
Cluster synchronization with Csync2

Clifford Wolf, http://www.clifford.at/

April 13, 2006

1 Introduction

Csync2 [1] is a tool for asynchronous file synchro-
nization in clusters. Asynchronous file synchroniza-
tion is good for files which are seldom modified -
such as configuration files or application images -
but it is not adequate for some other types of data.

For instance a database with continuous write
accesses should be synced synchronously in order
to ensure the data integrity. But that does not
automatically mean that synchronous synchroniza-
tion is better; it simply is different and there are
many cases where asynchronous synchronization is
favored over synchronous synchronization. Some
pros of asynchronous synchronization are:

1. Most asynchronous synchronization tools (in-
cluding Csync2) are implemented as single-shot
commands which need to be executed each time
in order to run one synchronization cycle. There-
fore it is possible to test changes on one host before
deploying them on the others (and also return to
the old state if the changes turn out to be bogus).

2. The synchronization algorithms are much
simpler and thus less error-prone.

3. Asynchronous synchronization tools can be
(and usually are) implemented as normal user mode
programs. Synchronous synchronization tools need
to be implemented as operating system extensions.
Therefore asynchronous tools are easier to deploy
and more portable.

4. It is much easier to build systems which allow
setups with many hosts and complex replication
rules.

But most asynchronous synchronization tools are
pretty primitive and do not even cover a small por-
tion of the issues found in real world environments.

I have developed Csync2 because I found none of
the existing tools for asynchronous synchronization
satisfying. The development of Csync2 has been
sponsored by LINBIT Information Technologies [2],

the company which also sponsors the synchronous
block device synchronization toolchain DRBD [3].

Note: I will simply use the term synchronization

instead of the semi-oxymoron asynchronous syn-

chronization in the rest of this paper.

1.1 Csync2 features

Most synchronization tools are very simple wrap-
pers for remote-copy tools such as rsync or scp.
These solutions work well in most cases but still
leave a big gap for more sophisticated tools such as
Csync2. The most important features of Csync2

are described in the following sections.

1.1.1 Conflict detection

Most of the trivial synchronization tools just copy
the newer file over the older one. This can be a
very dangerous behavior if the same file has been
changed on more than one host. Csync2 detects
such a situation as a conflict and will not synchro-
nize the file. Those conflicts then need to be re-
solved manually by the cluster administrator.

It is not considered as a conflict by Csync2 when
the same change has been performed on two hosts
(e.g. because it has already been synchronized with
another tool).

It is also possible to let Csync2 resolve conflicts
automatically for some or all files using one of the
pre-defined auto-resolve methods. The available
methods are: none (the default behavior), first
(the host on which Csync2 is executed first wins),
younger and older (the younger or older file wins),
bigger and smaller (the bigger or smaller file
wins), left and right (the host on the left side
or the right side in the host list wins).

The younger, older, bigger and smaller meth-
ods let the remote side win the conflict if the file

has been removed on the local side.

1.1.2 Replicating file removals

Many synchronization tools can not synchronize file
removals because they can not distinguish between
the file being removed on one host and being cre-
ated on the other one. So instead of removing the
file on the second host they recreate it on the first
one.

Csync2 detects file removals as such and can
synchronize them correctly.

1.1.3 Complex setups

Many synchronization tools are strictly designed for
two-host-setups. This is an inadequate restriction
and so Csync2 can handle any number of hosts.

Csync2 can even handle complex setups where
e.g. all hosts in a cluster share the /etc/hosts file,
but one /etc/passwd file is only shared among the
members of a small sub-group of hosts and another
/etc/passwd file is shared among the other hosts
in the cluster.

1.1.4 Reacting to updates

In many cases it is not enough to simply synchro-
nize a file between cluster nodes. It also is impor-
tant to tell the applications using the synchronized
file that the underlying file has been changed, e.g.
by restarting the application.

Csync2 can be configured to execute arbitrary
commands when files matching an arbitrary set of
shell patterns are synchronized.

2 The Csync2 algorithm

Many other synchronization tools compare the
hosts, try to figure out which host is the most up-
to-date one and then synchronize the state from
this host to all other hosts. This algorithm can not
detect conflicts, can not distinguish between file re-
movals and file creations and therfore it is not used
in Csync2.

Csync2 creates a little database with filesys-
tem metadata on each host. This database
(/var/lib/csync2/hostname.db) contains a list of
the local files under the control of Csync2. The

database also contains information such as the file
modification timestamps and file sizes.

This database is used by Csync2 to detect
changes by comparison with the local filesystem.
The synchronization itself is then performed using
the Csync2 protocol (TCP port 30865).

Note that this approach implies that Csync2 can
only push changes from the machine on which the
changes has been performed to the other machines
in the cluster. Running Csync2 on any other ma-
chine in the cluster can not detect and so can not
synchronize the changes.

Librsync [4] is used for bandwidth-saving file syn-
chronization and SSL is used for encrypting the
network traffic. The sqlite library [5] (version 2)
is used for managing the Csync2 database files.
Authentication is performed using auto-generated
pre-shared-keys in combination with the peer IP
address and the peer SSL certificate.

3 Setting up Csync2

3.1 Building Csync2 from source

Simply download the latest Csync2 source tar.gz
from http://oss.linbit.com/csync2/, extract it
and run the usual ./configure - make - make

install trio.
Csync2 has a few prerequisites in addition to a C

compiler, the standard system libraries and headers
and the usual gnu toolchain (make, etc):

1. You need librsync, libsqlite (version 2) and
libssl installed (including development headers).

2. Bison and flex are needed to build the config-
uration file parser.

3.2 Csync2 in Linux distributions

As of this writing there are no official Debian, Red-
Hat or SuSE packages for Csync2. Gentoo has a
Csync2 package, but is has not been updated for
a year now. As far as I know, ROCK Linux [6] is
the only system with an up-to-date Csync2 pack-
age. So I recommend that all users of non-ROCK
distributions built the package from source.

The Csync2 source package contains an RPM
.specs file as well as a debian/ directory. So it
is possible to use rpmbuild or debuild to build
Csync2.

3.3 Post installation

Next you need to create an SSL certificate for the
local Csync2 server. Simply running make cert

in the Csync2 source directory will create and in-
stall a self-signed SSL certificate for you. Alterna-
tively, if you have no source around, run the follow-
ing commands:

openssl genrsa \

-out /etc/csync2_ssl_key.pem 1024

openssl req -new \

-key /etc/csync2_ssl_key.pem \

-out /etc/csync2_ssl_cert.csr

openssl x509 -req -days 600 \

-in /etc/csync2_ssl_cert.csr \

-signkey /etc/csync2_ssl_key.pem \

-out /etc/csync2_ssl_cert.pem

You have to do that on each host you’re run-
ning csync2 on. When servers are talking with each
other fr the first time, they add each other to the
database.

The Csync2 TCP port 30865 needs to be added
to the /etc/services file and inetd needs to be
told about Csync2 by adding

csync2 stream tcp nowait root \

/usr/local/sbin/csync2 csync2 -i

to /etc/inetd.conf.

3.4 Configuration File

Figure 1 shows a simple Csync2 configuration file.
The configuration filename is /etc/csync2.cfg

when no -C configname option has been passed
and /etc/csync2 configname.cfg with a -C con-

figname option.

3.4.1 Synchronization Groups

In the example configuration file you will find
the declaration of a synchronization group called
mygroup. A Csync2 setup can have any number
of synchronization groups. Each group has its own
list of member hosts and include/exclude rules.

Csync2 automatically ignores all groups which
do not contain the local hostname in the host list.
This way you can use one big Csync2 configuration
file for the entire cluster.

3.4.2 Host Lists

Host lists are specified using the host keyword.
You can eighter specify the hosts in a whitespace
seperated list or use an extra host statement for
each host.

The hostnames used here must be the local host-
names of the cluster nodes. That means you must
use exactly the same string as printed out by the
hostname command. Otherwise csync2 would be
unable to associate the hostnames in the configu-
ration file with the cluster nodes.

The -N hostname command line option can be
used to set the local hostname used by Csync2

to a different value than the one provided by the
hostname command. This may be e.g. useful for
environments where the local hostnames are auto-
matically set by a DHCP server and because of that
change often.

Sometimes it is desired that a host is receiv-
ing Csync2 connections on an IP address which
is not the IP address its DNS entry resolves to,
e.g. when a crossover cable is used to directly con-
nect the hosts or an extra synchronization network
should be used. In this cases the syntax host-

name@interfacename has to be used for the host

records (see host4 in the example config file).

Sometimes a host shall only receive updates from
other hosts in the synchronization group but shall
not be allowed to send updates to the other hosts.
Such hosts (so-called slave hosts) must be specified
in brackets, such as host3 in the example config
file.

3.4.3 Pre-Shared-Keys

Authentication is performed using the IP addresses
and pre-shared-keys in Csync2. Each synchroniza-
tion group in the config file must have exactly one
key record specifying the file containing the pre-
shared-key for this group. It is recommended to use
a separate key for each synchronization group and
only place a key file on those hosts which actually
are members in the corresponding synchronization
group.

The key files can be generated with csync2 -k

filename.

group mygroup # A synchronization group (see 3.4.1)

{

host host1 host2 (host3); # host list (see 3.4.2)

host host4@host4-eth2;

key /etc/csync2.key_mygroup; # pre-shared-key (see 3.4.3)

include /etc/apache; # include/exclude patterns (see 3.4.4)

include %homedir%/bob;

exclude %homedir%/bob/temp;

exclude *~ .*;

action # an action section (see 3.4.5)

{

pattern /etc/apache/httpd.conf;

pattern /etc/apache/sites-available/*;

exec "/usr/sbin/apache2ctl graceful";

logfile "/var/log/csync2_action.log";

do-local;

}

backup-directory /var/backups/csync2;

backup-generations 3; # backup old files (see 3.4.11)

auto none; # auto resolving mode (see 3.4.6)

}

prefix homedir # a prefix declaration (see 3.4.7)

{

on host[12]: /export/users;

on *: /home;

}

Figure 1: Example Csync2 configuration file

3.4.4 Include/Exclude Patterns

The include and exclude patterns are used to
specify which files should be synced in the synchro-
nization group.

There are two kinds of patterns: pathname pat-
terns which start with a slash character (or a prefix
such as the %homedir% in the example; prefixes are
explained in a later section) and basename patterns
which do not.

The last matching pattern for each of both cat-
egories is chosen. If both categories match, the file
will be synchronized.

The pathname patterns are matched against the

beginning of the filename. So they must either
match the full absolute filename or must match a
directory in the path to the file. The file will not be
synchronized if no matching include or exclude

pathname pattern is found (i.e. the default path-
name pattern is an exclude pattern).

The basename patterns are matched against the
base filename without the path. So they can e.g.
be used to include or exclude files by their filename
extensions. The default basename pattern is an
include pattern.

In our example config file that means that all
files from /etc/apache and %homedir%/bob are

csync2 -cr /

if csync2 -M; then

echo "!!"

echo "!! There are unsynced changes! Type ’yes’ if you still want to"

echo "!! exit (or press crtl-c) and anything else if you want to start"

echo "!! a new login shell instead."

echo "!!"

if read -p "Do you really want to logout? " in &&

[".$in" != ".yes"]; then

exec bash --login

fi

fi

Figure 2: The csync2 locheck.sh script

synced, except the dot files, files with a tilde char-
acter at the end of the filename, and files from
%homedir%/bob/temp.

3.4.5 Actions

Each synchronization group may have any num-
ber of action sections. These action sections are
used to specify shell commands which should be
executed after a file is synchronized that matches
any of the specified patterns.

The exec statement is used to specify the com-
mand which should be executed. Note that if multi-
ple files matching the pattern are synced in one run,
this command will only be executed once. The spe-
cial token %% in the command string is substituted
with the list of files which triggered the command
execution.

The output of the command is appended to the
specified logfile, or to /dev/null if the logfile

statement is omitted.

Usually the action is only triggered on the targed
hosts, not on the host on which the file modification
has been detected in the first place. The do-local

statement can be used to change this behavior and
let Csync2 also execute the command on the host
from which the modification originated.

3.4.6 Conflict Auto-resolving

The auto statement is used to specify the conflict
auto-resolving mechanism for this synchronization
group. The default value is auto none.

See section 1.1.1 for a list of possible values for
this setting.

3.4.7 Prefix Declarations

Prefixes (such as the %homedir% prefix in the exam-
ple configuration file) can be used to synchronize di-
rectories which are named differently on the cluster
nodes. In the example configuration file the direc-
tory for the user home directories is /export/users
on the hosts host1 and host2 and /home on the
other hosts.

The prefix value must be an absolute path name
and must not contain any wildcard characters.

3.4.8 The nossl statement

Usually all Csync2 network communication is en-
crypted using SSL. This can be changed with the
nossl statement. This statement may only occur
in the root context (not in a group or prefix sec-
tion) and has two parameters. The first one is a
shell pattern matching the source DNS name for
the TCP connection and the second one is a shell
pattern matching the destination DNS name.

So if e.g. a secure synchronization network is
used between some hosts and all the interface DNS
names end with -sync, a simple

nossl *-sync *-sync;

will disable the encryption overhead on the syn-
chronization network. All other traffic will stay SSL
encrypted.

3.4.9 The config statement

The config statement is nothing more then an in-
clude statement and can be used to include other
config files. This can be used to modularize the
configuration file.

3.4.10 The ignore statement

The ignore statement can be used to tell Csync2

to not check and not sync the file user-id, the file
group-id and/or the file permissions. The state-
ment is only valid in the root context and accepts
the parameters uid, gid and mod to turn off han-
dling of user-ids, group-ids and file permissions.

3.4.11 Backing up

Csync2 can back up the files it modifies. This
may be useful for scenarios where one is afraid of
accidentally syncing files in the wrong direction.

The backup-directory statement is used to tell
Csync2 in which directory it should create the
backup files and the backup-generations state-
ment is used to tell Csync2 how many old versions
of the files should be kept in the backup directory.

The files in the backup directory are named like
the file they back up, with all slashes substituted
by underscores and a generation counter appended.
Note that only the file content, not the metadata
such as ownership and permissions are backed up.

Per default Csync2 does not back up the
files it modifies. The default value for
backup-generations is 3.

3.5 Activating the Logout Check

The Csync2 sources contain a little script called
csync2 locheck.sh (Figure 2).

If you copy that script into your ~/.bash logout

script (or include it using the source shell com-
mand), the shell will not let you log out if there are
any unsynced changes.

4 Database Schema

Figure 3 shows the Csync2 database schema. The
database can be accessed using the sqlite com-
mand line shell. All string values are URL encoded
in the database.

The file table contains a list of all local files un-
der Csync2 control, the checktxt attribute con-
tains a special string with information about file
type, size, modification time and more. It looks
like this:

v1:mtime=1103471832:mode=33152:

uid=1001:gid=111:type=reg:size=301

This checktxt attribute is used to check if a file
has been changed on the local host.

If a local change has been detected, the entry in
the file table is updated and entries in the dirty

table are created for all peer hosts which should
be updated. This way the information that a host
should be updated does not get lost, even if the host
in question is unreachable right now. The force

attribute is set to 0 by default and to 1 when the
cluster administrator marks one side as the right
one in a synchronization conflict.

The hint table is usually not used. In large se-
tups this table can be filled by a daemon listening
on the inotify API. It is possible to tell Csync2 to
not check all files it is responsible for but only those
which have entries in the hint table. However, the
Linux syscall API is so fast that this only makes
sense for really huge setups.

The action table is used for scheduling actions.
Usually this table is empty after Csync2 has been
terminated. However, it is possible that Csync2

gets interrupted in the middle of the synchroniza-
tion process. In this case the records in the action
table are processed when Csync2 is executed the
next time.

The x509 cert table is used to cache the SSL
cetrificates used by the other hosts in the csync2
cluster (like the SSH known hosts file).

5 Running Csync2

Simply calling csync2 without any additional ar-
guments prints out a help message (Figure 4). A
more detailed description of the most important us-
age scenarios is given in the next sections.

5.1 Just synchronizing the files

The command csync2 -x (or csync2 -xv) checks
for local changes and tries to synchronize them to
the other hosts. The option -d (dry-run) can be

CREATE TABLE file (

filename, checktxt,

UNIQUE (filename) ON CONFLICT REPLACE

);

CREATE TABLE dirty (

filename, force, myname, peername,

UNIQUE (filename, peername) ON CONFLICT IGNORE

);

CREATE TABLE hint (

filename, recursive,

UNIQUE (filename, recursive) ON CONFLICT IGNORE

);

CREATE TABLE action (

filename, command, logfile,

UNIQUE (filename, command) ON CONFLICT IGNORE

);

CREATE TABLE x509_cert (

peername, certdata,

UNIQUE (peername) ON CONFLICT IGNORE

);

Figure 3: The Csync2 database schema

used to do everything but the actual synchroniza-
tion.

When you start Csync2 the first time it com-
pares its empty database with the filesystem and
sees that all files just have been created. It then
will try to synchronize the files. If the file is not
present on the remote hosts it will simply be copied
to the other host. There also is no problem if the
file is already present on the remote host and has
the same content. But if the file already exists on
the remote host and has a different content, you
have your first conflict.

5.2 Resolving a conflict

When two or more hosts in a Csync2 synchroniza-
tion group have detected changes for the same file
we run into a conflict: Csync2 can not know which
version is the right one (unless an auto-resolving
method has been specified in the configuration file).
The cluster administrator needs to tell Csync2

which version is the correct one. This can be done

using Csync2 -f, e.g.:

csync2 -x

While syncing file /etc/hosts:

ERROR from peer apollo:

File is also marked dirty here!

Finished with 1 errors.

csync2 -f /etc/hosts

csync2 -xv

Connecting to host apollo (PLAIN) ...

Updating /etc/hosts on apollo ...

Finished with 0 errors.

5.3 Checking without syncing

It is also possible to just check the local filesys-
tem without doing any connections to remote hosts:
csync2 -cr / (the -r modifier tells Csync2 to do
a recursive check).
csync2 -c without any additional parameters

checks all files listed in the hints table.

csync2 1.26 - cluster synchronization tool, 2nd generation

LINBIT Information Technologies GmbH <http://www.linbit.com>

Copyright (C) 2004, 2005 Clifford Wolf <clifford@clifford.at>

This program is free software under the terms of the GNU GPL.

Usage: csync2 [-v..] [-C config-name] \

[-D database-dir] [-N hostname] [-p port] ..

With file parameters:

-h [-r] file.. Add (recursive) hints for check to db

-c [-r] file.. Check files and maybe add to dirty db

-u [-d] [-r] file.. Updates files if listed in dirty db

-f file.. Force this file in sync (resolve conflict)

-m file.. Mark files in database as dirty

Simple mode:

-x [-d] [[-r] file..] Run checks for all given files and update

remote hosts.

Without file parameters:

-c Check all hints in db and eventually mark files as dirty

-u [-d] Update (transfer dirty files to peers and mark as clear)

-H List all pending hints from status db

-L List all file-entries from status db

-M List all dirty files from status db

-S myname peername List file-entries from status db for this

synchronization pair.

-T Test if everything is in sync with all peers.

-T filename Test if this file is in sync with all peers.

-T myname peername Test if this synchronization pair is in sync.

-T myname peer file Test only this file in this sync pair.

-TT As -T, but print the unified diffs.

The modes -H, -L, -M and -S return 2 if the requested db is empty.

The mode -T returns 2 if both hosts are in sync.

-i Run in inetd server mode.

-ii Run in stand-alone server mode.

-iii Run in stand-alone server mode (one connect only).

-R Remove files from database which do not match config entries.

Modifiers:

-r Recursive operation over subdirectories

-d Dry-run on all remote update operations

-B Do not block everything into big SQL transactions. This

slows down csync2 but allows multiple csync2 processes to

access the database at the same time. Use e.g. when slow

lines are used or huge files are transferred.

-A Open database in asynchronous mode. This will cause data

corruption if the operating system crashes or the computer

loses power.

-I Init-run. Use with care and read the documentation first!

You usually do not need this option unless you are

initializing groups with really large file lists.

-X Also add removals to dirty db when doing a -TI run.

-U Don’t mark all other peers as dirty when doing a -TI run.

-G Group1,Group2,Group3,...

Only use this groups from config-file.

-P peer1,peer1,...

Only update this peers (still mark all as dirty).

-F Add new entries to dirty database with force flag set.

-t Print timestamps to debug output (e.g. for profiling).

Creating key file:

csync2 -k filename

Csync2 will refuse to do anything when a /etc/csync2.lock file is found.

Figure 4: The Csync2 help message

The command csync2 -M can be used to print
the list of files marked dirty and therfore scheduled
for synchronization.

5.4 Comparing the hosts

The csync2 -T command can be used to compare
the local database with the database of the re-
mote hosts. Note that this command compares the
databases and not the filesystems - so make sure
that the databases are up-to-date on all hosts be-
fore running csync2 -T and run csync2 -cr / if
you are unsure.

The output of csync2 -T is a table with 4
columns:

1. The type of the found difference: X means
that the file exists on both hosts but is different, L
that the file is only present on the local host and R

that the file is only present on the remote host.
2. The local interface DNS name (usually just

the local hostname).
3. The remote interface DNS name (usually just

the remote hostname).
4. The filename.
The csync2 -TT filename command can be used

for displaying unified diffs between a local file and
the remote hosts.

5.5 Bootstrapping large setups

The -I option is a nice tool for bootstrapping larger
Csync2 installations on slower networks. In such
scenarios one usually wants to initially replicate
the data using a more efficient way and then use
Csync2 to synchronize the changes on a regular
basis.

The problem here is that when you start Csync2

the first time it detects a lot of newly created files
and wants to synchronize them, just to find out
that they are already in sync with the peers.

The -I option modifies the behavior of -c so
it only updates the file table but does not cre-
ate entries in the dirty table. So you can simply
use csync2 -cIr / to initially create the Csync2

database on the cluster nodes when you know for
sure that the hosts are already in sync.

The -I option may also be used with -T to add
the detected differences to the dirty table and so
induce Csync2 to synchronize the local status of
the files in question to the remote host.

Usually -TI does only schedule local files which
do exist to the dirty database. That means that
it does not induce Csync2 to remove a file on a
remote host if it does not exist on the local host.
That behavior can be changed using the -X option.

The files scheduled to be synced by -TI are usu-
ally scheduled to be synced to all peers, not just
the one peer which has been used in the -TI run.
This behavior can be changed using the -U option.

5.6 Cleaning up the database

It can happen that old data is left over in the
Csync2 database after a configuration change (e.g.
files and hosts which are not referred anymore by
the configuration file). Running csync2 -R cleans
up such old entries in the Csync2 database.

5.7 Multiple Configurations

Sometimes a higher abstracion level than simply
having different synchronization groups is needed.
For such cases it is possible to use multiple config-
uration files (and databases) side by side.

The additional configurations must have a unique
name. The configuration file is then named
/etc/csync2 myname.cfg and the database is
named /var/lib/csync2/hostname myname.db.
Accordingly Csync2 must be called with the -C

myname option.

But there is no need for multiple Csync2 dae-
mons. The Csync2 protocol allows the client to
tell the server which configuration should be used
for the current TCP connection.

6 Performance

In most cases Csync2 is used for syncing just some
(up to a few hundred) system configuration files.
In these cases all Csync2 calls are processed in
less than one second, even on slow hardware. So
a performance analysis is not interesting for these
cases but only for setups where a huge amount of
files is synced, e.g. when syncing entire application
images with Csync2.

A well-founded performance analysis which
would allow meaningful comparisons with other
synchronization tools would be beyond the scope
of this paper. So here are just some quick and
dirty numbers from a production 2-node cluster
(2.40GHz dual-Xeon, 7200 RPM ATA HD, 1 GB
Ram). The machines had an average load of 0.3
(web and mail) during my tests..

I have about 128.000 files (1.7 GB) of Linux ker-
nel sources and object files on an ext3 filesystem
under Csync2 control on the machines.

Checking for changes (csync2 -cr /) took 13.7
seconds wall clock time, 9.1 seconds in user mode
and 4.1 seconds in kernel mode. The remaining 0.5
seconds were spent in other processes.

Recreating the local database without adding the
files to dirty table (csync2 -cIr after removing the
database file) took 28.5 seconds (18.6 sec user mode
and 2.6 sec kernel mode).

Comparing the Csync2 databases of both hosts
(csync2 -T) took 3 seconds wall clock time.

Running csync2 -u after adding all 128.000 files
took 10 minutes wall clock time. That means that
Csync2 tried to sync all 128.000 files and then rec-
ognized that the remote side had already the most
up-to-date version of the file after comparing the
checksums.

All numbers are the average values of 10 itera-
tions.

7 Security Notes

As statet earlier, authentication is performed us-
ing the peer IP address and a pre-shared-key. The
traffic is SSL encrypted and the SSL certificate of
the peer is checked when there has been already an
SSL connection to that peer in the past (i.e. the
peer certificate is already cached in the database).

All DNS names used in the Csync2 configura-
tion file (the host records) should be resolvable via
the /etc/hosts file to guard against DNS spoofing
attacks.

Depending on the list of files being managed by
Csync2, an intruder on one of the cluster nodes
can also modify the files under Csync2 control on
the other cluster nodes and so might also gain ac-
cess on them. However, an intruder can not modify
any other files on the other hosts because Csync2

checks on the receiving side if all updates are OK
according to the configuration file.

For sure, an intruder would be able to work
around this security checks when Csync2 is also
used to sync the Csync2 configuration files.

Csync2 only syncs the standard UNIX per-
missions (uid, gid and file mode). ACLs, Linux
ext2fs/ext3fs attributes and other extended filesys-
tem permissions are neither synced nor flushed (e.g.
if they are set automatically when the file is cre-
ated).

8 Alternatives

Csync2 is not the only file synchronization tool.
Some of the other free software file synchronization
tools are:

8.1 Rsync

Rsync [7] is a tool for fast incremental file transfers,
but is not a synchronization tool in the context of
this paper. Actually Csync2 is using the rsync
algorithm for file transfers. A variety of synchro-
nization tools have been written on top of rsync.
Most of them are tiny shell scripts.

8.2 Unison

Unison [8] is using an algorithm similar to the one
used by Csync2, but is limited to two-host se-
tups. Its focus is on interactive syncs (there even
are graphical user interfaces) and it is targeting
on syncing home directories between a laptop and
a workstation. Unison is pretty intuitive to use,
among other things because of its limitations.

8.3 Version Control Systems

Version control systems such as Subversion [9] can
also be used to synchronize configuration files or
application images. The advantage of version con-
trol systems is that they can do three way merges
and preserve the entire history of a repository. The
disadvantage is that they are much slower and re-
quire more disk space than plain synchronization
tools.

9 References

[1] Csync2

http://oss.linbit.com/csync2/

[2] LINBIT Information Technologies
http://www.linbit.com/

[3] DRBD
http://www.drbd.org/

[4] Librsync
http://librsync.sourceforge.net/

[5] SQLite
http://www.sqlite.org/

[6] ROCK Linux
http://www.rocklinux.org/

[7] Rsync
http://samba.anu.edu.au/rsync/

[8] Unison
http://www.cis.upenn.edu/˜bcpierce/unison/

[9] Subversion
http://subversion.tigris.org/

