
ESS — Emacs Speaks Statistics

ESS version 5.2.3

The ESS Developers (A.J. Rossini, R.M. Heiberger, K. Hornik,
M. Maechler, R.A. Sparapani and S.J. Eglen)
Current Documentation by The ESS Developers
Copyright c© 2002–2003 The ESS Developers
Copyright c© 1996–2001 A.J. Rossini
Original Documentation by David M. Smith
Copyright c© 1992–1995 David M. Smith
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Chapter 1: Introduction to ESS 1

1 Introduction to ESS

The S family (S, Splus and R) and SAS statistical analysis packages provide sophisticated
statistical and graphical routines for manipulating data. Emacs Speaks Statistics (ESS) is
based on the merger of two pre-cursors, S-mode and SAS-mode, which provided support
for the S family and SAS respectively. Later on, Stata-mode was also incorporated.

ESS provides a common, generic, and useful interface, through emacs, to many statistical
packages. It currently supports the S family, SAS, BUGS, Stata and XLisp-Stat with the
level of support roughly in that order.

A bit of notation before we begin. emacs refers to both GNU Emacs by the Free
Software Foundation, as well as XEmacs by the XEmacs Project. The emacs major mode
ESS[language], where language can take values such as S, SAS, or XLS. The inferior
process interface (the connection between emacs and the running process) referred to as
inferior ESS (iESS), is denoted in the modeline by ESS[dialect], where dialect can take
values such as S3, S4, S+3, S+4, S+5, S+6, R, XLS, VST, SAS.

Currently, the documentation contains many references to ‘S’ where actually any sup-
ported (statistics) language is meant, i.e., ‘S’ could also mean ‘XLisp-Stat’ or ‘SAS’.

For exclusively interactive users of S, ESS provides a number of features to make life
easier. There is an easy to use command history mechanism, including a quick prefix-search
history. To reduce typing, command-line completion is provided for all S objects and “hot
keys” are provided for common S function calls. Help files are easily accessible, and a paging
mechanism is provided to view them. Finally, an incidental (but very useful) side-effect of
ESS is that a transcript of your session is kept for later saving or editing.

No special knowledge of Emacs is necessary when using S interactively under ESS.

For those that use S in the typical edit–test–revise cycle when programming S functions,
ESS provides for editing of S functions in Emacs edit buffers. Unlike the typical use of S
where the editor is restarted every time an object is edited, ESS uses the current Emacs
session for editing. In practical terms, this means that you can edit more than one function
at once, and that the ESS process is still available for use while editing. Error checking is
performed on functions loaded back into S, and a mechanism to jump directly to the error
is provided. ESS also provides for maintaining text versions of your S functions in specified
source directories.

1.1 Why should I use ESS?

Statistical packages are powerful software systems for manipulating and analyzing data,
but their user interfaces often leave something something to be desired: they offer weak
editor functionality and they differ among themselves so markedly that you have to re-learn
how to do those things for each package. ESS is a package which is designed to make editing
and interacting with statistical packages more uniform, user-friendly and give you the power
of emacs as well.

ESS provides several features which make it easier to interact with the ESS process (a
connection between your buffer and the statistical package which is waiting for you to input
commands). These include:

Chapter 1: Introduction to ESS 2

• Command-line editing for fixing mistakes in commands before they are entered. The
‘-e’ flag for S-plus provides something similar to this, but here you have the full range
of Emacs commands rather than a limited subset. However, other packages such as
XLisp-Stat and S3 do not necessarily have features like this built-in. See Section 4.1
[Command-line editing], page 19.

• Searchable command history for recalling previously-submitted commands. This pro-
vides all the features of the ‘Splus -e’ history mechanism, plus added features such as
history searching. See Section 4.5 [Command History], page 23.

• Command-line completion of both object and file names for quick entry. This is similar
to tcsh’s facility for filenames; here it also applies to object names and list components.
See Section 4.2 [Completion], page 19.

• Hot-keys for quick entry of commonly-used commands in ‘S’ such as objects() and
search(). See Section 4.7 [Hot keys], page 25.

• Transcript recording for a complete record of all the actions in an S session. See
Section 4.4 [Transcript], page 21.

• Interface to the help system, with a specialized mode for viewing S help files. See
Chapter 9 [Help], page 44.

If you commonly create or modify S functions, you will have found the standard facilities
for this (the ‘fix()’ function, for example) severely limiting. Using S’s standard features,
one can only edit one function at a time, and you can’t continue to use S while editing.
ESS corrects these problems by introducing the following features:
• Object editing. ESS allows you to edit more than one function simultaneously in

dedicated Emacs buffers. The ESS process may continue to be used while functions
are being edited. See Section 7.1 [Edit buffer], page 35.

• A specialized editing mode for S code, which provides syntactic indentation and high-
lighting. See Section 7.5 [Indenting], page 37.

• Facilities for loading and error-checking source files, including a keystroke to jump
straight to the position of an error in a source file. See Section 7.3 [Error Checking],
page 36.

• Source code revision maintenance, which allows you to keep historic versions of S source
files. See Section 7.7 [Source Files], page 39.

• Facilities for evaluating S code such as portions of source files, or line-by-line evaluation
of files (useful for debugging). See Section 7.4 [Evaluating code], page 36.

Finally, ESS provides features for re-submitting commands from saved transcript files,
including:
• Evaluation of previously entered commands, stripping away unnecessary prompts. See

Section 4.4.3 [Transcript resubmit], page 22.

1.2 New features in ESS

Changes/New Features in 5.2.3:
• ESS: When new inferior ESS processes are created, by default they will replace the

current buffer (this restores behavior from pre 5.2.0). If you wish new ESS processes
to start in another window of the current frame, set inferior-ess-same-window to nil.

Chapter 1: Introduction to ESS 3

• New variables inferior-Splus-args and inferior-R-args provide a way to pass command
line arguments to starting S and R processes.

Changes/New Features in 5.2.2:
• bug-fixes for 5.2.1 (require ’executable), html docs, etc.
• ess-lisp-directory/../doc/info added to Info-directory-list if ess-info not found by info
• ESS[R]: If you have other versions of R on your exec-path, such as "R-1.8.1" with

Unix or "rw1081" with Windows, ESS will find them and create appropriate functions,
such as M-x R-1.8.1 or M-x rw1081, for calling them. By default only Unix programs
beginning "R-1" and "R-2" and Windows programs parallel to the version of R in your
exec-path will be found, but see ess-r-versions and ess-rterm-versions for ways to find
other versions of R.

• ESS[R]: Other versions of R, such as "R-1.8.1" on Unix and "rw1081" on Windows,
are added to the "ESS / Start Process / Other" menu.

• ESS[S]: If you have other versions of S-Plus on your Windows computer, such as S-Plus
6.1 or S-Plus 4.5, ESS will find them and create appropriate functions, such as M-x
splus61, for calling the console version (Sqpe) inside an emacs buffer. By default only
programs installed in the default location will be found, but see ess-SHOME-versions
for ways to find other versions of S-Plus.

• ESS[S]: Other versions of Sqpe on Windows, such as "splus61", are added to the "ESS
/ Start Process / Other" menu.

• ESS[R]: (bug fix) ess-quit (bound to C-c C-q) should now quit the inferior R process,
when issued from either the inferior buffer, or from a .R buffer.

Changes/New Features in 5.2.1:
• ESS[S] (R and S-plus): now have toolbar support with icons to evaluate code in the

inferior process or to switch there. This code is experimental and likely to change
as XEmacs/Emacs issues get resolved. The toolbar should be enabled if your Emacs
displays images, but can be disabled with the variable ess-use-toolbar. Thanks to David
Smith from Insightful for the S-plus logo.

• ESS[SAS]: ess-sas-graph-view (F12) enhanced; you can specify external file viewers for
each graphics file type via the alist ess-sas-graph-view-viewer-alist; also .jpg/.gif are
now handled by image-mode on XEmacs, if available, otherwise by graphics primitives
as before

Changes/New Features in 5.2.0:
• ESS[BUGS]: new info documentation! now supports interactive processing thanks to

Aki Vehtari; new architecture-independent unix support as well as support for BUGS
v. 0.5

• ESS[SAS]: convert .log to .sas with ess-sas-transcript; info documentation improved; Lo-
cal Variable bug fixes; SAS/IML statements/functions now highlighted; files edited re-
motely by ange-ftp/EFS/tramp are recognized and pressing SUBMIT opens a buffer on
the remote host via the local variable ess-sas-shell-buffer-remote-init which defaults to
"ssh"; changed the definition of the variable ess-sas-edit-keys-toggle to boolean rather
than 0/1; added the function ess-electric-run-semicolon which automatically reverse
indents lines containing only "run;"; C-F1 creates MS RTF portrait from the current

mailto:Aki.Vehtari@hut.fi

Chapter 1: Introduction to ESS 4

buffer; C-F2 creates MS RTF landscape from the current buffer; C-F9 opens a SAS
DATASET with PROC INSIGHT rather than PROC FSVIEW; C-F10 kills all buffers
associated with .sas program; "inferior" aliases for SAS batch: C-c C-r for submit
region, C-c C-b for submit buffer, C-c C-x for goto .log; C-c C-y for goto .lst

• ESS[S]: Pressing underscore (" ") once inserts " <- " (as before); pressing underscore
twice inserts a literal underscore. To stop this smart behaviour, add "(ess-smart-
underscore nil)" to your .emacs after ess-site has been loaded; ess-dump-filename-
template-proto (new name!) now can be customized successfully (for S language di-
alects); Support for Imenu has been improved; set ess-imenu-use-S to non-nil to get
an "Imenu-S" item on your menubar; ess-help: Now using nice underlines (instead of
‘nuke-* ^H ’)

• ESS[R]: After (require ’essa-r), M-x ess-r-var allows to load numbers from any Emacs
buffer into an existing *R* process; M-x ess-rdired gives a “directory editor” of R ob-
jects; fixed ess-retr-lastvalue-command, i.e. .Last.value bug (thanks to David Brahm)

• ESS: Support for creating new window frames has been added to ESS. Inferior ESS
processes can be created in dedicated frames by setting inferior-ess-own-frame to t. ESS
help buffers can also open in new frames; see the documentation for ess-help-own-frame
for details. (Thanks to Kevin Rodgers for contributing code.)

Changes/New Features in 5.1.24:
• The version number is now correct even inside ESS/Emacs

Changes/New Features in 5.1.23:
• Minor more Makefile clean up.

Changes/New Features in 5.1.22:
• Besides info documentation, PDF and HTML documentation are also provided (instead

of built using "make") and available on the web as well; see ESS web page and StatLib
• Now that info documentation is available, the README.* files are no longer supported.

However, they are still distributed for what it’s worth.
• ESS is now an XEmacs package! See XEmacs Installation HOWTO for details (specif-

ically, items 10-15).
• ESS[SAS]: more user-friendly enhancements for remote SAS batch jobs with Kermit file

transfers (LOG and OUTPUT function key features now supported). Multiple shells
now supported so you can run SAS on different computers from different buffers by
setting the buffer-local variable ess-sas-shell-buffer to unique buffer names.

• Major re-vamping of Makefile/Makeconf.

Changes/New Features in 5.1.21:
• ESS[SAS]: info documentation now available!, see ESS->Help for SAS; F12 opens GSAS-

FILE nearest point for viewing either within emacs, when available, or via an external
viewer; more syntax highlighting keywords; more enhancements for remote SAS batch
jobs with Kermit; new framework for remote SAS interactive jobs, see ess-remote

• ESS[S]: info documentation now available!, see ESS->Help for the S family
• Makefile: tag now independent of rel; info files made by doc/Makefile and installed in

new info sub-directory

http://software.biostat.washington.edu/ess/doc
http://lib.stat.cmu.edu/general/ESS/doc
http://www.xemacs.org/Install/index.html

Chapter 1: Introduction to ESS 5

Changes/New Features in 5.1.20:
• New ‘options()$STERM’ in the S dialects (S, S-Plus, R). The S program can determine

the environment in which it is currently running. ESS sets the option to ‘iESS’ or
‘ddeESS’ when it starts an S language process. We recommend other specific values
for S language processes that ESS does not start.

• New ‘ess-mouse-me’ function, assigned to S-mouse-3 by default. User may click on a
word or region and then choose from the menu to display the item, or a summary, or
a plot, etc. This feature is still under development.

• GNU Emacs 21.1 is now supported (fixed for S dialects, SAS & BUGS), (some from
Stephen Eglen).

• XEmacs 21.x is now supported (fixed w32-using-nt bug)
• XEmacs on Win (NT) is better supported.
• Workaround for bug in Sqpe+6 (S-PLUS 6 for Win).
• should now work even when imenu is not available (for old Xemacsen).
• ESS[SAS]: XEmacs-Imenu fix; C-TAB is globalized along with your function-key defi-

nitions, if specified; you can specify your SAS library definitions outside of autoexec.sas
for ess-sas-data-view with SAS code placed in the variable ess-sas-data-view-libname,
also the dataset name is defaulted to the nearest permanent dataset to point; Speedbar
support now works for permanent datasets, please ignore first./last.; new font-locking is
now the default with more improvements for font-locking PROCs, macro statements,
* ; and %* ; comments; you can toggle sas-log-mode with F10 which will font-lock
your .log (if it isn’t too big); submit remote .sas files accessed with ange-ftp, EFS
or Tramp (Kermit is experimental) by setting ess-sas-submit-method to ’sh; ess-sas-
submit-command and ess-sas-submit-command-options are buffer-local so you can have
local file variable sections at the end of your .sas files to request different executables
or specify special options and the local file variables are re-read at submit instead of
only at file open so that if you make a change it is picked up immediately;

• ESS[BUGS]: font-lock with ‘in’ fixed.
• for STATA: font-lock bug fixed.
• for Rd mode: C-c C-v and ‘switch-process’ in menu. further, C-c C-f prefix (Rd-

font) for inserting or surrounding a word by things such as \code{.}, \code{\link{.}},
\emph{.} etc.

• new functions (ess-directory-function) and (ess-narrow-to-defun) ess-directory <->
default-directory logic (Jeff Mincy).

• Re-organized Makefile and fixed a few bugs.

Changes/New Features in 5.1.19:
• S+6 now supported (Tony Rossini (Unix) and Rich Heiberger (Windows))
• New BUGS support through ESS[BUGS] mode (Rodney Sparapani) Templates assist

you in writing .bug and .cmd code (.cmd and .log are replaced by .bmd and .bog
to avoid emacs extension collisions). Substitution" parameters facilitate "automagic"
generation of data...in" and "init...in" filenames, "const N=" from your data file and
"monitor()/stats()" commands. Activated by pressing F12.

• Fixes for ‘ess-smart-underscore’ SAS breakage (Rich Heiberger)

Chapter 1: Introduction to ESS 6

• You can change between PC and Unix, local and global SAS function-key definitions
interactively (Rich Heiberger)

• C-Submit a highlighted region to SAS batch (Rodney Sparapani)
• New and improved SAS syntax highlighting (Rodney Sparapani) To get the new func-

tionality, set ess-sas-run-make-regexp to nil. Also available in .log files via F10.
• Open a permanent SAS dataset for viewing via F9 (Rodney Sparapani) You must have

the library defined in autoexec.sas for it to work.
• User-friendly defaults for ‘sas-program’, ‘ess-sas-batch-pre-command’ and ‘ess-sas-

batch-post-command’ as well Customize support for these and other ESS[SAS]
variables (Rodney Sparapani)

• ‘ess-sas-suffix-2’ now defaults to .dat via F11 (Rodney Sparapani)
• Emacs/XEmacs, Unix/Windows issues collectively handled in ess-emcs.el
• defadvice solves problem of missing *ESS* (thanks to Jeff Mincy)
• Improved manual a bit by including things that were only in ‘README’.

Changes/New Features in 5.1.18:
• New ‘ess-smart-underscore’ function, now assigned to " " by default. Inserts ‘ess-S-

assign’ (customizable " <- "), unless inside string and comments where plain " " is
used instead. (MM)

• Fixes for longstanding interactive SAS breakage (RMH)

Changes/New Features in 5.1.17:
• Documentation for Windows Installation (Rich Heiberger)
• removal of ess-vars, finalization of customize support (in the sense that there is no more

use of ess-vars, but that we need to fix ess-cust) (AJ Rossini)
• Many small (and large) fixes/contributions (MMaechler)
• addition of the "S-equal" variable and provide M-x ess-add-MM-keys a way to remap

" " to ‘ess-S-assign’, typically " <- ", but customizable. (MMaechler)

Changes/New Features in 5.1.16:
• BUG FIXES
• Better SAS support

Changes/New Features in 5.1.15:
• BUG FIXES

Changes/New Features in 5.1.14:
• Yet more fixes to SAS mode, (Rich Heiberger and Rodney Sparapani)
• Customize support (for most Emacsen which support it) (AJRossini)
• ARC and ViSta support out of the box, and fixes for XLispStat (AJRossini)

Changes/New Features in 5.1.13:
• Version numbering finally all depending on the ./VERSION file, thanks to Martin

Maechler.
• Yet more fixes to SAS mode, thanks to Rich Heiberger.

Chapter 1: Introduction to ESS 7

Changes/New Features in 5.1.12:
• Splus 5.1 stabilized, thanks to Martin Maechler, Bill Venables, Chuck Taylor, and

others.
• More fixes to SAS mode, thanks to Rodney Sparapani and Rich Heiberger.

Changes/New Features in 5.1.11:
• More fixes to Stata mode, thanks to Brendan Halpin.
• fixed bugs in ESS-elsewhere, thanks to many testers
• README.SPLUS4WIN has DETAILED instructions for S-PLUS 2000, thanks to

David Brahm.
• Fixes to SAS mode, thanks to Rodney Sparapani

Changes/New Features in 5.1.10:
• More fixes to Stata mode
• primitive generic version of ESS-elsewhere
• Small fixes to SAS/Stata.

Changes/New Features in 5.1.9:
• Stata mode works
• Literate Data Analysis using Noweb works

Changes/New Features in 5.1.8:
• Bug fixes
• R documentation mode defaults changed

Changes/New Features in 5.1.2:
• able to use inferior iESS mode to communicate directly with a running S-Plus 4.x

process using the Microsoft DDE protocol. We use the familiar (from Unix ESS) C-
c C-n and related key sequences to send lines from the S-mode file to the inferior S
process. We continue to edit S input files in ESS[S] mode and transcripts of previous
S sessions in ESS Transcript mode. All three modes know the S language, syntax, and
indentation patterns and provide the syntactic highlighting that eases the programming
tasks.

1.3 Authors of and contributors to ESS

The ESS environment is built on the open-source projects of many contributors, dating
back nearly 15 years. Doug Bates and Ed Kademan wrote S-mode in 1989 to edit S and
Splus files in GNU Emacs. Frank Ritter and Mike Meyer added features, creating version
2. Meyer and David Smith made further contributions, creating version 3. For version 4,
David Smith provided process interaction based on Olin Shivers’ comint package.

John Sall wrote GNU Emacs macros for SAS source code around 1990. Tom Cook added
more functionality creating SAS-mode which was distributed in 1994. Also in 1994, A.J.
Rossini extended S-mode to support XEmacs. Together with extensions written by Martin
Maechler, this became version 4.7 and supported S, Splus, and R. In 1995, Rossini extended
SAS-mode to work with XEmacs.

mailto:brendan@essex.ac.uk
mailto:brahm@alum.mit.edu

Chapter 1: Introduction to ESS 8

In 1997, Rossini merged S-mode and SAS-mode into a single Emacs package for statistical
programming; the product of this marriage was called ESS version 5.
• The multiple process code, and the idea for ess-eval-line-and-next-line are by

Rod Ball.
• Thanks to Doug Bates for many useful suggestions.
• Thanks to Martin Maechler for reporting and fixing bugs, providing many useful com-

ments and suggestions, and for maintaining the S-mode mailing list.
• Thanks to Frank Ritter for updates from the previous version, the menu code, and

invaluable comments on the manual.
• Thanks to Ken’ichi Shibayama for his excellent indenting code, and many comments

and suggestions.
• Last but definitely not least, thanks to the many beta testers of the S-mode and ESS

mailing lists.

ESS version 5 is being developed and currently maintained by
• A.J. Rossini
• Richard M. Heiberger
• Kurt Hornik
• Martin Maechler
• Rodney A. Sparapani
• Stephen Eglen

1.4 Getting the latest version of ESS

The latest version of ESS is always available on the web at: ESS web page or StatLib
The latest development version of ESS is available via https://svn.R-project.org/ESS/,

the ESS Subversion repository. If you have a Subversion client (see http://subversion.tigris.org/),
you can download the sources using:

% svn checkout https://svn.r-project.org/ESS/trunk path

which will put the ESS files into directory path. Later, within that directory, ‘svn update’
will bring that directory up to date. Windows-based tools such as TortoiseSVN are also
available for downloading the files. Alternatively, you can browse the sources with a web
browser at: ESS SVN site. However, please use a subversion client instead to minimize the
load when retrieving.

If you remove other versions of ESS from your emacs load-path, you can then use the
development version by adding the following to .emacs:

(load "/path/to/ess-svn/lisp/ess-site.el")

Note that https is required, and that the SSL certificate for the Subversion server of the
R project is

Certificate information:
- Hostname: svn.r-project.org
- Valid: from Jul 16 08:10:01 2004 GMT until Jul 14 08:10:01 2014 GMT
- Issuer: Department of Mathematics, ETH Zurich, Zurich, Switzerland, CH

mailto:rossini@u.washington.edu
mailto:rmh@temple.edu
mailto:hornik@ci.tuwien.ac.at
mailto:maechler@stat.math.ethz.ch
mailto:rsparapa@mcw.edu
mailto:stephen@gnu.org
http://ess.r-project.org
http://lib.stat.cmu.edu/general/ESS/
https://svn.R-project.org/ESS/
http://subversion.tigris.org/
https://svn.r-project.org/ESS/trunk

Chapter 1: Introduction to ESS 9

- Fingerprint: c9:5d:eb:f9:f2:56:d1:04:ba:44:61:f8:64:6b:d9:33:3f:93:6e:ad

(currently, there is no “trusted certificate”). You can accept this certificate permanently
and will not be asked about it anymore.

1.5 How to read this manual

If you need to install ESS, read Chapter 2 [Installation], page 10 for details on what
needs to be done before proceeding to the next chapter.

In this manual we use the standard notation for describing the keystrokes used to invoke
certain commands. C-<chr> means hold the CONTROL key while typing the character
<chr>. M-<chr> means hold the META or EDIT or ALT key down while typing <chr>. If
there is no META, EDIT or ALT key, instead press and release the ESC key and then type
<chr>.

All ESS commands can be invoked by typing M-x command. Most of the useful commands
are bound to keystrokes for ease of use. Also, the most popular commands are also available
through the emacs menubar, and finally, if available, a small subset are provided on the
toolbar. Where possible, keybindings are similar to other modes in emacs to strive for
a consistent user interface within emacs, regardless of the details of which programming
language is being edited, or process being run.

Some commands, such as M-x R can accept an optional ‘prefix’ argument. To specify the
prefix argument, you would type C-u before giving the command. e.g. If you type C-u M-x

R, you will be asked for command line options that you wish to invoke the R process with.
Emacs is often referred to as a ‘self-documenting’ text editor. This applies to ESS in two

ways. First, limited documentation about each ESS command can be obtained by typing
C-h f. For example, if you type C-h f ess-eval-region, documentation for that command
will appear in a separate *Help* buffer. Second, a complete list of keybindings that are
available in each ESS mode and brief description of that mode is available by typing C-h m

within an ESS buffer.
Emacs is a versatile editor written in both C and lisp; ESS is written in the Emacs

lisp dialect (termed ‘elisp’) and thus benefits from the flexible nature of lisp. In particular,
many aspects of ESS behaviour can be changed by suitable customization of lisp variables.
This manual mentions some of the most frequent variables. A full list of them however is
available by using the Custom facility within emacs. (Type M-x customize-group RET ess

RET to get started.) Appendix A [Customization], page 61 provides details of common user
variables you can change to customize ESS to your taste, but it is recommended that you
defer this section until you are more familiar with ESS.

Chapter 2: Installing ESS on your system 10

2 Installing ESS on your system

The following section details those steps necessary to get ESS running on your system.
We now discuss installation, which might happen under Unix or Microsoft Windows.

First, we discuss Unix installation. See Section 2.1 [Unix installation], page 10.
For Microsoft Windows Installation please skip to the See Section 2.2 [Microsoft Windows

installation], page 11.

2.1 Unix installation

1. cd to a directory where you want to install ESS, creating it if necessary. This directory
will be referred to below as ESSDIR.

2. Retrieve the latest version from ESS downloads area to ESSDIR.
3. Decompress/unarchive the files from the disribution.

gunzip ess-VERSION.tar.gz
tar xvf ess-VERSION.tar

(or: gunzip < ess-VERSION.tar.gz | tar xvf -).
(or using GNU tar: tar zxvf ess-VERSION.tar.gz).

The tar command will create the subdirectory ess-VERSION and unarchive the files
there.

4. Edit the file ‘ESSDIR/ess-VERSION/lisp/ess-site.el’ as explained in the comments
section of that file.

5. Add the line
(load "ESSDIR/ess-VERSION/lisp/ess-site")

to your user or system installation file (GNU Emacs uses ‘$HOME/.emacs’ and XEmacs
uses ‘$HOME/.xemacs/init.el’ for the user initialization file. GNU Emacs uses de-
fault.el or site-init.el and XEmacs uses site-start.el for the system installation file).
Alternatively, if ess-site.el is in your current Lisp path, you can do:

(require ’ess-site)

to configure emacs for ESS.
6. That’s it! If you are installing just a local copy of ESS for yourself, ESS is now ready to

be used. (The remaining steps below are for advanced installation.) To edit statistical
programs, load the files with the requiste extensions (".sas" for SAS, ".S" for S-PLUS,
".R" for R, and ".lsp" for XLispStat). To start a statistical process within Emacs, such
as R, type M-x R.

7. (OPTIONAL) If you are running S-PLUS or R, you might consider installing the
database files. From within emacs, C-x d to the directory containing ESS. Now:

M-x S+6

to get S running. Once you see the SPLUS prompt, do:
M-x ess-create-object-name-db

(this will create the file ‘ess-s+6-namedb.el’; if it isn’t in the ESS directory, move it
there).
Then, completions will be autoloaded and will not be regenerated for every session.
For R, do the same, using

http://ess.r-project.org/downloads

Chapter 2: Installing ESS on your system 11

M-x R

and then M-x ess-create-object-name-db creating ‘ess-r-namedb.el’; if it isn’t in
the ESS directory, move it there).

8. (OPTIONAL) READ THIS ITEM THOROUGHLY BEFORE STARTING:
If you want to place the compiled files in other locations edit the LISPDIR and IN-
FODIR entries in ‘Makeconf’ in the ESSDIR/ess-VERSION directory (if you are using
XEmacs, then you also need to edit the EMACS entry as follows: EMACS=xemacs).
You can compile those files by:

make all

When that completes successfully, install the compiled files:
make install

This will install the compiled info files and lisp files. If you are an XEmacs user,
then you should be done. If not, then you may have to edit/create the file ‘dir’ that
is found in the directory specified by INFODIR: see the sample ‘dir’ in ESSDIR/ess-
VERSION/doc/info. If ‘dir’ does not exist in INFODIR, then the sample ‘dir’ will be
installed.
Note 1: It is assumed that GNU make will be used; otherwise, edit the ESSVERSION
and ESSVERSIONTAG entries in ‘Makeconf’ appropriately, e.g.: ESSVERSION=5.2.0
and ESSVERSIONTAG=ESS-5-2-0
Note 2: ESS can be installed for XEmacs as an XEmacs package much more easily
than what has been described anywhere above. However, the latest ESS version will
not be available at the same time as an XEmacs package; generally, it can take weeks
or months to appear in the latter format. For more information on installing ESS as
an XEmacs package see Quickstart Package Guide.

2.2 Microsoft Windows installation

For Microsoft Windows installation, please follow the next steps: (see separate instruc-
tions above for UNIX See Section 2.1 [Unix installation], page 10.
1. cd to a directory where you keep emacs lisp files, or create a new directory (for ex-

ample, ‘c:\emacs\’) to hold the distribution. This directory will be referred to below
as "the ESS distribution directory". It will contain, at the end, either the tar file
‘ess-VERSION.tar.gz’ or the zip file ‘ess-VERSION.zip’, and a directory for the ESS
source, which will be termed "the ESS-VERSION source directory".

2. Retrieve the compressed tar file ‘ess-VERSION.tar.gz’ or the zipped file
‘ess-VERSION.zip’ from one of the FTP or WWW archive sites via FTP (or HTTP).
Be aware that http browsers on Windows frequently change the "." and "-" characters
in filenames to other punctuation. Please change the names back to their original
form.

3. Copy ‘ess-VERSION.tar.gz’ to the location where you want the ess-VERSION direc-
tory, for example to ‘c:\emacs\ess-VERSION.tar.gz’, and cd there. For example,

cd c:\emacs

Extract the files from the distribution, which will unpack into a subdirectory,
‘ess-VERSION’.

http://www.xemacs.org/Documentation/packageGuide.html

Chapter 2: Installing ESS on your system 12

gunzip ess-VERSION.tar.gz
tar xvf ess-VERSION.tar
(or: gunzip < ess-VERSION.tar.gz | tar xvf -).
(or: from the zip file: unzip ess-VERSION.zip)

The tar command will extract files into the current directory.
Do not create ‘ess-VERSION’ yourself, or you will get an extra level of depth to your
directory structure.

4. Windows users will usually be able to use the ‘lisp/ess-site.el’ as distributed. Only
rarely will changes be needed.

5. Windows users will need to make sure that the directories for the software they will be
using is in the PATH environment variable. On Windows 9x, add lines similar to the
following to your ‘c:\autoexec.bat’ file:

path=%PATH%;c:\progra~1\spls2000\cmd

On Windows NT/2000/XP, add the directories to the PATH using the My
Computer/Control Panel/System/Advanced/Environment Variables menu. Note
that the directory containing the program is added to the PATH, not the program
itself. One such line is needed for each software program. Be sure to use the
abbreviation progra~1 and not the long version with embedded blanks. Use
backslashes "\".

6. Add the line
(load "/PATH/ess-site")

to your .emacs (or emacs) file (or default.el or site-init.el, for a site-wide installation).
Replace /PATH above with the value of ess-lisp-directory as defined in ‘ess-site.el’.
Use forwardslashes /. (GNU Emacs uses the filename ‘%HOME%/.emacs’ and XEmacs
uses the filename ‘%HOME%/.xemacs/init.el’ for the initialization file.)

7. To edit statistical programs, load the files with the requisite extensions (".sas" for SAS,
".S" or "s" or "q" or "Q" for S-PLUS, ".r" or ".R" for R, and ".lsp" for XLispStat).

8. To run statistical processes under emacs:
To start the S-PLUS 6.x GUI from ESS under emacs:

M-x S
(or M-x S+6).

You will then be asked for a pathname ("S starting data directory?"), from which
to start the process. The prompt will propose your current directory as the default.
ESS will start the S-PLUS GUI. There will be slight delay during which emacs is
temporarily frozen. ESS will arrange for communication with the S-PLUS GUI using
the DDE protocol. Send lines or regions from the emacs buffer containing your S
program (for example, ‘myfile.s’) to the S-PLUS Commands Window with the C-c
C-n or C-c C-r keys. (If you are still using S-PLUS 4.x or 2000, then use M-x S+4.)
To start an S-PLUS 6.x session inside an emacs buffer—and without the S-PLUS GUI:

M-x Sqpe
(or M-x Sqpe+6).

You will then be asked for a pathname ("S starting data directory?"), from which
to start the process. The prompt will propose your current directory as the default.

Chapter 2: Installing ESS on your system 13

You get Unix-like behavior, in particular the entire transcript is available for emacs-
style search commands. Send lines or regions from the emacs buffer containing your S
program (for example, ‘myfile.s’) to the *S+6* buffer with the C-c C-n or C-c C-r
keys. Interactive graphics are available with Sqpe by using the java library supplied
with S-PLUS 6.1 and newer releases. Enter the commands:

library(winjava)
java.graph()

Graphs can be saved from the java.graph device in several formats, but not PostScript.
If you need a PostScript file you will need to open a separate postscript device. (If
you are still using S-PLUS 4.x or 2000, then use M-x Sqpe+4.)
To connect to an already running S-PLUS GUI (started, for example, from the S-PLUS
icon):

M-x S+6-existing

You will then be asked for a pathname ("S starting data directory?"), from which to
start the process. The prompt will propose your current directory as the default. ESS
will arrange for communication with the already running S-PLUS GUI using the DDE
protocol. Send lines or regions from the emacs buffer containing your S program (for
example, ‘myfile.s’) to the S-PLUS Commands Window with the C-c C-n or C-c C-r
keys. (If you are still using S-PLUS 4.x or 2000, then use M-x S+4-existing.)
If you wish to run R, you can start it with:

M-x R

XLispStat can not currently be run with
M-x XLS

Hopefully, this will change. However, you can still edit with emacs, and cut and paste
the results into the XLispStat *Listener* Window under Microsoft Windows.

9. (OPTIONAL) If you are running Sqpe or R, you might consider installing the database
files. From within emacs, C-x d to the directory containing ESS. Now:

M-x Sqpe+6

to get S running. Once you see the SPLUS prompt, do:
M-x ess-create-object-name-db

(this will create the file ‘ess-s+6-namedb.el’; if it isn’t in the ESS directory, move it
there).
Then, completions will be autoloaded and will not be regenerated for every session.
For R, do the same, using

M-x R

and then M-x ess-create-object-name-db creating ‘ess-r-namedb.el’; if it isn’t in
the ESS directory, move it there).

10. That’s it!

2.3 Requirements

ESS has been tested with
• S-PLUS 3.3, 3.4, 4.5, 2000, 5.0, 5.1, 6.0, 6.1, 6.2

Chapter 2: Installing ESS on your system 14

• R >=0.49
• S4
• SAS >=6.12
• BUGS 0.5, 0.603
• Stata >=6.0
• XLispStat >=3.50

on the following platforms
• Linux (all)
• Solaris/SunOS (all)
• Microsoft Windows 95/98/NT/2000/XP (SPLUS 4.5/2000/6.*, R, SAS and BUGS)
• Apple Mac OS (SAS for OS 9 and X11 R for OS X)

with the following versions of emacs
• GNU Emacs 20.3, 20.4, 20.5, 20.6, 20.7, 21.1, 21.3
• XEmacs 21.0, 21.1.13-14, 21.4.0-8, 21.4.9-13/21.5.171, 21.4.14-15; as of June 2004, ESS

does not work with XEmacs Betas such as 21.5.17
• GNU Emacs <20.3 and XEmacs <21.02

1 requires the files.el patch to revert-buffer for the Local Variables updating problem
2 These releases of emacs are no longer supported, so an upgrade is recommended if you plan to use ESS.

If you have GNU Emacs 19.29, see See Section 2.1 [Unix installation], page 10. Also, note that the
‘custom’ library bundled with Emacs 19.34 is too old , its API is incompatible with the ‘new custom’
bundled with recent Emacsen. The ‘new custom’ for Emacs 19.34 is available for download here.

ftp://ftp.dina.kvl.dk/pub/Staff/Per.Abrahamsen/custom/custom-1.9962.tar.gz

Chapter 3: Interacting with statistical programs 15

3 Interacting with statistical programs

As well as using ESS to edit your source files for statistical programs, you can use ESS to
run these statistical programs. In this chapter, we mostly will refer by example to running
S from within emacs. The emacs convention is to name such proceses running under its
control as ‘inferior processes’. This term can be slightly misleading, in which case these
processes can be thought of ‘interactive processes’. Either way, we use the term ‘iESS’ to
refer to the Emacs mode used to interact with statistical programs.

3.1 Starting an ESS process

To start an S session, simply type M-x S RET.

S will then (by default) ask the question

S starting data directory?

Enter the name of the directory you wish to start S from (that is, the directory you would
have cd’d to before starting S from the shell). This directory should have a ‘.Data’ subdi-
rectory.

You will then be popped into a buffer with name ‘*S*’ which will be used for interacting
with the ESS process, and you can start entering commands.

3.2 Running more than one ESS process

ESS allows you to run more than one ESS process simultaneously in the same session.
Each process has a name and a number; the initial process (process 1) is simply named
(using S-PLUS as an example) ‘S+3:1’. The name of the process is shown in the mode line
in square brackets (for example, ‘[S+3:2]’); this is useful if the process buffer is renamed.
Without a prefix argument, M-x S starts a new ESS process, using the first available process
number. With a prefix argument (for R), C-u M-x R allows for the specification of command
line options.

You can switch to any active ESS process with the command ‘M-x
ess-request-a-process’. Just enter the name of the process you require; com-
pletion is provided over the names of all running S processes. This is a good command to
consider binding to a global key.

3.3 ESS processes on Remote Computers

ESS works with processes on remote computers as easily as with processes on the local
machine. The recommended way to access a statistical program on remote computer is to
start it from a telnet or ssh buffer and then connect ESS to that buffer.

1. Start a new telnet or ssh buffer and connect to the remote computer (e.g. use ‘M-x
telnet’ or ‘M-x ssh’; ssh.el is available at ftp://ftp.splode.com/pub/users/friedman/emacs-lisp/ssh.el).

2. Start the ESS process on the remote machine, for example with one of the commands
‘Splus’, or ‘R’, or ‘sas -stdio’.

ftp://ftp.splode.com/pub/users/friedman/emacs-lisp/ssh.el

Chapter 3: Interacting with statistical programs 16

3. Enter the ESS command ‘M-x ess-remote’. You will be prompted for a program name.
Enter ‘sp6’ or ‘r’ or ‘sas’ or another valid name. Your telnet process is now known
to ESS. All the usual ESS commands (‘C-c C-n’ and its relatives) now work with the
S language processes. For SAS you need to use a different command ‘C-c i’ (that is a
regular ‘i’, not a ‘C-i’) to send lines from your ‘myfile.sas’ to the remote SAS process.
‘C-c i’ sends lines over invisibly. With ess-remote you get teletype behavior—the data
input, the log, and the listing all appear in the same buffer. To make this work, you
need to end every PROC and DATA step with a "RUN;" statement. The "RUN;"
statement is what tells SAS that it should process the preceding input statements.

4. Graphics (interactive) on the remote machine. If you run X11 (See Section 12.2.2 [X11],
page 58, X-windows) on both the local and remote machines then you should be able to
display the graphs locally by setting the ‘DISPLAY’ environment variable appropriately.
Windows users can download ‘xfree86’ from cygwin.

5. Graphics (static) on the remote machine. If you don’t run the X window system on the
local machine, then you can write graphics to a file on the remote machine, and display
the file in a graphics viewer on the local machine. Most statistical software can write
one or more of postscript, GIF, or JPEG files. Depending on the versions of emacs and
the operating system that you are running, emacs itself may display ‘.gif’ and ‘.jpg’
files. Otherwise, a graphics file viewer will be needed. Ghostscript/ghostview may be
downloaded to display ‘.ps’ and ‘.eps’ files. Viewers for GIF and JPEG are usually
included with operating systems. See Section 10.5 [ESS(SAS)–Function keys for batch
processing], page 49, for more information on using the F12 key for displaying graphics
files with SAS.

Should you or a colleague inadvertently start a statistical process in an ordinary
‘*shell*’ buffer, the ‘ess-remote’ command can be used to convert it to an ESS buffer
and allow you to use the ESS commands with it.

We have two older commands, now deprecated, for accessing ESS processes on remote
computers. See Section 3.4 [S+elsewhere and ESS-elsewhere], page 16.

3.4 S+elsewhere and ESS-elsewhere

These commands are now deprecated. We recommend ‘ess-remote’. We have two
versions of the elsewhere function. ‘S+elsewhere’ is specific for the S-Plus program. The
more general function ‘ESS-elsewhere’ is not as stable.

1. Enter ‘M-x S+elsewhere’. You will be prompted for a starting directory. I usually give
it my project directory on the local machine, say ‘~myname/myproject/’

Or enter ‘M-x ESS-elsewhere’. You will be prompted for an ESS program and for
a starting directory. I usually give it my project directory on the local machine, say
‘~myname/myproject/’

2. The ‘*S+3*’ buffer will appear with a prompt from the local operating system (the
unix prompt on a unix workstation or with cygwin bash on a PC, or the msdos prompt
on a PC without bash). emacs may freeze because the cursor is at the wrong place.
Unfreeze it with ‘C-g’ then move the cursor to the end with ‘M->’. With ‘S+elsewhere’
the buffer name is based on the name of the ESS program.

Chapter 3: Interacting with statistical programs 17

3. Enter ‘telnet myname@other.machine’ (or ‘ssh myname@other.machine’). You will
be prompted for your password on the remote machine. Use ‘M-x send-invisible’
before typing the password itself.

4. Before starting the ESS process, type ‘stty -echo nl’ at the unix prompt. The ‘-echo’
turns off the echo, the ‘nl’ turns off the newline that you see as ‘^M’.

5. You are now talking to the unix prompt on the other machine in the ‘*S+3*’ buffer. cd
into the directory for the current project and start the ESS process by entering ‘Splus’
or ‘R’ or ‘sas -stdio’ as appropriate. If you can login remotely to your Windows 2000,
then you should be able to run ‘Sqpe’ on the Windows machine. I haven’t tested this
and noone has reported their tests to me. You will not be able to run the GUI through
this text-only connection.

6. Once you get the S or R or SAS prompt, then you are completely connected. All the
‘C-c C-n’ and related commands work correctly in sending commands from ‘myfile.s’
or ‘myfile.r’ on the PC to the ‘*S+3*’ buffer running the S or R or SAS program on
the remote machine.

7. Graphics on the remote machine works fine. If you run the X window sysyem on the
remote unix machine you should be able to display them in ‘xfree86’ on your PC. If
you don’t run X11, then you can write graphics to the postscript device and copy it to
your PC with dired and display it with ghostscript.

3.5 Changing the startup actions

If you do not wish ESS to prompt for a starting directory when starting a new process,
set the variable ess-ask-for-ess-directory to nil. In this case, the value of the variable
ess-directory is used as the starting directory. The default value for this variable is
your home directory. If ess-ask-for-ess-directory has a non-nil value (as it does by
default) then the value of ess-directory provides the default when prompting for the
starting directory. Incidentally, ess-directory is an ideal variable to set in ess-pre-run-
hook.

If you like to keep a record of your S sessions, set the variable ess-ask-about-transfile
to t, and you will be asked for a filename for the transcript before the ESS process starts.

User Optioness-ask-about-transfile
If non-nil, as for a file name in which to save the session transcript.

Enter the name of a file in which to save the transcript at the prompt. If the file doesn’t
exist it will be created (and you should give it a file name ending in ‘.St’); if the file already
exists the transcript will be appended to the file. (Note: if you don’t set this variable but
you still want to save the transcript, you can still do it later — see Section 4.4.4 [Saving
transcripts], page 23.)

Once these questions are answered (if they are asked at all) the S process itself is started
by calling the program name specified in the variable inferior-ess-program. If you need
to pass any arguments to this program, they may be specified in the variable inferior-
S program name-args (e.g. if inferior-ess-program is "S+" then the variable to set is
inferior-S+-args. It is not normally necessary to pass arguments to the S program; in

Chapter 3: Interacting with statistical programs 18

particular do not pass the ‘-e’ option to Splus, since ESS provides its own command history
mechanism.

By default, the new process will be displayed in another window in the current frame. If
you wish your S process to appear in a separate variable, customize the variable inferior-
ess-own-frame.

Chapter 4: Interacting with the ESS process 19

4 Interacting with the ESS process

The primary function of the ESS package is to provide an easy-to-use front end to the
S interpreter. This is achieved by running the S process from within an Emacs buffer,
so that the Emacs editing commands are available to correct mistakes in commands, etc.
The features of Inferior S mode are similar to those provided by the standard Emacs shell
mode (see section “Shell Mode” in The Gnu Emacs Reference Manual). Command-line
completion of S objects and a number of ‘hot keys’ for commonly-used S commands are
also provided for ease of typing.

4.1 Entering commands and fixing mistakes

Sending a command to the ESS process is as simple as typing it in and pressing the
〈RETURN〉 key:

• RET (inferior-ess-send-input)
Send the command on the current line to the ESS process.

If you make a typing error before pressing RET all the usual Emacs editing commands are
available to correct it (see section “Basic editing commands” in The GNU Emacs Reference
Manual). Once the command has been corrected you can press 〈RETURN〉 (even if the cursor
is not at the end of the line) to send the corrected command to the ESS process.

ESS provides some other commands which are useful for fixing mistakes:

• C-c C-w (backward-kill-word)
Deletes the previous word (such as an object name) on the command line.

• C-c C-u (comint-kill-input)
Deletes everything from the prompt to point. Use this to abandon a command you
have not yet sent to the ESS process.

• C-c C-a (comint-bol)
Move to the beginning of the line, and then skip forwards past the prompt, if any.

See section “Shell Mode” in The Gnu Emacs Reference Manual, for other commands
relevant to entering input.

4.2 Completion of object names

In the process buffer, the 〈TAB〉 key is for completion, similar to that provided by Shell
Mode for filenames. In Inferior S mode, pressing the 〈TAB〉 key when the cursor is following
the first few characters of an object name completes the object name; if the cursor is
following a file name TAB completes the file name.

• TAB (comint-dynamic-complete)
Complete the S object name or filename before point.

When the cursor is just after a partially-completed object name, pressing 〈TAB〉 provides
completion in a similar fashion to tcsh except that completion is performed over all known
S object names instead of file names. ESS maintains a list of all objects known to S at any
given time, which basically consists of all objects (functions and datasets) in every attached

Chapter 4: Interacting with the ESS process 20

directory listed by the search() command along with the component objects of attached
data frames (if your version of S supports them).

For example, consider the three functions (available in Splus version 3.0) called
binomplot(), binom.test() and binomial(). Typing bin TAB after the S prompt will
insert the characters ‘om’, completing the longest prefix (‘binom’) which distinguishes these
three commands. Pressing TAB once more provides a list of the three commands which
have this prefix, allowing you to add more characters (say, ‘.’) which specify the function
you desire. After entering more characters pressing TAB yet again will complete the object
name up to uniqueness, etc. If you just wish to see what completions exist without adding
any extra characters, type M-?.
• M-? (ess-list-object-completions)

List all possible completions of the object name at point.

ESS also provides completion over the components of named lists accessed using the ‘$’
notation, to any level of nested lists. This feature is particularly useful for checking what
components of a list object exist while partway through entering a command: simply type
the object name and ‘$’ and press TAB to see the names of existing list components for that
object.

Completion is also provided over file names, which is particularly useful when using S
functions such as get() or scan() which require fully expanded file names. Whenever the
cursor is within an S string, pressing TAB completes the file name before point, and also
expands any ‘~’ or environment variable references.

If the cursor is not in a string and does not follow a (partial) object name, the 〈TAB〉 key
has a third use: it expands history references. See Section 4.6 [History expansion], page 24.

4.3 Completion details

ESS automatically keeps track of any objects added or deleted to the system (such as new
objects created, or directories added to the search list) to make completion as accurate as
possible. Whenever ESS notices that search list has changed 1 when you attach a directory
or data frame, the objects associated with it immediately become available for a completion;
when it is detached completion is no longer available on those objects.

To maintain a list of accessible objects for completion, ESS needs to determine which
objects are contained in each directory or data frame on the search list. This is done at the
start of each S session, by running the objects() command on every element of the search
list. On some systems, however, this can be rather slow; it’s doubly frustrating when you
consider that most of the directories on the search list are the standard S libraries, which
never change anyway! When ESS was installed, a database of the standard object names
should have been created which should speed up this process at the start of an S session;
if it has not been created you will get a warning like ‘S-namedb.el does not exist’. See
Chapter 2 [Installation], page 10, for information on how to create this database.

Efficiency in completion is gained by maintaining a cache of objects currently known
to S; when a new object becomes available or is deleted, only one component of the cache

1 The variable ess-change-sp-regexp is a regular expression matching commands which change the search
list. You will need to modify this variable if you have defined custom commands (other than attach,
detach, collection or library) which modify the search list.

Chapter 4: Interacting with the ESS process 21

corresponding to the associated directory needs to be refreshed. If ESS ever becomes con-
fused about what objects are available for completion (such as when if refuses to complete
an object you know is there), the command M-x ess-resynch forces the entire cache to be
refreshed, which should fix the problem.

4.4 Manipulating the transcript

Most of the time, the cursor spends most of its time at the bottom of the ESS process
buffer, entering commands. However all the input and output from the current (and previ-
ous) ESS sessions is stored in the process buffer (we call this the transcript) and often we
want to move back up through the buffer, to look at the output from previous commands
for example.

Within the process buffer, a paragraph is defined as the prompt, the command after the
prompt, and the output from the command. Thus M-{ and M-} move you backwards and
forwards, respectively, through commands in the transcript. A particularly useful command
is M-h (mark-paragraph) which will allow you to mark a command and its entire output
(for deletion, perhaps). For more information about paragraph commands, see section
“Paragraphs” in The GNU Emacs Reference Manual.

If an ESS process finishes and you restart it in the same process buffer, the output from
the new ESS process appears after the output from the first ESS process separated by a
form-feed (‘^L’) character. Thus pages in the ESS process buffer correspond to ESS sessions.
Thus, for example, you may use C-x [and C-x] to move backward and forwards through
ESS sessions in a single ESS process buffer. For more information about page commands,
see section “Pages” in The GNU Emacs Reference Manual.

4.4.1 Manipulating the output from the last command

Viewing the output of the command you have just entered is a common occurrence and
ESS provides a number of facilities for doing this. Whenever a command produces a longish
output, it is possible that the window will scroll, leaving the next prompt near the middle
of the window. The first part of the command output may have scrolled off the top of the
window, even though the entire output would fit in the window if the prompt were near the
bottom of the window. If this happens, you can use the command
• C-c C-e (comint-show-maximum-output)

Move to the end of the buffer, and place cursor on bottom line of window.

to make more of the last output visible. (To make this happen automatically for all inputs,
set the variable comint-scroll-to-bottom-on-input to t.)

If the first part of the output is still obscured, use
• C-c C-r (comint-show-output)

Moves cursor to the previous command line and and places it at the top of the window.

to view it. Finally, if you want to discard the last command output altogether, use
• C-c C-o (comint-kill-output)

Deletes everything from the last command to the current prompt.

to delete it. Use this command judiciously to keep your transcript to a more manageable
size.

Chapter 4: Interacting with the ESS process 22

4.4.2 Viewing older commands

If you want to view the output from more historic commands than the previous command,
commands are also provided to move backwards and forwards through previously entered
commands in the process buffer:
• C-c C-p (comint-previous-input)

Moves point to the preceding command in the process buffer.
• C-c C-n (comint-next-input)

Moves point to the next command in the process buffer.

Note that these two commands are analogous to C-p and C-n but apply to command lines
rather than text lines. And just like C-p and C-n, passing a prefix argument to these
commands means to move to the ARG’th next (or previous) command. (These commands
are also discussed in section “Shell History Copying” in The GNU Emacs Reference Manual.)

There are also two similar commands (not bound to any keys by default) which move
to preceding or succeeding commands, but which first prompt for a regular expression (see
section “Syntax of Regular Expression” in The GNU Emacs Reference Manual), and then
moves to the next (previous) command matching the pattern.
• (comint-backward-matching-input regexp arg)

(comint-forward-matching-input regexp arg)
Search backward (forward) through the transcript buffer for the arg ’th previous (next)
command matching regexp. arg is the prefix argument; regexp is prompted for in the
minibuffer.

4.4.3 Re-submitting commands from the transcript

When moving through the transcript, you may wish to re-execute some of the commands
you find there. ESS provides three commands to do this; these commands may be used
whenever the cursor is within a command line in the transcript (if the cursor is within some
command output, an error is signaled). Note all three commands involve the 〈RETURN〉 key.
• RET (inferior-ess-send-input)

Copy the command under the cursor to the current command line, and execute it.
• C-c RET (comint-copy-old-input)

Copy the command under the cursor to the current command line, but don’t execute
it. Leaves the cursor on the command line so that the copied command may be edited.

• M-RET (ess-transcript-send-command-and-move)
Copy the command under the cursor to the current command line, and execute it.
Moves the cursor to the following command.

When the cursor is not after the current prompt, the 〈RETURN〉 key has a slightly different
behavior than usual. Pressing RET on any line containing a command that you entered (i.e.
a line beginning with a prompt) sends that command to the ESS process once again. If you
wish to edit the command before executing it, use C-c RET instead; it copies the command
to the current prompt but does not execute it, allowing you to edit it before submitting it.

These two commands leave the cursor at the new command line, allowing you to continue
with interactive use of S. If you wish to resubmit a series of commands from the transcript,
consider using M-RET instead, which leaves the cursor at the command line following the

Chapter 4: Interacting with the ESS process 23

one you re-submitted. Thus by using M-RET repeatedly, you can re-submit a whole series of
commands.

These commands work even if if the current line is a continuation line (i.e. the prompt
is ‘+’ instead of ‘>’) — in this case all the lines that form the multi-line command are
concatenated together and the resulting command is sent to the ESS process (currently this
is the only way to resubmit a multi-line command to the ESS process in one go). If the
current line does not begin with a prompt, an error is signaled. This feature, coupled with
the command-based motion commands described above, could be used as a primitive history
mechanism. ESS provides a more sophisticated mechanism, however, which is described in
Section 4.5 [Command History], page 23.

4.4.4 Keeping a record of your S session

To keep a record of your S session in a disk file, use the Emacs command C-x C-w

(write-file) to attach a file to the ESS process buffer. The name of the process buffer will
(probably) change to the name of the file, but this is not a problem. You can still use S as
usual; just remember to save the file before you quit Emacs with C-x C-s. You can make
ESS prompt you for a filename in which to save the transcript every time you start S by
setting the variable ess-ask-about-transfile to t; see Section 3.5 [Customizing startup],
page 17. We recommend you save your transcripts with filenames that end in ‘.St’. There
is a special mode (ESS transcript mode — see Chapter 5 [Transcript Mode], page 28) for
editing transcript files which is automatically selected for files with this suffix.

S transcripts can get very large, so some judicious editing is appropriate if you are saving
it in a file. Use C-c C-o whenever a command produces excessively long output (printing
large arrays, for example). Delete erroneous commands (and the resulting error messages
or other output) by moving to the command (or its output) and typing M-h C-w. Also,
remember that C-c C-e (and other hot keys) may be used for commands whose output you
do not wish to appear in the transcript. These suggestions are appropriate even if you are
not saving your transcript to disk, since the larger the transcript, the more memory your
Emacs process will use on the host machine.

Finally, if you intend to produce S source code (suitable for using with source() or
inclusion in an S function) from a transcript, then the command M-x ess-transcript-

clean-region may be of use. This command works in any Emacs buffer, and removes all
prompts and command output from an ESS transcript within the current region, leaving
only the commands. Don’t forget to remove any erroneous commands first!

4.5 Command History

ESS provides easy-to-use facilities for re-executing or editing previous commands. An
input history of the last few commands is maintained (by default the last 50 commands
are stored, although this can be changed by setting the variable comint-input-ring-size
in inferior-ess-mode-hook.) The simplest history commands simply select the next and
previous commands in the input history:

• M-p (comint-previous-input)
Select the previous command in the input history.

Chapter 4: Interacting with the ESS process 24

• M-n (comint-next-input)
Select the next command in the input history.

For example, pressing M-p once will re-enter the last command into the process buffer after
the prompt but does not send it to the ESS process, thus allowing editing or correction of
the command before the ESS process sees it. Once corrections have been made, press RET

to send the edited command to the ESS process.
If you want to select a particular command from the history by matching it against a

regular expression (see section “Syntax of Regular Expression” in The GNU Emacs Refer-
ence Manual), to search for a particular variable name for example, these commands are
also available:
• M-r (comint-previous-matching-input)

Prompt for a regular expression, and search backwards through the input history for a
command matching the expression.

• M-s (comint-next-matching-input)
Prompt for a regular expression, and search backwards through the input history for a
command matching the expression.

A common type of search is to find the last command that began with a particular sequence
of characters; the following two commands provide an easy way to do this:
• A-M-r (comint-previous-matching-input-from-input)

Select the previous command in the history which matches the string typed so far.
• A-M-s (comint-next-matching-input-from-input)

Select the next command in the history which matches the string typed so far.

Instead of prompting for a regular expression to match against, as they instead select
commands starting with those characters already entered. For instance, if you wanted to
re-execute the last attach() command, you may only need to type att and then A-M-r

and RET. (Note: you may not have an 〈ALT〉 key on your keyboard, in which case it may be
a good idea to bind these commands to some other keys.)

See section “Shell History Ring” in The GNU Emacs Reference Manual, for a more
detailed discussion of the history mechanism.

4.6 References to historical commands

Instead of searching through the command history using the command described in
the previous section, you can alternatively refer to a historical command directly using a
notation very similar to that used in csh. History references are introduced by a ‘!’ or ‘^’
character and have meanings as follows:

‘!!’ The immediately previous command

‘!-N ’ The Nth previous command

‘!text’ The last command beginning with the string ‘text’

‘!?text’ The last command containing the string ‘text’

In addition, you may follow the reference with a word designator to select particular
words of the input. A word is defined as a sequence of characters separated by whitespace.

Chapter 4: Interacting with the ESS process 25

(You can modify this definition by setting the value of comint-delimiter-argument-list
to a list of characters that are allowed to separate words and themselves form words.) Words
are numbered beginning with zero. The word designator usually begins with a ‘:’ (colon)
character; however it may be omitted if the word reference begins with a ‘^’, ‘$’, ‘*’ or
‘-’. If the word is to be selected from the previous command, the second ‘!’ character can
be omitted from the event specification. For instance, ‘!!:1’ and ‘!:1’ both refer to the
first word of the previous command, while ‘!!$’ and ‘!$’ both refer to the last word in the
previous command. The format of word designators is as follows:

‘0’ The zeroth word (i.e. the first one on the command line)

‘n’ The nth word, where n is a number

‘^’ The first word (i.e. the second one on the command line)

‘$’ The last word

‘x-y ’ A range of words; ‘-y ’ abbreviates ‘0-y ’

‘*’ All the words except the zeroth word, or nothing if the command had just one
word (the zeroth)

‘x*’ Abbreviates x-$

‘x-’ Like ‘x*’, but omitting the last word

In addition, you may surround the entire reference except for the first ‘!’ by braces to
allow it to be followed by other (non-whitespace) characters (which will be appended to the
expanded reference).

Finally, ESS also provides quick substitution; a reference like ‘^old^new^’ means “the
last command, but with the first occurrence of the string ‘old’ replaced with the string
‘new’” (the last ‘^’ is optional). Similarly, ‘^old^’ means “the last command, with the first
occurrence of the string ‘old’ deleted” (again, the last ‘^’ is optional).

To convert a history reference as described above to an input suitable for S, you need
to expand the history reference, using the 〈TAB〉 key. For this to work, the cursor must be
preceded by a space (otherwise it would try to complete an object name) and not be within
a string (otherwise it would try to complete a filename). So to expand the history reference,
type SPC TAB. This will convert the history reference into an S command from the history,
which you can then edit or press 〈RET〉 to execute.

For example, to execute the last command that referenced the variable data, type !?data
SPC TAB RET.

4.7 Hot keys for common commands

ESS provides a number of commands for executing the commonly used functions.
These commands below are basically information-gaining commands (such as objects()
or search()) which tend to clutter up your transcript and for this reason some of the hot
keys display their output in a temporary buffer instead of the process buffer by default.
This behavior is controlled by the variable ess-execute-in-process-buffer which, if
non-nil, means that these commands will produce their output in the process buffer
instead. In any case, passing a prefix argument to the commands (with C-u) will reverse

Chapter 4: Interacting with the ESS process 26

the meaning of ess-execute-in-process-buffer for that command, i.e. the output will
be displayed in the process buffer if it usually goes to a temporary buffer, and vice-versa.
These are the hot keys that behave in this way:
• C-c C-x (ess-execute-objects)

Sends the objects() command to the ESS process. A prefix argument specifies the po-
sition on the search list (use a negative argument to toggle ess-execute-in-process-
buffer as well). A quick way to see what objects are in your working directory.

• C-c C-s (ess-execute-search)
Sends the search() command to the ESS process.

• C-c C-e (ess-execute)
Prompt for an ESS expression, and evaluate it.

ess-execute may seem pointless when you could just type the command in anyway, but
it proves useful for ‘spot’ calculations which would otherwise clutter your transcript, or for
evaluating an expression while partway through entering a command. You can also use this
command to generate new hot keys using the Emacs keyboard macro facilities; see section
“Keyboard Macros” in The GNU Emacs Reference Manual.

The following hot keys do not use ess-execute-in-process-buffer to decide where
to display the output — they either always display in the process buffer or in a separate
buffer, as indicated:
• C-c C-a (ess-execute-attach)

Prompts for a directory to attach to the ESS process with the attach() command. If
a numeric prefix argument is given it is used as the position on the search list to attach
the directory; otherwise the S default of 2 is used. The attach() command actually
executed appears in the process buffer.

• C-c C-l (ess-load-file)
Prompts for a file to load into the ESS process using source(). If there is an error
during loading, you can jump to the error in the file with C-x ‘ (ess-parse-errors).
See Section 7.3 [Error Checking], page 36, for more details.

• C-c C-v (ess-display-help-on-object)
Pops up a help buffer for an S object or function. See Chapter 9 [Help], page 44 for
more details.

• C-c C-q (ess-quit)
Sends the q() command to the ESS process (or (exit) to the XLS process), and cleans
up any temporary buffers (such as help buffers or edit buffers) you may have created
along the way. Use this command when you have finished your S session instead of
simply typing q() yourself, otherwise you will need to issue the command M-x ess-

cleanup command explicitly to make sure that all the files that need to be saved have
been saved, and that all the temporary buffers have been killed.

4.8 Is the Statistical Process running under ESS?

For the S languages (S, S-Plus, R) ESS sets an option in the current process that pro-
grams in the language can check to determine the environment in which they are currently
running.

Chapter 4: Interacting with the ESS process 27

ESS sets options(STERM="iESS") for S language processes running in an inferior
iESS[S] or iESS[R] buffer.

ESS sets options(STERM="ddeESS") for independent S-Plus for Windows processes run-
ning in the GUI and communicating with ESS via the DDE (Microsoft Dynamic Data
Exchange) protocol through a ddeESS[S] buffer.

Other values of options()$STERM that we recommend are:
• length: Fixed length xterm or telnet window.
• scrollable: Unlimited length xterm or telnet window.
• server: S-Plus Stat Server.
• BATCH: BATCH.
• Rgui: R GUI.
• Commands: S-Plus GUI without DDE interface to ESS.

Additional values may be recommended in the future as new interaction protocols are
created. Unlike the values iESS and ddeESS, ESS can’t set these other values since the S
language program is not under the control of ESS.

4.9 Using emacsclient

When starting R or S under Unix, ESS sets options(editor="emacsclient"). (Under
Microsoft Windows, it will use gnuclient.exe rather than emacsclient, but the same principle
applies.) Within your R session, for example, if you have a function called iterator, typing
fix(iterator), will show that function in a temporary Emacs buffer. You can then correct
the function. When you kill the buffer, the definition of the function is updated. Using
edit() rather than fix() means that the function is not updated. Finally, the S function
page(x) will also show a text representation of the object x in a temporary Emacs buffer.

4.10 Other commands provided by inferior-ESS

The following commands are also provided in the process buffer:
• C-c C-c (comint-interrupt-subjob)

Sends a Control-C signal to the ESS process. This has the effect of aborting the current
command.

• C-c C-z (ess-abort)
Sends a STOP signal to the ESS process, killing it immediately. It’s not a good idea to
use this, in general: Neither q() nor .Last will be executed and device drivers will not
finish cleanly. This command is provided as a safety to comint-stop-subjob, which is
usually bound to C-c C-z. If you want to quit from S, use C-c C-q (ess-quit) instead.

• C-c C-d (ess-dump-object-into-edit-buffer)
Prompts for an object to be edited in an edit buffer. See Chapter 7 [Editing], page 35.

Other commands available in Inferior S mode are discussed in section “Shell Mode” in
The Gnu Emacs Reference Manual.

Chapter 5: Manipulating saved transcript files 28

5 Manipulating saved transcript files

Inferior S mode records the transcript (the list of all commands executed, and their
output) in the process buffer, which can be saved as a transcript file, which should normally
have the suffix ‘.St’. The most obvious use for a transcript file is as a static record of the
actions you have performed in a particular S session. Sometimes, however, you may wish to
re-execute commands recorded in the transcript file by submitting them to a running ESS
process. This is what Transcript Mode is for.

If you load file a with the suffix ‘.St’ into Emacs, it is placed in S Transcript Mode.
Transcript Mode is similar to Inferior S mode (see Chapter 4 [Entering commands], page 19):
paragraphs are defined as a command and its output, and you can move though commands
either with the paragraph commands or with C-c C-p and C-c C-n.

5.1 Resubmitting commands from the transcript file

Three commands are provided to re-submit command lines from the transcript file to a
running ESS process. They are:
• RET (ess-transcript-send-command)

Send the current command line to the ESS process, and execute it.
• C-c RET (ess-transcript-copy-command)

Copy the current command to the ESS process, and switch to the ESS process buffer
(ready to edit the copied command).

• M-RET (ess-transcript-send-command-and-move)
Send the current command to the ESS process, and move to the next command line.
This command is useful for submitting a series of commands.

Note that these commands are similar to those on the same keys in Inferior S Mode. In all
three cases, the commands should be executed when the cursor is on a command line in the
transcript; the prompt is automatically removed before the command is submitted.

5.2 Cleaning transcript files

Yet another use for transcript files is to extract the command lines for inclusion in an S
source file or function. Transcript mode provides one command which does just this:
• C-c C-w (ess-transcript-clean-region)

Deletes all prompts and command output in the region, leaving only the commands
themselves.

The remaining command lines may then be copied to a source file or edit buffer for inclusion
in a function definition, or may be evaluated directly (see Section 7.4 [Evaluating code],
page 36) using the code evaluation commands from S mode, also available in S Transcript
Mode.

Chapter 6: ESS for the S family 29

6 ESS for the S family

6.1 ESS[S]–Editing files

ESS[S] is the mode for editing S language files. This mode handles:
− proper indenting, generated by both [Tab] and [Return].
− color and font choices based on syntax.
− ability to send the contents of an entire buffer, a highlighted region, an S function, or

a single line to an inferior S process, if one is currently running.
− ability to switch between processes which would be the target of the buffer (for the

above).
− The ability to request help from an S process for variables and functions, and to have

the results sent into a separate buffer.
− completion of object names and file names.

ESS[S] mode should be automatically turned on when loading a file with the suffices
found in ess-site (*.R, *.S, *.s, etc). However, one will have to start up an inferior process
to take advantage of the interactive features.

6.2 iESS[S]–Inferior ESS processes

iESS (inferior ESS) is the mode for interfacing with active statistical processes (pro-
grams). This mode handles:
− proper indenting, generated by both [Tab] and [Return].
− color and font highlighting based on syntax.
− ability to resubmit the contents of a multi-line command to the executing process with

a single keystroke [RET].
− The ability to request help from the current process for variables and functions, and

to have the results sent into a separate buffer.
− completion of object names and file names.
− interactive history mechanism.
− transcript recording and editing.

To start up iESS mode, use:
M-x S+3
M-x S4
M-x S+5
M-x S+6
M-x R

(for S-PLUS 3.x, S4, S+5, S+6 and R, respectively. This assumes that you have access
to each). Usually the site will have defined one of these programs (by default S+6) to the
simpler name:

M-x S

Chapter 6: ESS for the S family 30

In the (rare) case that you wish to pass command line arguments to the starting S+6
process, set the variable inferior-Splus-args.

Note that R has some extremely useful command line arguments. For example, --
vanilla will ensure R starts up without loading in any init files. To enter a command line
argument, call R using a "prefix argument", by

C-u M-x R

and when ESS prompts for "Starting Args ? ", enter (for example):

--vanilla

Then that R process will be started up using R --vanilla. If you wish to always call R
with certain arguments, set the variable inferior-R-args accordingly.

If you have other versions of R or S-Plus available on the system, ESS is also able to
start those versions. How this works depend on which OS you are using:

R on Unix systems: If you have "R-1.8.1" on your ‘exec-path’, it can be started using
M-x R-1.8.1. By default, ESS will find versions of R beginning "R-1" or "R-2". If your
versions of R are called other names, consider renaming them with a symbolic link or change
the variable ess-r-versions. To see which defuns have been created for starting different
versions of R, type M-x R- and then hit [Tab]. You will then see if any defuns for particular
versions of R have been created. These other versions of R can also be started from the
"ESS->Start Process->Other" menu.

R on Windows systems: If you have "rw1081" on your ‘exec-path’, it can be started
using M-x rw1081. By default, ESS will find versions of R located in directories parallel to
the version of R in your PATH. If your versions of R are called other names, you will need
to change the variable ess-rterm-versions. To see which defuns have been created for
starting different versions of R, type M-x rw and then hit [Tab]. You will then see if any
defuns for particular versions of R have been created. These other versions of R can also
be started from the "ESS->Start Process->Other" menu.

Sqpe (S-Plus running inside an emacs buffer) on Windows systems: If you have an
older version of S-Plus (S-Plus 6.1 for example) on your system, ir can be started inside
an emacs buffer with M-x splus61. By default, ESS will find versions of S-Plus located in
the installation directories that Insightful uses by default. If your versions of S-Plus are
anywhere else, you will need to change the variable ess-SHOME-versions. To see which
defuns have been created for starting different versions of S-Plus, type M-x spl and then hit
[Tab]. You will then see if any defuns for particular versions of S-Plus have been created.
These other versions of S-Plus can also be started from the "ESS->Start Process->Other"
menu.

6.3 ESS-help–assistance with viewing help

ESS has built-in facilities for viewing help files from S. See Chapter 9 [Help], page 44.

6.4 Philosophies for using ESS[S]

The first is preferred, and configured for. The second one can be retrieved again, by
changing emacs variables.

Chapter 6: ESS for the S family 31

1: (preferred by the current group of developers): The source code is real. The objects
are realizations of the source code. Source for EVERY user modified object is placed in a
particular directory or directories, for later editing and retrieval.

2: (older version): S objects are real. Source code is a temporary realization of the
objects. Dumped buffers should not be saved. We strongly discourage this approach .
However, if you insist, add the following lines to your .emacs file:

(setq ess-keep-dump-files ’nil)
(setq ess-delete-dump-files t)
(setq ess-mode-silently-save nil)

The second saves a small amount of disk space. The first allows for better portability as
well as external version control for code.

6.5 Scenarios for use (possibilities–based on actual usage)

We present some basic suggestions for using ESS to interact with S. These are just a
subset of approaches, many better approaches are possible. Contributions of examples of
how you work with ESS are appreciated (especially since it helps us determine priorities on
future enhancements)! (comments as to what should be happening are prefixed by "##").

1: ## Data Analysis Example (source code is real)
Load the file you want to work with
C-x C-f myfile.s

Edit as appropriate, and then start up S-PLUS 3.x
M-x S+3

A new buffer *S+3:1* will appear. Splus will have been started
in this buffer. The buffer is in iESS [S+3:1] mode.

Split the screen and go back to the file editing buffer.
C-x 2 C-x b myfile.s

Send regions, lines, or the entire file contents to S-PLUS. For regions,
highlight a region with keystrokes or mouse and then send with:
C-c C-r

Re-edit myfile.s as necessary to correct any difficulties. Add
new commands here. Send them to S by region with C-c C-r, or
one line at a time with C-c C-n.

Save the revised myfile.s with C-x C-s.

Save the entire *S+3:1* interaction buffer with C-c C-s. You
will be prompted for a file name. The recommended name is
myfile.St. With the *.St suffix, the file will come up in ESS
Transcript mode the next time it is accessed from Emacs.

Chapter 6: ESS for the S family 32

2: ## Program revision example (source code is real)

Start up S-PLUS 3.x in a process buffer (this will be *S+3:1*)
M-x S+3

Load the file you want to work with
C-x C-f myfile.s

edit program, functions, and code in myfile.s, and send revised
functions to S when ready with
C-c C-f
or highlighted regions with
C-c C-r
or individual lines with
C-c C-n
or load the entire buffer with
C-c C-l

save the revised myfile.s when you have finished
C-c C-s

3: ## Program revision example (S object is real)

Start up S-PLUS 3.x in a process buffer (this will be *S+3:1*)
M-x S+3

Dump an existing S object my.function into a buffer to work with
C-c C-d my.function
a new buffer named yourloginname.my.function.S will be created with
an editable copy of the object. The buffer is associated with the
pathname /tmp/yourloginname.my.function.S and will amlost certainly not
exist after you log off.

enter program, functions, and code into work buffer, and send
entire contents to S-PLUS when ready
C-c C-b

Go to *S+3:1* buffer, which is the process buffer, and examine
the results.
C-c C-y
The sequence C-c C-y is a shortcut for: C-x b *S+3:1*

Return to the work buffer (may/may not be prefixed)
C-x C-b yourloginname.my.function.S
Fix the function that didn’t work, and resubmit by placing the
cursor somewhere in the function and
C-c C-f

Chapter 6: ESS for the S family 33

Or you could’ve selected a region (using the mouse, or keyboard
via setting point/mark) and
C-c C-r
Or you could step through, line by line, using
C-c C-n
Or just send a single line (without moving to the next) using
C-c C-j
To fix that error in syntax for the "rchisq" command, get help
by
C-c C-v rchisq

4: Data Analysis (S object is real)
Start up S-PLUS 3.x, in a process buffer (this will be *S+3:1*)
M-x S+3

Work in the process buffer. When you find an object that needs
to be changed (this could be a data frame, or a variable, or a
function), dump it to a buffer:
C-c C-d my.cool.function

Edit the function as appropriate, and dump back in to the
process buffer
C-c C-b

Return to the S-PLUS process buffer
C-c C-y
Continue working.

When you need help, use
C-c C-v rchisq
instead of entering: help("rchisq")

6.6 Customization Examples and Solutions to Problems

1. Suppose that you are primarily an SPLUS 3.4 user, occasionally using S version 4, and
sick and tired of the buffer-name *S+3* we’ve stuck you with. Simply edit the "ess-dialect"
alist entry in the essd-sp3.el and essd-s4.el files to be "S" instead of "S4" and "S+3". This
will ensure that all the inferior process buffer names are "*S*".

2. Suppose that you WANT to have the first buffer name indexed by ":1", in the same
manner as your S-PLUS processes 2,3,4, and 5 (for you heavy simulation people). Then
uncomment the line in ess-site (or add after your (require ’ess-site) or (load "ess-site")
command in your .emacs file, the line:

(setq ess-plain-first-buffername nil)

)
3. Fontlocking sometimes fails to behave nicely upon errors. When Splus dumps, a

mis-matched " (double-quote) can result in the wrong font-lock face being used for the
remainder of the buffer.

Chapter 6: ESS for the S family 34

Solution: add a " at the end of the "Dumped..." statement, to revert the font-lock face
back to normal.

Chapter 7: Editing S functions 35

7 Editing S functions

ESS provides facilities for editing S objects within your Emacs session. Most editing is
performed on S functions, although in theory you may edit datasets as well. Edit buffers are
always associated with files, although you may choose to make these files temporary if you
wish. Alternatively, you may make use of a simple yet powerful mechanism for maintaining
backups of text representations of S functions. Error-checking is performed when S code is
loaded into the ESS process.

7.1 Creating or modifying S objects

To edit an S object, type

• C-c C-d (ess-dump-object-into-edit-buffer)
Edit an S object in its own edit buffer.

from within the ESS process buffer (*S*). You will then be prompted for an object
to edit: you may either type in the name of an existing object (for which completion is
available using the TAB key), or you may enter the name of a new object. A buffer will
be created containing the text representation of the requested object or, if you entered the
name of a non-existent object at the prompt and the variable ess-function-template is
non-nil, you will be presented with a template defined by that variable, which defaults to
a skeleton function construct.

You may then edit the function as required. The edit buffer generated by ess-dump-
object-into-edit-buffer is placed in the ESS major mode which provides a number of
commands to facilitate editing S source code. Commands are provided to intelligently
indent S code, evaluate portions of S code and to move around S code constructs.

Note: when you dump a file with C-c C-d, ESS first checks to see whether there already
exists an edit buffer containing that object and, if so, pops you directly to that buffer. If
not, ESS next checks whether there is a file in the appropriate place with the appropriate
name (see Section 7.7 [Source Files], page 39) and if so, reads in that file. You can use this
facility to return to an object you were editing in a previous session (and which possibly was
never loaded to the S session). Finally, if both these tests fail, the ESS process is consulted
and a dump() command issued. If you want to force ESS to ask the ESS process for the
object’s definition (say, to reformat an unmodified buffer or to revert back to S’s idea of
the object’s definition) pass a prefix argument to ess-dump-object-into-edit-buffer by
typing C-u C-c C-d.

7.2 Loading source files into the ESS process

The best way to get information — particularly function definitions — into S is to load
them in as source file, using S’s source function. You have already seen how to create
source files using C-c C-d; ESS provides a complementary command for loading source files
(even files not created with ESS!) into the ESS process:

• C-c C-l (ess-load-file)
Loads a file into the ESS process using source().

Chapter 7: Editing S functions 36

After typing C-c C-l you will prompted for the name of the file to load into S; usually this
is the current buffer’s file which is the default value (selected by simply pressing RET at the
prompt). You will be asked to save the buffer first if it has been modified (this happens
automatically if the buffer was generated with C-c C-d). The file will then be loaded, and
if it loads successfully you will be returned to the ESS process.

7.3 Detecting errors in source files

If any errors occur when loading a file with C-c C-l, ESS will inform you of this fact.
In this case, you can jump directly to the line in the source file which caused the error by
typing C-x ‘ (ess-parse-errors). You will be returned to the offending file (loading it
into a buffer if necessary) with point at the line S reported as containing the error. You
may then correct the error, and reload the file. Note that none of the commands in an S
source file will take effect if any part of the file contains errors.

Sometimes the error is not caused by a syntax error (loading a non-existent file for
example). In this case typing C-x ‘ will simply display a buffer containing S’s error message.
You can force this behavior (and avoid jumping to the file when there is a syntax error) by
passing a prefix argument to ess-parse-errors with C-u C-x ‘.

7.4 Sending code to the ESS process

Other commands are also available for evaluating portions of code in the S process.
These commands cause the selected code to be evaluated directly by the ESS process as
if you had typed them in at the command line; the source() function is not used. You
may choose whether both the commands and their output appear in the process buffer
(as if you had typed in the commands yourself) or if the output alone is echoed. The
behavior is controlled by the variable ess-eval-visibly-p whose default is nil (display
output only). Passing a prefix argument (C-u) to any of the following commands, however,
reverses the meaning of ess-eval-visibly-p for that command only — for example C-u

C-c C-j echoes the current line of S (or other) code in the ESS process buffer, followed
by its output. This method of evaluation is an alternative to S’s source() function when
you want the input as well as the output to be displayed. (You can sort of do this with
source() when the option echo=T is set, except that prompts do not get displayed. ESS
puts prompts in the right places.) The commands for evaluating code are:

• C-c C-j (ess-eval-line)
Send the line containing point to the ESS process.

• C-c M-j (ess-eval-line-and-go)
As above, but returns you to the ESS process buffer as well.

• C-c C-f or ESC C-x (aka M-C-x) (ess-eval-function)
Send the S function containing point to the ESS process.

• C-c M-f (ess-eval-function-and-go)
As above, but returns you to the ESS process buffer as well.

• C-c C-r (ess-eval-region)
Send the text between point and mark to the ESS process.

Chapter 7: Editing S functions 37

• C-c M-r (ess-eval-region-and-go)
As above, but returns you to the ESS process buffer as well.

• C-c C-b (ess-eval-buffer)
Send the contents of the edit buffer to the ESS process.

• C-c M-b (ess-eval-buffer-and-go)
As above, but returns you to the ESS process buffer as well.

• C-c C-n (ess-eval-line-and-step)
Sends the current line to the ESS process, echoing it in the process buffer, and moves
point to the next line. Useful when debugging for stepping through your code.

It should be stressed once again that these ess-eval- commands should only be used
for evaluating small portions of code for debugging purposes, or for generating transcripts
from source files. When editing S functions, C-c C-l is the command to use to update the
function’s value. In particular, ess-eval-buffer is now largely obsolete.

One final command is provided for spot-evaluations of S code:

C-c C-t (ess-execute-in-tb)
Prompt for an S expression and evaluate it. Displays result in a temporary buffer.

This is useful for quick calculations, etc.
All the above commands are useful for evaluating small amounts of code and observing

the results in the process buffer. A useful way to work is to divide the frame into two
windows; one containing the source code and the other containing the process buffer. If you
wish to make the process buffer scroll automatically when the output reaches the bottom
of the window, you will need to set the variable comint-scroll-to-bottom-on-output to
’others or t.

7.5 Indenting and formatting S code

ESS now provides a sophisticated mechanism for indenting S source code (thanks to
Ken’ichi Shibayama). Compound statements (delimited by ‘{’ and ‘}’) are indented relative
to their enclosing block. In addition, the braces have been electrified to automatically indent
to the correct position when inserted, and optionally insert a newline at the appropriate
place as well. Lines which continue an incomplete expression are indented relative to the
first line of the expression. Function definitions, if statements, calls to expression() and
loop constructs are all recognized and indented appropriately. User variables are provided
to control the amount if indentation in each case, and there are also a number of predefined
indentation styles to choose from.

Comments are also handled specially by ESS, using an idea borrowed from the Emacs-
Lisp indentation style. By default, comments beginning with ‘###’ are aligned to the begin-
ning of the line. Comments beginning with ‘##’ are aligned to the current level of indentation
for the block containing the comment. Finally, comments beginning with ‘#’ are aligned
to a column on the right (the 40th column by default, but this value is controlled by the
variable comment-column,) or just after the expression on the line containing the comment
if it extends beyond the indentation column. You turn off the default behavior by adding
the line (setq ess-fancy-comments nil) to your ‘.emacs’ file.

The indentation commands provided by ESS are:

Chapter 7: Editing S functions 38

• TAB (ess-indent-command)
Indents the current line as S code. If a prefix argument is given, all following lines
which are part of the same (compound) expression are indented by the same amount
(but relative indents are preserved).

• LFD (newline-and-indent)
Insert a newline, and indent the next line. (Note: if your keyboard does not have a
〈LINEFEED〉 key, you can use C-j instead.) Some people prefer to bind 〈RET〉 to this
command.

• ESC C-q aka M-C-q aka C-M-q (ess-indent-exp)
Indents each line in the S (compound) expression which follows point. Very useful for
beautifying your S code.

• { and } (ess-electric-brace)
The braces automatically indent to the correct position when typed.

• M-; (indent-for-comment)
Indents a comment line appropriately, or inserts an empty (single-‘#’) comment.

• M-x ess-set-style

Set the formatting style in this buffer to be one of the predefined styles: GNU, BSD, K&R,
CLB, and C++. The DEFAULT style uses the default values for the indenting variables
(unless they have been modified in your ‘.emacs’ file.) This command causes all of the
formatting variables to be buffer-local.

7.6 Commands for motion, completion and more

A number of commands are provided to move across function definitions in the edit
buffer:
• ESC C-a aka C-M-a (ess-beginning-of-function)

Moves point to the beginning of the function containing point.
• ESC C-e aka C-M-e (ess-end-of-function)

Moves point to the end of the function containing point.
• ESC C-h aka C-M-h (ess-mark-function)

Places point at the beginning of the S function containing point, and mark at the end.

Don’t forget the usual Emacs commands for moving over balanced expressions and paren-
theses: See section “Lists and Sexps” in The GNU Emacs Reference Manual.

Completion is provided in the edit buffer in a similar fashion to the process buffer: M-

TAB completes file names and M-? lists file completions. Since 〈TAB〉 is used for indentation
in the edit buffer, object completion is now performed with C-c TAB. Note however that
completion is only provided over globally known S objects (such as system functions) —
it will not work for arguments to functions or other variables local to the function you are
editing.

Finally, two commands are provided for returning to the ESS process buffer:
• C-c C-z (ess-switch-to-end-of-ESS)

Returns you to the ESS process buffer, placing point at the end of the buffer.
• C-c C-y (ess-switch-to-ESS)

Also returns to to the ESS process buffer, but leaves point where it was.

Chapter 7: Editing S functions 39

In addition some commands available in the process buffer are also available in the edit
buffer. You can still read help files with C-c C-v, edit another function with C-c C-d and
of course C-c C-l can be used to load a source file into S. See Section 4.10 [Other], page 27,
for more details on these commands.

7.7 Maintaining S source files

Every edit buffer in ESS is associated with a dump file on disk. Dump files are created
whenever you type C-c C-d (ess-dump-object-into-edit-buffer), and may either be
deleted after use, or kept as a backup file or as a means of keeping several versions of an S
function.

User Optioness-delete-dump-files
If non-nil, dump files created with C-c C-d are deleted immediately after they are
created by the ess-process.

Since immediately after S dumps an object’s definition to a disk file the source code
on disk corresponds exactly to S’s idea of the object’s definition, the disk file isn’t needed;
deleting it now has the advantage that if you don’t modify the file (say, because you just
wanted to look at the definition of one of the standard S functions) the source dump file
won’t be left around when you kill the buffer. Note that this variable only applies to files
generated with S’s dump function; it doesn’t apply to source files which already exist. The
default value is t.

User Optioness-keep-dump-files
Option controlling what to do with the dump file after an object has been successfully
loaded into S. Valid values are nil (always delete), ask (always ask whether to delete),
check (delete files generated with C-c C-d in this Emacs session, otherwise ask —
this is the default) and t (never delete). This variable is buffer-local.

After an object has been successfully (i.e. without error) loaded back into S with C-c

C-l, the disk file again corresponds exactly (well, almost — see below) to S’s record of the
object’s definition, and so some people prefer to delete the disk file rather than unnecessarily
use up space. This option allows you to do just that.

If the value of ess-keep-dump-files is t, dump files are never deleted after they are
loaded. Thus you can maintain a complete text record of the functions you have edited
within ESS. Backup files are kept as usual, and so by using the Emacs numbered backup
facility — see section “Single or Numbered Backups” in The Gnu Emacs Reference Manual,
you can keep a historic record of function definitions. Another possibility is to maintain
the files with a version-control system such as RCS See section “Version Control” in The
Gnu Emacs Reference Manual. As long as a dump file exists in the appropriate place for a
particular object, editing that object with C-c C-d finds that file for editing (unless a prefix
argument is given) — the ESS process is not consulted. Thus you can keep comments
outside the function definition as a means of documentation that does not clutter the S
object itself. Another useful feature is that you may format the code in any fashion you
please without S re-indenting the code every time you edit it. These features are particularly
useful for project-based work.

Chapter 7: Editing S functions 40

If the value of ess-keep-dump-files is nil, the dump file is always silently deleted after
a successful load with C-c C-l. While this is useful for files that were created with C-c

C-d it also applies to any other file you load (say, a source file of function definitions), and
so can be dangerous to use unless you are careful. Note that since ess-keep-dump-files
is buffer-local, you can make sure particular files are not deleted by setting it to t in the
Local Variables section of the file See section “Local Variables in Files” in The Gnu Emacs
Reference Manual.

A safer option is to set ess-keep-dump-files to ask; this means that ESS will always
ask for confirmation before deleting the file. Since this can get annoying if you always want
to delete dump files created with C-c C-d, but not any other files, setting ess-keep-dump-
files to check (the default value) will silently delete dump files created with C-c C-d in
the current Emacs session, but query for any other file. Note that in any case you will only
be asked for confirmation once per file, and your answer is remembered for the rest of the
Emacs session.

Note that in all cases, if an error (such as a syntax error) is detected while loading the
file with C-c C-l, the dump file is never deleted. This is so that you can edit the file in a
new Emacs session if you happen to quit Emacs before correcting the error.

Dump buffers are always autosaved, regardless of the value of ess-keep-dump-files.

7.8 Names and locations of dump files

Every dump file should be given a unique file name, usually the dumped object name
with some additions.

User Optioness-dump-filename-template
Template for filenames of dumped objects. %s is replaced by the object name.

By default, dump file names are the user name, followed by ‘.’ and the object and end-
ing with ‘.S’. Thus if user joe dumps the object myfun the dump file will have name
‘joe.myfun.S’. The username part is included to avoid clashes when dumping into a
publicly-writable directory, such as ‘/tmp’; you may wish to remove this part if you are
dumping into a directory owned by you.

You may also specify the directory in which dump files are written:

User Optioness-source-directory
Directory name (ending in a slash) where S dump files are to be written.

By default, dump files are always written to ‘/tmp’, which is fine when ess-keep-dump-
files is nil. If you are keeping dump files, then you will probably want to keep them
somewhere in your home directory, say ‘~/S-source’. This could be achieved by including
the following line in your ‘.emacs’ file:

(setq ess-source-directory (expand-file-name "~/S-source/"))

If you would prefer to keep your dump files in separate directories depending on the value
of some variable, ESS provides a facility for this also. By setting ess-source-directory to
a lambda expression which evaluates to a directory name, you have a great deal of flexibility
in selecting the directory for a particular source file to appear in. The lambda expression is

Chapter 7: Editing S functions 41

evaluated with the process buffer as the current buffer and so you can use the variables local
to that buffer to make your choice. For example, the following expression causes source files
to be saved in the subdirectory ‘Src’ of the directory the ESS process was run in.

(setq ess-source-directory
(lambda ()

(concat ess-directory "Src/")))

(ess-directory is a buffer-local variable in process buffers which records the directory the
ESS process was run from.) This is useful if you keep your dump files and you often edit
objects with the same name in different ESS processes. Alternatively, if you often change
your S working directory during an S session, you may like to keep dump files in some
subdirectory of the directory pointed to by the first element of the current search list. This
way you can edit objects of the same name in different directories during the one S session:

(setq ess-source-directory
(lambda ()

(file-name-as-directory
(expand-file-name (concat

(car ess-search-list)
"/.Src")))))

If the directory generated by the lambda function does not exist but can be created,
you will be asked whether you wish to create the directory. If you choose not to, or the
directory cannot be created, you will not be able to edit functions.

Chapter 8: Editing R documentation files 42

8 Editing R documentation files

ESS also provides support for editing R documentation (“Rd”) files. R objects are
documented in files written in Rd format, a simple markup language closely resembling
(La)TEX, which can be processed into a variety of formats, including LaTEX, html, and
plain text. Rd format is described in section “Rd format” of the “Writing R Extensions”
manual in the R distribution.

Visiting an Rd file as characterized by its extension ‘Rd’ will activate Rd Mode, which
provides several facilities for making editing R documentation files more convenient, by
helping with indentation, insertions, even doing some of the typing for you (with Abbrev
Mode), and by showing Rd keywords, strings, etc. in different faces (with Font Lock Mode).

Note that R also accepts Rd files with extension ‘rd’; to activate ESS[Rd] support for
this extension, you may need to add

(add-to-list ’auto-mode-alist ’("\\.rd\\’" . Rd-mode))

to one of your Emacs startup files.

In Rd mode, the following special Emacs commands can be used in addition to the
standard Emacs commands.

C-h m Describe the features of Rd mode.

LFD

RET Reindent the current line, insert a newline and indent the new line (reindent-
then-newline-and-indent). An abbrev before point is expanded if abbrev-
mode is non-nil.

TAB Indent current line based on its contents and on previous lines (indent-
according-to-mode).

C-c C-e Insert a “skeleton” with Rd markup for at least all mandatory entries in Rd files
(Rd-mode-insert-skeleton). Note that many users might prefer to use the R
function prompt on an existing R object to generate a non-empty Rd “shell”
documenting the object (which already has all information filled in which can
be obtained from the object).

C-c C-f Insert “font” specifiers for some of the Rd markup commands markup available
for emphasizing or quoting text, including markup for URLs and email addresses
(Rd-font). C-c C-f is only a prefix; see e.g. C-c C-f TAB for the available
bindings. Note that currently, not all of the Rd text markup as described in
section “Marking text” of “Writing R Extensions” can be accessed via C-c C-f.

C-c C-j Insert a suitably indented ‘\item{’ on the next line (Rd-mode-insert-item).

C-c C-p Preview a plain text version (“help file”, see Chapter 9 [Help], page 44) gener-
ated from the Rd file (Rd-preview-help).

In addition, when editing Rd files one can interact with a running R process in a similar
way as when editing R language files. E.g., C-c C-v provides access to on-line help, and C-c

C-n sends the current line to the R process for evaluation. This interaction is particularly
useful when editing the examples in the Rd file. See C-h m for all available commands.

Chapter 8: Editing R documentation files 43

Rd mode also provides access to abbreviations for most of the Rd markup commands.
Type M-x list-abbrevs with Abbrev mode turned on to list all available abbrevs. Note
that all Rd abbrevs start with a grave accent.

Rd mode can be customized via the following variables.

Rd-mode-hook
Hook to be run when Rd mode is entered.

Rd-indent-level
The indentation of Rd code with respect to containing blocks. Default is 2.

Rd-to-help-command
The shell command used for converting Rd source to help text. Default is ‘R
CMD Rd2txt’.

To automatically turn on the abbrev and font-lock features of Rd mode, add the following
lines to one of your Emacs startup files:

(add-hook ’Rd-mode-hook
(lambda ()
(abbrev-mode 1)
(font-lock-mode 1)))

Chapter 9: Reading help files 44

9 Reading help files

ESS provides an easy-to-use facility for reading S help files from within Emacs. From
within the ESS process buffer or any ESS edit buffer, typing C-c C-v (ess-display-help-
on-object) will prompt you for the name of an object for which you would like documen-
tation. Completion is provided over all objects which have help files.

If the requested object has documentation, you will be popped into a buffer (named
help(obj-name)) containing the help file. This buffer is placed in a special ‘S Help’
mode which disables the usual editing commands but which provides a number of keys for
paging through the help file:

Help commands:
• ? (ess-describe-help-mode)

Pops up a help buffer with a list of the commands available in S help mode.
• h (ess-display-help-on-object)

Pop up a help buffer for a different object
Paging commands:

• b or DEL (scroll-down)
Move one page backwards through the help file.

• SPC (scroll-up)
Move one page forwards through the help file.

• > (beginning-of-buffer) and < (end-of-buffer)
Move to the beginning and end of the help file, respectively.
Section-based motion commands:

• n (ess-skip-to-next-section) and p (ess-skip-to-previous-section)
Move to the next and previous section header in the help file, respectively. A section
header consists of a number of capitalized words, followed by a colon.
In addition, the s key followed by one of the following letters will jump to a particular
section in the help file:

‘a’ ARGUMENTS:

‘b’ BACKGROUND:

‘B’ BUGS:

‘d’ DETAILS:

‘D’ DESCRIPTION:

‘e’ EXAMPLES:

‘n’ NOTE:

‘o’ OPTIONAL ARGUMENTS:

‘r’ REQUIRED ARGUMENTS:

‘R’ REFERENCES:

‘s’ SIDE EFFECTS:

Chapter 9: Reading help files 45

‘s’ SEE ALSO:

‘u’ USAGE:

‘v’ VALUE:

‘<’ Jumps to beginning of file

‘>’ Jumps to end of file

‘?’ Pops up a help buffer with a list of the defined section motion keys.

Miscellaneous:
• l (ess-eval-line-and-step)

Evaluates the current line in the ESS process, and moves to the next line. Useful for
running examples in help files.

• r (ess-eval-region)
Send the contents of the current region to the ESS process. Useful for running examples
in help files.

• / (isearch-forward)
Same as C-s.
Quit commands:

• q (ess-switch-to-end-of-ESS)
Returns to the ESS process buffer in another window, leaving the help window visible.

• k (kill-buffer)
Kills the help buffer.

• x (ess-kill-buffer-and-go)
Return to the ESS process, killing this help buffer.

In addition, all of the ESS commands available in the edit buffers are also available in S
help mode (see Section 7.1 [Edit buffer], page 35). Of course, the usual (non-editing) Emacs
commands are available, and for convenience the digits and 〈-〉 act as prefix arguments.

If a help buffer already exists for an object for which help is requested, that buffer is
popped to immediately; the ESS process is not consulted at all. If the contents of the help
file have changed, you either need to kill the help buffer first, or pass a prefix argument
(with C-u) to ess-display-help-on-object.

Help buffers are marked as temporary buffers in ESS, and are deleted when ess-quit
or ess-cleanup are called.

Help buffers normally appear in another window within the current frame. If you wish
help buffers to appear in their own frame (either one per help buffer, or one for all help
buffers), you can customize the variable ess-help-own-frame.

Chapter 10: ESS for SAS 46

10 ESS for SAS

ESS[SAS] was designed for use with SAS. It is descended from emacs macros developed by
John Sall for editing SAS programs and SAS-mode by Tom Cook. Those editing features and
new advanced features are part of ESS[SAS]. The user interface of ESS[SAS] has similarities
with ESS[S] and the SAS Display Manager.

10.1 ESS[SAS]–Design philosophy

ESS[SAS] was designed to aid the user in writing and maintaining SAS programs, such
as myfile.sas. Both interactive and batch submission of SAS programs is supported.

ESS[SAS] was written with two primary goals.
1. The emacs text editor provides a powerful and flexible development environment for

programming languages. These features are a boon to all programmers and, with the help
of ESS[SAS], to SAS users as well.

2. Although a departure from SAS Display Manager, ESS[SAS] provides similar key
definitions to give novice ESS[SAS] users a head start. Also, inconvenient SAS Display
Manager features, like remote submission and syntax highlighting, are provided transpar-
ently; appealing to advanced ESS[SAS] users.

10.2 ESS[SAS]–Editing files

ESS[SAS] is the mode for editing SAS language files. This mode handles:
- proper indenting, generated by both [Tab] and [Return].
- color and font choices based on syntax.
- ability to send the contents of an entire buffer, a highlighted region,

or a single line to an interactive SAS process.
- ability to switch between processes which would be the target of the

buffer (for the above).
- ability to save and submit the file you are working on as a batch SAS

process with a single keypress and to continue editing while it is runs
in the background.

- capability of killing the batch SAS process through the shell buffer or
allow the SAS process to keep on running after you exit emacs.

- single keypress navigation of .sas, .log and .lst files (.log and .lst
files are automatically refreshed with each keypress).

ESS[SAS] is automatically turned on when editing a file with a .sas suffix (or other
extension, if specified via auto-mode-alist). The function keys can be enabled to use the
same function keys that the SAS Display Manager does. The interactive capabilities of ESS
require you to start an inferior SAS process with M-x SAS (See Section 10.6 [iESS(SAS)–
Interactive SAS processes], page 52.)

At this writing, the indenting and syntax highlighting are generally correct. Known
issues: for multiple line * or %* comments, only the first line is highlighted; for .log files,
only the first line of a NOTE:, WARNING: or ERROR: message is highlighted; unmatched
single/double quotes in CARDS data lines are NOT ignored; in a DO ... TO or a DO ...
TO ... BY statement, TOs are not highlighted (and neither is BY).

Chapter 10: ESS for SAS 47

10.3 ESS[SAS]–TAB key

Two options. The TAB key is bound by default to sas-indent-line. This function is used
to syntactically indent SAS code so PROC and RUN are in the left margin, other statements
are indented 4 spaces from the margin, continuation lines are indented 4 spaces in from the
beginning column of that statement. This is the type of functionality that emacs provides
in most programming language modes. This functionality is equivalent to uncommenting
the following line in ess-site.el:

(setq ess-sas-edit-keys-toggle nil)

ESS provides an alternate behavior for the TAB key that makes it behave as it does in
SAS Display Manager, i.e. move the cursor to the next tab stop. The alternate behavior
also provides a backwards TAB, C-TAB, that moves the cursor to the tab stop to the left
and deletes any characters between them. This functionality is obtained by uncommenting
the following line in ess-site.el:

(setq ess-sas-edit-keys-toggle t)

Under the alternate behavior, the TAB key is bound to tab-to-tab-stop and the tab stops
are set at multiples of sas-indent-width.

10.4 ESS[SAS]–Batch SAS processes

Submission of a SAS batch job is dependent on your environment. ess-sas-submit-method
is determined by your operating system and your shell. It defaults to ’sh unless you are
running Windows or Mac Classic. Under Windows, it will default to ’sh if you are using a
Unix-imitating shell; otherwise ’ms-dos for an MS-DOS shell. On Mac OS X, it will default
to ’sh, but under Mac Classic AppleScript is used (’apple-script). You will also set this to
’sh if the SAS batch job needs to run on a remote machine rather than your local machine.
This works transparently if you are editing the remote file via ange-ftp/EFS or tramp.
Note that ess-sas-shell-buffer-remote-init is a Local Variable that defaults to "ssh" which
will be used to open the buffer on the remote host and it is assumed that no password is
necessary, i.e. you are using the equivalent of ssh-agent/ssh-add (see the discussion about
Local Variables below if you need to change the default).

However, if you are editing the file locally and transferring it back and forth with Kermit,
you need some additional steps. First, start Kermit locally before remotely logging in. Open
a local copy of the file with the ess-kermit-prefix character prepended (the default is "#").
Execute the command ess-kermit-get which automatically brings the contents of the remote
file into your local copy. If you transfer files with Kermit manually in a shell buffer, then
note that the Kermit escape sequence is C-q C-\ c rather than C-\ c which it would be in
an ordinary terminal application, i.e. not in an emacs buffer. Lastly, note that the remote
Kermit command is specified by ess-kermit-command.

The command used by the SUBMIT function key (F3 or F8) to submit a batch SAS job,
whether local or remote, is ess-sas-submit-command which defaults to sas-program. sas-
program is "invoke SAS using program file" for Mac Classic and "sas" otherwise. However,
you may have to alter ess-sas-submit-command for a particular program, so it is defined as
buffer-local. Conveniently, it can be set at the end of the program:

endsas;
Local variables:

Chapter 10: ESS for SAS 48

ess-sas-submit-command: "sas8"
End:

The command line is also made of ess-sas-submit-pre-command, ess-sas-submit-post-
command and ess-sas-submit-command-options (the last of which is also buffer-local). Here
are some examples for your .emacs file (you may also use M-x customize-variable):

;’sh default
(setq ess-sas-submit-pre-command "nohup")
;’sh default
(setq ess-sas-submit-post-command "-rsasuser &")
;’sh example
(setq-default ess-sas-submit-command "/usr/local/sas/sas")
;’ms-dos default
(setq ess-sas-submit-pre-command "start")
;’ms-dos default
(setq ess-sas-submit-post-command "-rsasuser -icon")
;Windows example
(setq-default ess-sas-submit-command "c:/progra~1/sas/sas.exe")
;Windows example
(setq-default ess-sas-submit-command "c:\\progra~1\\sas\\sas.exe")

There is a built-in delay before a batch SAS job is submitted when using a Unix-imitating
shell under Windows. This is necessary in many cases since the shell might not be ready
to receive a command. This delay is currently set high enough so as not to be a problem.
But, there may be cases when it needs to be set higher, or could be set much lower to speed
things up. You can over-ride the default in your .emacs file by:

(setq ess-sleep-for 0.2)

For example, open the file you want to work with (ess-sas-global-unix-keys keys shown,
ess-sas-global-pc-keys in parentheses; ESS[SAS] function keys are presented in the next
section).

C-x C-f myfile.sas

myfile.sas will be in ESS[SAS] mode. Edit as appropriate, then save and submit the
batch SAS job.

F3 (F8)

The job runs in the shell buffer while you continue to edit myfile.sas. If ess-sas-submit-
method is ’sh, then the message buffer will display the shell notification when the job is
complete. The ’sh setting also allows you to terminate the SAS batch job before it is
finished.

F8 (F3)

Terminating a SAS batch in the *shell* buffer.
kill %1

You may want to visit the .log (whether the job is still running or it is finished) and
check for error messages. The .log will be refreshed and you will be placed in it’s buffer.
You will be taken to the 1st error message, if any.

F5 (F6)

Goto the next error message, if any.

Chapter 10: ESS for SAS 49

F5 (F6)

Now, refresh the .lst and go to it’s buffer.
F6 (F7)

If you wish to make changes, go to the .sas file with.
F4 (F5)

Make your editing changes and submit again.
F3 (F8)

10.5 ESS[SAS]–Function keys for batch processing

The setup of function keys for SAS batch processing is unavoidably complex, but the
usage of function keys is simple. There are five distinct options:

Option 1 (default). Function keys in ESS[SAS] are not bound to elisp commands. This is
in accordance with the GNU Elisp Coding Standards (GECS) which do not allow function
keys to be bound so that they are available to the user.

Options 2-5. Since GECS does not allow function keys to be bound by modes, these keys
are often unused. So, ESS[SAS] provides users with the option of binding elisp commands
to these keys. Users who are familiar with SAS will, most likely, want to duplicate the
function key capabilities of the SAS Display Manager. There are four options (noted in
parentheses).

a. SAS Display Manager has different function key definitions for Unix (2, 4) and Windows
(3, 5); ESS can use either.

b. The ESS[SAS] function key definitions can be active in all buffers (global: 4, 5) or
limited (local: 2, 3) only to buffers with files that are associated with ESS[SAS] as
specified in your auto-mode-alist.

The distinction between local and global is subtle. If you want the ESS[SAS] definitions
to work when you are in the *shell* buffer or when editing files other than the file extensions
that ESS[SAS] recognizes, you will most likely want to use the global definitions. If you
want your function keys to understand SAS batch commands when you are editing SAS files,
and to behave normally when editing other files, then you will choose the local definitions.
The option can be chosen by the person installing ESS for a site or by an individual.

a. For a site installation or an individual, uncomment ONLY ONE of the following lines in
your ess-site.el. ESS[SAS] Function keys are available in ESS[SAS] if you uncomment
either 2 or 3 and in all modes if you uncomment 4 or 5:

;;2; (setq ess-sas-local-unix-keys t)
;;3; (setq ess-sas-local-pc-keys t)
;;4; (setq ess-sas-global-unix-keys t)
;;5; (setq ess-sas-global-pc-keys t)

The names -unix- and -pc- have nothing to do with the operating system that you are
running. Rather, they mimic the definitions that the SAS Display Manager uses by
default on those platforms.

b. If your site installation has configured the keys contrary to your liking, then you must
call the appropriate function.

Chapter 10: ESS for SAS 50

(load "ess-site") ;; local-unix-keys
(ess-sas-global-pc-keys)

Finally, we get to what the function keys actually do. You may recognize some of the
nicknames as SAS Display Manager commands (they are in all capitals).

Unix PC Nickname "inferior" Alias (if any) and Description

F2 F2 refresh
revert the current buffer with the file of the same
name if the file is newer than the buffer

F3 F8 SUBMIT C-c C-b
save the current .sas file (which is either the .sas
file in the current buffer or the .sas file associated
with the .lst or .log file in the current buffer) and
submit the file as a batch SAS job

F4 F5 PROGRAM
switch buffer to .sas file

F5 F6 LOG C-c C-x
switch buffer to .log file, ‘refresh’ and goto next
error message, if any

F6 F7 OUTPUT C-c C-y
switch buffer to .lst file and ‘refresh’

F7 F4 filetype-1
switch buffer to filetype-1 (defaults to .txt) file
and ‘refresh’

F8 F3 shell
switch buffer to shell

F9 F9 VIEWTABLE
open an interactive FSEDIT/FSBROWSE session on the SAS
dataset near point

F10 F10 toggle-log
toggle ESS[SAS] for .log files; may be useful for
certain debugging situations

F11 F11 filetype-2
switch buffer to filetype-2 (defaults to .dat) file
and ‘refresh’

F12 F12 viewgraph
open a GSASFILE near point for viewing either in emacs
or with an external viewer

Chapter 10: ESS for SAS 51

C-F1 C-F1 rtf-portrait
create an MS RTF portrait file from the current buffer
with a file extension of .rtf

C-F2 C-F2 rtf-landscape
create an MS RTF landscape file from the current buffer
with a file extension of .rtf

C-F3 C-F8 submit-region C-c C-r
write region to ess-temp.sas and submit

C-F5 C-F6 append-to-log
append ess-temp.log to the current .log file

C-F6 C-F7 append-to-output
append ess-temp.lst to the current .lst file

C-F9 C-F9 INSIGHT
open an interactive INSIGHT session on the SAS
dataset near point

C-F10 C-F10 kill-em-all
kill all buffers associated with a .sas program

SUBMIT, PROGRAM, LOG and OUTPUT need no further explanation since they
mimic the SAS Display Manager function key definitions. However, six other keys have
been provided for convenience and are described below.

‘shell’ switches you to the *shell* buffer where you can interact with your operating
system. This is especially helpful if you would like to kill a SAS batch job. You can specify
a different buffer name to associate with a SAS batch job (besides *shell*) with the buffer-
local variable ess-sas-shell-buffer. This allows you to have multiple buffers running SAS
batch jobs on multiple local/remote computers that may rely on different methods specified
by the buffer-local variable ess-sas-submit-method.

F2 performs the ‘refresh’ operation on the current buffer. ‘refresh’ compares the buffer’s
last modified date/time with the file’s last modified date/time and replaces the buffer with
the file if the file is newer. This is the same operation that is automatically performed when
LOG, OUTPUT, ‘filetype-1’ or F11 are pressed.

‘filetype-1’ switches you to a file with the same file name as your .sas file, but with a
different extension (.txt by default) and performs ‘refresh’. You can over-ride the default
extension; for example in your .emacs file:

(setq ess-sas-suffix-1 "csv") ; for example

F9 will prompt you for the name of a permanent SAS dataset near point to be opened
for viewing by PROC FSEDIT. You can control the SAS batch command-line with ess-sas-
data-view-submit-options. For controlling the SAS batch commands, you have the global
variables ess-sas-data-view-libname and ess-sas-data-view-fsview-command as well as the
buffer-local variable ess-sas-data-view-fsview-statement. If you have your SAS LIBNAMEs
defined in autoexec.sas, then the defaults for these variables should be sufficient.

Chapter 10: ESS for SAS 52

Similarly, C-F9 will prompt you for the name of a permanent SAS dataset near point
to be opened for viewing by PROC INSIGHT. You can control the SAS batch command-
line with ess-sas-data-view-submit-options. For controlling the SAS batch commands, you
have the global variables ess-sas-data-view-libname and ess-sas-data-view-insight-command
as well as the buffer-local variable ess-sas-data-view-insight-statement.

F10 toggles ESS[SAS] mode for .log files which is off by default (technically, it is SAS-log-
mode, but it looks the same). The syntax highlighting can be helpful in certain debugging
situations, but large .log files may take a long time to highlight.

F11 is the same as ‘filetype-1’ except it is .dat by default.

F12 will prompt you for the name of a GSASFILE near the point in .log to be opened for
viewing either with emacs or with an external viewer. Depending on your version of emacs
and the operating system you are using, emacs may support .gif and .jpg files internally.
You may need to change the following variables for your own situation. ess-sas-graph-view-
suffix-regexp is a regular expression of supported file types defined via file name extensions.
ess-sas-graph-view-viewer-default is the default external viewer for your platform. ess-sas-
graph-view-viewer-alist is an alist of exceptions to the default; i.e. file types and their
associated viewers which will be used rather than the default viewer.

(setq ess-sas-graph-view-suffix-regexp (concat "[.]\\([eE]?[pP][sS]\\|"
"[pP][dD][fF]\\|[gG][iI][fF]\\|[jJ][pP][eE]?[gG]\\|"
"[tT][iI][fF][fF]?\\)")) ;; default
(setq ess-sas-graph-view-viewer-default "kodakimg") ;; Windows default
(setq ess-sas-graph-view-viewer-default "sdtimage") ;; Solaris default
(setq ess-sas-graph-view-viewer-alist
’(("[eE]?[pP][sS]" . "gv") ("[pP][dD][fF]" . "acroread")) ;; default

C-F2 produces US landscape by default, however, it can produce A4 landscape (first line
for "global" key mapping, second for "local"):

(global-set-key [(control f2)] ’ess-sas-rtf-a4-landscape)
(define-key sas-mode-local-map [(control f2)] ’ess-sas-rtf-a4-landscape)

10.6 iESS[SAS]–Interactive SAS processes

iESS (inferior ESS) is the method for interfacing with interactive statistical processes
(programs). iESS[SAS] is what is needed for interactive SAS programming. iESS[SAS]
works best with the following settings for SAS command-line options (the default of inferior-
SAS-args):

-stdio -linesize 80 -noovp -nosyntaxcheck

-stdio
required to make the redirection of stdio work

-linesize 80
keeps output lines from folding on standard terminals

-noovp
prevents error messages from printing 3 times

-nosyntaxcheck
permits recovery after syntax errors

To start up iESS[SAS] mode, use:

Chapter 10: ESS for SAS 53

M-x SAS

The *SAS:1.log* buffer in ESStr mode corresponds to the file myfile.log in SAS batch us-
age and to the "SAS: LOG" window in the SAS Display Manager. All commands submitted
to SAS, informative messages, warnings, and errors appear here.

The *SAS:1.lst* buffer in ESSlst mode corresponds to the file myfile.lst in SAS batch
usage and to the "SAS: OUTPUT" window in the SAS Display Manager. All data related
printed output from the PROCs appear in this window.

The iESS [SAS:1] buffer exists solely as a communications buffer. Files are edited in the
myfile.sas buffer. The C-c C-r key in ESS[SAS] is the functional equivalent of bringing a
file into the "SAS: PROGRAM EDITOR" window followed by the ’Local’ ’Submit’ menu
commands. The user should never use this buffer directly.

For example, open the file you want to work with.
C-x C-f myfile.sas

myfile.sas will be in ESS[SAS] mode. Edit as appropriate, and then start up SAS with
the cursor in the myfile.sas buffer.

M-x SAS

Four buffers will appear on screen:
Buffer Mode Description
myfile.sas ESS[SAS] your source file
SAS:1 iESS [SAS:1] ESS communication buffer
SAS:1.log Shell [] ESStr SAS log information
SAS:1.lst Shell [] ESSlst SAS listing information

If you would prefer each of the four buffers to appear in its own individual frame, you can
arrange for that. Place the cursor in the buffer displaying myfile.sas. Enter the sequence:

C-c C-w

The cursor will normally be in buffer myfile.sas. If not, put it there:
C-x b myfile.sas

Send regions, lines, or the entire file contents to SAS (regions are most useful). A
highlighted region will normally begin with the keywords ’DATA’ or ’PROC’ and end with
the keyword ’RUN;’

C-c C-r

Information appears in the log buffer, analysis results in the listing buffer. In case of
errors, make the corrections in the myfile.sas buffer and resubmit with another C-c C-r

At the end of the session you may save the log and listing buffers with the usual C-x
C-s commands. You will be prompted for a file name. Typically, the names myfile.log and
myfile.lst will be used. You will almost certainly want to edit the saved files before including
them in a report. The files are read-only by default. You can make them writable by the
emacs command C-x C-q.

At the end of the session, the input file myfile.sas will typically have been revised. You
can save it. It can be used later as the beginning of another iESS[SAS] session. It can also
be used as a batch input file to SAS.

The *SAS:1* buffer is strictly for ESS use. The user should never need to read it or
write to it. Refer to the .lst and .log buffers for monitoring output!

Troubleshooting: See Section 10.7 [iESS(SAS)–Common problems], page 54.

Chapter 10: ESS for SAS 54

10.7 iESS[SAS]–Common problems

1. iESS[SAS] does not work on Windows. In order to run SAS inside
an emacs buffer, it is necessary to start SAS with the -stdio option.
SAS does not support the -stdio option on Windows.

2. If M-x SAS gives errors upon startup, check the following:
- you are running Windows: see 1.
- ess-sas-sh-command (in the ESS source directory) needs to be

executable (solution: "chmod ugo+rx ess-sas-sh-command").
- sas isn’t in your executable path (verify using "which sas" from

a shell command-line)

3. M-x SAS starts SAS Display Manager. Probably, the command "sas"
on your system calls a shell script. Specify the path to the real
"sas" executable in the file ess-sas-sh-command, i.e.:

/usr/local/sas612/sas </dev/tty 1>$stdout 2>$stderr $@
To find the "sas" exectuable, you can execute the unix command:

find / -name sas -print

10.8 ESS[SAS]–Graphics

Output from GPROCs can be displayed in a SAS/Graph window for SAS batch on
Windows or for both SAS batch and interactive with X11 on Unix. If you need to create
graphics files and view them with F12, then include the following (either in myfile.sas or in
your autoexec.sas):

filename gsasfile ’graphics.ps’;
goptions device=ps gsfname=gsasfile gsfmode=append;

PROC PLOT graphs can be viewed in the listing buffer. You may wish to control the
vertical spacing to allow the entire plot to be visible on screen, for example:

proc plot;
plot a*b / vpos=25;

run;

10.9 ESS[SAS]–MS Windows

• iESS[SAS] does not work on Windows. See Section 10.7 [iESS(SAS)–Common prob-
lems], page 54.

• ESS[SAS] mode for editing SAS language files works very well. See Section 10.2
[ESS(SAS)–Editing files], page 46.

• There are two execution options for SAS on Windows. You can use batch. See Sec-
tion 10.4 [ESS(SAS)–Batch SAS processes], page 47.
Or you can mark regions with the mouse and submit the code with ‘submit-region’ or
paste them into SAS Display Manager.

Chapter 11: ESS for BUGS 55

11 ESS for BUGS

ESS[BUGS] was designed for use with BUGS software. It was developed by Rodney
A. Sparapani and has some similarities with ESS[SAS]. ESS facilitates BUGS batch with
ESS[BUGS], the mode for files with the .bug extension. ESS provides 5 features. First,
BUGS syntax is described to allow for proper fontification of statements, distributions,
functions, commands and comments in BUGS model files, command files and log files.
Second, ESS creates templates for the command file from the model file so that a BUGS
batch process can be defined by a single file. Third, ESS provides a BUGS batch script that
allows ESS to set BUGS batch parameters. Fourth, key sequences are defined to create a
command file and submit a BUGS batch process. Lastly, interactive submission of BUGS
commands is also supported.

11.1 ESS[BUGS]–Model files

Model files (with the .bug extension) are edited in ESS[BUGS] mode. Two keys are
bound for your use in ESS[BUGS], F2 and F12. F2 performs the same action as it does in
ESS[SAS], See Section 10.5 [ESS(SAS)–Function keys for batch processing], page 49. F12
performs the function ess-bugs-next-action which you will use a lot. Pressing F12 in an
empty buffer for a model file will produce a template for you.

ESS[BUGS] supports "replacement" variables. These variables are created as part of
the template, i.e. with the first press of F12 in an empty buffer. They are named by all
capitals and start with ’%’: %N, %DATA, %INIT, %MONITOR and %STATS. When you
are finished editing your model file, pressing F12 will perform the necessary replacements
and build your command file for you.

The %DATA variable appears in the line ’data in "%DATA";’. On the second press of
F12, %DATA will be replaced by the model file name except it will have the .dat extension.
If your data file is named something else, then change %DATA in the template to the
appropriate file name and no replacement will occur.

The %INIT variable appears in the line ’inits in "%INIT";’. On the second press of F12,
%INIT will be replaced by the model file name except it will have the .in extension. If
your model will be generating it’s own initial values, place a comment character, #, at the
beginning of the line. Or, if your init file is named something else, then change %INIT in
the template to the appropriate file name.

The %N variable appears in the line ’const N = 0;#%N’. Although it is commented, it
is still active. Notice that later on in the template you have the line ’for (i in 1:N)’. The
BUGS constant N is the number of rows in your data file. When you press F12, the data
file is read and the number of lines are counted (after %DATA is resolved, if necessary).
The number of lines replace the zero in the ’const N = 0’ statement.

The %MONITOR variable appears on a line by itself. Although it is commented, it is
still active. This line is a list of variables that you want monitored. When you press F12,
the appropriate statements are created in the command file to monitor the list of variables.
If the line is blank, then the list is populated with the variables from the ’var’ statement.

The %STATS variable is similar to the %MONITOR variable. It is a list of variables
for which summary statistics will be calculated. When you press F12, the appropriate
statements will be generated in your command file.

Chapter 11: ESS for BUGS 56

Please note that the %DATA and %INIT variables are only replaced on the second press
of F12, but the actions for %N, %MONITOR and %STATS are performed on each press of
F12 if you re-visit the model file.

11.2 ESS[BUGS]–Command files

To avoid extension name collision, .bmd is used for BUGS command files. When you
have finished editing your model file and press F12, a command file is created if one does
not already exist. However, the command file was created, it recognizes two "replacement"
variables: %MONITOR and %STATS.

Two %MONITOR variables appears on lines by themselves. Although they are com-
mented, they are still active. Between them appears the necessary statements to monitor
the list of variables specified in the model file. The behavior of the %STATS variable is
similar.

When you are finished editing your command file, pressing F12 again will submit your
command file as a batch job. Batch scripts are provided for both DOS and Unix in the
etc sub-directory of the ESS distribution. The DOS script is called "BACKBUGS.BAT"
and the Unix script is "backbugs". These scripts allow you to change the number of bins
to use in the Griddy algorithm (Metropolis sampling). That is handled by the variable
ess-bugs-default-bins which defaults to 32.

11.3 ESS[BUGS]–Log files

To avoid extension name collision, .bog is used for BUGS log files. The BUGS batch
script provided with ESS creates the .bog file from the .log file when the batch process
completes. If you need to look at the .log file while the batch process is running, it will not
appear in ESS[BUGS] mode unless you modify the auto-mode-alist variable. If you have
done so, then you may find F2 useful to refresh the .log if the batch process over-writes or
appends it.

Chapter 12: Other features of ESS 57

12 Other features of ESS

ESS has a few miscellaneous features, which didn’t fit anywhere else.

12.1 Syntactic highlighting of buffers

ESS provides Font-Lock (see section “Using Multiple Typefaces” in The Gnu Emacs
Reference Manual) patterns for Inferior S Mode, S Mode, and S Transcript Mode buffers.

To activate highlighting, you need to turn on Font Lock mode in the appropriate buffers.
This can be done on a per-buffer basis with M-x font-lock-mode, or may be done by adding
turn-on-font-lock to inferior-ess-mode-hook, ess-mode-hook and ess-transcript-
mode-hook. Your systems administrator may have done this for you in ‘ess-site.el’ (see
Appendix A [Customization], page 61).

The font-lock patterns are defined in three variables, which you may modify if desired:

Variableinferior-ess-font-lock-keywords
Font-lock patterns for Inferior ESS Mode. The default value highlights prompts,
inputs, assignments, output messages, vector and matrix labels, and literals such as
‘NA’ and TRUE.

Variableess-mode-font-lock-keywords
Font-lock patterns for ESS programming mode. The default value highlights function
names, literals, assignments, source functions and reserved words.

Variableess-trans-font-lock-keywords
Font-lock patterns for ESS Transcript Mode. The default value highlights the same
patterns as in Inferior ESS Mode.

12.2 Using graphics with ESS

One of the main features of the S package is its ability to generate high-resolution graphics
plots, and ESS provides a number of features for dealing with such plots.

12.2.1 Using ESS with the printer() driver

This is the simplest (and least desirable) method of using graphics within ESS. S’s
printer() device driver produces crude character based plots which can be contained within
the ESS process buffer itself. To start using character graphics, issue the S command

printer(width=79)

(the width=79 argument prevents Emacs line-wrapping at column 80 on an 80-column
terminal. Use a different value for a terminal with a different number of columns.) Plotting
commands do not generate graphics immediately, but are stored until the show() command
is issued, which displays the current figure.

Chapter 12: Other features of ESS 58

12.2.2 Using ESS with windowing devices

Of course, the ideal way to use graphics with ESS is to use a windowing system. Under
X11, this requires that the DISPLAY environment variable be appropriately set, which may
not always be the case within your Emacs process. ESS provides a facility for setting the
value of DISPLAY before the ESS process is started if the variable ess-ask-about-display
is non-nil.

12.2.3 Java Graphics Device

S+6.2 on Windows contains a java library that supports graphics. Send the commands:
library(winjava)
java.graph()

to start the graphics driver. This allows you to use ESS for both interaction and graphics
within S-PLUS. (Thanks to Tim Hesterberg for this information.)

12.3 Imenu

Imenu is an Emacs tool for providing mode-specific buffer indexes. In some of the
ESS editing modes, support for Imenu is provided. For example, in S mode buffers, the
menubar should display an item called "Imenu-S". Within this menubar you will then be
offered bookmarks to particular parts of your source file (such as the starting point of each
function definition).

12.4 Toolbar

The R and S editing modes have support for a toolbar. This toolbar provides icons to
act as shortcuts for starting new S/R processes, or for evaluating regions of your source
buffers. The toolbar should be present if your emacs can display images. See Appendix A
[Customization], page 61, for ways to change the toolbar.

Chapter 13: Bugs and Bug Reporting, Mailing Lists 59

13 Bugs and Bug Reporting, Mailing Lists

13.1 Bugs

• Commands like ess-display-help-on-object and list completion cannot be used
while the user is entering a multi-line command. The only real fix in this situation is
to use another ESS process.

• The ess-eval- commands can leave point in the ESS process buffer in the wrong place
when point is at the same position as the last process output. This proves difficult to
fix, in general, as we need to consider all windows with window-point at the right
place.

• It’s possible to clear the modification flag (say, by saving the buffer) with the edit buffer
not having been loaded into S.

• Backup files can sometimes be left behind, even when ess-keep-dump-files is nil.
• Passing an incomplete S expression to ess-execute causes ESS to hang.
• The function-based commands don’t always work as expected on functions whose body

is not a parenthesized or compound expression, and don’t even recognize anonymous
functions (i.e. functions not assigned to any variable).

• Multi-line commands could be handled better by the command history mechanism.

13.2 Reporting Bugs

Please send bug reports, suggestions etc. to
ESS-bugs@stat.math.ethz.ch

The easiest way to do this is within Emacs by typing
M-x ess-submit-bug-report

This also gives the maintainers valuable information about your installation which may
help us to identify or even fix the bug.

If Emacs reports an error, backtraces can help us debug the problem. Type "M-x set-
variable RET debug-on-error RET t RET". Then run the command that causes the error
and you should see a *Backtrace* buffer containing debug information; send us that buffer.

Note that comments, suggestions, words of praise and large cash donations are also more
than welcome.

13.3 Mailing Lists

There is a mailing list for discussions and announcements relating to ESS. Join
the list by sending an e-mail with "subscribe ess-help" (or "help") in the body to
ess-help-request@stat.math.ethz.ch; contributions to the list may be mailed to
ess-help@stat.math.ethz.ch. Rest assured, this is a fairly low-volume mailing list.

The purposes of the mailing list include
helping users of ESS to get along with it.
discussing aspects of using ESS on Emacs and XEmacs.

mailto:ESS-bugs@stat.math.ethz.ch
mailto:ess-help-request@stat.math.ethz.ch
mailto:ess-help@stat.math.ethz.ch

Chapter 13: Bugs and Bug Reporting, Mailing Lists 60

suggestions for improvements.
announcements of new releases of ESS.
posting small patches to ESS.

Appendix A: Customizing ESS 61

Appendix A Customizing ESS

ESS can be easily customized to your taste simply by including the appropriate lines in
your ‘.emacs’ file. There are numerous variables which affect the behavior of ESS in certain
situations which can be modified to your liking. Keybindings may be set or changed to your
preferences, and for per-buffer customizations hooks are also available.

Most of these variables can be viewed and set using the Custom facility within Emacs.
Type M-x customize-group RET ess RET to see all the ESS variables that can be cus-
tomized. Variables are grouped by subject to make it easy to find related variables.

Key (Character) Index 62

Key (Character) Index

(Index is nonexistent)

Concept Index 63

Concept Index

.
‘.emacs’ file . 38, 40

A
aborting S commands . 27
aborting the ESS process . 27
arguments to S program . 17
authors . 7
autosaving . 40

B
Bug reports . 59
bugs . 59

C
cleaning up . 26
comint . 7
command history . 23
command-line completion . 19
command-line editing . 19
commands . 19
comments . 39
comments in S . 37
completion in edit buffer . 38
completion of object names 19
completion on file names . 20
completion on lists . 20
completion, when prompted for object names . . 35
creating new objects . 35
credits . 7
customization . 61

D
data frames . 20
debugging S functions . 37
deleting output . 21
directories . 15
dump file directories . 40
dump file names . 40
dump files . 35, 39

E
echoing commands when evaluating 36
edit buffer . 35
editing commands . 23
editing functions . 35
editing transcripts . 23
emacsclient . 27

entering commands . 19
errors . 36
ESS process buffer . 15
ESS process directory . 15
evaluating code with echoed commands 36
evaluating S expressions . 36

F
Font-lock mode . 57
formatting source code . 37

G
graphics. 57

H
help files . 44
highlighting . 57
historic backups . 39
hot keys . 26

I
indenting . 37
installation . 10
interactive use of S . 1
interrupting S commands . 27
introduction . 1

K
keyboard short cuts . 26
killing temporary buffers . 26
killing the ESS process . 26

L
lists, completion on . 20

M
motion in transcript mode . 28
multi-line commands, resubmitting 23
Multiple ESS processes . 15

N
new objects, creating . 35

Concept Index 64

O
objects . 26

P
pages in the process buffer . 21
paging commands in help buffers 44
paragraphs in the process buffer 21
parsing errors . 36
process buffer . 15
process names . 15
programming in S . 1
project work in S . 39

Q
quitting from ESS . 26

R
re-executing commands . 23
reading long command outputs 21
Remote Computers . 15
reverting function definitions 35
running S . 15

S
search list. 26, 41

sending input . 19
starting directory . 15
starting ESS. 15
stepping through code . 37
STERM . 26

T
tcsh . 19
temporary buffers . 45
temporary buffers, killing . 26
transcript . 21
transcript file . 17
transcript file names . 23
transcript mode motion . 28
transcripts of S sessions . 1

U
using S interactively . 1

W
winjava . 58
working directory . 15, 41

X
X windows . 58

Variable and command index 65

Variable and command index

A
attach() . 26

B
backward-kill-word . 19

C
comint-backward-matching-input 22
comint-bol . 19
comint-copy-old-input . 22
comint-delimiter-argument-list 25
comint-dynamic-complete . 19
comint-forward-matching-input 22
comint-input-ring-size . 23
comint-interrupt-subjob . 27
comint-kill-input . 19
comint-kill-output . 21
comint-next-input . 22, 24
comint-next-matching-input 24
comint-next-matching-input-from-input 24
comint-previous-input . 22, 23
comint-previous-matching-input 24
comint-previous-matching-input-from-input 24
comint-show-maximum-output 21
comint-show-output . 21
comint-stop-subjob . 27
comment-column . 37

D
dump() . 35

E
ess-abort . 27
ess-ask-about-display . 58
ess-ask-about-transfile 17, 23
ess-ask-for-ess-directory 17
ess-beginning-of-function . 38
ess-change-sp-regexp . 20
ess-cleanup . 26, 45
ess-delete-dump-files . 39
ess-describe-help-mode . 44
ess-directory . 17, 41
ess-display-help-on-object . 44
ess-dump-filename-template 40
ess-dump-object-into-edit-buffer 27, 35
ESS-elsewhere . 15
ess-end-of-function . 38
ess-eval-buffer . 37
ess-eval-function . 36
ess-eval-function-and-go 36, 37
ess-eval-line . 36
ess-eval-line-and-go . 36
ess-eval-line-and-step . 37, 45
ess-eval-region. 36, 45
ess-eval-region-and-go . 37

ess-eval-visibly-p . 36
ess-execute . 26
ess-execute-attach . 26
ess-execute-in-process-buffer 25
ess-execute-in-tb . 37
ess-execute-objects . 26
ess-execute-search . 26
ess-fancy-comments . 37
ess-function-template . 35
ess-keep-dump-files . 39
ess-list-object-completions . 20
ess-load-file . 26, 35
ess-mode-font-lock-keywords 57
ess-parse-errors . 26, 36
ess-quit . 27, 45
ess-remote. 15
ess-request-a-process . 15
ess-resynch . 21
ess-search-list . 41
ess-skip-to-help-section . 44
ess-skip-to-next-section . 44
ess-skip-to-previous-section 44
ess-source-directory . 40
ess-submit-bug-report . 59
ess-switch-to-end-of-ESS 38, 45
ess-switch-to-ESS . 38
ess-trans-font-lock-keywords 57
ess-transcript-clean-region . 23
ess-transcript-copy-command 28
ess-transcript-send-command 28
ess-transcript-send-command-and-move 22
exit() . 26

I
inferior-ess-font-lock-keywords 57
inferior-ess-program . 17
inferior-ess-send-input . 19, 22

O
objects() . 26

P
printer() . 57

Q
q() . 26

S
S . 15
S+elsewhere . 15
search() . 20, 26
source() . 35, 36
STERM . 26

i

Table of Contents

1 Introduction to ESS. 1
1.1 Why should I use ESS? . 1
1.2 New features in ESS . 2
1.3 Authors of and contributors to ESS . 7
1.4 Getting the latest version of ESS . 8
1.5 How to read this manual . 9

2 Installing ESS on your system 10
2.1 Unix installation . 10
2.2 Microsoft Windows installation . 11
2.3 Requirements . 13

3 Interacting with statistical programs 15
3.1 Starting an ESS process . 15
3.2 Running more than one ESS process . 15
3.3 ESS processes on Remote Computers . 15
3.4 S+elsewhere and ESS-elsewhere . 16
3.5 Changing the startup actions . 17

4 Interacting with the ESS process 19
4.1 Entering commands and fixing mistakes 19
4.2 Completion of object names . 19
4.3 Completion details . 20
4.4 Manipulating the transcript . 21

4.4.1 Manipulating the output from the last command
. 21

4.4.2 Viewing older commands . 22
4.4.3 Re-submitting commands from the transcript 22
4.4.4 Keeping a record of your S session 23

4.5 Command History . 23
4.6 References to historical commands . 24
4.7 Hot keys for common commands . 25
4.8 Is the Statistical Process running under ESS? 26
4.9 Using emacsclient . 27
4.10 Other commands provided by inferior-ESS 27

5 Manipulating saved transcript files 28
5.1 Resubmitting commands from the transcript file 28
5.2 Cleaning transcript files . 28

ii

6 ESS for the S family . 29
6.1 ESS[S]–Editing files . 29
6.2 iESS[S]–Inferior ESS processes . 29
6.3 ESS-help–assistance with viewing help 30
6.4 Philosophies for using ESS[S] . 30
6.5 Scenarios for use (possibilities–based on actual usage) 31
6.6 Customization Examples and Solutions to Problems 33

7 Editing S functions . 35
7.1 Creating or modifying S objects . 35
7.2 Loading source files into the ESS process 35
7.3 Detecting errors in source files . 36
7.4 Sending code to the ESS process . 36
7.5 Indenting and formatting S code . 37
7.6 Commands for motion, completion and more 38
7.7 Maintaining S source files . 39
7.8 Names and locations of dump files . 40

8 Editing R documentation files 42

9 Reading help files . 44

10 ESS for SAS . 46
10.1 ESS[SAS]–Design philosophy . 46
10.2 ESS[SAS]–Editing files . 46
10.3 ESS[SAS]–TAB key . 47
10.4 ESS[SAS]–Batch SAS processes . 47
10.5 ESS[SAS]–Function keys for batch processing 49
10.6 iESS[SAS]–Interactive SAS processes 52
10.7 iESS[SAS]–Common problems . 54
10.8 ESS[SAS]–Graphics . 54
10.9 ESS[SAS]–MS Windows . 54

11 ESS for BUGS . 55
11.1 ESS[BUGS]–Model files . 55
11.2 ESS[BUGS]–Command files . 56
11.3 ESS[BUGS]–Log files . 56

12 Other features of ESS . 57
12.1 Syntactic highlighting of buffers . 57
12.2 Using graphics with ESS . 57

12.2.1 Using ESS with the printer() driver 57
12.2.2 Using ESS with windowing devices 58
12.2.3 Java Graphics Device . 58

12.3 Imenu . 58
12.4 Toolbar . 58

iii

13 Bugs and Bug Reporting, Mailing Lists . . . 59
13.1 Bugs . 59
13.2 Reporting Bugs . 59
13.3 Mailing Lists. 59

Appendix A Customizing ESS 61

Key (Character) Index . 62

Concept Index . 63

Variable and command index 65

	Introduction to ESS
	Why should I use ESS?
	New features in ESS
	Authors of and contributors to ESS
	Getting the latest version of ESS
	How to read this manual

	Installing ESS on your system
	Unix installation
	Microsoft Windows installation
	Requirements

	Interacting with statistical programs
	Starting an ESS process
	Running more than one ESS process
	ESS processes on Remote Computers
	S{@char 43}elsewhere and ESS-elsewhere
	Changing the startup actions

	Interacting with the ESS process
	Entering commands and fixing mistakes
	Completion of object names
	Completion details
	Manipulating the transcript
	Manipulating the output from the last command
	Viewing older commands
	Re-submitting commands from the transcript
	Keeping a record of your S session

	Command History
	References to historical commands
	Hot keys for common commands
	Is the Statistical Process running under ESS?
	Using emacsclient
	Other commands provided by inferior-ESS

	Manipulating saved transcript files
	Resubmitting commands from the transcript file
	Cleaning transcript files

	ESS for the S family
	ESS[S]--Editing files
	iESS[S]--Inferior ESS processes
	ESS-help--assistance with viewing help
	Philosophies for using ESS[S]
	Scenarios for use (possibilities--based on actual usage)
	Customization Examples and Solutions to Problems

	Editing S functions
	Creating or modifying S objects
	Loading source files into the ESS process
	Detecting errors in source files
	Sending code to the ESS process
	Indenting and formatting S code
	Commands for motion, completion and more
	Maintaining S source files
	Names and locations of dump files

	Editing R documentation files
	Reading help files
	ESS for SAS
	ESS[SAS]--Design philosophy
	ESS[SAS]--Editing files
	ESS[SAS]--TAB key
	ESS[SAS]--Batch SAS processes
	ESS[SAS]--Function keys for batch processing
	iESS[SAS]--Interactive SAS processes
	iESS[SAS]--Common problems
	ESS[SAS]--Graphics
	ESS[SAS]--MS Windows

	ESS for BUGS
	ESS[BUGS]--Model files
	ESS[BUGS]--Command files
	ESS[BUGS]--Log files

	Other features of ESS
	Syntactic highlighting of buffers
	Using graphics with ESS
	Using ESS with the printer() driver
	Using ESS with windowing devices
	Java Graphics Device

	Imenu
	Toolbar

	Bugs and Bug Reporting, Mailing Lists
	Bugs
	Reporting Bugs
	Mailing Lists

	Customizing ESS
	Key (Character) Index
	Concept Index
	Variable and command index

