
Ganeti customisation using hooks
Documents ganeti version 1.2

1. Introduction

In order to allow customisation of operations, ganeti will run scripts under /etc/ganeti/hooks based
on certain rules.

This is similar to the /etc/network/ structure present in Debian for network interface handling.

2. Organisation

For every operation, two sets of scripts are run:

• pre phase (for authorization/checking)

• post phase (for logging)

Also, for each operation, the scripts are run on one or more nodes, depending on the operation type.

Note that, even though we call them scripts, we are actually talking about any executable.

2.1. pre scripts

The pre scripts have a definite target: to check that the operation is allowed given the site-specific
constraints. You could have, for example, a rule that says every new instance is required to exists in a
database; to implement this, you could write a script that checks the new instance parameters against
your database.

The objective of these scripts should be their return code (zero or non-zero for success and failure).
However, if they modify the environment in any way, they should be idempotent, as failed executions
could be restarted and thus the script(s) run again with exactly the same parameters.

Note that if a node is unreachable at the time a hooks is run, this will not be interpreted as a deny for the
execution. In other words, only an actual error returned from a script will cause abort, and not an
unreachable node.

1



Ganeti customisation using hooks

Therefore, if you want to guarantee that a hook script is run and denies an action, it’s best to put it on the
master node.

2.2. post scripts

These scripts should do whatever you need as a reaction to the completion of an operation. Their return
code is not checked (but logged), and they should not depend on the fact that the pre scripts have been
run.

2.3. Naming

The allowed names for the scripts consist of (similar to run-parts(8)) upper and lower case, digits,
underscores and hyphens. In other words, the regexp ^[a-zA-Z0-9_-]+$. Also, non-executable scripts
will be ignored.

2.4. Order of execution

On a single node, the scripts in a directory are run in lexicographic order (more exactly, the python string
comparison order). It is advisable to implement the usual NN-name convention where NN is a two digit
number.

For an operation whose hooks are run on multiple nodes, there is no specific ordering of nodes with
regard to hooks execution; you should assume that the scripts are run in parallel on the target nodes
(keeping on each node the above specified ordering). If you need any kind of inter-node synchronisation,
you have to implement it yourself in the scripts.

2.5. Execution environment

The scripts will be run as follows:

• no command line arguments

• no controlling tty

• stdin is actually /dev/null

• stdout and stderr are directed to files

• the PATH is reset to /sbin:/bin:/usr/sbin:/usr/bin

• the environment is cleared, and only ganeti-specific variables will be left

2



Ganeti customisation using hooks

All informations about the cluster is passed using environment variables. Different operations will have
sligthly different environments, but most of the variables are common.

2.6. Operation list

Table 1. Operation list

Operation
ID

Directory
prefix

Description Command Supported
env.
variables

pre hooks post
hooks

OP_INIT_CLUSTERcluster-initInitialises the
cluster

gnt-cluster

init

CLUSTER,
MASTER

master node, cluster name

OP_MASTER_FAILOVERmaster-failoverChanges the
master

gnt-cluster

master-failover

OLD_MASTER,
NEW_MASTER

the new
master

all nodes

OP_ADD_NODEnode-add Adds a new
node to the
cluster

gnt-node

add

NODE_NAME,
NODE_PIP,
NODE_SIP

all existing
nodes

all existing
nodes plus
the new node

OP_REMOVE_NODEnode-removeRemoves a
node from
the cluster

gnt-node

remove

NODE_NAME all existing nodes except the
removed node

OP_INSTANCE_ADDinstance-addCreates a
new instance

gnt-instance

add

INSTANCE_NAME,
INSTANCE_PRIMARY,
INSTANCE_SECONDARIES,
DISK_TEMPLATE,
MEM_SIZE,
DISK_SIZE,
SWAP_SIZE,
VCPUS,
INSTANCE_IP,
INSTANCE_ADD_MODE,
SRC_NODE,
SRC_PATH,
SRC_IMAGE

master node, primary and
secondary nodes

OP_BACKUP_EXPORTinstance-exportExport the
instance

gnt-backup

export

INSTANCE_NAME,
EXPORT_NODE,
EXPORT_DO_SHUTDOWN

OP_INSTANCE_STARTinstance-startStarts an
instance

gnt-instance

start

INSTANCE_NAME,
INSTANCE_PRIMARY,
INSTANCE_SECONDARIES,
FORCE

3



Ganeti customisation using hooks

Operation
ID

Directory
prefix

Description Command Supported
env.
variables

pre hooks post
hooks

OP_INSTANCE_SHUTDOWNinstance-shutdownStops an
instance

gnt-instance

shutdown

INSTANCE_NAME,
INSTANCE_PRIMARY,
INSTANCE_SECONDARIES

OP_INSTANCE_MODIFYinstance-modifyModifies the
instance
parameters.

gnt-instance

modify

INSTANCE_NAME,
MEM_SIZE,
VCPUS,
INSTANCE_IP

OP_INSTANCE_FAILOVERinstance-failoverFailover an
instance

gnt-instance

start

INSTANCE_NAME,
INSTANCE_PRIMARY,
INSTANCE_SECONDARIES,
IGNORE_CONSISTENCY

OP_INSTANCE_REMOVEinstance-removeRemove an
instance

gnt-instance

remove

INSTANCE_NAME,
INSTANCE_PRIMARY,
INSTANCE_SECONDARIES

master node

OP_INSTANCE_ADD_MDDRBDmirror-add Adds a
mirror
component

gnt-instance

add-mirror

INSTANCE_NAME,
NEW_SECONDARY,
DISK_NAME

OP_INSTANCE_REMOVE_MDDRBDmirror-removeRemoves a
mirror
component

gnt-instance

remove-mirror

INSTANCE_NAME,
OLD_SECONDARY,
DISK_NAME,
DISK_ID

OP_INSTANCE_REPLACE_DISKSmirror-replaceReplace all
mirror
components

gnt-instance

replace-disks

INSTANCE_NAME,
OLD_SECONDARY,
NEW_SECONDARY

OP_CLUSTER_VERIFYcluster-verifyVerifies the
cluster status

gnt-cluster

verify

CLUSTER,
MASTER

NONE all nodes

2.7. Environment variables

Note that all variables listed here are actually prefixed with GANETI_ in order to provide a different
namespace.

4



Ganeti customisation using hooks

2.7.1. Common variables

This is the list of environment variables supported by all operations:

HOOKS_VERSION

Documents the hooks interface version. In case this doesnt match what the script expects, it should
not run. The documents conforms to the version 1.

HOOKS_PHASE

one of PRE or POST denoting which phase are we in.

CLUSTER

the cluster name

MASTER

the master node

OP_ID

one of the OP_* values from the table of operations

OBJECT_TYPE

one of INSTANCE, NODE, CLUSTER, showing the target of the operation.

2.7.2. Specialised variables

This is the list of variables which are specific to one or more operations.

INSTANCE_NAME

The name of the instance which is the target of the operation.

INSTANCE_DISK_TYPE

The disk type for the instance.

INSTANCE_DISK_SIZE

The (OS) disk size for the instance.

INSTANCE_OS

The name of the instance OS.

INSTANCE_PRIMARY

The name of the node which is the primary for the instance.

5



Ganeti customisation using hooks

INSTANCE_SECONDARIES

Space-separated list of secondary nodes for the instance.

NODE_NAME

The target node of this operation (not the node on which the hook runs).

NODE_PIP

The primary IP of the target node (the one over which inter-node communication is done).

NODE_SIP

The secondary IP of the target node (the one over which drbd replication is done). This can be equal
to the primary ip, in case the cluster is not dual-homed.

OLD_MASTER
NEW_MASTER

The old, respectively the new master for the master failover operation.

FORCE

This is provided by some operations when the user gave this flag.

IGNORE_CONSISTENCY

The user has specified this flag. It is used when failing over instances in case the primary node is
down.

MEM_SIZE, DISK_SIZE, SWAP_SIZE, VCPUS

The memory, disk, swap size and the number of processor selected for the instance (in gnt-instance
add or gnt-instance modify).

INSTANCE_IP

If defined, the instance IP in the gnt-instance add and gnt-instance set commands. If not defined,
it means that no IP has been defined.

DISK_TEMPLATE

The disk template type when creating the instance.

INSTANCE_ADD_MODE

The mode of the create: either create for create from scratch or import for restoring from an
exported image.

SRC_NODE, SRC_PATH, SRC_IMAGE

In case the instance has been added by import, these variables are defined and point to the source
node, source path (the directory containing the image and the config file) and the source disk image
file.

DISK_NAME

The disk name (either sda or sdb) in mirror operations (add/remove mirror).

6



Ganeti customisation using hooks

DISK_ID

The disk id for mirror remove operations. You can look this up using gnt-instance info.

NEW_SECONDARY

The name of the node on which the new mirror componet is being added. This can be the name of
the current secondary, if the new mirror is on the same secondary.

OLD_SECONDARY

The name of the old secondary. This is used in both replace-disks and remove-mirror. Note that
this can be equal to the new secondary (only replace-disks has both variables) if the secondary
node hasn’t actually changed).

EXPORT_NODE

The node on which the exported image of the instance was done.

EXPORT_DO_SHUTDOWN

This variable tells if the instance has been shutdown or not while doing the export. In the "was
shutdown" case, it’s likely that the filesystem is consistent, whereas in the "did not shutdown" case,
the filesystem would need a check (journal replay or full fsck) in order to guarantee consistency.

7


	1. Introduction
	2. Organisation
	2.1. pre scripts
	2.2. post scripts
	2.3. Naming
	2.4. Order of execution
	2.5. Execution environment
	2.6. Operation list
	2.7. Environment variables
	2.7.1. Common variables
	2.7.2. Specialised variables



