
libvaxdata: VAX Data Format Conversion Routines

By Lawrence M. Baker

Report Series XXXX–XXXX

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
Gale A. Norton, Secretary

U.S. Geological Survey

ii

P. Patrick Leahy, Acting Director

U.S. Geological Survey, Reston, Virginia 200x
Revised and reprinted: 200x

For product and ordering information:
World Wide Web: http://www.usgs.gov/pubprod
Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth,
its natural and living resources, natural hazards, and the environment:
World Wide Web: http://www.usgs.gov
Telephone: 1-888-ASK-USGS

Suggested citation:
Baker, L.M., 2005, libvaxdata: VAX Data Format Conversion Routines: U.S. Geological Survey Open-File
Report 2005-xxx (http://pubs.usgs.gov/2005/xxx).

Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual
copyright owners to reproduce any copyrighted material contained within this report.

Although this program has been used by the USGS, no warranty, expressed or implied, is made by the
USGS or the United States Government as to the accuracy and functioning of the program and related
program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is
assumed by the USGS in connection therewith.

1

libvaxdata: VAX Data Format Conversion
Routines

By Lawrence M. Baker

Introduction
libvaxdata provides a collection of routines for converting numeric data — integer and

floating-point — to and from the formats used on a Digital Equipment Corporation (DEC, later
Compaq Computer Corporation, now Hewlett-Packard Company) VAX 32-bit minicomputer
(Brunner, 1991). Since the VAX numeric data formats are inherited from those used on a DEC
PDP–11 16-bit minicomputer, these routines can be used to convert PDP–11 data as well. VAX
numeric data formats are also the default data formats used on DEC Alpha 64-bit minicomputers
running OpenVMS (Hewlett-Packard, 2005a, 2005b).

The libvaxdata routines are callable from Fortran or C. It is assumed that the caller uses
two’s-complement format for integer data and IEEE 754 format (ANSI/IEEE, 1985) for floating-
point data. (It would be unusual to find a system that does not use these formats. Nevertheless,
you may wish to consult the Fortran or C compiler documentation on your system to be sure.)

Some Fortran compilers support conversion of VAX numeric data on-the-fly when reading
or writing unformatted files, either as a compiler option or a run-time I/O option (Hewlett-Packard,
2002, 2005b). This feature may be easier to use than the libvaxdata routines. Consult the Fortran
compiler documentation on your system to determine if this alternative is available to you.

Description
The routines in libvaxdata are:

from_vax_i2() 16-bit integer byte swap
from_vax_i4() 32-bit integer byte reversal
from_vax_r4() 32-bit VAX F_floating to IEEE S_floating
from_vax_d8() 64-bit VAX D_floating to IEEE T_floating
from_vax_g8() 64-bit VAX G_floating to IEEE T_floating
from_vax_h16() 128-bit VAX H_floating to Alpha X_floating

to_vax_i2() 16-bit integer byte swap
to_vax_i4() 32-bit integer byte reversal
to_vax_r4() 32-bit IEEE S_floating to VAX F_floating
to_vax_d8() 64-bit IEEE T_floating to VAX D_floating
to_vax_g8() 64-bit IEEE T_floating to VAX G_floating
to_vax_h16() 128-bit Alpha X_floating to VAX H_floating

2

where x_floating is the nomenclature used on a DEC Alpha for its floating-point formats (Sites and
Witek, 1995). S_floating is the IEEE 754 32-bit Single Format. T_floating is the IEEE 754 64-bit
Double Format. X_floating is an IEEE 754-conforming 128-bit Double Extended Format.1

All calls take 3 arguments, an input array, an output array, and a conversion count:

C
Declaration #include “convert_vax_data.h”
Prototype void name(const void *in_array, void *out_array,

 const int *count);
Usage #define ARRAY_LEN n

data_type in_array[ARRAY_LEN],
 out_array[ARRAY_LEN];
const int count = ARRAY_LEN;
name(in_array, out_array, &count);

Fortran
Declaration Subroutine NAME(in_array, out_array, count)

Integer count
data_type in_array(count), out_array(count)

Usage Integer ARRAY_LEN
Parameter (ARRAY_LEN = n)
data_type in_array(ARRAY_LEN),
& out_array(ARRAY_LEN)
Call NAME(in_array, out_array, ARRAY_LEN)

where name (NAME) is the name of a libvaxdata routine, n (count) is the number of array
elements to be converted, and data_type is an appropriate data type for the input (in_array)
and output (out_array) data arrays. The in_array and out_array parameters may refer to
the same array, since conversion is carried out element-by-element from in_array to
out_array. The in_array and out_array parameters must not otherwise overlap.

Integer Conversions
VAXes and Intel 80x86 systems (Intel, 2005) store integers in two's-complement format,

ordering the bytes in memory from low-order (l) to high-order (h), called little-endian format:

Byte no. 3 2 1 0
 | | | |

16-bit integer hhhhhhhhllllllll
32-bit integer hhhhhhhhnnnnnnnnmmmmmmmmllllllll

1 The Alpha X_floating format is not necessarily compatible with another system’s IEEE 754-conforming 128-bit
floating-point format. In particular, it is not compatible with the IEEE 754-conforming 128-bit extended floating-point
format implemented in software for IBM XL Fortran for AIX (International Business Machines, 2004). It is
compatible with the IEEE 754-conforming 128-bit extended floating-point format defined for the Hewlett-Packard
PA–RISC (Kane, 1995).

3

Apple Macintosh systems (Apple Computer, 2005) and most Unix systems (e.g., Sun [Sun
Microsystems, 2005a], IBM [Silha, 2005], HP) also store integers in two's-complement format, but
use the opposite (big-endian) byte ordering:

Byte no. 0 1 2 3
 | | | |

16-bit integer hhhhhhhhllllllll
32-bit integer hhhhhhhhnnnnnnnnmmmmmmmmllllllll

A VAX-format integer is converted to big-endian format by reversing the byte order. No
conversion is required when the caller uses little-endian byte order; the data are copied as-is (unless
in_array and out_array are the same array, in which case the copy is skipped altogether).

Floating-Point Conversions
Intel 80x86 systems (Intel, 2005), Apple Macintosh systems (Apple Computer, 2004), and

most Unix systems (Hewlett-Packard, 2002) implement the IEEE 754 floating-point arithmetic
standard. VAX and IEEE formats are similar, after the bytes are rearranged. (VAX floating-point
formats inherit the PDP–11 memory layout based on 16-bit words in little-endian byte order.)

The high-order bit is a sign bit (s). This is followed by a biased exponent (e), and a
(usually) hidden-bit normalized mantissa (m). They differ in the number used to bias the exponent,
the location of the implicit binary point for the mantissa, and the representation of exceptional
numbers (e.g., ±infinity).

VAX floating-point formats: (–1)s _ 2(e–bias) _ 0.1m

Bit no. 31 23 15 7 0
| | | | |

F_floating mmmmmm_m1_mmmmmmseeeeeeeemm_m0_m bias=128

D_floating mmmmmm_m1_mmmmmmseeeeeeeemm_m0_m bias=128
mmmmmm_m3_mmmmmmmmmmmm_m2_mmmmmm

G_floating mmmmmm_m1_mmmmmmseeeeeeeeeee_m0_ bias=1024
mmmmmm_m3_mmmmmmmmmmmm_m2_mmmmmm

H_floating mmmmmm_m0_mmmmmmseeeeeeeeeeeeeee bias=16384
mmmmmm_m2_mmmmmmmmmmmm_m1_mmmmmm
mmmmmm_m4_mmmmmmmmmmmm_m3_mmmmmm
mmmmmm_m6_mmmmmmmmmmmm_m5_mmmmmm

IEEE floating-point formats: (–1)s _ 2(e–bias) _ 1.m (normalized)
(–1)s _ 2(1–bias) _ 0.m (subnormal)

Bit no. 31 23 15 7 0
| | | | |

S_floating seeeeeeeemm_m0_mmmmmmmm_m1_mmmmm bias=127

4

T_floating seeeeeeeeeee_m0_mmmmmmm_m1_mmmmm bias=1023
mmmmmm_m2_mmmmmmmmmmmmm_m3_mmmmm

X_floating seeeeeeeeeeeeeeemmmmmmm_m0_mmmmm bias=16383
mmmmmm_m1_mmmmmmmmmmmmm_m2_mmmmm
mmmmmm_m3_mmmmmmmmmmmmm_m4_mmmmm
mmmmmm_m5_mmmmmmmmmmmmm_m6_mmmmm

VAX format to IEEE format Conversions

After rearranging the bytes, a VAX floating-point number is converted to IEEE floating-
point format by subtracting (1+VAX_bias–IEEE_bias) from the exponent field to (1) adjust from
VAX 0.1m hidden-bit normalization to IEEE 1.m hidden-bit normalization and (2) adjust the bias
from VAX format to IEEE format. True zero (s=e=m=0) and dirty zero (s=e=0, m≠0) are special
cases which must be recognized and handled separately.

Numbers whose absolute value is too small to represent in the normalized IEEE format
illustrated above are converted to subnormal format (e=0, m≠0). Numbers whose absolute value is
too small to represent in subnormal format are set to zero (silent underflow).

Overflow during the conversion is not possible; the largest floating-point number in each
VAX format is smaller than the largest floating-point number in the corresponding IEEE floating-
point format.

If the mantissa of the VAX floating-point number is too large for the corresponding IEEE
floating-point format, bits are simply discarded from the right. Thus, the remaining fractional part
is chopped, not rounded to the lowest-order bit. This can only occur when the conversion requires
IEEE subnormal format.

A VAX floating-point reserved operand (s=1, e=0, m=any) causes a SIGFPE exception to
be raised. The converted result is set to zero.

IEEE format to VAX format Conversions

Conversely, an IEEE floating-point number is converted to VAX floating-point format by
adding (1+VAX_bias–IEEE_bias) to the exponent field. +zero (s=e=m=0), –zero (s=1, e=m=0),
±infinity (s=any, e=all-1's, m=0), and NaNs (s=any, e=all-1's, m≠0) are special cases which must
be recognized and handled separately. Infinities and NaNs cause a SIGFPE exception to be raised.
The result returned has the largest VAX exponent (e=all-1's) and zero mantissa (m=0) with the
same sign as the original.

Numbers whose absolute value is too small to represent in the normalized VAX format
illustrated above are set to zero (silent underflow). (VAX floating-point formats do not support
subnormal numbers.) Numbers whose absolute value exceeds the largest representable VAX-
format number cause a SIGFPE exception to be raised (overflow). (VAX floating-point formats
do not have reserved bit patterns for infinities or NaNs.) The result returned has the largest VAX
exponent and mantissa (e=m=all-1's) with the same sign as the original.

The bytes are then rearranged to the VAX 16-bit word floating-point fomat.

5

Examples
The following C function, from_vax_rhdr(), converts the floating-point data header

from a data file written on a VAX:

/* VAX Data Conversion Routines */

#include "convert_vax_data.h"

#ifndef FORTRAN_LINKAGE
#define FORTRAN_LINKAGE
#endif

/** from_vax_rhdr() */

void FORTRAN_LINKAGE from_vax_rhdr(const void *inbuf, void *outbuf) {

 register const float *in; /* Microsoft C: up to 2 register vars */
 register float *out; /* Microsoft C: up to 2 register vars */
 int n;
 float in_null, out_null;

 in = (const float *) inbuf;
 out = (float *) outbuf;

 in_null = in[1];
 n = 1;
 from_vax_r4(&in_null, &out_null, &n);

 n = 38; /* 1..38 binary */
 from_vax_r4(in, out, &n);
 in += n;
 out += n;

 *out = (*in == in_null) ? out_null : *in ; /* 39 ASCII */
 in++;
 out++;

 n = 89; /* 40..128 binary */
 from_vax_r4(in, out, &n);

}

The equivalent Fortran subroutine, FROM_VAX_RHDR, is:

** FROM_VAX_RHDR
*
 Subroutine FROM_VAX_RHDR(inbuf, outbuf)
*
 Real inbuf[128], outbuf[128]
*
 Real in_null, out_null
*
*
 in_null = inbuf[2]

6

 Call FROM_VAX_R4(in_null, out_null, 1)
* 1..38 binary
 Call FROM_VAX_R4(inbuf[1], outbuf[1], 38)
* 39 ASCII
 If (inbuf[39] .eq. in_null) Then
 outbuf[39] = out_null
 Else
 outbuf[39] = inbuf[39]
 End If
* 40..128 binary
 Call FROM_VAX_R4(inbuf[40], outbuf[40], 89)
*
 Return
 End

Compilation
The C source code for the libvaxdata routines is in convert_vax_data.c in the src

directory of the distribution kit. The C function prototypes are declared in
convert_vax_data.h in the same directory.

To compile all routines into a single object module:

$ cc –c convert_vax_data.c

To compile a single routine into its own module, define MAKE_routine_name,
substituting the upper-case name of the routine for routine_name, and give the object module a
name. This is useful, for example, to insert the routines into a library such that a linker may extract
only the routines actually needed by a particular program. For example, to compile only
from_vax_r4():

$ cc –c –o from_vax_r4.o –DMAKE_FROM_VAX_R4 \
 convert_vax_data.c

Two variants of convert_vax_data.c are available using IS_LITTLE_ENDIAN and
APPEND_UNDERSCORE.

If IS_LITTLE_ENDIAN is defined as 0 (false), then the conversions are performed for a
big-endian system; byte reordering is done for all VAX data types. If IS_LITTLE_ENDIAN is
defined as 1 (true), then byte reordering is done for floating-point formats only; integer formats are
identical to their VAX counterparts.

If IS_LITTLE_ENDIAN is not defined, then it is defined as 1 (true) if any of the
following macros is defined:

vax __vax vms DEC VAX C, GNU C on a DEC VAX or a DEC Alpha,
__vms __alpha or DEC C

M_I86 _M_IX86 Microsoft 80x86 C or Microsoft Visual C++ on an
__M_ALPHA Intel 80x86 or a DEC Alpha

i386 __i386 Sun C, GNU C, or Intel C on an Intel 80x86

7

__x86_64 GNU C or Portland Group C on an AMD Opteron
__x86_64__ or an Intel EM64T

If APPEND_UNDERSCORE is defined, the entry point names are compiled with an
underscore appended. This is required so that they can be called from Fortran in cases where the
Fortran compiler appends an underscore to externally called routines (e.g., Sun Fortran [Sun
Microsystems, 2005b]). For example, to create Fortran-callable versions of all the routines in an
object module called fconvert_vax_data.o on a Sun SPARC system, the compiler command
would be:

$ cc –c –o fconvert_vax_data.o –DIS_LITTLE_ENDIAN=0 \
 –DAPPEND_UNDERSCORE convert_vax_data.c

because a SPARC is a big-endian system and Sun Fortran appends an underscore to externally
called routines.

convert_vax_data.c assumes an ANSI C compiler. Compilation will fail if a char
is not 8 bits, a short is not 16 bits, or an int is not 32 bits. convert_vax_data.c does not
use 64-bit arithmetic.2

Distribution Kit
The libvaxdata distribution kit includes make files and batch command files to create a

(static) library of separately compiled modules for both Fortran and C programs. A single library is
created, called libvaxdata.x, where x is the system suffix for object module libraries (e.g.,
libvaxdata.a on Unix).

To create the library:
1. Download or copy from CD the compressed distribution kit in a format suitable for your

system (they are all identical). For example, use libvaxdata.zip on a Windows
system.

2. Unpack the distribution kit. The most recent versions of Windows, Mac OS X, and Linux
have built-in support to unpack the distribution kit directly from the desktop. (E.g., double-
click the distribution kit to unpack it or open it, then drag-and-drop the contents from there.)
Otherwise, a GUI tool may be available such as WinZip on Windows, or Stuffit Expander
on a Macintosh. From a Linix command line, use tar –xzf libvaxdata.tar.gz.
On Unix systems without a tar that can decompress an archive, use zcat
libvaxdata.tar.gz | tar –xf -. You should see top-level directories named for
each supported system type (e.g., linux, macosx, win32, etc.) and one named src,
containing the C source files.

3. Open a terminal window (Command Prompt on Windows, MPW Shell on Mac OS 9) and
navigate to the directory appropriate for your system. For example, Windows users should
cd to the libvaxdata\win32 directory. Follow the instructions in the README file
there. The command to create the library will be something like:

2 It may be possible to compile a version of libvaxdata for SMP parallel execution, since each conversion is
independent. However, this has not been tried. To enable conversions in parallel across the outer loop over the
conversion count, it may be necessary to assert that in_array and out_array are not aliased (i.e., do not
overlap).

8

> vcmake Windows (Visual C++)
$ @Make OpenVMS (CC)
make.mrc Mac OS 9 (MrC)
$ make –f makefile.gcc Unix/Linux/Mac OS X (gcc)

4. You can then copy the library to a system-wide directory for everyone to use, such as
/usr/local/lib on Unix or Linux, Or, you can copy it to your own library directory,
such as ~/lib on Unix or Linux. See the README file for the instructions to use the
library from your Fortran and C programs.
The distribution kit includes another useful routine to determine at run-time whether the

system uses little-endian byte ordering:

C
Prototype int is_little_endian(void);
Usage if (is_little_endian()) ...

Fortran
Declaration Integer Function IS_LITTLE_ENDIAN()
Usage If (IS_LITTLE_ENDIAN() .ne. 0) ...

The prototype is not defined in convert_vax_data.h, so it must be explicitly declared in a C
program.

References Cited
ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, Institute of

Electrical and Electronics Engineers, New York, NY.
Apple Computer, Inc., 2004, Inside Macintosh: PowerPC Numerics

(http://developer.apple.com/documentation/Performance/Conceptual/Mac_OSX_Numerics/
Mac_OSX_Numerics.pdf).

Apple Computer, Inc., 2005, PowerPC Runtime Architecture Guide for Mac OS X 10.4
(http://developer.apple.com/documentation/DeveloperTools/Conceptual/PowerPCRuntime/
PowerPCRuntime.pdf).

Brunner, Richard A., Ed., 1991, VAX Architecture Reference Manual, Second Edition, Digital
Press, Bedford, MA.

Hewlett-Packard Company, 2002, Compaq Fortran User Manual for Tru64 UNIX and Linux Alpha
Systems, Order no. AA–Q66TE–TE (http://h21007.www2.hp.com/dspp/files/unprotected/
Fortran/docs /unix-um/dfum.htm).

Hewlett-Packard Company, 2005a, HP C User’s Guide for OpenVMS Systems, Order no.
AA–PUNZM–TK (http://h71000.www7.hp.com/commercial/c/docs/ug.pdf).

Hewlett-Packard Company, 2005b, HP Fortran for OpenVMS User Manual, Order no.
AA–QJRWD–TE (http://h71000.www7.hp.com/doc/82final/6443/aa-qjrwd-te.pdf).

Intel Corporation, 2005, IA–32 Intel Architecture Software Developer’s Manual, Volume 1: Basic
Architecture, Order no. 253665–017 (http://download.intel.com/design/Pentium4/manuals/
25366517.pdf).

9

International Business Machines, Corp., 2004, XL Fortran Enterprise Edition for AIX User’s
Guide, Version 9.1, Order no. SC09–7898–00 (http://www-1.ibm.com/support/docview.wss?
uid=swg27005408& aid=1).

Kane, Gerry, 1995, PA–RISC 2.0 Architecture, Prentice-Hall
(http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,2533,00.
html).

Silha, Ed, and others, 2005, PowerPC User Instruction Set Architecture, Book I, Version 2.02,
International Business Machines Corp. (ftp://www6.software.ibm.com/software/developer/
library/es-ppcbook1.zip).

Sites, Richard L., and Witek, Richard T., 1995, Alpha AXP Architecture Reference Manual,
Second Edition, Digital Press (an imprint of Butterworth-Heinemann), Newton, MA.

Sun Microsystems, Inc., 2005a, Sun Studio 10, C User’s Guide, Order no. 819–0494–10
(http://docs-pdf.sun.com/819-0494/819-0494.pdf).

Sun Microsystems, Inc., 2005b, Sun Studio 10, Fortran Programming Guide, Order no.
819–0491–10 (http://docs-pdf.sun.com/819-0491/819-0491.pdf).

