EZTrace

A Generic Framework for
Instrumenting Applications

User Manual

September 22, 2014

Contents

1 License of EZTrace

2 Overview of EZTrace

3 Installation
3.1 Requirements . .
3.2 Getting EZTrace
3.3 Building EZTrace

4 How to Use EZTrace?

4.1 Recording Events

4.1.1 Selecting Functions to Instrument
4.1.2 Generating Execution Traces
4.1.3 Using EZTrace for MPI Applications
4.1.4 Changing the Output Directory
4.2 Post-Mortem Analysis
4.2.1 Merging Execution Traces
4.2.2 Filtering Events 0oL
4.2.3 Computing Statistics
4.3 User-defined Plugins
4.3.1 Defining Custom Plugins
4.3.2 Generating Custom Plugins
4.4 FEnvironment Variables oo
4.5 Known Limitations o0

5 EZTrace in Details
5.1 EZTrace Core . .
5.1.1 FxT . ..

5.1.2 GTG. ..

5.2 EZTrace Modules

6 Frequently Asked Questions

6.1 Troubleshooting .

Bibliography

Chapter 1

License of EZTrace

EZTrace is developed and distributed under the GNU General Public Li-
cense.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any
later version.

EZTrace is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with EZTrace; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

Chapter 2

Overview of EZTrace

EZTrace [2], 8, [4] is a tool that aims at generating automatically execution
traces from High-Performance Computing (HPC) programs. It generates
execution trace files that can be interpreted by visualization tools such as
ViTE [5].

EZTrace has been designed to provide a simple way to trace parallel
applications. This framework relies on plugins in order to offer a generic
way to analyze programs; depending on the application to analyze or on
the point to focus on, several modules an be loaded. EZTrace provides pre-
defined plugins that give the ability to the user to analyze applications that
use MPI libraries, OpenMP, or Pthreads. However, user-defined plugins can
also be loaded in order to analyze application functions or custom libraries.

Chapter 3

Installation

3.1 Requirements

In order to run EZTrace, the following software needs to be installed:
1. autoconf of version 2.63;

2. |Optional | Any MPI implementation. Make sure your MPI installation
provides dynamic libraries.

We use custom versions of the following software:

1. LiTL v.0.1 ();

2. FxT v.0.2.10 (http://download.savannah.gnu.org/releases/fkt/);
3. GTG v.0.2 (http://gforge.inria.fr/projects/gtg/).

Those are already included in EZTrace, but you can also provide your own
versions.

3.2 Getting EZTrace

1. You can get the latest stable release from the EZTrace website, http:
//eztrace.gforge.inria.fr/;

2. Current development version is available via SVN
svn checkout svn+ssh://scm.gforge.inria.fr/svn/eztrace.

After getting the latest development version (from SVN), you need to run
./bootstrap
and only then build the tool.

http://download.savannah.gnu.org/releases/fkt/
http://gforge.inria.fr/projects/gtg/
http://eztrace.gforge.inria.fr/
http://eztrace.gforge.inria.fr/

3.3 Building EZTrace

At first, you need to configure EZTrace by invoking the configure script:
./configure - -prefix=<WHERE_YOU_INSTALL_EZTRACE>
Options to configure. You can pass several options to the configure script
for specifying where it should find the required libraries:
- ~with-fxt=8FXT_ROOT — specify where FxT is installed;
- -with-gtg=$GTG_ROOT — specify where GTG is installed;
- -with-mpi=$MPI_ROOT — specify where MPI is installed. The mpi.h
file must be located in the $MPI_R0O0T/include/directory;
- -with-mpi-include=<PATH_TO_MPI.H> — specify the directory that
contains the mpi.h file.
Once EZTrace is configured, just run
make
make install

Chapter 4

How to Use EZTrace?

4.1 Recording Events

4.1.1 Selecting Functions to Instrument

First, you should select functions in your application that you want to in-
strument. For this, you can set the EZTRACE_TRACE environment variable to
the list of plugins that should be used. For instance, set
export EZTRACE_TRACE="pthread mpi"
if you want to instrument the PThread and MPI functions.
You can get the list of available plugins using the eztrace_avail com-
mand:
eztrace_avail
3 stdio Module for stdio functions (read, write,
select, poll, etc.)
2 pthread Module for PThread synchronization functions
(mutex, semaphore, spinlock, etc.)

6 papi Module for PAPI Performance counters

1 omp Module for OpenMP parallel regions

4 mpi Module for MPI functions

5 memory Module for memory functions (malloc, free,
etc.)

You can get the list of selected modules with the eztrace_loaded com-
mand:
export EZTRACE_TRACE="pthread mpi"
eztrace_loaded
2 pthread Module for PThread synchronization functions
(mutex, semaphore, spinlock, etc.)
4 mpi Module for MPI functions

4.1.2 Generating Execution Traces

Once the list of plugins is selected, you can run your application with EZ-
Trace. For example:

eztrace ./my_program my_argl my_arg2
This command line executes your program and generates a trace file in the
/tmp directory (usually the file is named as /tmp/<username>_eztrace_log_
rank_<rank>).

4.1.3 Using EZTrace for MPI Applications

EZTrace needs to instrument each MPI process. Thus, you can run the
following command:
mpirun -np nproc eztrace ./my_program,
where npoc is the number of MPI processes. When your application ends.
Fach process writes a file named
/tmp/<username>_eztrace_log_rank_<rank>.

4.1.4 Changing the Output Directory

By default, each process saves its trace in the local /tmp directory. You can
change this by setting the EZTRACE_TRACE_DIR environment variable.

4.2 Post-Mortem Analysis

4.2.1 Merging Execution Traces

Once the execution traces are recorded, you can merge and convert them
into a file format that can be read by your visualization software:
eztrace_convert -o my_paje.trace /tmp/<username>_eztrace_
log_rank_O /tmp/<username>_eztrace_log_rank_1 This converts
the trace files into the Paje format. If GTG is installed with OTF support
(this is enabled by default), you can choose to convert into the OTF file
format with the -t OTF option:
eztrace_convert -t OTF /tmp/<username>_eztrace_log_rank_0
/tmp/<username>_eztrace_log_rank_1

4.2.2 Filtering Events

You can select the plugins to use for the conversion phase by using the
EZTRACE_TRACE environment variable. For instance, if your traces contains
MPI and other events, then by setting EZTRACE_TRACE to mpi and calling
eztrace_convert you will receive an output trace that contains only MPI
events.

4.2.3 Computing Statistics

Instead of creating a merged trace file, you can tell EZTrace to compute
statistics on the recorded traces
eztrace_stats /tmp/<username>_eztrace_log_rank_0
/tmp/<username>_eztrace_log_rank_1

[...]
PThread:

6 locks acquired

MPI:

27 messages sent

MPI_RECV:

10 calls

MPI_BARRIER: 11 calls
163 events handled

4.3 User-defined Plugins

4.3.1 Defining Custom Plugins

Since EZTrace works with plugins, you can create one and instrument the
functions that you want. An example of a custom plugin is available in the

example directory

Once your plugin is created, you should tell EZTrace where to find it.
For this, just set the EZTRACE_LIBRARY_PATH variable to the appropriate

directory(-ies):

export EZTRACE_LIBRARY_PATH=pluginl:plugin2

eztrace_avail

3 stdio

2 pthread
6 papi

1 omp

4 mpi

5 memory
99 pluginil
98 plugin2

Module for stdio functions (read, write,
select, poll, etc.)

Module for PThread synchronization func-
tions (mutex, semaphore, spinlock, etc.)
Module for PAPI Performance counters
Module for OpenMP parallel regions
Module for MPI functions

Module for memory functions (malloc, free,
etc.)

Example module for libpluginl

Example module for the plugin2 library

BT S N

BW N =

4.3.2 Generating Custom Plugins

You can generate one plugin and instrument the functions you want. In
order to generate your plugin, you need to create a file containing:

1. The name of the library you want to trace (LibNAME.so);
2. |Optional] A brief description of the library;

3. An ID to identify the module. 0 is reserved for EZTrace internal use.
Thus, you can use any between 10 and ff;

4. The prototype of the functions you want to instrument.
As a result, your file should look as follow

Listing 4.1: example.tpl

BEGIN_MODULE

NAME example_1lib

DESC "module for the example library"

ID 99

int example_do_event(int n)

double example_functionl(double* array, int array_size)
END_MODULE

Now use eztrace_create_plugin to generate the plugin source code:
eztrace_create_plugin example.tpl
New Module
Module name: ‘’example_lib’
Module description: ’"module for the example library"’
Module id: 1’99’
emulate record_state for ’example_do_event’
Function ’example_do_event’ done
emulate record_state for ’example_functionl’
Function ’example_functionl’ done
End of Module example_lib
The source code is generated in the output directory. Just type:
make
Then, set the EZTRACE_LIBRARY_PATH to the appropriate directory. Now,
your custom plugin is ready to be used.
You can also determine (in the example.tpl file) the way a function is
depicted in the output trace. For instance,

int submit_job(int* array, int array_size)
BEGIN

ADD_VAR("job counter", 1)

END

specifies that when the submit_job function is called, the output trace
should increment the "job counter" variable. You can now track the value
of a variable.

10

The test/module_generator directory contains several scripts that demon-
strate the various commands available.

4.4 Environment Variables

Here is a list of the environment variables that can be used for tuning EZ-
Trace.

e General-purpose variables:

— EZTRACE_TRACE_DIR specifies the directory in which trace files are
stored (by default it is /tmp);

— EZTRACE_LIBRARY_PATH specifies the directories in which EZTrace
can find EZTrace modules (by default, it is none);

— EZTRACE_TRACE specifies the list of EZTrace modules to load (by
default, it is the list of all available modules);

— EZTRACE_BUFFER_SIZE specifies the size of the buffer in which
EZTrace stores events (by default, the size is 32 MB);

— EZTRACE_FLUSH specifies the behavior of EZTrace when the event
buffer is full. If it is set to one, the buffer is flushed. This permits
to record traces that are larger than EZTRACE_BUFFER_SIZE, but
this may impact the application performance. Otherwise, if it is
set to zero, which is a default option, any additional event will be
recorded. The trace is, thus, truncated and there is no impact on
performance.

e Error-handling variables:

— EZTRACE_NO_SIGNAL_HANDLER disables EZTrace signal handling
(by default, it is zero).

e Hardware counters-related variables:

— EZTRACE_PAPI_COUNTERS selects hardware events to trace using
the PAPI library, e.g. export EZTRACE_PAPI_CQOUNTERS="PAPI_L3
_TCM PAPI_FP_INS". Please note that the list of supported events
as well as the number of events, which can be traced simultane-
ously, vary depending on the processor type. This information can
be retrieved using papi_avail and the processor documentation.

e MPI-related variables:

— EZTRACE_MPI_DUMP_MESSAGES tells EZTrace to dump the list of
messages into a file. You can then compute your own statistics
on MPT messages.

11

4.5 Known Limitations

o If EZTrace is compiled with a particular MPI implementation such as
OpenMPI, it will not work if you run your application with another,
e.g. MPICH2. So make sure your application uses the same MPI
implementation as EZTrace.

12

Chapter 5

EZTrace in Details

EZTrace uses a two-phases mechanism for analyzing performance. During
the first phase that occurs while the application is executed, functions are in-
tercepted and events are recorded. After the execution of the application, the
post-mortem analysis phase is in charge of interpreting the recorded events.
This two-phase mechanism permits the library to separate the recording of
a function call from its interpretation. It thus allows the user to interpret
a function call event in different ways depending on the point he/she wants
to focus on. It also reduces the overhead of profiling a program; during
the execution of the application, the analysis tool should avoid performing
time-consuming tasks such as computing statistics or interpreting function
calls.

During the execution of the application, EZTrace intercepts calls to the
functions specified by plugins and records events for each of them. Depending
on the type of functions, EZTrace uses two different mechanisms for the in-
terception. The functions defined in shared libraries can be overridden using
LD_PRELOAD: When the EZTrace library is loaded, it retrieves the addresses
of the functions to instrument. When the application calls one of these func-
tions, the version implemented in EZTrace is called. This function records
events and calls the actual function. The LD_PRELOAD mechanism cannot be
used for functions defined in the application since there is no symbol resolu-
tion. In that case, EZTrace uses the Dynlnst [3] tool for instrumenting the
program on the fly. Using Dynlnst, EZTrace modifies the program to record
events at the beginning and/or at the end of each function to instrument.

EZTrace is structurally divided into two parts: the EZTrace core and the
EZTrace modules.

5.1 EZTrace Core

The EZTrace core is composed of several libraries such as the Fast Kernel
and User Trace (FxT) [6] and the Generic Trace Generator (GTG) [} [7]

13

libraries.

5.1.1 FxT

For recording events, EZTrace relies on the FxT library. Each process being
instrumented by EZTrace generates a trace file using FxT. In order to keep
the trace size as compact as possible, FxT records events in a binary format
that contains only the minimum amount of information: a timestamp, an
event code, and optional parameters.

5.1.2 GTG

During the post-mortem analysis phase, EZTrace browses the recorded events
and interprets them. It can then generate statistics — such as the length of
messages, the duration of critical sections, etc.— or create a trace file for visu-
alizing the application behavior. For generating trace files, EZTrace relies on
the GTG library. GTG provides an abstract interface for recording traces.
This permits the application to use a single interface for creating traces in
multiple formats. Thus, an application can generate PAJE traces or OTF
files without any modification.

Althought PAJE and OTF are both traces format, they have some dif-
ferences. Thus, adding a meaning to a raw FxT event is the critical part
and the event must be interpreted in a way that is conformed to the output
format chosen by the user. Otherwise, the traces will not represent the data
they should.

5.2 EZTrace Modules

Since EZTrace uses the two-phases mechanism, plugins are organized in two
parts, accordingly: the description of the functions to instrument, and the
interpretation of each function call. During the execution of the application,
the first part of the plugin is in charge of recording calls to a set of functions.
The second part of the plugin is in charge of adding semantic to the trace.
EZTrace provides plugins for major parallel programming libraries (MPI,
OpenMP, PThread, etc.), but also allows user-defined plugins designed for
custom libraries or applications. For example, the PLASMA linear algebra
library [1] is shipped with an EZTRACE plugin.

14

Chapter 6

Frequently Asked Questions

Q. When I run my MPI application with EZTrace, all the processes gen-
erate the /tmp/<username>_eztrace_log_rank_1 file. What is going
wrong?

A. This happens when EZTrace fails to intercept calls to MPI_Init or
MPI_Init_thread. There can be several reasons for that:

— The EZTrace MPI module was not compiled. For intercepting
calls to MPI functions, you need the MPI module in your instal-
lation (look for the EZTRACE_RO0T/1ib/libeztrace-autostart-
mpi.so file). If you do not see that file, it means that something
went wrong during the configuration of EZTrace, so check for er-
rors or warnings in the config.log file.

— You specified the list of modules to use and the MPI module was
not there. Check your EZTRACE_TRACE variable or use eztrace_
loaded.

If you still experience problems, please contact the EZTrace develop-
ment team and we will fix your problem.

Q. What if I do not want to trace the whole application, but only a part
of it?

A. Then, you can call eztrace_start() and eztrace_stop() specify
in the code which part to trace. You will need to add #include
<eztrace.h> and to link with 1libeztrace. Afterwards, you can run
your application as usual, i.e. ./my_program my_argl.

Q. I need to trace my program while using GDB, how can I do that?

15

. Just add the -d option to EZTrace to enable GDB:

eztrace -d ./my_program my_argl my_arg?2
Please note that this should be applied only when a bug occurs while
using EZTrace.

. I want my trace to be saved in a specific directory, how can I do that?

. Please take a look in Section

. What if T do not care about OpenMP and I only want to see MPI
communication?

. You can set EZTRACE_TRACE to the list of modules you want to acti-
vate. By default, all the available modules are enabled, but you can
tell EZTrace to trace only MPI, OpenMP, or both MPI and OpenMPI
functions:

export EZTRACE_TRACE=mpi

export EZTRACE_TRACE=omp

export EZTRACE_TRACE="omp mpi"

. Can EZTrace generate an OTF trace file so that I can visualize it with
Vampir?

. Yes, since EZTrace relies on GTG for writing output traces, it can
generate OTF trace files. When converting the trace with eztrace_con
vert, just add the -t OTF option:
eztrace_convert -t OTF /tmp/<username>_eztrace_log_
rank_0 /tmp/<username>_eztrace_log_rank_1

6.1 Troubleshooting

In case you have not found an answer to your question in the FAQ sec-
tion, you encounter a bug, or want some explanation about EZTrace, please
contact and ask our development team:

e On the development mailing list
https://gforge.inria.fr/mail/?group_id=2774

e On our IRC channel:

— Server: chat.freenode.net

— Channel: #teztrace

16

https://gforge.inria.fr/mail/?group_id=2774

Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

8]

E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief,
P. Luszczek, and S. Tomov. Numerical linear algebra on emerging architectures:
The PLASMA and MAGMA projects. Journal of Physics: Conference Series,
180, 20009.

Charles Aulagnon, Damien Martin-Guillerez, Francois Rue, and Francois Tra-
hay. Runtime function instrumentation with EZTrace. In Proceedings of the
PROPER - 5th Workshop on Productivity and Performance, Rhodes, Greece,
August 2012.

Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patching.
Int. J. High Perform. Comput. Appl., 14(4):317-329, November 2000.

Kevin Coulomb, Augustin Degomme, Mathieu Faverge, and Francois Trahay.
An open-source tool-chain for performance analysis. Tools for High Performance
Computing 2011, pages 37-48, 2012.

Kevin Coulomb, Mathieu Faverge, Johnny Jazeix, Olivier Lagrasse, Jule Mar-
coueille, Pascal Noisette, Arthur Redondy, and Clerment Vuchener. ViTE -
Visual Trace Explorer. Available via the WWW. Cited 14 October 2012.
http://vite.gforge.inria.fr/index.phpl

Vincent Danjean, Raymond Namyst, and Pierre-André Wacrenier. An efficient
multi-level trace toolkit for multi-threaded applications. In Proceedings of the
11th international Furo-Par conference on Parallel Processing, Euro-Par’05,
pages 166-175, Berlin, Heidelberg, 2005. Springer-Verlag.

Francois Rue, Francois Trahay, Johnny Jazeiz, Kevin Coulomb, Mathieu
Faverge, and Olivier Lagrasse. GTG — Generic Trace Generator. Available
via the WWW. Cited 14 October 2012. http://gtg.gforge.inria.fr/.

Frangois Trahay, Francois Rue, Mathieu Faverge, Yutaka Ishikawa, Raymond
Namyst, and Jack Dongarra. EZTrace: a generic framework for performance
analysis. In Proceedings of the IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), Newport Beach, CA, USA, May 2011.

17

http://vite.gforge.inria.fr/index.php
http://gtg.gforge.inria.fr/

	1 License of EZTrace
	2 Overview of EZTrace
	3 Installation
	3.1 Requirements
	3.2 Getting EZTrace
	3.3 Building EZTrace

	4 How to Use EZTrace?
	4.1 Recording Events
	4.1.1 Selecting Functions to Instrument
	4.1.2 Generating Execution Traces
	4.1.3 Using EZTrace for MPI Applications
	4.1.4 Changing the Output Directory

	4.2 Post-Mortem Analysis
	4.2.1 Merging Execution Traces
	4.2.2 Filtering Events
	4.2.3 Computing Statistics

	4.3 User-defined Plugins
	4.3.1 Defining Custom Plugins
	4.3.2 Generating Custom Plugins

	4.4 Environment Variables
	4.5 Known Limitations

	5 EZTrace in Details
	5.1 EZTrace Core
	5.1.1 FxT
	5.1.2 GTG

	5.2 EZTrace Modules

	6 Frequently Asked Questions
	6.1 Troubleshooting

	Bibliography

