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1 Introduction

This tutorial is a step-by-step introduction to the different concepts necessary to use Gerris. It is
specifically designed for a end-user and is not a technical description of the numerical techniques used
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within Gerris. If you are interested by that, you should consult the bibliography section on the Gerris
web site1.

Various versions of this tutorial are available:

• Printable formats: both compressed Postscript2 and PDF3.

• HTML: direct link4 or compressed archive5.

In this tutorial I will assume that you are familiar with the Unix shell (and that you are running
some version of a Unix system). Some knowledge of C programming would also be very helpful if you
intend to extend Gerris with your own objects.

1.1 Installing and compiling Gerris

Gerris is written in C and uses two other C libraries which you need to install on your system first:
the Glib library6 and the GTS library7. If you want to run the parallel version of Gerris, you will
also need some implementation of the MPI (Message Passing Interface) library. If you are using a
parallel machine, MPI is very likely to be already on your machine.

If you are using a Linux system the Glib library is most probably already installed on your system.
To be sure try this:

% glib-config --version

If you get a result, you have the Glib library on your system, otherwise you will need to install it
following the instructions on the Glib web site.

You now need to install the GNU Triangulated Surface Library (GTS). To do that, go on the
GTS web site and download a recent source file package. Move it to your preferred location for
unpacking source files and type:

% gunzip gts.tar.gz
% tar xvf gts.tar
% cd gts

You now need to decide where you want to install the library, if you have access to the root account,
you can simply type:

% ./configure
% make
% su
% make install
% exit

which will install everything in /usr/local by default.
If you don’t have access to the root password or want to install the library somewhere else like

/home/joe/local for example, you can type instead:

% ./configure --prefix=/home/joe/local
% make
% make install

You probably want to add /home/joe/local/bin to your PATH and /home/joe/local/lib to your
LD LIBRARY PATH.

The next step is installing Gerris itself, do the same, go to the Gerris web site8 download a recent
source file package and type:

1http://gfs.sf.net
2http://gfs.sf.net/tutorial.ps.gz
3http://gfs.sf.net/tutorial.pdf
4http://gfs.sf.net/tutorial/tutorial1.html
5http://gfs.sf.net/tutorial.tar.gz
6http://www.gtk.org
7http://gts.sf.net
8http://gfs.sf.net

2

http://gts.sf.net
http://gfs.sf.net
http://gfs.sf.net/tutorial.ps.gz
http://gfs.sf.net/tutorial.pdf
http://gfs.sf.net/tutorial/tutorial1.html
http://gfs.sf.net/tutorial.tar.gz
http://www.gtk.org
http://gts.sf.net
http://gfs.sf.net


% gunzip gerris.tar.gz
% tar xvf gerris.tar
% cd gerris
% ./configure --prefix=/home/joe/local
% make
% make install

Both the 2D and 3D versions of the code are built. In this tutorial, we will for convenience only work
with 2D simulations. However, all we will learn can be applied directly to 3D simulations.

We are now ready to start. Just to check that everything is okay try:

% gerris2D -V

1.2 Simulation file

Gerris is a console-based program. It takes a parameter or simulation file as input and produces
various types of files as output. Everything needed to run the simulation is specified in the parameter
file, this includes:

• Layout of the simulation domain

• Initial conditions

• Boundary conditions

• Solid boundaries

• What to output (and when)

• Control parameters for the numerical schemes

2 A simple simulation file

In this section we will see how to write a simulation file for the initial random vorticity example in the
Gerris web site gallery. First of all, it is always a good idea to run simulations in their own directory.
Type this at your shell prompt:

% mkdir vorticity
% cd vorticity

As a starting point we will use the following simulation file: vorticity.sim

1 2 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 0 }

}
GfsBox {}
1 1 right
1 1 top

This is a valid simulation file but it does not do much as you can see by typing

% gerris2D vorticity.sim

It is a good starting point however to explain the general structure of a simulation file.
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2.1 A few comments on syntax

First of all, there are two types of parameters in a simulation file: compulsory and optional parameters.
Optional parameters are always specified within a braced block (i.e. a block of text delimited by braces
({ like this }). They also often take the form

parameter = value

where parameter is an unique identifier (within this braced block). All the other parameters are
compulsory parameters. For example, in vorticity.sim both

GfsTime { end = 0 }

and

end = 0

are optional parameters.
The second important syntax point regards the way various fields are delimited. Newline (or

“carriage return”) characters are generally used to delimitate different “objects” in the simulation
file. The only case where this rule does not apply is within braced blocks defining optional arguments
of the form

parameter = value

For example, in vorticity.sim the following blocks of text are all objects:

• 1 2 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 0 }

}

• GfsTime { end = 0 }

• GfsBox {}

• 1 1 right

• 1 1 top

Following this rule, vorticty.sim could have been written equivalently as:

1 2 GfsSimulation GfsBox GfsGEdge {} { GfsTime {
end = 0 }

}
GfsBox {}
1 1 right
1 1 top

2.2 Topology description of the simulation domain

Ok, so what are all these “objects” for? The first line of the simulation file defines a graph representing
the general layout of the simulation domain and follows this syntax:

1st field number of nodes in the graph (1)

2nd field number of edges connecting the nodes (2)

3rd field object type for the graph (GfsSimulation)

4th field default object type for the nodes (GfsBox)

5th field object type for the edges (GfsGEdge)
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6th field 1st optional parameters (braced block)

7th field 2nd optional parameters (braced block)

We then jump to the end of the 2nd optional parameters to line

GfsBox {}

which describes the first (and unique in this case) node of the graph. The first field is the object type
of the node (GfsBox), the second field contains optional parameters. The following two lines

1 1 right
1 1 top

define the edges of the graph as follows:

1st field index of the starting node (1)

2nd field index of the ending node (1)

3rd field spatial direction in which the two nodes are connected (right and top)

The nodes are always indexed starting from one. The spatial directions are defined on figure 1. From
this, we see that this file defines a simulation domain containing one node (a GfsBox) connected with
itself in both the horizontal (right) and vertical (top) directions. By default, a GfsBox is a square

left

top

right

bottom

front

back

y

x
z

Figure 1: Definition of spatial directions

(in 2D) or a cube (in 3D) of size unity. The first node of the graph is always centered on the origin
and is used as the reference to position the other nodes. We have consequently defined a square
simulation domain of size unity, centered on the origin and using periodic boundary conditions.

2.3 Controlling the simulation

Now that we have defined the simulation domain and the boundary conditions, we need to specify
the initial conditions, numerical schemes parameters and so on. This is all done within the second
optional parameters block of the graph definition.

In our file we have for the moment only one object in this block:

GfsTime { end = 0 }

As its name indicate, this object defines the physical and the computational time. By “computational
time” I mean the number of time steps performed. By default both the physical time and the time
step number are zero when the program starts. It is possible to set different values using for example
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GfsTime { t = 1.4 i = 32 end = 0 }

where i is the time step number and t is the physical time. The end identifier specifies that the
simulation should stop when the physical time reaches the given value. It is also possible to stop the
simulation when a specified number of time steps is reached, using the iend identifier. If both end
and iend are specified, the simulation stops when either of these are reached. By default, both end
and iend values are infinite.

Ok, let’s then change this object to

GfsTime { end = 1 }

2.3.1 Spatial discretisation

The next step is to specify what spatial resolution we want for the discretisation. For the moment,
the only thing we have defined is the root of the quad/octree. The whole domain is thus discretised
with only one grid point. . .

We need to specify how we want to refine this initial root cell. This is done by using an GfsRefine
object. We can do this by adding the line

GfsRefine 6

to the second optional parameter block. This is the simplest possible way to refine the initial root
cell. We tell the program that we want to keep refining the cell tree (by dividing each cell in four
children cells (in 2D, eight in 3D)) until the level of the cell is equal to five. The level of the root cell
is zero, the level of all its children cells is one and so on recursively. After this refinement process
completes we have created a regular Cartesian grid with 26 = 64 cells in each dimension on the finest
level (6).

2.3.2 Initial conditions

We now need to specify the initial conditions and the various actions (such as writing results, infor-
mation messages etc. . . ) we want to perform when the simulation is running. All these things are
treated by Gerris as various types of events, all represented by objects derived from the same parent
object GfsEvent.

Initial conditions are a particular type of event happening only once and before any other type of
event, they are all derived from the same parent object GfsInit.

Gerris comes with a few different objects describing various initial conditions. As there is no way
Gerris could provide all the different initial conditions users could think of, Gerris makes it easy for
users to create their own initialisation objects by extending the GfsInit object class. In order not to
have to recompile (or more exactly re-link) the whole code everytime a new class is added, Gerris uses
dynamically linked modules which can be loaded at runtime. We will see later how to write your own
modules. For the moment, you just need to know that the module containing the initial conditions
for the random initial vorticity problem is called vorticity spectrum. This module comes with
the Gerris source code as an example. In order to use it we are going to add the following lines to
vorticity.sim:

1 2 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 1 }
GfsRefine 6
GModule vorticity_spectrum
GfsInitVorticityRandom {}

}
GfsBox {}
1 1 right
1 1 top

The GModule vorticity spectrum line tells Gerris to load the module named vorticity spectrum
(this module is part of the distribution and Gerris should know where to find it). The other line tells
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which GfsInit object to use to define the initial conditions. GfsInitVorticityRandom defines an
initial velocity field by taking a random value for the vorticity in each cell of the discretisation.

2.3.3 Writing results

The vorticity.sim file we have now is all Gerris needs to run the simulation. However, for this run
to be any use, we need to specify how and when to output the results. This is done by using another
class of objects: GfsOutput, derived from GfsEvent. Gerris comes with a number of these objects
allowing to output various aspects of the simulation.

The general syntax for an GfsEvent object is as follows:

GfsEvent {
start = 0.5 step = 1e-2 end = 3.4
istart = 10 iend = 46

}

this defines an event:

• starting whenever the physical time is larger than (or equal to) 0.5 or the time step number is
larger than (or equal to) 10,

• ending whenever the physical time is strictly larger than 3.4 or the time step number is strictly
larger than 46,

• and occurring every 10−2 physical time units.

It is also possible to specify an event step as a number of time steps using the istep identifier. Note,
however, that you cannot specify both step and istep for the same event. By default, start and
istart are zero and end, iend, step and istep are infinite.

An GfsOutput object is derived from GfsEvent and follows this syntax:

GfsOutput {} filename-%d-%f-%ld

The first part of the line GfsOutput {} defines the GfsEvent part of GfsOutput and follows the
syntax above. In the remainder of this tutorial, I will use the following notation to express this
inheritance of syntax:

[GfsEvent] filename-%d-%f-%ld

to avoid repeating the whole thing for every derived objects.
The second part filename-%d-%f-%ld specifies where to output things. The %d, %f and %ld

characters are formatting strings which follow the C language syntax and will be replaced every time
the event takes place according to:

%d integer replaced with the current process number (used when running the parallel version of
Gerris).

%f floating-point number replaced with the current physical time.

%ld (long) integer replaced with the current time step number.

Of course, you are free not to specify any of these, in which case the output will just be appended
to the same file every time the event takes place. There are also two filenames which have a special
meaning: stdout and stderr, for the standard output and standard error of the shell respectively.

We now add the following to our simulation file:

1 2 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 1 }
GfsRefine 6
GModule vorticity_spectrum
GfsInitVorticityRandom {}
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GfsOutputTime { istep = 10 } stdout
GfsOutputProjectionStats { istep = 10 } stdout

}
GfsBox {}
1 1 right
1 1 top

The first line we added tells the program to output information about the time every 10 time steps on
the standard output. The second line outputs statistics about the projection part of the algorithm.

You can now run the code like this:

% gerris2D vorticity.sim

and you should get an output in your console looking like this (you can stop the program using
Ctrl-C):

step: 0 t: 0.00000000 dt: 0.000000e+00
MAC projection before after rate

niter: 0
residual.bias: 0.000e+00 0.000e+00
residual.first: 0.000e+00 0.000e+00 0.0
residual.second: 0.000e+00 0.000e+00 0.0
residual.infty: 0.000e+00 0.000e+00 0.0

Approximate projection
niter: 0
residual.bias: 0.000e+00 0.000e+00
residual.first: 1.050e-14 1.050e-14 0.0
residual.second: 1.612e-14 1.612e-14 0.0
residual.infty: 7.105e-14 7.105e-14 0.0

step: 10 t: 0.02190704 dt: 2.801016e-03
MAC projection before after rate

niter: 5
residual.bias: -3.053e-16 1.403e-16
residual.first: 3.365e+01 2.949e-05 16.3
residual.second: 4.274e+01 4.676e-05 15.6
residual.infty: 1.954e+02 3.285e-04 14.3

Approximate projection
niter: 5
residual.bias: 9.714e-17 2.874e-16
residual.first: 3.322e+01 2.548e-05 16.7
residual.second: 4.250e+01 4.062e-05 16.0
residual.infty: 1.880e+02 3.380e-04 14.1

step: 20 t: 0.05278371 dt: 3.531551e-03
MAC projection before after rate

niter: 5
...

The lines starting with step: are written by GfsOutputTime. They give the time step number,
corresponding physical time and the time step used for the previous iteration.

The other lines are written by GfsOutputProjectionStats and give you an idea of the divergence
errors and convergence rate of the two projection steps (MAC and approximate) performed during
the previous iteration. The various norms of the residual of the solution of the Poisson equation are
given before and after the projection step. The rate column gives the average amount by which the
divergence is reduced by each iteration of the multigrid solver.

Well, numbers are great but what about some images? What we want to do, for example, is
output some graphical representation of a given scalar field. In 2D, a simple way to do that is to
create an image where each pixel is coloured according to the local value of the scalar. Gerris provides
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an object to do just that: GfsOutputPPM which will create a PPM (Portable PixMap) image. This
object is derived from a more general class used to deal with scalar fields: GfsOutputScalar following
this syntax:

[GfsOutput] { v = U min = -1 max = 2.5 }

where as before the square brackets express inheritance from the parent class. The v identifier specifies
what scalar field we are dealing with, one of:

U, V (and W in 3D) : components of the velocity.

P : pressure.

C : passive tracer.

Vorticity : vorticity (norm of the vorticity vector in 3D).

Velocity : norm of the velocity.

The min and max values specify the minimum and maximum values this scalar can take. If they are
not given, they are computed every time the event takes place.

We can now use this in our simulation file:

1 2 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 1 }
GfsRefine 6
GModule vorticity_spectrum
GfsInitVorticityRandom {}
GfsOutputTime { istep = 10 } stdout
GfsOutputProjectionStats { istep = 10 } stdout
GfsOutputPPM { step = 0.02 } vorticity-%4.2f.ppm { v = Vorticity }

}
GfsBox {}
1 1 right
1 1 top

The code will output every 0.02 time units a PPM image representing the vorticity field. The result
will be written in files named: vorticity-0.00.ppm, vorticity-0.02.ppm. . . (if the %4.2f thing is
not familiar, consult a C book or try % man 3 printf).

If you re-run the program using this new simulation file, you will get a number of PPM files (51
to be precise) you can then visualise with any image editing or viewing tool. I would recommend the
very good ImageMagick toolbox9. If you run a Linux box, these tools are very likely to be already
installed on your system. Try typing this in your working directory:

% display *.ppm

If it works, you should see a small (64x64) image representing the initial vorticity field. If you click
on it, a menu will appear. Select File→Next and look at the evolution of the vorticity field with time
(you can also use the space bar and backspace key to change back and forth). You might also want to
try the animate *.ppm command. Read the man pages of ImageMagick if you want to know more.
Note that you can use these tools also while Gerris is running (and creating new images). With a bit
of patience you will get the image on figure 2 at t = 0.175 (resolution has been increased to 128×128).

Before we carry on, we are going to make two modifications to the simulation file. First of all,
it is not really handy to generate one file for every image generated. ImageMagick (and most other
programs) can deal with multiple PPM images contained within the same file. Secondly, in the
sequence of images we generate, a given value of the vorticity does not always correspond to the same
colour (because the minimum and maximum values of the vorticity can vary in time). We can fix
that like this:

9http://www.imagemagick.org
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Figure 2: Vorticity field for the initial random vorticity problem at t = 0.175.

1 2 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 1 }
GfsRefine 6
GModule vorticity_spectrum
GfsInitVorticityRandom {}
GfsOutputTime { istep = 10 } stdout
GfsOutputProjectionStats { istep = 10 } stdout
GfsOutputScalarStats { istep = 10 } stdout { v = Vorticity }
GfsOutputPPM { step = 0.005 } vorticity.ppm {
v = Vorticity
min = -200
max = 200

}
}
GfsBox {}
1 1 right
1 1 top

We have now specified fixed bounds for the vorticity (using the min and max identifiers). Each PPM
image will be appended to the same file: vorticity.ppm. Note that this will also be the case when
you re-run the simulation. If you don’t want to append the new simulation images to the previous
ones you need to delete first the previous vorticity.ppm. Like this for example:

% rm -f *.ppm ; gerris2D vorticity.sim

How did I choose the minimum and maximum values for the vorticity? The line GfsOutputScalarStats
{ istep = 10 } stdout { v = Vorticity }, writes the minimum, average, standard deviation and
maximum values of the vorticity. By re-running the simulation and looking at these values it is easy
to find a suitable range.

3 A more complex example with solid boundaries

In this section we will see how to set up a simulation for the flow past a solid body (a half-cylinder) in
a narrow channel. While doing that we will also encounter new ways of displaying simulation results.
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3.1 Domain geometry and boundary conditions

What we want is a narrow channel (4 × 1 for example). From the previous example, we know that
we can build it like this:

4 3 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 0 }

}
GfsBox {}
GfsBox {}
GfsBox {}
GfsBox {}
1 2 right
2 3 right
3 4 right

i.e. four boxes, box 1 connected to box 2 horizontally (to the right), box 2 connected to box 3
horizontally and box 3 connected to box 4 horizontally. Box 1 is centered on the origin and is of size
one. All the other boxes are positioned accordingly. We now have our 4× 1 rectangular domain.

3.1.1 Boundary conditions

What about boundary conditions? By default Gerris assumes that boundaries are solid walls with
slip conditions for the velocity (i.e. the tangential stress on the wall is zero). For the moment we
then have defined a rectangular box closed on all sides by solid walls.

What we really want is to specify an input velocity on the left side of the box and some sort of
output condition on the right side. We can do that like this:

4 3 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 0 }

}
GfsBox { left = GfsBoundaryInflowConstant 1 }
GfsBox {}
GfsBox {}
GfsBox { right = GfsBoundaryOutflow }
1 2 right
2 3 right
3 4 right

The whole left side of the first (leftmost) box is now defined to be a GfsBoundaryInflowConstant
object and the whole right side of the last (rightmost) box a GfsBoundaryOutflow object. Again,
boundary conditions objects are all derived from the GfsBoundary object and, as initial conditions,
new objects can be easily written by the user.

We see that GfsBoundaryInflowConstant takes one argument which is the value of the (constant)
normal velocity applied to this boundary. All the other variables (pressure, tracer concentration etc...)
follow a zero gradient condition.

GfsBoundaryOutflow implements a simple outflow boundary condition where the second gradient
of all the quantities is set to zero.

3.1.2 Solid boundaries

We now have an empty “wind tunnel” with a constant inlet velocity of norm unity. Gerris can deal
with arbitrarily complex solid boundaries embedded in the quad/octree mesh. The geometry of the
solid boundaries is described using GTS triangulated surfaces. In 2D, using 3D triangulated surfaces
seems overkill, as 2D curves would be enough. However, Gerris being both a 2D and 3D code it
deals with 2D solid boundaries exactly as with 3D ones, even if the simulation is done only on a 2D
cross-section.
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Creating 3D polygonal surfaces is not an easy job and is clearly outside the scope of this tutorial.
There are a number of utilities you can use to do that, including big commercial CAD packages. In
general, once you have created a polygonal surface with one of these tools it should be relatively easy
to convert it to the file format used by GTS. In particular, most CAD packages can export to the
STL (stereolithography) format which is easily converted to the GTS file format using the stl2gts
utility which comes with the library.

This tutorial comes (handily) with one such file: half-cylinder.gts10. You can visualise the
surface it describes using a program I warmly recommend called Geomview11. To do this, you first
need to convert the GTS file to a format Geomview understands. This can be done using the gts2oogl
utility like this:

% gts2oogl < half-cylinder.gts > half-cylinder.oogl

(OOGL is the file format used by Geomview). gts2oogl has a number of options. You can have a
short explanation of what they do by typing:

% gts2oogl -h

If you now start geomview like this:

% geomview half-cylinder.oogl

and play around with the pan/rotate/zoom functions of Geomview (read the manual for details), you
should see something like the image on figure 3. You can notice that this is a proper 3D object, even

Figure 3: Geomview representation of half-cylinder.gts

if we are only going to simulate the flow in a 2D cross-section. It is also important that the object is
“tall” enough so that it spans the entire “height” of the 2D domain, as if we were going to simulate
the flow around it in a proper 3D channel with a square cross-section. The orientation of the surface
is also important to define what is inside (the solid) and what is outside (the fluid).

We can now insert this object in the simulation domain like this:

4 3 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 0 }
GtsSurfaceFile half-cylinder.gts

}
GfsBox { left = GfsBoundaryInflowConstant 1 }
GfsBox {}
GfsBox {}
GfsBox { right = GfsBoundaryOutflow }
1 2 right
2 3 right
3 4 right

10http://gfs.sf.net/half-cylinder.gts
11http://www.geomview.org
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add what mesh refinement we want and a few things to output:

4 3 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 9 }
GfsRefine 6
GtsSurfaceFile half-cylinder.gts
GfsInitFlowConstant {} { U = 1 }
GfsOutputBoundaries {} boundaries
GfsOutputTime { step = 0.02 } stdout
GfsOutputProjectionStats { step = 0.02 } stdout
GfsOutputPPM { step = 0.02 } vorticity.ppm {
min = -100 max = 100 v = Vorticity

}
GfsOutputTiming { start = end } stdout

}
GfsBox { left = GfsBoundaryInflowConstant 1 }
GfsBox {}
GfsBox {}
GfsBox { right = GfsBoundaryOutflow }
1 2 right
2 3 right
3 4 right

I have added a new GfsOutput object we haven’t seen yet: GfsOutputTiming. This object writes a
summary of the time taken by various parts of the solver. You might also have noticed the unusual
start = end bit ; this just specifies that this event will only happen once at the end of the simulation.

Another new output object is GfsOutputBoundaries. This object writes a geometrical summary
(in OOGL/Geomview format) of the mesh used, including boundary conditions, solid boundaries
and so on.

Yet another new object is GfsInitFlowConstant. As its name indicates, it will initialise the
velocity field on the whole domain to a constant value ((1,0,0) in this case). We could have left the
velocity field to its default value of (0,0,0) but, given that we impose inflow boundary conditions, it
would have meant that the initial velocity would have been strongly divergent. Gerris always starts
a simulation by a projection step (to fix problems like this) but it is always a good idea to start with
the best possible velocity field.

We can now run the code:

% rm -f *.ppm boundaries ; gerris2D half-cylinder.sim

It is going to take a while to complete, but remember that you can look at files while they are being
generated. The first file which will be generated is boundaries. If you load it in Geomview, you should
get something like figure 4 (you probably want to disable automatic normalization in Geomview by se-
lecting Inspect→Appearance→Normalize→None). The black lines represent the boundaries between

Figure 4: Representation of boundary conditions and solid boundaries

solid cells and fluid cells. If you zoom in on the half-cylinder, you will see that it is represented by
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lines following the grid (it is “lego-looking”). This does not mean that the “real” (i.e. computational)
solid boundary is also lego-looking because fluid cells can be cut by the solid boundaries, in which
case the algorithm properly takes into account the corresponding cell geometry.

Each GfsBoundary object is colour-coded. From the colours in the picture we see that we have
indeed an inflow boundary condition on the left side (blue) and an outflow boundary condition on
the right side (green).

You can also load in the full half-cylinder geometry we created before: half-cylinder.oogl or
visualise the PPM files using animate and display as in the previous example. By the way, a useful
feature of display is that you can zoom in by clicking on the middle button in the image being
displayed.

3.2 Saving the whole simulation

Hmm, this simulation is taking quite a while. . .What if we want to stop the simulation, make some
modifications to the simulation file and restart where we left from? Or equivalently, save the whole
simulation at regular intervals for latter post-processing?

You can do this using the GfsOutputSimulation object. Like this for example:

GfsOutputSimulation { step = 0.1 } half-cylinder-%3.1f.sim {
variables = U,V,P

}

where variables defines which variables you want to save. By default all the variables are saved.
If you now re-run the simulation, you will get a new file every 0.1 time units. This file is a valid

simulation file (like half-cylinder.sim) and you can use it directly to restart the simulation from
this point onward. If you edit it, you will see that the general structure is the same as usual but for
five pretty big chunks of data.

The first chunk starts with GtsSurface and is just the data contained in half-cylinder.gts but
this time embedded directly (by using GtsSurface rather than GtsSurfaceFile) into the simulation
file. The goal there is to have fully self-contained simulations files which you can just move around
without having to keep track of twenty different files.

The four other chunks are each associated with a GfsBox and contain both the topology of the
corresponding cell tree but also the associated physical data, solid boundary definitions etc...

You can of course edit this file, add new outputs and so on and restart the simulation from where
you left it.

3.3 Some post-processing using gfs2oogl

Gerris comes with a utility called gfs2oogl which converts simulation files to various representations
in OOGL format. We are just going to look at two types of representations gfs2oogl can do: scalar
field cross-sections and vector fields.

First of all, you can access a small summary of the options of gfs2oogl by typing:

% gfs2oogl2D -h

By default gfs2oogl will generate the same output as GfsOutputBoundaries like this:

% gfs2oogl2D < half-cylinder-0.1.sim > boundaries.oogl

To generate an OOGL representation of a scalar field (a coloured square for each discretisation cell)
do this:

% gfs2oogl2D -S -z 0 -c Vorticity < half-cylinder-0.5.sim > squares.oogl

which tells gfs2oogl to do a cross-section for z = 0 (-z 0) represented by squares (-S) and colored
according to the local vorticity (-c Vorticity). To generate a vector field representing the velocity
try:

% gfs2oogl2D -V 2 -z 0 < half-cylinder-0.5.sim > vectors.oogl
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where -V 2 specifies that the maximum length of the vector is twice the dimension of the smallest
cell in the domain.

If you now load all these files in Geomview and do a bit of panning and zooming around (and
possibly tune things like face shading) you should get an image looking like figure 5.

Figure 5: Scalar and vector representation generated using gfs2oogl.

3.4 Visualisation with OpenDX

If you have OpenDX12 installed on your system, the installation process described above should have
compiled and installed an OpenDX module which allows direct import of Gerris simulation files into
an OpenDX visual program.

In order to be able to use this module you need to start OpenDX with a command line looking
like:

% dx -mdf /home/joe/local/lib/gerris/dx2D.mdf

if you want to import a 2D simulation file or

% dx -mdf /home/joe/local/lib/gerris/dx3D.mdf

for a 3D simulation file (where /home/joe/local should be replaced with the proper installation
directory). This tells OpenDX to load the module described by the given Module Description File.

If everything went correctly, within the OpenDX Visual Program Editor you should be able to
select a tool named “ImportGfs2D” (resp. “ImportGfs3D”) belonging to the “Import and Export”
category. As its name suggests this tool reads a Gerris Flow Solver simulation file and produces a
group containing named fields. A field called “solid” contains the geometry of the solid boundaries.
The other fields represent the scalar or vector data contained in the simulation file. Vector fields are
constructed from the velocity components (the resulting vector field is called “U” in OpenDX) and
from any three components with names ending in “x”, “y” or “z” and with a common root. This
common root is used as the OpenDX field name. All the remaining fields are considered as scalar
fields.

12http://www.opendx.org
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If you are not familiar with OpenDX, you should read the available documentation13 and go
through the integrated tutorial. You can use the visual program called gfs2D.net14 provided with
this tutorial as a starting point. Typing

% dx -mdf /home/joe/local/lib/gerris/dx2D.mdf -program gfs2D.net

in the directory containing your half-cylinder-0.5.sim file (you also need to add the path to
gfs2D.net if it is not contained in the same directory) and selecting the Execute→Execute Once
menu should bring up windows looking like figure 6.

Figure 6: Screenshot of an OpenDX session using the ImportGfs2D module.

3.5 Using dynamic adaptive mesh refinement

For the moment our simulation is not very well resolved. We could always change the GfsRefine
6 line to something bigger but it would not make really good use of the quadtree approach used in
Gerris. A code using a simple regular Cartesian grid approach would be faster and would produce
the same results. Instead we are going to use dynamic adaptive mesh refinement, where the quadtree
structure of the discretisation is used to adaptively follow the small structures of the flow, thus
concentrating the computational effort on the area where it is most needed.

This is done using yet another object class: GfsAdapt, also derived from GfsEvent. Various
criteria can be used to determine where refinement is needed. In practice, each criterium will be

13http://www.opendx.org/support.html#docs
14http://gfs.sf.net/gfs2D.net
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defined through a different object derived from GfsAdapt. If several GfsAdapt objects are specified
in the same simulation file, refinement will occur whenever at least one of the criteria is verified.

For this first example, we will use a simple criterium based on the local value of the vorticity. A
cell will be refined whenever

|∇ × v|∆x

max |v|
> δ,

where ∆x is the size of the cell and δ is a user-defined threshold which can be interpreted as the
maximum angular deviation (caused by the local vorticity) of a particle traveling at speed max |v|
across the cell. This criterium is implemented by the GfsAdaptVorticity object.

The general syntax for an GfsAdapt object is:

[GfsEvent] { minlevel = 1 maxlevel = 10 }

where minlevel specifies the level below which it is not possible to coarsen a cell and maxlevel, the
level above which it is not possible to refine a cell. The default values are 0 for minlevel and infinite
for maxlevel. An important point is that, for the moment, it is not possible to dynamically refine
solid boundaries. A simple solution to this restriction is to always refine the solid boundary with the
maximum resolution at the start of the simulation and to restrict the refinement using the maxlevel
identifier in GfsAdapt.

Following this we can modify our simulation file:

4 3 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 9 }
GfsRefine 7
GtsSurfaceFile half-cylinder.gts
GfsInitFlowConstant {} { U = 1 }

# GfsOutputBoundaries {} boundaries
GfsAdaptVorticity { istep = 1 } { maxlevel = 7 } 1e-2
GfsOutputTime { step = 0.02 } stdout
GfsOutputBalance { step = 0.02 } stdout
GfsOutputProjectionStats { step = 0.02 } stdout
GfsOutputPPM { step = 0.02 } vorticity.ppm {
min = -100 max = 100 v = Vorticity

}
GfsOutputSimulation { step = 0.1 } half-cylinder-%3.1f.sim {
variables = U,V,P

}
GfsOutputTiming { start = end } stdout

}
GfsBox { left = GfsBoundaryInflowConstant 1 }
GfsBox {}
GfsBox {}
GfsBox { right = GfsBoundaryOutflow }
1 2 right
2 3 right
3 4 right

We have added two lines and commented out (using #) the line outputting the boundaries (we don’t
need that anymore, we have the simulation files).

The first line we added says that we want to refine dynamically the mesh through the GfsAdaptVorticity
object applied every timestep (istep = 1). The GfsAdaptVorticity object takes one (compulsory)
parameter δ (equal to 10−2 in our file).

The second line we added is a new GfsOutput object which displays the “balance” of the domain
sizes across the different processes (when Gerris is ran in parallel). We will use this to monitor how
the number of cells evolves with time as the simulation refines or coarsens the mesh according to our
vorticity criterium.
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We can now run this new simulation. If the previous simulation did not complete yet, don’t be
afraid to abort it (Ctrl-C), this one is going to be better (and faster).

% rm -f half-cylinder-*.sim *.ppm boundaries ; gerris2D half-cylinder.sim

If we now look at the balance summary written by GfsOutputBalance, we see that initially (step:
0) the total number of cells (on all levels) is 86966, which corresponds to a constant resolution of
4× 27 × 27 = 512× 128. At step 10 the number of cells is down to 990 with a corresponding increase
in computational speed. If we now look at the first simulation file we saved, using:

% gfs2oogl2D < half-cylinder-0.1.sim > boundaries
% gfs2oogl2D -S -z 0 -c Vorticity < half-cylinder-0.1.sim > squares.oogl

we obtain figure 7 showing not only the domain boundaries as usual, but also the boundaries (thin
black lines) between different levels of refinement. We see that the mesh is very refined around the

Figure 7: Dynamic adaptive mesh refinement t = 0.1

solid and around the two vortices developing at the trailing edge and very coarse (one cell per box
only) on the downstream part of the domain. If you are not sure what these thin black lines represent,
just switch on the edge representation in Geomview (using the Inspect→Appearance menu). You will
get a picture looking like figure 8, showing all the cells used for the discretisation. As the simulation
goes on, you can see the number of cells in the domain increase as the trailing vortices develop. With
a bit of patience you will get to figure 9 showing the fully developed Von Karman vortex street with
patches of increased resolution following each vortex. Even when the flow is fully developed using
adaptive mesh refinement still saves a factor of ˜6 in time and memory use. The advantage of adaptive
mesh refinement is even more obvious in situations where it is necessary to use very large domains to
avoid any contamination of the solution by the boundary conditions. You should also try to animate
vorticity.ppm which by now should give you a nice animation of the developing trailing vortices
becoming unstable and generating the Von Karman street. If ImageMagick is properly installed on
your system you can also try:

% convert vorticity.ppm vorticity.mpg

which will produce a much smaller MPEG video file, suitable for distribution through the network.
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Figure 8: Dynamic adaptive mesh refinement t = 0.1. Detail of the cells.

Figure 9: Dynamic adaptive mesh refinement t = 9.
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4 Writing new objects

If you want to implement your own boundary conditions, initial conditions, outputs, criterium for
adaptive mesh refinement etc. . . you will need to learn how to write new objects within the gerris
framework. As gerris is written in C, a basic knowledge of C programming will help a lot.

Gerris uses the object-oriented framework provided by GTS. This is essentially a set of structures
and functions implementing the fundamental concepts of object-oriented programming (essentially
data and methods inheritance and overloading) using C. Of course, as C is not an object-oriented
language, it does not provide direct (syntaxical) support for this and consequently, as we will see, the
expression of these concepts is rather more verbose than in, say, C++, python, smalltalk or Java.

So, why use C and not an object-oriented language? An exhaustive discussion would be too long
for this tutorial. In short, the strongest case for this approach is that C is the smallest common
denominator between most of the languages out there: it is possible to use the gerris library with any
one of C++, Fortran 90, Java, Perl, python, ruby etc. . . but it would not be the case if gerris was
written in any of these other languages.

4.1 A template for new object classes

GTS comes with a simple script called gtstemplate which will generate a C code template for the
new class you want to create. For a summary of its syntax just type:

% gtstemplate
Usage: gtstemplate [OPTIONS] Class ParentClass
Options:

[--no-extra-data]
[--no-extra-method]
[--overload=METHOD]

As an example we are going to try and create a template for a new initial condition class called
InitPeriodic. Just type:

% gtstemplate --overload=read --overload=write --overload=event \
InitPeriodic GfsInit > init_periodic.c

We have just created a template for a new class called InitPeriodic derived from GfsInit and
where the read, write and event methods are overloaded. Fire up your favourite editor and have a
look at the file generated: init periodic.c. The first thing you see is that the file is divided in two
sections starting with

/* InitPeriodic: Header */

and

/* InitPeriodic: Object */

As their names indicate these sections correspond respectively to the declaration of the structures
and functions (header part) and to the corresponding definitions (object part). If we were to use
these functions and structures in a library, these two parts would be in separate files (a .h and
a corresponding .c file). For what we are interested in (a gerris module) they are fine staying in
the same file. There is a function we will not need: init periodic new, just remove the lines
declaring and defining it in the header and object sections. We are left with only one function:
init periodic class. This function essentially registers our new class and its associated attributes.
Things like:

• the name of the class: "InitPeriodic",

• the sizes of the object and class structures: sizeof (InitPeriodic) and sizeof (InitPeriodicClass),

• function to call to initialize the class: init periodic class init,
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• function to call to initialize a new object: init periodic init,

• as well as which class is the ancestor of this new class: gfs init class ().

If we now look at what the init periodic class init function does, we see that it indeed overloads
the event, read and write methods of our class with locally defined functions. The GFS EVENT CLASS
and GTS OBJECT CLASS macro calls are casting operators which change the type of our new class
(InitPeriodicClass) to the types of one of its parent class. GtsObjectClass is the ancestor of all
object classes and we see that the read and write methods are thus defined for all objects. The
GfsInit class is also a descendant of the GfsEvent class (as we have seen before it is a special type
of event occurring once at the start of the simulation) which has and associated event method.

4.2 Initial conditions

With this preliminary overall understanding of what the template does, we are ready to define our
new initialisation class. What we want to do is initialise the 2D velocity field using the following
functions:

u(x, y) = − cos(2mπx) sin(2mπy) (1)
v(x, y) = sin(2mπx) cos(2mπy) (2)

where m is a parameter. This is an exact stationary solution of the 2D Euler equations with periodic
boundary conditions.

We need to store the value of m somewhere. A clean way to do that is to add m as a data
associated with our InitPeriodic object. To do this just modify the definition of the structure in
the header part of the file, like this:

struct _InitPeriodic {
/*< private >*/
GfsInit parent;

/*< public >*/
gdouble m;

};

Note that the GfsInit parent; data must be the first data in the structure. The whole object-
inheritance mechanism in C relies on this data alignment.

We now need to specify the value of m. The first value we want to assign is the default value of
m for an object newly created. We can do that using the initialisation function init periodic init
which is called everytime a new InitPeriodic object is created (it is the constructor function of the
InitPeriodicClass). Just add:

static void init_periodic_init (InitPeriodic * object)
{
object->m = 1.;

}

Our default value for m is now one. What we really want is being able to specify the value of m in
the parameter file used by gerris. We can do that by using the read and write methods. We will
start with the write method: init periodic write. This function first calls the write method of
the parent class of our object:

/* call write method of parent */
if (GTS_OBJECT_CLASS (init_periodic_class ())->parent_class->write)
(* GTS_OBJECT_CLASS (init_periodic_class ())->parent_class->write)
(o, fp);
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The parent class is given by the parent class field of any GtsObjectClass. The write method
might not be defined for the parent class, so it is always a good (safe) idea to first test that it is
indeed defined.

Now that we have written the data associated with the parent class, we can write our own data
like this:

static void init_periodic_write (GtsObject * o, FILE * fp)
{
/* call write method of parent */
if (GTS_OBJECT_CLASS (init_periodic_class ())->parent_class->write)
(* GTS_OBJECT_CLASS (init_periodic_class ())->parent_class->write)
(o, fp);

fprintf (fp, " %g", INIT_PERIODIC (o)->m);
}

Note that we used a space to separate this new data from the data of the parent class and that we
didn’t add anything after our own data (no space or newline). This is so that we can eventually
extend (through inheritance) this class by adding more data in exactly the same way.

We now need to define a “symmetrical” read method which will read the value of m from the
parameter file. In the init periodic read method, we first read the parameters associated with the
parent class. The line:

if (fp->type == GTS_ERROR)
return;

just checks if an error occurred while reading parameters for the parent class, in which case the
method returns prematurely. To read our parameter we are going to use functions associated with
the GtsFile data type (have a look at the GTS reference manual15 for details):

static void init_periodic_read (GtsObject ** o, GtsFile * fp)
{
/* call read method of parent */
if (GTS_OBJECT_CLASS (init_periodic_class ())->parent_class->read)
(* GTS_OBJECT_CLASS (init_periodic_class ())->parent_class->read)
(o, fp);

if (fp->type == GTS_ERROR)
return;

if (fp->type != GTS_INT && fp->type != GTS_FLOAT) {
gts_file_error (fp, "expecting a number (m)");
return;

}
INIT_PERIODIC (*o)->m = atof (fp->token->str);

/* do not forget to prepare for next read */
gts_file_next_token (fp);

}

We first check that the current token is an integer (GTS INT) or a floating point number (GTS FLOAT).
If it is not we set an error message describing the problem and return prematurely. If it is, we convert
the string describing the current token (fp->token->str) into a floating point number (using the
standard C atof function) and assign it to m. Note that we need to use the type conversion macro
INIT PERIODIC because the argument passed to init periodic read is a generic GtsObject. As
we are dealing with a method of our InitPeriodicClass we know that this GtsObject is also a
InitPeriodic object and the type conversion is then legitimate.

15http://gts.sf.net/reference/book1.html
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We can now create, read and write our new object. However we are not doing anything with it
yet. Like for any other GfsEvent, the action performed is controlled by the event method. If we look
at the init periodic event function, we see that it returns a gboolean. If TRUE this return value
means that the event took place. We then call the event method of the parent class and check its
return value. If TRUE we do something and return TRUE. We know that the parent class is GfsInit,
an event which takes place once at the start of the simulation. What we want to do is initialise the
velocity field using our formula. We can do that like this:

static void init_velocity (FttCell * cell,
InitPeriodic * init)

{
FttVector pos;

ftt_cell_pos (cell, &pos);
GFS_STATE (cell)->u =
- cos (2.*init->m*M_PI*pos.x)*sin (2.*init->m*M_PI*pos.y);

GFS_STATE (cell)->v =
sin (2.*init->m*M_PI*pos.x)*cos (2.*init->m*M_PI*pos.y);

}

static gboolean init_periodic_event (GfsEvent * event, GfsSimulation * sim)
{
if ((* GFS_EVENT_CLASS (GTS_OBJECT_CLASS (init_periodic_class ())\

->parent_class)->event) (event, sim)) {
gfs_domain_cell_traverse (GFS_DOMAIN (sim),

FTT_PRE_ORDER, FTT_TRAVERSE_LEAFS, -1,
(FttCellTraverseFunc) init_velocity,
event);

return TRUE;
}
return FALSE;

}

The gfs domain cell traverse function traverses the cell tree and calls the init velocity function
for each leaf cell (FTT TRAVERSE LEAFS). A GfsSimulation is an object derived from GfsDomain which
justifies the GFS DOMAIN (sim) type casting. Have a look in the reference manual16 if you want to
know more about these structures and functions.

We also pass an extra parameter to init velocity: event. If you now look at init velocity
you see that this extra argument is our object: InitPeriodic * init. What we have done here
is an implicit cast of GfsEvent * event to InitPeriodic * init. We know it is valid because
init periodic event is a method of our object class.

What happens in init velocity is straightforward. We first get the position of the center of the
cell using ftt cell pos and then assign the values of the two components of the velocities using our
formula and the m parameter defined in init.

4.2.1 Creating a module

We have now almost all that is needed for our new object. How do we use this new piece of code
with gerris? What we want to do is to create a dynamically loadable module. First of all we need to
check that we can compile the code. There are a few missing headers we need to add (at the top of
the file):

#include <math.h>
#include <stdlib.h>
#include <gfs.h>

16http://gfs.sf.net/reference/book1.html
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The gfs.h header contains all the function declarations for the gerris library. We can now try to
compile using for example:

% cc ‘gfs-config --2D --cflags‘ -Wall -g -O2 -c init_periodic.c

where gfs-config --2D --cflags (quoted using inverted quotes) defines the compilation flags needed
to use the 2D version of the gerris library.

To make a proper module we also need to add the following at the end of the file:

/* Initialize module */

const gchar * g_module_check_init (void);

const gchar * g_module_check_init (void)
{
init_periodic_class ();
return NULL;

}

This just tells gerris how to initialise the module after it has been loaded. The g module check init
function will be called. In our case, it does only one thing which is to instantiate our new class: this
is necessary so that gerris registers how to handle it.

We are now all set to create our new module. Sadly, dynamically loadable module creation is not
a standardised process and the command-line arguments vary from compiler to compiler and from
system to system. In the following, I will assume that you use gcc on a linux box. If you are using
another system supporting dynamically loadable modules, you will need to read your local manual.
On a linux box:

% cc ‘gfs-config --2D --cflags‘ -Wall -g -O2 -c -fPIC init_periodic.c
% cc -shared init_periodic.o -lc -o libinit_periodic2D.so

should work. Note that we add the 2D extension to indicate that this module uses the 2D gerris
library. We could have built both a 2D and a 3D version of the same module. At runtime the gerris
executable uses this extension to check which version to load.

Our module is now ready to use. We just need to install it in a directory where it will be found
by gerris. If you installed gerris in /home/joe/local just type:

% cp libinit_periodic2D.so /home/joe/local/lib/gerris

We can now use it directly in a parameter file, for example:

1 2 GfsSimulation GfsBox GfsGEdge {} {
GfsTime { end = 1 }
GfsRefine 6
GModule init_periodic
InitPeriodic {} 2
GfsOutputTime { istep = 10 } stdout
GfsOutputProjectionStats { istep = 10 } stdout
GfsOutputPPM { step = 0.1 } vorticity-%4.2f.ppm { v = Vorticity }

}
GfsBox {}
1 1 right
1 1 top

The first part of the object definition: InitPeriodic {} is the generic GfsEvent definition, the
second part: 2 is the parameter m we added. What if we do not specify the right parameter? Just
try to replace InitPeriodic {} 2 with InitPeriodic {} a. You should get a message like
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gerris: file ‘periodic.sim’ is not a valid simulation file
periodic.sim:5:18: expecting a number (m)

which tells you where the error occurred (in file periodic.sim, line 5, character 18) together with
the error message which we specified in the read method of our class.

4.3 Outputs

4.4 Boundary conditions

5 Running Gerris in parallel

6 Running the test suite
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