Data Exploration with Chaco – Talk notes
I. Opening Remarks

A. Feel free to ask questions at any time, slow me down if I’m talking too fast or ask me to repeat something.
B. This talk is about a software toolkit, and is targeted towards “developer scientists”. What this means is that there are parts where I talk about event handling, object containment, etc., which is pretty far removed from actual data analysis. However, if you’ve ever tried writing your own plotting application, you know that these are all issues you have to deal with. The point is that we are thinking about all these things in Chaco so that *you* don’t have to.
II. Chaco is a Plot Application Toolkit
A. Designed for building plotting and data visualization applications. If you have specific dataset that you want plotted in a particular fashion for a publication, then you need a plot. If you have a collection of datasets or a stream of data that you want to interactively explore, then you need a data visualization tool. Chaco can be used to build both. Example applications:
1. Batch plotting of data and saving out images to serve up via the web
2. Display for realtime data acquisition
3. Visual plot construction kit that allows users to lay out and configure plots in a WYSIWYG fashion
4. Visual data editor for tweaking input parameters to simulations
5. Mapping and GIS applications
III. Some implementation details
A. Underlying technologies: Numpy, Kiva & Agg, Traits
B. Vector drawing throughout
C. WX-only, although at one point in the past there was TK support
D. Windows, Linux supported; Mac support is imminent (no pressure, Robert)
IV. Chaco Features

A. Flexible drawing and layout. Plots consist of graphical components which can be placed inside nestable containers for layout, positioning, and event dispatch. Every component has a configurable rendering loop with distinct layers and backbuffering. Containers can draw cooperatively so that layers span across the containment hierarchy.
B. Flexible layout. Containers are sizers, can nest, direct event handling
C. Modular and extensible architecture. Chaco is object oriented from the ground up for ease of extension and customization. There are clear interfaces and abstract classes defining extension points for writing your own custom behaviors, from custom tools, plot types, layouts, etc. Most classes are also “subclass-friendly”, so that subclasses can override one or two methods and everything else just works.
D. Built-in concepts of data model, events, layout. There is a well defined relationship between the data side of things, and we are working on an even more sophisticated and powerful generic data pipeline, leveraging some of the new features of numpy. All graphical objects get events and can easily respond to them. Flexible layout is handled accurately and quickly using containers.
E. Can be used to create plots for publication. Even though it is designed to be a plot application toolkit, you can also use Chaco to generate plots to disk. Right now it can only save to raster formats, but the previous version (“Chaco Classic”) had some vector format support, and we hope to restore and improve vector output in the future (PDF, PS, SVG).
V. A first look
A. We don’t always have to use factories
B. We have to manually set bounds, but only because we’re rendering offline. Normally if we are in a window, it will determine our bounds.
VI. Creating a window
A. Note that to add a title label to the plot, instead of setting an attribute on the plot, we create an actual PlotLabel object and attach it as an overlay.
B. Enable2 is a thin graphical component library that Chaco sits on top of. It is also part of ETS. All Chaco objects are fundamentally Enable components, and the event dispatch and such are all inherited from Enable.

VII. Opening the window
A. Normal python is single threaded, so we have to manually invoke app.MainLoop()
B. (run tutorial2.py from command prompt)

C. IPython, when invoked with –wthread or –pylab, launches the GUI in a different thread so we can open windows and continue interacting with the interpreter
D. (type the lines from the slide into IPython)
VIII. Fun From Within IPython
A. Since we have an interpreter in the same process as the plot window, we can interact with the plot objects from the prompt
B. (run tutorial2_ipython.py from within IPython)

C. We have to request a redraw after each modification because plots don’t automatically update in response to attribute changes. This is an explicit design decision to avoid overdrawing (doing too much work) when a large batch of updates are received.
IX. Editing traits

A. run tutorial2_ipython.py from within IPython; do plot.x_axis.edit_traits() and plot.hgrid.edit_traits()
X. Adding a basic interactor
A. There are two things that need to happen in order to hook up a tool or interactor. The component needs to have the interactor added to its list of tools (so that it can forward events to the interactor), and the interactor also needs a reference to the component or plot that it will be attached to.

B. (manually punch in code from the slide)

C. We can add and remove the interactor as we wish.
XI. Adding a zoom
A. Add to .overlays instead of .tools. Since all Chaco components can receive events, you can turn anything into a “tool” or an event handler for anything else. This allows you to compose very interesting things.
B. (run tutorial4.py from command prompt)

XII. Coordinating different tools

A. The PanTool and the zoom tool both listen for left-click action. We need to coordinate them. Fortunately, Chaco has a mechanism for allowing tools to "activate" themselves, thereby preventing two tools from seizing “focus” from the user.
B. Explain about listener/activation convention

C. (run tutorial5.py from command prompt)
XIII. Writing our first interactor
A. All Chaco components get events. All components can also have tools attached to them that get handed the same events that the component sees. Using this fact, we can create a simple diagnostic tool to print out the events that we get.
B. (run tutorial6.py from the command prompt)
C. dispatch() is the top-level event dispatch method that gets called on components and tools.

D. Note that we are getting mouse_enter and mouse_leave events, too.

XIV. Looking at data
A. X-Y plots (of which LinePlot is a subclass) have both an x_mapper and a y_mapper defined on them, so we can use those to reverse map into data space.
XV. Digging deeper

Typically one doesn’t have to think too much about the software architecture behind a plot because its core pieces are pretty obvious to us. But once we start looking at multiple plots with interrelated data, or trying to write interactive, generic tools that can be easily reused, then we have to start distilling some of the core ideas into interfaces.
XVI. DataSource
A. Wraps actual data or a domain data object/stream in the application (when embedding Chaco into an existing app). Allows various objects in the Chaco world to look at identically the same data, decorate it with metadata, etc. Datasources can have one of 3 possible dimensions: scalar, point, or image.
B. sort_order is important because it allows downstream components to pick optimal ways for searching and indexing into the data

C. This interface is all that is used by Chaco to look at its upstream data. To embed chaco in your application, you just have to write a datasource around your domain data or data stream.

D. This interface was our first cut at the data pipeline interface. We plan on moving to more of a tabular/columnar format for the interface, and relying on record arrays and masked arrays to implement a fast datasource for arrays that is also very flexible for composing sequences of filters.

XVII. Ranges, Mappers, and the Plot
A. Ranges bound a data space. In its simplest form, consists of two scalars representing low and high bounds in a single dimension. However, dataranges can also be set to autoscale to the extents of their contained data, and hence they need references to upstream datasources.
B. Mapper: Doesn’t have much state but performs the critical task of mapping from data space into screen space and back. For most plots, we can use separate 1D mappers for the X and Y dimensions, but some plot types (like polar plots) don’t have a separable (index, value) -> (x,y) mapping, so their mappers are higher dimensional.
XVIII. Putting two plots on the screen
Now we’re ready to look at how Chaco offers multiple views into a single data space. First we’ll create a plot that consists of two plots.
A. (run tutorial8.py at the command prompt)

XIX. Connecting the two plots visually
A. (run tutorial9.py at the command prompt)

B. (run tutorial9b.py at the command prompt)
XX. Linked views, but not connected data

A. The previous two shared the same range, but not the same index datasource. We can attach a line inspector to show this.

B. (run tutorial10.py at the command prompt)

XXI. Connecting the data

A. (run tutorial10b.py at the command prompt)

XXII. Index-Value vs. X-Y
A. We are going to change the orientation of the right_plot, but all of our dataspace linking will still work. We'll also add another LineInspector to each plot to form a full crosshair.
B. (run tutorial11.py at the command prompt)
XXIII. Visual components
All visual components subclass from PlotComponent, so they automatically gets lots of common attributes and behavior. These include the ability to attach tools and controllers, drawing separate layers, participate in layout, and a variety of other convenient behaviors like drawing borders and selection boxes.
A. Renderer: Anything that draws to the screen based on information from data components is a renderer. This includes not only the plots themselves, but also axes and grids, colorbars, annotations, etc.
B. Containers: These typically don’t have any visual representation, and are just used to group related visual components together. However, they are first-class components, so it is possible to place overlays on them, paint in novel ways, and attach tools to them.
C. Tools: These are components that respond to user input. Although all plot components can directly implement event handlers, it is much cleaner (think model-view-controller) to bundle related event handling methods together into a Tool, and then attach that tool to the desired component.
XXIV. Containers
A. Layout
B. Event dispatch

C. Backbuffering
XXV. Walkthrough of interesting examples
A. Pseudocolor scatter range tool

1. run ipython in examples/; from

a) from colormapped_scatter import MyFrame

b) frame = MyFrame(None, size=(500,500))

c) frame.plot.edit_traits()

B. Range zoom demo (zoom_plot.py)
C. Geophysical log plots

1. backbuffering, large datasets
2. conceptual containers

3. templates

D. Geophysics cross plots

1. gr, vp, vs, rhob, hillfacm, dts, nphi, xshm
XXVI. Where to get it
A. SVN

B. ETS tarball (eggs soon!)
