit, 137UnivariatePolynomial, 112, 179UnivariatePuiseuxSeries, 115UnivariateTaylorSeries, 127UniversalSegment, 63user-level, 233, 266variablenaming, 26Ve
tor, 67, 100, 105

INDEX 279ve
tor, 68vi, 246Void, 177weight, 136what, 180, 210, 265what
ategories, 266what
ommands, 266what domain, 210what domains, 266what operation, 210what operations, 266what pa
kages, 181, 211, 267what synonym, 267what things, 267while, 81wholePart, 45window, 22write , 143, 162, 166X Window System, 22, 218zero?, 37

