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Abstract

This note has three aims. First it shows how the GAP system [GAP04] can be utilized to construct
character tables of certain central extensions from known character tables; the GAP functions used for
that are part of the GAP Character Table Library [Bre04]. Second it documents several constructions
of character tables which are contained in the GAP Character Table Library. Third it serves as a
testfile for the GAP functions.

Contents

1 Coprime Central Extensions 1

1.1 The Character Table Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Irreducible Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Ordering of Conjugacy Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Compatibility with Smaller Factor Groups . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Examples 5

2.1 Central Extensions of Simple Atlas Groups . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Compatible Central Extensions of Maximal Subgroups . . . . . . . . . . . . . . . . . . 6

2.3 The 2B Centralizer in 3.F i′24 (January 2004) . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Coprime Central Extensions

In this section, we will deal with the following situation. Let H be a group, Z be a cyclic central
subgroup in H, and Z = Z1Z2 for subgroups Z1 and Z2 of coprime orders m and n, say. For the sake
of simplicity, suppose that both m and n are primes; the general case is then obtained by iterating
the construction process.

Our aim is to compute the character table of H from the character tables of H/Z1 and H/Z2. We
assume that the factor fusions from these tables to that of the common factor group H/Z are known.
Again for the sake of simplicity, we will take the character table of H/Z as an input. (See Section 2.3
for an example where two different orderings of classes and characters of H/Z arise from the tables
of H/Z1 and H/Z2.)

For example, the character table of H = 12.M22 can be computed from those of 6.M22 and 4.M22,
and the character table of 6.M22 can be computed from those of 3.M22 and 2.M22 (see Section 2.1).
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1.1 The Character Table Head

The conjugacy classes and power maps of H are uniquely determined by the input data specified
above.
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Suppose that a class C of elements of H/Z has nC preimage classes in H/Z1 and mC preimage classes
in H/Z2; then nC is either 1 or n, and mC is either 1 or m. The preimage classes of C in H/Z1

and H/Z2 are parametrized by {j; 0 ≤ j < nC} and {i; 0 ≤ i < mC}, respectively, and the preimage
classes in H are parametrized by the pairs {(i, j); 0 ≤ i < mC , 0 ≤ j < nC}.
The centralizer orders of these classes in H are mCnC times the centralizer order of C in H/Z.

The factor fusion onto H/Z1 is then given by mapping the class with the parameter (i, j) to the class
with the parameter j; analogously, the factor fusion onto H/Z2 maps this class to the class with the
parameter i. To see this, let Z = 〈z〉, and set z1 = zn and z2 = zm. Now take an element g ∈ H for
which gZ lies in C. Then the elements gzi1z

j
2, 1 ≤ i ≤ mC , 1 ≤ j ≤ nC form a set of representatives

of the preimage classes of C in H. In H/Z1 and H/Z2, these elements map to gzj2Z1, 1 ≤ j ≤ nC
and gzi1Z2, 1 ≤ i ≤ mC , respectively, which are sets of representatives of the classes in question in
these groups.

For each prime p, the factor fusions determine the p-th power map of H from the p-th power maps of
H/Z1 and H/Z2. To see this, take a class C0 in H that is a preimage of the class C of H/Z, and let
K be the class of p-th powers of the elements in C. Then the image of C0 under the p-th power map
is one of the preimages of K. We know the images of C0 under the factor fusions to H/Z1 and H/Z2,
and thus also their images K1 and K2 under the p-th power maps of these groups. So the class of
p-th powers of the elements in C0 is the unique class that is mapped to K1 and K2 under the factor
fusions.

The construction of the character table head of H from the input data specified above is implemented
by the GAP function CharacterTableOfCommonCentralExtension.

1.2 The Irreducible Characters

First of all, it should be said that it is not obvious how the irreducible characters of H can be
computed from the irreducible characters of H/Z1 and H/Z2. Clearly the irreducible characters of
the two factor groups can be inflated to H via the factor fusions, so we have to find those irreducibles
that have neither Z1 nor Z2 in their kernels.

For that, we use the following heuristic. Let εz be a complex primitive |z|-th root of unity. For

integers i, set Irrz,i(H) = {χ ∈ Irr(H);χ(z) = εizχ(1)}. Then Irr(H) =
⋃|z|−1
i=0 Irrz,i(H), as a disjoint

union. If i is a multiple of m or n, respectively, then Irrz,i(H) consists of the inflations of certain
irreducible characters of H/Z1 or H/Z2, respectively. The remaining irreducible characters of H lie
in Irrz,i(H) with i coprime to |z|. These characters are algebraic conjugates of Irrz,1(H), so it suffices
to compute this subset; the conjugates are then derived as the last step.

Since Irrz,i(H) ⊗ Irrz,j(H) ⊂ Z[Irrz,i+j(H)] holds, we start with the tensor products of the known
irreducible characters in Irrz,i(H) and Irrz,j(H) with the property i+ j ≡ 1 mod mn.
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For example, if we have m = 2 and n = 3 then Irrz,3(H) consists of the inflations of those characters in
Irr(H/Z2) that are not characters of H/Z, and Irrz,4(H) consists of the inflations of certain characters
in Irr(H/Z1) that are not characters of H/Z. The tensor products of these sets of characters lie in
the span of Irrz,1(H).

In general these tensor products are reducible, but some of them may be in fact irreducible, so we first
take these irreducibles, and reduce the other tensor products with them. (If H is a direct product of
Z and H/Z then all missing irreducibles are obtained this way.)

Then we tensor algebraic conjugates of the known characters in the span of Irrz,1(H) with characters in
suitable sets Irrz,i(H), in order to get more characters in Irrz,1(H); for example, Irrz,1(H)⊗ Irrz,0(H)
is a subset of Z[Irrz,1(H)].

In the case m = 2 and n = 3, also Irrz,5(H)⊗ Irrz,2(H) yields linear combinations of Irrz,1(H). Note
that Irrz,5(H) consists of the complex conjugates of Irrz,1(H).

In the next step, we apply the LLL algorithm (implemented via the GAP function LLL) to the set
of reducible characters in Z[Irrz,1(H)] which we got from the tensor products, and hope to find
irreducibles. In the examples shown below, this step yields all desired irreducible characters.

The GAP function IrreduciblesForCharacterTableOfCommonCentralExtension implements the strat-
egy sketched above.

1.3 Ordering of Conjugacy Classes

One “natural” choice for the ordering of the columns in the character table of H is given by respecting
the ordering of columns in the character table of H/Z, and taking the preimage of the class C
corresponding to the parameter (k mod mC , k mod nC) as the k-th class for C.

If the preimages of C in H/Z1 and H/Z2 have class representatives gZ1, gz2Z1, gz2
2Z1, . . . and

gZ2, gz1Z2, gz2
1Z2, . . ., respectively (in this ordering), then the above rule yields representatives of

preimages in H in the ordering g, g(z1z2), g(z1z2)2, . . ..

In the case m = 2, n = 3, the following pattern arises for classes of H/Z that have m and n preimages
in H/Z1 and H/Z2, respectively. The vertices are labelled by the roots of unity with which the values
of the characters in the set Irrz,1(H) on the first preimage must be multiplied in order to obtain the
values on the given class; we have ω = exp(2πi/3).
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1.4 Compatibility with Smaller Factor Groups

It may happen that a cyclic central subgroup Z0 of H contains Z properly. Then we choose a class
ordering relative to that in the factor group H/Z0, mainly because the Atlas tables of this type are
sorted this way.

The typical case is the character table of a central extension of the type 12.G that shall be constructed
from the character tables of the groups of the types 4.G and 6.G; here we prefer to order the preimages
of a class in the smaller factor group of the type G according to the above rule. This results in the
following pattern, where ε = exp(2πi/12) holds (cf. Section “ATLAS Tables” in the manual of the
GAP Character Table Library).
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A more important aspect concerns the computation of the irreducible characters. Let Z0 = 〈z0〉.
Instead of computing Irrz,1(H), we compute the set Irrz0,1(H).

In the computation of the character table of a central extension of the type 12.G as mentioned above,
with |z0| = 12, we start with the characters Irrz0,3(H) ⊗ Irrz0,10(H) ∪ Irrz0,4(H) ⊗ Irrz0,9(H) ⊆
Z[Irrz0,1(H)], and later form tensor products involving algebraic conjugates of the characters in the
span of Irrz0,1(H), using that Irrz0,1(H)⊗Irrz0,0(H)∪Irrz0,2(H)⊗Irrz0,11(H)∪Irrz0,5(H)⊗Irrz0,8(H)∪
Irrz0,6(H)⊗ Irrz0,7(H) is a subset of Z[Irrz0,1(H)].

Without that modification, the computation of irreducibles is significantly more involved.

The GAP function CharacterTableOfCommonCentralExtension chooses the class ordering relative
to larger cyclic factor groups, as in the above picture, and also uses the above refinement for the
computation of irreducible characters.
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2 Examples

The following examples use the GAP Character Table Library, so we first load this package.

gap> LoadPackage( "ctbllib" );

true

2.1 Central Extensions of Simple Atlas Groups

For the following groups, the Atlas contains the character tables of central extensions M.G of simple
groups G with |M | divisible by two different primes; in all these cases, we have M ∈ {6, 12}.

gap> list:= [

> # G m.G n.G mn.G

>

> [ "A6", "2.A6", "3.A6", "6.A6" ],

> [ "A7", "2.A7", "3.A7", "6.A7" ],

> [ "L3(4)", "2.L3(4)", "3.L3(4)", "6.L3(4)" ],

> [ "2.L3(4)", "4_1.L3(4)", "6.L3(4)", "12_1.L3(4)" ],

> [ "2.L3(4)", "4_2.L3(4)", "6.L3(4)", "12_2.L3(4)" ],

> [ "M22", "2.M22", "3.M22", "6.M22" ],

> [ "2.M22", "4.M22", "6.M22", "12.M22" ],

> [ "U4(3)", "2.U4(3)", "3_1.U4(3)", "6_1.U4(3)" ],

> [ "U4(3)", "2.U4(3)", "3_2.U4(3)", "6_2.U4(3)" ],

> [ "2.U4(3)", "4.U4(3)", "6_1.U4(3)", "12_1.U4(3)" ],

> [ "2.U4(3)", "4.U4(3)", "6_2.U4(3)", "12_2.U4(3)" ],

> [ "O7(3)", "2.O7(3)", "3.O7(3)", "6.O7(3)" ],

> [ "U6(2)", "2.U6(2)", "3.U6(2)", "6.U6(2)" ],

> [ "Suz", "2.Suz", "3.Suz", "6.Suz" ],

> [ "Fi22", "2.Fi22", "3.Fi22", "6.Fi22" ],

> ];;

As was discussed in the sections 1.3 and 1.4, the class ordering of the result tables is the same as
that in the GAP library tables, so it is enough to check whether the set of characters in the computed
table coincides with the set of characters in the library table.

In order to list information about the progress, we set the relevant info level to 1.

gap> SetInfoLevel( InfoCharacterTable, 1 );

gap> for entry in list do

> id := entry[4];

> tblG := CharacterTable( entry[1] );

> tblmG := CharacterTable( entry[2] );

> tblnG := CharacterTable( entry[3] );

> lib := CharacterTable( id );

> res:= CharacterTableOfCommonCentralExtension( tblG, tblmG, tblnG, id );

> if not res.IsComplete then

> Print( "#E not complete: ", id, "\n" );

> fi;

> if not IsSubset( Irr( lib ), res.irreducibles ) then

> Print( "#E inconsistent: ", id, "\n" );

> fi;

> od;
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#I 6.A6: need 4 faithful irreducibles

#I 6.A6: 4 found by tensoring

#I 6.A7: need 5 faithful irreducibles

#I 6.A7: 5 found by tensoring

#I 6.L3(4): need 7 faithful irreducibles

#I 6.L3(4): 7 found by LLL

#I 12_1.L3(4): need 5 faithful irreducibles

#I 12_1.L3(4): 2 found by tensoring

#I 12_1.L3(4): 3 found by tensoring

#I 12_2.L3(4): need 6 faithful irreducibles

#I 12_2.L3(4): 6 found by LLL

#I 6.M22: need 10 faithful irreducibles

#I 6.M22: 1 found by tensoring

#I 6.M22: 9 found by LLL

#I 12.M22: need 7 faithful irreducibles

#I 12.M22: 7 found by LLL

#I 6_1.U4(3): need 15 faithful irreducibles

#I 6_1.U4(3): 1 found by tensoring

#I 6_1.U4(3): 14 found by LLL

#I 6_2.U4(3): need 12 faithful irreducibles

#I 6_2.U4(3): 12 found by LLL

#I 12_1.U4(3): need 12 faithful irreducibles

#I 12_1.U4(3): 4 found by tensoring

#I 12_1.U4(3): 8 found by tensoring

#I 12_2.U4(3): need 9 faithful irreducibles

#I 12_2.U4(3): 9 found by LLL

#I 6.O7(3): need 12 faithful irreducibles

#I 6.O7(3): 2 found by tensoring

#I 6.O7(3): 10 found by LLL

#I 6.U6(2): need 28 faithful irreducibles

#I 6.U6(2): 2 found by tensoring

#I 6.U6(2): 26 found by LLL

#I 6.Suz: need 29 faithful irreducibles

#I 6.Suz: 29 found by LLL

#I 6.Fi22: need 34 faithful irreducibles

#I 6.Fi22: 4 found by tensoring

#I 6.Fi22: 30 found by LLL

gap> SetInfoLevel( InfoCharacterTable, 0 );

We see that in all cases, the irreducible characters of the groups M.G are obtained by reducing tensor
products and applying the LLL algorithm.

2.2 Compatible Central Extensions of Maximal Subgroups

The GAP Character Table Library contains the character tables of all maximal subgroups of the
groups 4.M22, 3.M22, 2.Suz, and 3.Suz. So we can use the approach from Section 1 for computing
the character tables of the maximal subgroups of 6.M22, 12.M22, and 6.Suz.

These tables are contained in the GAP Character Table Library. Several of the groups are direct
products, and the library tables of direct products are usually stored in the form of Kronecker
products of the tables of the factors, so the class ordering of the result tables does not necessarily
coincide with the class ordering in the library tables.

gap> sublist:= list{ [ 6, 7, 14 ] };

[ [ "M22", "2.M22", "3.M22", "6.M22" ],
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[ "2.M22", "4.M22", "6.M22", "12.M22" ],

[ "Suz", "2.Suz", "3.Suz", "6.Suz" ] ]

gap> for entry in sublist do

> tblG := CharacterTable( entry[1] );

> tblmG := CharacterTable( entry[2] );

> tblnG := CharacterTable( entry[3] );

> lib := CharacterTable( entry[4] );

>

> maxesG := List( Maxes( tblG ), CharacterTable );

> maxesmG := List( Maxes( tblmG ), CharacterTable );

> maxesnG := List( Maxes( tblnG ), CharacterTable );

> maxeslib := List( Maxes( lib ), CharacterTable );

>

> for i in [ 1 .. Length( maxesG ) ] do

> id:= Identifier( maxeslib[i] );

> res:= CharacterTableOfCommonCentralExtension( maxesG[i], maxesmG[i],

> maxesnG[i], id );

> if not res.IsComplete then

> Print( "#E not complete: ", id, "\n" );

> fi;

> if not IsSubset( Irr( maxeslib[i] ), res.irreducibles ) then

> trans:= TransformingPermutationsCharacterTables( maxeslib[i],

> res.tblmnG );

> if not IsRecord( trans ) then

> Print( "#E not transformable: ", id, "\n" );

> fi;

> fi;

> od;

> od;

Since we get no output, all tables in question can be computed with the GAP functions, and coincide
(up to permutations of rows and columns) with the library tables.

2.3 The 2B Centralizer in 3.F i′24 (January 2004)

As is stated in [CCN+85, p. 207], the 2B centralizer N0 in the sporadic simple Fischer group Fi′24 has
the structure 21+12

+ .3U4(3).22. The character table of N0 is contained in the GAP Character Table
Library since the year 2000.

Our aim is to compute the character table of the preimage N of N0 in the central extension 3.F i′24

of Fi′24; let Z1 denote the centre of 3.F i′24.

Using the “dihedral group method” in the faithful permutation representation of degree 920 808 for
3.F i′24, we first compute a generating set of N . This group has three orbits of the lengths 774 144,
145 152, and 1 512; the actions on the first two orbits are faithful, and the action on the orbit of
length 1 512 (which consists of the fixed points of the central involution of N) has kernel exactly the
central subgroup Z2, say, of order 2 in N .

Since the permutation representation on 1 512 points is so small, it is straightforward to compute the
character table of N/Z2 using the implementation of Dixon’s algorithm in GAP; now this table is part
of the GAP Character Table Library.

Now we note that N is a central extension of N0/Z(N0) by the cyclic group Z = Z1Z2 of order 6,
and that we know the character tables of the groups N/Z1 and N/Z2. So we can apply the method
described in Section 1 for computing the character table of N .

First we fetch the input data.
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gap> tblmG := CharacterTable( "F3+N2B" );;

gap> tblG := tblmG / ClassPositionsOfCentre( tblmG );;

gap> tblnG := CharacterTable( "2^12.3^2.U4(3).2_2’" );;

The character tables of the library table of N0 and the character table of N/Z2 obtained from the
permutation group are not compatible in the sense that the tables of the factor groups modulo the
centres are not sorted compatibly, so we have to compute and store the fusion from tblnG to tblG.

gap> f2:= tblnG / ClassPositionsOfCentre( tblnG );;

gap> trans:= TransformingPermutationsCharacterTables( f2, tblG );;

gap> tblnGfustblG:= OnTuples( GetFusionMap( tblnG, f2 ),

> trans.columns );;

gap> StoreFusion( tblnG, tblnGfustblG, tblG );

gap> IsSubset( Irr( tblnG ), List( Irr( tblG ), x -> x{ tblnGfustblG } ) );

true

Now we apply CharacterTableOfCommonCentralExtension.

gap> SetInfoLevel( InfoCharacterTable, 1 );

gap> id:= "3.2^(1+12).3U4(3).2";;

gap> res:= CharacterTableOfCommonCentralExtension( tblG, tblmG, tblnG, id );;

#I 3.2^(1+12).3U4(3).2: need 36 faithful irreducibles

#I 3.2^(1+12).3U4(3).2: 16 found by tensoring

#I 3.2^(1+12).3U4(3).2: 20 found by LLL

gap> SetInfoLevel( InfoCharacterTable, 0 );

So we have found all missing irreducibles of N . Let us check whether the result table coincides with
the table in the GAP Character Table Library.

gap> lib:= CharacterTable( "3.F3+N2B" );;

gap> IsRecord( TransformingPermutationsCharacterTables( res.tblmnG, lib ) );

true

We were interested in the character table because N is a maximal subgroup of 3.F i′24. So the class
fusion into the table of this group is an interesting information. We assume that the class fusion of
N0 into Fi′24 is known, and compute only those possible class fusions that are compatible with this
map.

gap> 3f3p:= CharacterTable( "3.F3+" );;

gap> f3p:= CharacterTable( "F3+" );;

gap> approxfus:= CompositionMaps( InverseMap( GetFusionMap( 3f3p, f3p ) ),

> CompositionMaps( GetFusionMap( tblmG, f3p ),

> GetFusionMap( lib, tblmG ) ) );;

gap> poss:= PossibleClassFusions( lib, 3f3p, rec( fusionmap:= approxfus ) );;

gap> Length( poss );

1

It turns out that only one map has this property. (Without the condition on the compatibility, we
would have got 128 possibilities, which form one orbit under table automorphisms.)
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