
matrixss
—

A GAP4 Package
Version 0.9

by

Henrik Bäärnhielm

Department of Mathematics

Imperial College of Science, Technology and Medicine

email: henrik.baarnhielm@imperial.ac.uk

November 2004

This package was originally made as part of a student project at the Department of Mathematics, Imperial
College of Science, Technology and Medicine in London, United Kingdom. It was made in partial fulfillment
of the requirements for the degree of Master of Science in Pure Mathematics.

I would like to thank my supervisors Prof. Alexander Ivanov at Imperial College and Dr. Leonard Soicher
at Queen Mary, University of London, for their encouragement and help.

I am also particularly grateful to Alexander Hulpke at Colorado State University in Fort Collins, USA, for
suggesting this project to me, and for his constant help and advice during my work.

Contents

1 Introduction 5

1.1 Usage 5

2 Implementation 6

2.1 General code 6

2.2 Deterministic algorithm 14

2.3 Probabilistic algorithm 14

2.4 STCS algorithm 15

2.5 Nearly linear time algorithm . . . 15

2.6 Verify routine 16

2.7 Test and benchmark routines . . . 19

Bibliography 21

Index 22

1 Introduction

This is a manual for the matrixss package, which is a package for the GAP system for computational group
theory. It contains an implementation of Schreier-Sims algorithm for matrix groups, including both the
standard deterministic and the standard probabilistic approach. There is also an implementation of the so-
called Schreier-Todd-Coxeter-Sims algorithm, which uses coset enumeration to possibly speed up the process,
but this algorithm is mainly used for verifying the output of the probabilistic algorithm. An implementation
of the Verify routine by Sims can also be used for verification purposes, and finally, an implementation of
the nearly linear time Schreier-Sims algorithm is also included in the package.

No theory about the Schreier-Sims algorithm will be covered in this manual, since the theory is well-known
and can easily be found elsewhere. For example, the author of the package has written a report about it, see
[Bää04]. Other references are [But91], [CSS99] and [Ser03]. In this manual, we are instead only concerned
with the actual implementation, and how to use the package in GAP.

The package can be downloaded from its homepage, which is

http://matrixss.sourceforge.net

The package author can be reached at redstar @sourceforge.net.

1.1 Usage

Since the Schreier-Sims algorithm usually is just an initial step for other algorithms, there is little actual
user interaction. When the package is loaded, a method for Size is installed for finite matrix groups, which
uses the algorithms in this package to compute the order of the group.

At a lower level, the package installs an attribute StabChainMatrixGroup for finite matrix groups, see 2.1.1,
where the base and strong generating set are stored. They can thus easily be used by anyone.

Currently, this is the only interaction between the package and the rest of GAP, but it should be sufficient.

2 Implementation

Here is the documentation from the package source code. As the package works with matrix groups acting
on vector spaces, references to group elements means matrices, ie a list of row vectors, each of which is list
of field elements. References to points means row vectors, ie elements of the vector space on which the group
acts.

The code tries to avoid the computation of inverse matrices as much as possible, and to accomplish this,
the inverse of a group element is stored together with the element in a list of length 2. Each time some
computation is made with the element, a similar computation is made with the inverse, so that they are
kept consistent. Therefore, in many cases in the code, group element means an immutable list of 2 matrices
that are inverses to each other.

2.1 General code

These are the general declarations used by the package. Most notably the attribute StabChainMatrixGroup
which is the core of the package functionality.

1 I StabChainMatrixGroup(G) A

Declare new attribute for storing base, SGS and Schreier trees. The attribute is computed using the Schreier-
Sims algorithm for finite matrix groups, which is the main content of the package.

The attribute is a record with two components:

SchreierStructure
the main information structure, see 2.1.2.

SGS
a list of the strong generators

The corresponding attribute operations are aware of a few Options.

SimpleSchreierTree
calculate coset representatives at the moment of creation of the Schreier trees, thus making them
have height 1. This should make the algorithm significantly faster.

ExtendSchreierTree
Do not recompute Schreier trees at each run of a given level, but extend the Schreier trees from the
last run at that level.

AlternatingActions
Always prepend a base point with the line that contains it, using the projective action on the line.

CleverBasePoints
Choose an initial list of base points using BasisVectorsForMatrixAction, which is made by O’Brien
and Murray.

ShallowSchreierTree
Create the Schreier trees using the method described by Babai et al (1991) which guarantees loga-
rithmic depth. This Option is only used when the option SimpleSchreierTree is not defined.

Section 1. General code 7

Random
Use probabilistic algorithm.

Linear
Use nearly linear-time algorithm. This takes precedence over Random, if it is present.

2 I ssInfo V

Main structure holding information for the algorithm. This is not a global variable, but the same structure
is used in all the variants of the algorithm, but all members are not necessarily used.

The structure ssInfo is a list of records, with a record for each level in the algorithm, ie one record for each
base point. New base points may of course be added to the base during the execution of the algorithm, and
then a new record is added to the end of the list.

The members of the record are:

partialSGS
the elements in the current partial SGS that fixes all points at lower levels, or the whole partial
SGS for the first level

partialBase
the base point for this level

action
the action (function) at this level

points
the field where the base point partialBase comes from

hash
the hash function for the Schreier tree at this level

schreierTree
the Schreier tree for this level, representing the basic orbit at this level, ie the orbit of partial-
Base under the action of partialSGS at the previous (lower) level. Thus, the root of the tree is
partialBase.

oldSGS
the whole partial SGS at the last call of SchreierSims at this level

IsIdentity
the function to check if a point is the identity at this level

3 I MatrixSchreierSimsInfo V

The GAP InfoClass used by the package, for debugging purposes.

4 I MATRIXSS DEBUGLEVEL V

The internal debugging level. This is really obsolete and the above info class should be used instead.

5 I MATRIXSS BasePointStore V

A list of hopefully good base points, ie base points with small orbits. They are fetched with BasisVectors-
ForMatrixAction which is due to O’Brien and Murray, and as long as the list is non-empty, new base points
will be shifted from it.

6 I MatrixGroupOrderStabChain(ssInfo) F

Computes the order of the group defined by the given Schreier trees, see 2.1.2.

These are the common functions used by all the variants of the Schreier-Sims algorithm implemented in the
package.

8 Chapter 2. Implementation

These are the core functions of the package.

7 I Size(G) A

A method for Size for finite matrix groups, that uses the implementation of Schreier-Sims algorithm in this
package, ie it uses the StabChainMatrixGroup attribute to compute the order of G.

This method is only installed if MATRIXSS TEST is not defined when the package is loaded.

8 I MATRIXSS GetPartialBaseSGS(generators, identity, field) F

Constructs a partial base and a partial SGS given a set of generators for a group. Returns the partial SGS
and the ssInfo structure, see 2.1.2.

generators
given set of generators

identity
group identity element (the identity matrix)

field
the vector space on which the group acts

9 I MATRIXSS Membership(ssInfo, element, identity) F

Check if an element belongs to a group, using sifting

ssInfo
Main information structure about our stabiliser chain. The Schreier trees is used during the sifting.

element
the element to check for membership

identity
group identity

10 I MATRIXSS NewBasePoint(element, identity, field) F

Find a point not in base that is moved by the given element (which fixes the base)

element
the bad element that fixes the whole base

identity
the group identity (the identity matrix)

field
the vector space on which the group acts

11 I MATRIXSS GetSchreierGenerator(schreierTree, generator, point, action, identity, IsIdentity
) F

Creates a Schreier generator for the stabiliser in the group which has generator as one of its generators.
The stabiliser fixes point under action.

12 I MATRIXSS ExtendBase(ssInfo, badElement, identity) F

Add a new base point to the base, so that the given element is not in the stabiliser of the point

ssInfo
main information structure for the current Schreier-Sims run

badElement
the element that fixes all current base points

Section 1. General code 9

identity
the group identity

13 I MATRIXSS AugmentBase(ssInfo, newPoint, action, hash, identity) F

Add a new base point to the base, so that the given element is not in the stabiliser of the point

ssInfo
main information structure for the current Schreier-Sims run

newPoint
the point to add to the base

action
the action for the new point

hash
the dictionary info for the new point

identity
the group identity

14 I MATRIXSS OrbitElement(schreierTree, point, action, identity, IsIdentity) F

Compute the group element that connects the root of the Schreier tree to a given point. This function
assumes that the point actually is in the orbit described by the given Schreier tree.

schreierTree
Schreier tree for the orbit to use

point
the point to check if it is in the orbit

action
the action that was used to create the Schreier tree

identity
the group identity (the identity matrix)

IsIdentity
function to use when checking if a group element is equal to the identity

15 I MATRIXSS ComputeSchreierTree(tree, generators, action, root, hash, identity) F

Fill a Schreier tree that contains only the root.

tree
The Schreier tree to fill.

generators
The generators for the group that gives rise to the orbit represented by the Schreier tree.

action
The action of the group on the point set.

root
The root point of the tree.

hash
The dictionary info for the tree, used to create hash function.

identity
the group identity (the identity matrix)

10 Chapter 2. Implementation

16 I MATRIXSS ExtendSchreierTree(oldTree, generators, oldGenerators, action, dictinfo) F

Extends an existing Schreier tree by a given set of generators

oldTree
The Schreier tree to extend, ie a Dictionary.

generators
The generators for the group that gives rise to the orbit represented by the Schreier tree.

oldGenerators
The current generators (edge-labels) of oldTree.

action
The action of the group on the point set.

dictinfo
The Dictionary info used when oldTree was created.

17 I MATRIXSS OrbitElement ToddCoxeter(schreierTree, point, action, identity, IsIdentity, free-
Group, genMap) F

Special version of MATRIXSS OrbitElement, see 2.1.14, that also calculates the Word in the generators of
the group element it returns.

More specifically, it computes the Word of the generators of the corresponding free group.

schreierTree
Schreier tree for the orbit to use

point
the point to check if it is in the orbit

action
the action that was used to create the Schreier tree

identity
the group identity (the identity matrix)

IsIdentity
function to use when checking if a group element is equal to the identity

freeGroup
corresponding free group to the group whose generators form the set of edge labels of schreierTree

genMap
list of 2 lists of the same length, the first being the edge labels of schreierTree (the generators of
the corresponding group), and the second being the corresponding generators of freeGroup

18 I MATRIXSS Membership ToddCoxeter(ssInfo, element, identity, freeGroup) F

Special version of MATRIXSS Membership, see 2.1.9, that also expresses the sifted group element as a word
in the generators of a given free group.

ssInfo
Main information structure about our stabiliser chain. The Schreier trees is used during the sifting.

element
the element to check for membership

identity
group identity

Section 1. General code 11

freeGroup
the free group in which the sifted element will be expressed

19 I MATRIXSS GetSchreierGenerator ToddCoxeter(schreierTree, generator, point, action, identity,
IsIdentity, freeGroup, genMap) F

Special version of MATRIXSS GetSchreierGenerator, see 2.1.11, that also returns the Schreier generator as
a Word in the generators of freeGroup, using genMap to map the generators to the free group. See 2.1.17.

20 I MATRIXSS CreateShallowSchreierTree(orbitTree, root, generators, labels, action, identity,
hash) F

Create a shallow Schreier tree, ie with at most logarithmic height.

orbitTree
Given tree representing the same orbit as the shallow Schreier to be computed.

root
The root point of the tree.

generators
From this set will any new edge labels be taken.

labels
The elements that, together with its inverses, will form the edge labels of the tree.

action
The action of the group on the point set.

identity
the group identity (the identity matrix)

hash
The dictionary info for the tree, used to create hash function.

21 I MATRIXSS GetSchreierTree(oldTree, root, generators, oldGenerators, action, hash, identity
) F

Returns a Schreier tree. This routine encapsulates the other Schreier tree functions.

oldTree
The Schreier tree to extend, in case there should be an extension.

root
The root point of the tree.

generators
The generators for the group that gives rise to the orbit represented by the Schreier tree.

oldGenerators
The current generators (edge-labels) of oldTree.

action
The action of the group on the point set.

hash
The dictionary info for the tree, used to create hash function.

identity
the group identity (the identity matrix)

22 I MATRIXSS MonotoneTree(root, elements, action, identity, dictinfo) F

Create a monotone Schreier tree with given root and edge labels.

12 Chapter 2. Implementation

root
The root point of the tree.

elements
The elements that, together with its inverses, will form the edge labels of the tree.

action
The action of the group on the point set.

identity
the group identity (the identity matrix)

dictinfo
The dictionary info for the tree, used to create hash function.

23 I MATRIXSS RandomCosetRepresentative(schreierTree, action, identity) F

Return a random coset representative from the transversal defined by schreierTree.

24 I MATRIXSS RandomOrbitPoint(schreierTree) F

Returns a random point in the orbit given by schreierTree.

25 I MATRIXSS RandomSchreierGenerator(schreierTree, elements, action, identity) F

Return a random Schreier generator constructed from the points in schreierTree and the generators in
elements.

26 I MATRIXSS RandomSubproduct(elements, identity) F

Return a random subproduct of elements.

These are also core function, but of slightly less importance, or mainly of technical nature.

27 I MATRIXSS SubProdGroups V

A Dictionary of SymmetricGroups, used when permuting random subproducts.

28 I MATRIXSS CopySchreierTree(tree, dictinfo) F

Creates a copy of a whole Schreier tree, ie of makes a copy of the Dictionary.

tree
the Dictionary to copy

dictinfo
the dictinfo that was used when creating tree

29 I MATRIXSS GetOrbitSize(schreierTree) F

Get size of orbit defined by the given Schreier tree.

30 I MATRIXSS GetOrbit(schreierTree) F

Return all points (as a list) in the orbit of the point which is root of the Schreier tree, ie return all keys in
the Dictionary. The list is not necessarily sorted, and it is mutable.

31 I MATRIXSS IsPointInOrbit(schreierTree, point) F

Check if the given point is in the orbit defined by the given Schreier tree.

32 I MATRIXSS CreateInitialSchreierTree(root, dictinfo, identity) F

Create a Schreier tree containing only the root.

Section 1. General code 13

root
The base point that is to be the root of the Schreier tree.

dictinfo
Used when creating the Dictionary that is the Schreier tree

identity
the group identity element

33 I MATRIXSS GetSchreierTreeEdge(schreierTree, point) F

Get the label of the edge originating at the given point, and directed towards the root of the given Schreier
tree.

34 I MATRIXSS ProjectiveIsIdentity(element, identity) F

Identity check when using projective action (all scalar matrices are considered equal to the identity)

element
the group element to check if it is equal to identity

identity
the group identity (the identity matrix)

35 I MATRIXSS IsIdentity(element, identity) F

Identity check when using normal point action

element
the group element to check if it is equal to identity

identity
the group identity (the identity matrix)

36 I MATRIXSS PointAction(point, element) F

The action of a group element (a matrix) on a point (a row vector). The action is from the right

point
The point (row vector) to act on.

element
The group element (matrix) that acts.

37 I MATRIXSS ProjectiveAction(point, element) F

The projective action of a matrix on a row vector. The one-dimensional subspace corresponding to the point
is represented by the corresponding normed row vector

point
The point to act on. Must be a normed row vector.

element
The group element (matrix) that acts.

38 I MATRIXSS DebugPrint(level, message) F

Internal function for printing debug messages. Uses the internal variable MATRIXSS DEBUGLEVEL, see 2.1.4,
to determine if the message should be printed.

14 Chapter 2. Implementation

2.2 Deterministic algorithm

These are the special routines for the deterministic version of Schreier-Sims algorithm.

1 I StabChainMatrixGroup(G) A

An implementation of the Schreier-Sims algorithm, for matrix groups, probabilistic version. See 2.1.1 for
general information about the attribute.

2 I SchreierSims(ssInfo, partialSGS, level, identity) F

The main Schreier-Sims function, which is called for each level.

ssInfo
main information structure for the current Schreier-Sims run

partialSGS
given partial strong generating set

level
the level of the call to Schreier-Sims

identity
the group identity

2.3 Probabilistic algorithm

These are the special routines for the probabilistic implementation of Schreier-Sims algorithm.

1 I StabChainMatrixGroup(G) A

An implementation of the Schreier-Sims algorithm, for matrix groups, probabilistic version. See 2.1.1 for
general information about the attribute.

In addition to the general Options of the attribute StabChainMatrixGroup, the probabilistic algorithm is
aware of the following:

Probability
(lower bound for) probability of correct solution, which defaults to 3/4

Verify
Boolean parameter which signifies if the base and SGS computed using the random Schreir-Sims
algorithm should be verified using the Schreier-Todd-Coxeter-Sims algorithm. Defaults to false.

OrderLowerBound
Lower bound for the order of G, must be ≥ 1. Defaults to 1.

OrderUpperBound
Upper bound for the order of G, or 0 if unknown. Defaults to 0.

Note that if the order of G is known, so that OrderLowerBound = OrderUpperBound = Size(G) then the
randomized algorithm always produces a correct base and SGS, so there is no need of verification. Also, the
verification will extend the given base and SGS to a complete base and SGS if needed.

2 I RandomSchreierSims(ssInfo, partialSGS, maxIdentitySifts, identity, low order, high order)
F

The main random Schreier-Sims function.

ssInfo
main information structure for the Schreier-Sims

Section 5. Nearly linear time algorithm 15

partialSGS
given partial strong generating set

maxIdentitySifts
maximum number of consecutive elements that sifts to identity before the algorithm terminates

identity
the group identity

lowOrder
lower bound on the group order (must be ≥ 1)

highOrder
upper bound on the group order, or 0 if not available

2.4 STCS algorithm

These are the Schreier-Todd-Coxeter-Sims routines, ie Schreier-Sims algorithm with additional calls to Todd-
Coxeter coset enumeration to possibly speed up the process. It is known to be fast when the input is already
a base and SGS, and therefore it is good for verifying a proposed base and SGS, for example the output of
a probabilistic algorithm.

1 I MATRIXSS SchreierToddCoxeterSims(ssInfo, partialSGS, level, identity, cosetFactor) F

The main function for the Schreier-Todd-Coxeter-Sims algorithm. It is very similar to ordinary Schreier-Sims
algorithm and has a similar interface.

ssInfo
main information structure for the current Schreier-Sims run

partialSGS
given partial strong generating set

level
the level of the call to Schreier-Sims

identity
the group identity

cosetFactor
the quotient of the maximum number of cosets generated during coset enumeration and the corre-
sponding orbit size

2.5 Nearly linear time algorithm

These are the special routines for the nearly linear-time version, described in Babai et al, 1991.

1 I StabChainMatrixGroup(G) A

An implementation of the Schreier-Sims algorithm, for matrix groups. This version is inspired by the nearly
linear time algorithm, described in [Ser03]. See 2.1.1 for general information about the attribute.

2 I ConstructSGS(ssInfo, partialSGS, identity) F

The main Schreier-Sims function for the nearly linear-time algorithm.

ssInfo
main information structure for the current Schreier-Sims run

partialSGS
given partial strong generating set

16 Chapter 2. Implementation

identity
the group identity

3 I CompletePointStabiliserSubgroup(ssInfo, element, level, identity, maxIdentitySifts) F

The work-horse of the nearly linear-time algorithm, called for each level.

ssInfo
main information structure for the current Schreier-Sims run

element
the element which

partialSGS
given partial strong generating set

identity
the group identity

2.6 Verify routine

1 I MatrixSchreierSimsVerify(ssInfo, SGS, identity) F

The Verify routine by Sims. Checks whether the given ssInfo and SGS encodes a base and strong generating
set, and returns a record with components Residue and Level. In case the verification succeeds, the level
is 0 and the residue is the identity. Otherwise the residue is an element that is in the stabiliser of the group
at the indicated level, but is not in the group at the next higher level.

ssInfo
proposed structure to check

SGS
proposed SGS to check

identity
the group identity

2 I MATRIXSS VerifyLevel(ssInfo, partialSGS, level, identity) F

Checks that the stabiliser of the group at the given level is the same as the group at the next higher level.

ssInfo
proposed structure to check

partialSGS
proposed SGS to check

level
level to check

identity
the group identity

3 I MATRIXSS VerifyMultipleGenerators(generators, schreierTree, point, action, hash, subGener-
ators, ssInfo, SGS, identity, points, IsIdentity, field) F

Verifies that the stabiliser of the group generated by generators, at the point point is the same group as
the group generated by generators minus subGenerators. If so, the identity is returned, and otherwise an
element that is in the difference is returned.

ssInfo and SGS should be a base and strong generating set for the smaller group.

Section 6. Verify routine 17

generators
generators of the bigger group

schreierTree
Schreier tree for the orbit of point under action of the group generated by generators

point
the point to get the stabiliser of

action
the action to use when calculating the stabiliser

hash
the dictionary info of schreierTree

subGenerators
the additional generators of the bigger group

ssInfo
main structure for the base and sgs of the smaller group

SGS
strong generating set for the smaller group

identity
the group identity

points
the point set to which point belong

IsIdentity
the identity check function for the larger group

field
the finite field of the larger group

4 I MATRIXSS VerifySingleGenerator(generators, schreierTree, point, action, hash, subGenerator,
ssInfo, SGS, identity) F

Verifies that the stabiliser of the group generated by generators, at the point point is the same group as
the group generated by generators minus subGenerator. If so, the identity is returned, and otherwise an
element that is in the difference is returned.

ssInfo and SGS should be a base and strong generating set for the smaller group.

generators
generators of the bigger group

schreierTree
Schreier tree for the orbit of point under action of the group generated by generators

point
the point to get the stabiliser of

action
the action to use when calculating the stabiliser

hash
the dictionary info of schreierTree

subGenerator
the additional generator of the bigger group

ssInfo
main structure for the base and sgs of the smaller group

18 Chapter 2. Implementation

SGS
strong generating set for the smaller group

identity
the group identity

5 I MATRIXSS StabiliserGens(ssInfo, partialSGS, point, action, dictinfo, identity) F

Return generators of the stabiliser of the group generated by the strong generators partialSGS at point
under action. The ssInfo structure should be a base for the group.

ssInfo
main structure for the base

partialSGS
strong generating set for the given group

point
the point to get stabiliser at

action
the action to use when computing stabiliser

dictinfo
the dictionary info of schreierTree

identity
the group identity

6 I MATRIXSS IsBlockOfImprimitivity(schreierTree, generators, block, action, identity) F

Checks whether block is a block of imprimitivity for action of the group given by generators on the set
of points given by schreierTree.

schreierTree
Schreier tree for the point set

generators
generators of the acting group

block
the block to check for imprimitivity

action
the action to use

identity
the group identity

7 I MATRIXSS DecomposeOrbit(schreierTree, root, generators, action, hash, identity) F

Decompose the orbit given by schreierTree, with root point root, into orbits of the group generated by
generators, under action.

schreierTree
Schreier tree for the orbit to decompose

root
root point of schreierTree

generators
generators of the decomposing group

Section 7. Test and benchmark routines 19

action
the action of the decomposing group

hash
the dictionary info of schreierTree

identity
the group identity

8 I MATRIXSS BaseChange(ssInfo, partialSGS, level, identity) F

Flips the base point at level with the next higher base point and update the ssInfo structure.

ssInfo
main structure for the base

partialSGS
strong generating set corresponding to ssInfo

level
the level for the base change

identity
the group identity

2.7 Test and benchmark routines

These are the main routines for testing and benchmarking the package.

1 I MatrixSchreierSimsTest(maxDegree, maxFieldSize) F

Compares results of the above function with the built-in GAP Size method for a bunch of classical matrix
groups. (GL, SL, etc)

maxDegree
maximum matrix size for classical matrix groups to be used for testing

maxFieldSize
maximum finite field size for classical matrix groups to be used for testing

2 I MatrixSchreierSimsBenchmark(maxDegree, maxFieldSize, maxReeSize, maxSuzukiSize) F

Check speed of package routines against classical matrix groups and the matrix representations of Ree and
Suzuki sporadic groups.

maxDegree
maximum matrix size for classical matrix groups to be used for testing

maxFieldSize
maximum finite field size for classical matrix groups to be used for testing

maxReeSize
maximum ReeGroup size, see 48.1.11 in the reference manual.

maxSuzukiSize
maximum SuzukiGroup size, see 48.1.10 in the reference manual.

These are auxiliary functions for test and benchmark.

3 I MATRIXSS GetTestGroups(maxDegree, maxFieldSize) F

Creates a list of classical matrix groups to use when testing the package. The groups are GL, SL, GO, SO, GU
and SU.

20 Chapter 2. Implementation

maxDegree
maximum matrix size for classical matrix groups to be used for testing

maxFieldSize
maximum finite field size for classical matrix groups to be used for testing

4 I MATRIXSS GetBenchmarkGroups(maxDegree, maxFieldSize) F

Creates a list of classical matrix groups and sporadic groups to use when benchmarking the package. The
classical groups are GL, SL, GO and SO. The sporadic groups are Ree and Sz.

maxDegree
maximum matrix size for classical matrix groups to be used for testing

maxFieldSize
maximum finite field size for classical matrix groups to be used for testing

maxReeSize
maximum ReeGroup size, see 48.1.11 in the reference manual.

maxSuzukiSize
maximum SuzukiGroup size, see 48.1.10 in the reference manual.

5 I MATRIXSS TimedCall(call, args) F

Runs the specified function with arguments and return the running time in milliseconds, as given by Runtime,
see 7.6.2 in the reference manual.

call
function to call

args
list of arguments to call

Bibliography

[Bää04] Henrik Bäärnhielm. The Schreier-Sims algorithm for matrix groups. Master’s thesis, Imperial
College of Science, Technology and Medicine, 2004.

[But91] Gregory Butler. Fundamental algorithms for permutation groups, volume 559 of Lecture Notes in
Computer Science. Springer, 1991.

[CSS99] Hans Cuypers, Leonard H. Soicher, and Hans Sterk. Working with finite groups. In Arjeh M. Cohen,
Hans Cuypers, and Hans Sterk, editors, Some Tapas of Computer Algebra, volume 4 of Algorithms
and Computation in Mathematics, chapter 8, pages 184–207. Springer, 1999.

[Ser03] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, 2003.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

C
CompletePointStabiliserSubgroup, 15
ConstructSGS, 15

D
Deterministic algorithm, 13

G
General code, 6

M
MatrixGroupOrderStabChain, [code.gd], 7
MatrixSchreierSimsBenchmark, 19
MatrixSchreierSimsInfo, 7
MatrixSchreierSimsTest, 19
MatrixSchreierSimsVerify, 16
MATRIXSS AugmentBase, 8
MATRIXSS BaseChange, 19
MATRIXSS BasePointStore, 7
MATRIXSS ComputeSchreierTree, 9
MATRIXSS CopySchreierTree, 12
MATRIXSS CreateInitialSchreierTree, 12
MATRIXSS CreateShallowSchreierTree, 11
matrixss debuglevel, 7
MATRIXSS DebugPrint, 13
MATRIXSS DecomposeOrbit, 18
MATRIXSS ExtendBase, 8
MATRIXSS ExtendSchreierTree, 9
MATRIXSS GetBenchmarkGroups, 20
MATRIXSS GetOrbit, 12
MATRIXSS GetOrbitSize, 12
MATRIXSS GetPartialBaseSGS, 8
matrixss getschreiergenerator, 8
MATRIXSS GetSchreierGenerator ToddCoxeter, 10
MATRIXSS GetSchreierTree, 11
MATRIXSS GetSchreierTreeEdge, 13
MATRIXSS GetTestGroups, 19
MATRIXSS IsBlockOfImprimitivity, 18
MATRIXSS IsIdentity, 13
MATRIXSS IsPointInOrbit, 12
matrixss membership, 8
MATRIXSS Membership ToddCoxeter, 10
MATRIXSS MonotoneTree, 11

MATRIXSS NewBasePoint, 8
matrixss orbitelement, 9
matrixss orbitelement toddcoxeter, 10
MATRIXSS PointAction, 13
MATRIXSS ProjectiveAction, 13
MATRIXSS ProjectiveIsIdentity, 13
MATRIXSS RandomCosetRepresentative, 12
MATRIXSS RandomOrbitPoint, 12
MATRIXSS RandomSchreierGenerator, 12
MATRIXSS RandomSubproduct, 12
MATRIXSS SchreierToddCoxeterSims, 15
MATRIXSS StabiliserGens, 18
MATRIXSS SubProdGroups, 12
MATRIXSS TimedCall, 20
MATRIXSS VerifyLevel, 16
MATRIXSS VerifyMultipleGenerators, 16
MATRIXSS VerifySingleGenerator, 17

N
Nearly linear time algorithm, 15

P
Probabilistic algorithm, 14

R
RandomSchreierSims, 14

S
SchreierSims, 13
size, finite matrix group, 7
ssInfo, 7
stabchainmatrixgroup, deterministic, 13

general, 6
nearly linear time, 15
probabilistic, 14

STCS algorithm, 15

T
Test and benchmark routines, 19

U
Usage, 5

V
Verify routine, 16

	
	Contents
	Introduction
	Usage

	Implementation
	General code
	Deterministic algorithm
	Probabilistic algorithm
	STCS algorithm
	Nearly linear time algorithm
	Verify routine
	Test and benchmark routines

	Bibliography
	Index
	C
	D
	G
	M
	N
	P
	R
	S
	T
	U
	V

