
mod shared roster ldap 0.5.3

Shared Roster LDAP Documentation

Marcin Owsiany

2

Contents

1 Introduction 5

1.1 History . 5

1.2 How does mod shared roster ldap work . 6

1.3 Shameless plug . 6

2 Installing mod shared roster ldap 7

2.1 Installing with ejabberd from source . 7

2.2 Installing with an ejabberd binary package . 7

3 Configuring mod shared roster ldap 9

3.1 Configuration parameters . 9

3.1.1 Filters . 9

3.1.2 Attributes . 10

3.1.3 Control parameters . 11

3.1.4 Connection parameters . 12

3.2 Module startup . 12

3.3 Retrieving the roster . 12

3.4 Configuration examples . 13

3.4.1 Flat DIT . 13

3.4.2 Deep DIT . 15

A Release Notes 19

B Copyright Information 23

3

4 Contents

Chapter 1

Introduction

ejabberd is a free and open source instant messaging server written in Erlang/OTP1.

mod shared roster ldap is a module for ejabberd which lets the server administrator automat-
ically populate users’ rosters (contact lists) with entries based on users and groups defined in an
LDAP-based directory.

1.1 History

The module was initially written in 2005 by Alexey Shchepin (mailto:alexey@sevcom.net).

It was subsequently changed by Realloc (mailto:realloc@realloc.spb.ru) to make it Active
Directory friendly and more usable. This developer has produced a russian-language web page
about AD integration2.

The module has spent some time posted on its contribution page3 where it has received fixes
and minor improvements, however it was not actively developed nor properly maintained.

The most often requested part that was missing was comprehensive documentation. This docu-
ment attempts to provide it. It was written by incorporating my own interpretation of the code
and various descriptions contributed by other people on the ejabberd forums, e.g.:

• http://www.ejabberd.im/node/1317

• http://www.ejabberd.im/node/3711#comment-54820

This documentation attempts to be comprehensive and correct. However since it was written
by analyzing the code, it may not follow the code author’s exact intentions. Corrections and
suggestions are welcome.

1http://www.erlang.org/
2http://realloc.spb.ru/share/ejabberd112ad.html
3http://www.ejabberd.im/mod shared roster ldap

5

mailto:alexey@sevcom.net
mailto:realloc@realloc.spb.ru
http://www.ejabberd.im/node/1317
http://www.ejabberd.im/node/3711#comment-54820
http://www.erlang.org/
http://realloc.spb.ru/share/ejabberd112ad.html
http://www.ejabberd.im/mod_shared_roster_ldap

6 1. Introduction

This document, and mod shared roster ldap code is maintained at the ejabberd-msrl project
page4 on Alioth. The goal of the project is to provide a place for proper maintenance (with
bug tracker, revision control, etc), where the state of this module documentation, featureset and
performance can be improved.

1.2 How does mod shared roster ldap work

The module does its job by a set of hooks, which it registers in the server on startup. Those
hooks intercept the information flowing between a user and ejabberd and amend it with data
retrieved from LDAP in such way as to provide the user with a permanent set of (additional)
“virtual” entries in her roster.

“Virtual” in this context means that the module does not modify the rosters stored by the
mod roster module. Instead it “overlays” some additional entries on top of the ones maintained
by the user herself, every time the user’s client retrieves the roster when connecting to ejabberd.
This also means that the user cannot remove a mod shared roster ldap entry from their roster
permanently — it will be included in the roster on next reconnection.

1.3 Shameless plug

The LDAP graph pictures in section 3.4 were created with ldif2dot.5

4https://alioth.debian.org/projects/ejabberd-msrl/
5http://marcin.owsiany.pl/ldif2dot-page

https://alioth.debian.org/projects/ejabberd-msrl/
http://marcin.owsiany.pl/ldif2dot-page

Chapter 2

Installing mod shared roster ldap

2.1 Installing with ejabberd from source

If you are installing ejabberd from source, then simply copying the mod_shared_roster_ldap.erl,
mod_shared_roster_ldap.hrl and mod_shared_roster_ldap_helpers.erl files into the src/

directory before running make will cause the modules to be compiled and installed with the rest
of ejabberd.

2.2 Installing with an ejabberd binary package

If ejabberd has been installed from a binary package (or using the binary installer), you will
need to build and install the module by yourself. Here are some instructions:

1. you need an Erlang runtime and compiler installation, they probably come together —
check whether you have the erl and erlc commands. You should probably use the same
(or close enough) erlang compiler version as the one which was used to compile your binary
ejabberd installation.

2. you also need an unpacked source package of ejabberd (strictly speaking only the *.hrl

headers are needed) for the same version as you binary ejabberd installation,1

3. copy the files mod_shared_roster_ldap_helpers.erl, mod_shared_roster_ldap.hrl and
mod_shared_roster_ldap.erl, into the src/ subdirectory of ejabberd source tree

4. compile the modules by running the following in a terminal:2

1If you run a Debian-based system, you should be able to get that easily with just apt-get install dpkg-dev

; apt-get source ejabberd
2You need to have the compiler command erlc in your execution PATH variable, or specify the full path to

erlc. In Windows it will be something like "c:\Program Files\Erl5.6.5\bin\erlc.exe"

7

8 2. Installing mod shared roster ldap

erlc mod_shared_roster_ldap.erl

erlc mod_shared_roster_ldap_helpers.erl

5. copy the resulting mod_shared_roster_ldap.beam and mod_shared_roster_ldap_helpers.beam

to the ejabberd ebin directory3

6. restart ejabberd to let it load the module,

3this will be something like /usr/lib/ejabberd/ebin or lib/ejabberd-your-version/ebin/ depending on your
system.

Chapter 3

Configuring
mod shared roster ldap

3.1 Configuration parameters

The module accepts the following configuration parameters. Some of them, if unspecified for
mod shared roster ldap, default to the values specified for the top level of configuration. This
lets you avoid specifying, for example, the bind password, in multiple places.

3.1.1 Filters

These parameters specify LDAP filters used to query for shared roster information. All of them
are run against the ldap_base.

ldap rfilter So called “Roster Filter”. Used to find names of all “shared roster” groups. See
also the ldap_groupattr parameter. If unspecified, defaults to the top-level parameter
of the same name. You have to specify it in some place in the configuration, there is no
default.

ldap ufilter “User Filter” – used for retrieving the human-readable name of roster entries
(usually full names of people in the roster). See also the parameters ldap_userdesc and
ldap_useruid. If unspecified, defaults to the top-level parameter of the same name. If
that one also is unspecified, then the filter is assembled from values of other parameters
as follows ([ldap_SOMETHING] is used to mean “the value of the configuration parameter
ldap SOMETHING”):

(&(&([ldap_memberattr]=[ldap_memberattr_format])([ldap_groupattr]=%g))[ldap_filter])

Subsequently %u and %g are replaced with a *. This means that given the defaults, the
filter sent to the LDAP server is would be (&(memberUid=*)(cn=*)). If however the

9

10 3. Configuring mod shared roster ldap

ldap memberattr format is something like uid=%u,ou=People,o=org, then the filter will
be (&(memberUid=uid=*,ou=People,o=org)(cn=*)).

ldap gfilter “Group Filter” – used when retrieving human-readable name (a.k.a. “Display
Name”) and the members of a group. See also the parameters ldap_groupattr, ldap_groupdesc
and ldap_memberattr. If unspecified, defaults to the top-level parameter of the same name.
If that one also is unspecified, then the filter is constructed exactly in the same way as
User Filter.

ldap filter Additional filter which is AND-ed together with User Filter and Group Filter.
If unspecified, defaults to the top-level parameter of the same name. If that one is also
unspecified, then no additional filter is merged with the other filters.

Note that you will probably need to manually define the User and Group Filters (since the
auto-assembled ones will not work) if:

• your ldap memberattr format is anything other than a simple %u,

• and the attribute specified with ldap memberattr does not support substring matches.

An example where it is the case is OpenLDAP and (unique)MemberName attribute from the
groupOf(Unique)Names objectClass. A symptom of this problem is that you will see messages
such as the following in your slapd.log:

get_filter: unknown filter type=130

filter="(&(?=undefined)(?=undefined)(something=else))"

3.1.2 Attributes

These parameters specify the names of the attributes which hold interesting data in the entries
returned by running filters specified in section 3.1.1.

ldap groupattr The name of the attribute that holds the group name, and that is used to
differentiate between them. Retrieved from results of the “Roster Filter” and “Group
Filter”. Defaults to cn.

ldap groupdesc The name of the attribute which holds the human-readable group name in the
objects you use to represent groups. Retrieved from results of the “Group Filter”. Defaults
to whatever ldap groupattr is set.

ldap memberattr The name of the attribute which holds the IDs of the members of a group.
Retrieved from results of the “Group Filter”. Defaults to memberUid.

The name of the attribute differs depending on the objectClass you use for your group
objects, for example:

posixGroup → memberUid

groupOfNames → member

3.1 Configuration parameters 11

groupOfUniqueNames → uniqueMember

ldap userdesc The name of the attribute which holds the human-readable user name. Retrieved
from results of the “User Filter”. Defaults to cn.

ldap useruid The name of the attribute which holds the ID of a roster item. Value of this at-
tribute in the roster item objects needs to match the ID retrieved from the ldap memberattr

attribute of a group object. Retrieved from results of the “User Filter”. Defaults to cn.

3.1.3 Control parameters

These paramters control the behaviour of the module.

ldap memberattr format A globbing format for extracting user ID from the value of the at-
tribute named by ldap_memberattr. Defaults to %u, which means that the whole value is
the member ID. If you change it to something different, you may also need to specify the
User and Group Filters manually — see section 3.1.1.

ldap memberattr format re A regex for extracting user ID from the value of the attribute
named by ldap_memberattr.

An example value "CN=(\\w*),(OU=.*,)*DC=company,DC=com" works for user IDs such
as the following:

• CN=Romeo,OU=Montague,DC=company,DC=com

• CN=Abram,OU=Servants,OU=Montague,DC=company,DC=com

• CN=Juliet,OU=Capulet,DC=company,DC=com

• CN=Peter,OU=Servants,OU=Capulet,DC=company,DC=com

In case:

• the option is unset,

• or the re module in unavailable in the current Erlang environment,

• or the regular expression does not compile,

then instead of a regular expression, a simple format specified by ldap memberattr format

is used. Also, in the last two cases an error message is logged during the module initializa-
tion.

Also, note that in all cases ldap memberattr format (and not the regex version) is used
for constructing the default “User/Group Filter” — see section 3.1.1.

ldap auth check Whether the module should check (via the ejabberd authentication subsystem)
for existence of each user in the shared LDAP roster. See section 3.3 form more information.
Set to off if you want to disable the check. Defaults to on.

ldap user cache validity Number of seconds for which the cache for roster item full names
is considered fresh after retrieval. 300 by default. See section 3.3 on how it is used during
roster retrieval.

ldap group cache validity Number of seconds for which the cache for group membership is
considered fresh after retrieval. 300 by default. See section 3.3 on how it is used during
roster retrieval.

12 3. Configuring mod shared roster ldap

3.1.4 Connection parameters

The module also accepts the following parameters, all of which default to the top-level parameter
of the same name, if unspecified. See the ejabberd User Guide chapter 3.2.5 LDAP Configura-
tion1 for more information about them.

ldap servers List of LDAP server hostnames to connect to.

ldap port Port to use for LDAP connections. The default is determined based on the TLS
settings.

ldap base Search base DN — the module will look for entries under this element.

ldap rootdn The “bind DN” to use.

ldap password The bind password.

ldap encrypt The encryption protocol to use.

ldap tls verify The encryption protocol to use.

3.2 Module startup

When the module is loaded, ejabberd spawns a separate module instance for each hosted domain.
Each instance performs the following actions on startup:

1. reads and parses the configuration options,

2. prepares the default filter strings which will be used during its operation, unless they were
specified explicitly in the configuration (see section 3.1.1).

3. registers callbacks with some ejabberd hooks, that will cause it to be invoked at various
points in roster lifecycle,

4. spawns a persistent connection to the LDAP server,

5. starts listening for requests — see the following sections for information on how it serves
them

3.3 Retrieving the roster

When the module is called to retrieve the shared roster for a user, the following algorithm is
used:

1. A list of names of groups to display is created: the Roster Filter is run against the base
DN, retrieving the values of the attribute named by ldap groupattr.

1http://www.process-one.net/en/ejabberd/guide en#ldap

http://www.process-one.net/en/ejabberd/guide_en#ldap

3.4 Configuration examples 13

2. Unless the group cache is fresh (see the ldap group cache validity option), it is refreshed:

(a) Information for all groups is retrieved using a single query: the Group Filter is run
against the Base DN, retrieving the values of attributes named by ldap groupattr

(group ID), ldap groupdesc (group “Display Name”) and ldap memberattr (IDs of
group members).

(b) group “Display Name”, read from the attribute named by ldap groupdesc, is stored
in the cache for the given group

(c) the following processing takes place for each retrieved value of attribute named by
ldap memberattr:

i. the user ID part of it is extracted using ldap memberattr format(re),

ii. then (unless ldap auth check is set to off) for each found user ID, the module
checks (using the ejabberd authentication subsystem) whether such user exists
in the given virtual host. It is skipped if the check is enabled and fails.
This step is here for historical reasons. If you have a tidy DIT and properly
defined “Roster Filter” and “Group Filter”, it is safe to disable it by setting
ldap auth check to off — it will speed up the roster retrieval.

iii. the user ID is stored in the list of members in the cache for the given group

3. For each item (group name) in the list of groups retrieved in step 1:

(a) the display name of a shared roster group is retrieved from the group cache

(b) for each IDs of users which belong to the group, retrieved from the group cache:

i. the ID is skipped if it’s the same as the one for which we are retrieving the roster.
This is so that the user does not have himself in the roster.

ii. the display name of a shared roster user is retrieved:

A. first, unless the user name cache is fresh (see the ldap user cache validity

option), it is refreshed by running the User Filter, against the Base DN, re-
trieving the values of attributes named by ldap useruid and ldap userdesc.

B. then, the display name for the given user ID is retrieved from the user name
cache.

3.4 Configuration examples

Since there are many possible DIT2 layouts, it will probably be easiest to understand how to
configure the module by looking at an example for a given DIT (or one resembling it).

3.4.1 Flat DIT

This seems to be the kind of DIT for which this module was initially designed. Basically there
are just user objects, and group membership is stored in an attribute individually for each user.
For example in a layout shown in figure 3.1, the group of each user is stored in its ou attribute.

Such layout has a few downsides, including:

2http://en.wikipedia.org/wiki/Directory Information Tree

http://en.wikipedia.org/wiki/Directory_Information_Tree

14 3. Configuring mod shared roster ldap

Figure 3.1: Flat DIT graph

3.4 Configuration examples 15

• information duplication – the group name is repeated in every member object

• difficult group management – information about group members is not centralized, but
distributed between member objects

• inefficiency – the list of unique group names has to be computed by iterating over all users

This however seems to be a common DIT layout, so the module keeps supporting it. You can
use the following configuration. . .

{mod_shared_roster_ldap,[

{ldap_base, "ou=flat,dc=nodomain"},

{ldap_rfilter, "(objectClass=inetOrgPerson)"},

{ldap_groupattr, "ou"},

{ldap_memberattr, "cn"},

{ldap_filter, "(objectClass=inetOrgPerson)"},

{ldap_userdesc, "displayName"}

]},

. . . to be provided with a roster as shown in figure 3.2 upon connecting as user czesio.

Figure 3.2: Roster from flat DIT

3.4.2 Deep DIT

This type of DIT contains distinctly typed objects for users and groups – see figure 3.3. They
are shown separated into different subtrees, but it’s not a requirement.

If you use the following example module configuration with it:

{mod_shared_roster_ldap,[

{ldap_base, "ou=deep,dc=nodomain"},

{ldap_rfilter, "(objectClass=groupOfUniqueNames)"},

16 3. Configuring mod shared roster ldap

Figure 3.3: Example “deep” DIT graph

3.4 Configuration examples 17

{ldap_filter, ""},

{ldap_gfilter, "(&(objectClass=groupOfUniqueNames)(cn=%g))"},

{ldap_groupdesc, "description"},

{ldap_memberattr, "uniqueMember"},

{ldap_memberattr_format, "cn=%u,ou=people,ou=deep,dc=nodomain"},

{ldap_ufilter, "(&(objectClass=inetOrgPerson)(cn=%u))"},

{ldap_userdesc, "displayName"}

]},

. . . and connect as user czesio, then ejabberd will provide you with the roster shown in figure 3.4.

Figure 3.4: Example roster from “deep” DIT

18 3. Configuring mod shared roster ldap

Appendix A

Release Notes

Here are the release notes for each release, in reverse-chronological order. If you are upgrading
from an older version, follow the “Upgrade instructions” for each version after the one you are
upgrading from.

0.5.3 — Changes:

• changed group entries to dict/7 to ignore (rather than crash on) UIDs which cause
jlib:nodeprep/1 to return atom error — for example junk entries which are over
1KiB long.

• added support for TLS connections to the LDAP server, consistent with the support
in other ldap-based modules.

0.5.2 — Changes:

• made the module compatible with ejabberd 2.1.4 (bug #312628)

0.5.1 — Changes:

• made user Display Names work with mixed-case usernames. Previously they would
only work for usernames which were all lower case.

• enabled stringprep driver in unit tests — this has no impact on production code.

0.5.0 — Upgrade instructions:

• the ldap groupdesc parameter now defaults to whatever ldap groupattr is set to,
rather than to cn. You will need to set it manually if you relied on the previous
default.

• from this release on, user and group “display names” as well as group membership
information is cached in memory. The list of group names is still queried on every
roster retrieval.

• note that a change in this release makes the module incompatible with ejabberd

versions below 2.0 (in case it was compatible before).

19

20 A. Release Notes

— Changes:

• changed the function which retrieves user “display names” to cache them as a dictio-
nary, rather than a plain list, to improve lookup performance when there is a large
number of users.

• changed the way group members and group “display names” are retrieved. Rather
than doing it once per group, instead all members of all groups, together with group
names, are retrieved in a single LDAP query and cached. See section 3.3 for more
information about this.

• as a side-effect of the above change, fixed a bug where retrieving a group “display
name” would only work for “Flat DIT” setups for groups with exactly one member.

• introduced a new option ldap group cache validity which defaults to 5 minutes
and lets you specify the time for which group membership and group display name
information is cached.

• started using eldap utils:get user part/2 (available since ejabberd 2.0) rather
than a local copy.

• refactored parts of documentation to reduce duplication and dispersion of related
information. Also fixed a few mistakes in how filters are run.

• added upgrade instructions and missing option addition to the 0.4.0 release notes.

— Credits:

• The patch for get user part/2 cleanup was contributed by Denis Kurochkin.

0.4.0 — Upgrade instructions:

• note that there are now three required source files, not just one. See changes below,
and the updated installation instructions in chapter 2.

• if you use a different “display name” than the user ID in your roster entries, then
you might have to set the newly added ldap useruid option to be the same as your
ldap memberattr. See the algorithm for retrieving the “display name” in section 3.3.

— Changes:

• added a couple of new source files: mod_shared_roster_ldap_helpers.erl and
mod_shared_roster_ldap.hrl.

• added new option ldap memberattr format re which lets you use regular expressions
for extracting user IDs from attribute values, rather than simple patterns,

• added new option ldap auth check which lets you skip a verification LDAP call for
each roster item,

• added new option ldap useruid which lets you specify the name of the attribute
which holds the ID of a user roster entry,

• introduced a new option ldap user cache validity which defaults to 5 minutes and
lets you specify the time for which user display name information is cached.

• changed the way roster item descriptions (human-friendly names) are retrieved. In-
stead of making an LDAP query per each roster item (which caused significant roster
retrieval latency in case of large rosters) now all descriptions are retrieved with a single
query for all roster items from a given domain and cached. See section 3.3 for more

21

information about this. This is the first and probably most significant step for fixing
bug #3122111. Feedback is welcome on how this affects performance and memory
usage.

• changed the process item function (which gets called when user moves or renames
items in their roster) to no longer use Filter for checking whether a user belongs to
a group. Instead it uses the same mechanism as when loading the roster after login
(described in section 3.3). I suspect this will be slower, sometimes significantly,
than the previous approach (feedback welcome). However using this mechanism will
make it easier to cache the results in the future release, leading to overall speedup.

• added instructions for installing with a binary ejabberd package,

• made the module log a message when it crashes,

• added unit tests for several important functions, using a couple of mocking libraries,

• simplified or eliminated some functions by extracting common code into helper func-
tions,

— Credits:

• The patch adding support for the ldap memberattr format re and ldap auth check

options was contributed by Denis Kurochkin.

0.3.1 — Documentation-only changes:

• added a note that defining ldap gfilter is necessary when substring matching would
otherwise be necessary but unavailable for ldap memberattr

0.3.0 — Changes:

• added unit tests for option parsing,

• added ldap ufilter and ldap gfilter options. This fixes bug #3121712.

• changed the example a little and added another one for a flat DIT

0.2.0 — Changes:

• applied a patch to allow the module to work with ejabberd 2.1.x — missing argument
to eldap:start link

• applied a patch from badlop and mikekaganski to nodeprep users retrieved in get group users

• optimize get user roster to only call get group name once per group. Patch pro-
vided by badlop and mikekaganski.

0.1.1 — Initial release:

• an unversioned mod_shared_roster_ldap.erl imported from a webpage,

• wrote the documentation,

1https://alioth.debian.org/tracker/index.php?func=detail&aid=312211&group id=100433&atid=413107
2https://alioth.debian.org/tracker/index.php?func=detail&aid=312171&group id=100433&atid=413107

https://alioth.debian.org/tracker/index.php?func=detail&aid=312211&group_id=100433&atid=413107
https://alioth.debian.org/tracker/index.php?func=detail&aid=312171&group_id=100433&atid=413107

22 A. Release Notes

• there are several problems in this version:

– does not work with ejabberd version 2.1 due to a missing eldap:start link

parameter,

– human-readable name of each group is needlessly retrieved as many times as the
group’s member count,

– roster is the same for all users — contains all groups,

– there is just one base DN, which has to contain all user and group objects. This
is very broad/inflexible and potentially inefficient.

Appendix B

Copyright Information

mod shared roster ldap documentation.
Copyright c© 2009-2010 Marcin Owsiany mailto:marcin@owsiany.pl

This document is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this document;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

23

mailto:marcin@owsiany.pl

	Introduction
	History
	How does mod_shared_roster_ldap work
	Shameless plug

	Installing mod_shared_roster_ldap
	Installing with ejabberd from source
	Installing with an ejabberd binary package

	Configuring mod_shared_roster_ldap
	Configuration parameters
	Filters
	Attributes
	Control parameters
	Connection parameters

	Module startup
	Retrieving the roster
	Configuration examples
	Flat DIT
	Deep DIT

	Release Notes
	Copyright Information

