
Using GPS
The GNAT Programming System

Version 2.1.0
Document revision level 1.439.2.10

Date: 2004/11/23 11:48:15

ACT Europe/Ada Core Technologies, Inc

Copyright c© 2001-2004, ACT Europe. This document may be copied, in
whole or in part, in any form or by any means, as is or with alterations,
provided that (1) alterations are clearly marked as alterations and (2)
this copyright notice is included unmodified in any copy.

Table of Contents

1 Introduction . 1

2 Description of the Main Windows 3
2.1 The Welcome Dialog . 3
2.2 The Menu Bar . 4
2.3 The Tool Bar . 5
2.4 The Work Space . 5
2.5 The Project Explorer . 5

2.5.1 The explorer views . 5
2.5.2 The configuration variables . 8

2.6 The Messages Window . 9
2.7 The Shell and Python Windows . 9
2.8 The Locations Tree . 10
2.9 The Execution Window . 11
2.10 The Status Line . 11
2.11 The Task Manager . 12

3 Integrated Help . 13
3.1 The Help Menu . 13
3.2 Adding New Help Files . 14

4 Multiple Document Interface 15
4.1 Selecting Windows . 15
4.2 Closing Windows . 15
4.3 Maximized and Iconified Windows . 16
4.4 Docked Windows . 19
4.5 Splitting Windows . 20
4.6 Floating Windows . 21
4.7 Moving Windows . 21

5 Editing Files . 23
5.1 General Information . 23
5.2 Editing Sources . 27

5.2.1 Key bindings . 27
5.3 The File Selector . 28
5.4 Menu Items . 30

i

Using the GNAT Programming System

5.4.1 The File Menu . 30
5.4.2 The Edit Menu . 33

5.5 Contextual Menus for Editing Files . 35
5.5.1 Handling of case exceptions . 35

5.6 Using an External Editor . 36
5.7 Using the Clipboard . 38
5.8 Saving Files . 38
5.9 Remote Files . 39

6 Source Navigation . 43
6.1 Support for Cross-References . 43
6.2 The Navigate Menu . 44
6.3 Contextual Menus for Source Navigation . 45

7 Project Handling . 47
7.1 Description of the Projects . 47

7.1.1 Project files and GNAT tools . 47
7.1.2 Contents of project files . 48

7.2 Supported Languages . 49
7.3 Scenarios and Configuration Variables . 50

7.3.1 Creating new configuration variables 51
7.3.2 Editing existing configuration variables 52

7.4 The Project Explorer . 52
7.5 The Project Menu . 54
7.6 The Project Wizard . 55

7.6.1 Project Naming . 56
7.6.2 Languages Selection . 57
7.6.3 VCS Selection . 57
7.6.4 Source Directories Selection . 58
7.6.5 Build Directory . 58
7.6.6 Main Units . 58
7.6.7 Naming Scheme . 59
7.6.8 Switches . 60

7.7 The Project Properties Editor . 62
7.8 The Switches Editor . 64
7.9 The Project Browser . 65

8 Searching and Replacing . 69

ii

9 Compilation/Build . 73
9.1 The Build Menu . 73

10 Source Browsing . 77
10.1 General Issues . 77
10.2 Call Graph . 79
10.3 Dependency Browser . 81
10.4 Entity Browser . 84

11 Debugging . 87
11.1 The Debug Menu . 87

11.1.1 Debug . 88
11.1.2 Data . 89

11.2 The Call Stack Window . 91
11.3 The Data Window . 92

11.3.1 Description . 92
11.3.2 Manipulating items . 95

11.3.2.1 Moving items . 95
11.3.2.2 Colors . 95
11.3.2.3 Icons . 96

11.4 The Breakpoint Editor . 97
11.4.1 Scope/Action Settings for VxWorks AE 98

11.5 The Memory Window . 99
11.6 Using the Source Editor when Debugging 100
11.7 The Assembly Window . 102
11.8 The Debugger Console . 104
11.9 Upgrading from GVD to GPS . 105

11.9.1 Command Line Switches . 105
11.9.2 Menu Items . 106
11.9.3 Tool Bar Buttons . 107
11.9.4 Key Short Cuts . 107
11.9.5 Contextual Menus . 107
11.9.6 File Explorer . 107
11.9.7 Advantages of GPS . 108

12 Version Control System . 109
12.1 The VCS Explorer . 109
12.2 The VCS Menu . 112
12.3 The Version Control Contextual Menu . 112
12.4 Working with global ChangeLog file . 115

iii

Using the GNAT Programming System

13 Tools . 117
13.1 The Tools Menu . 117
13.2 Visual Comparison . 117
13.3 Code Fixing . 118

14 Working in a Cross Environment 121
14.1 Customizing your Projects . 121
14.2 Debugger Issues . 122

15 Customizing and Extending GPS 123
15.1 The Preferences Dialog . 123
15.2 GPS Themes . 137

15.2.1 The Emacs Theme . 138
15.3 The Key Manager Dialog . 139
15.4 Customizing through XML files . 140

15.4.1 Defining Actions . 142
15.4.2 Macro arguments . 146
15.4.3 Filtering actions . 148

15.4.3.1 The filters tags . 149
15.4.4 Adding new menus . 151
15.4.5 Adding contextual menus . 154
15.4.6 Adding tool bar buttons . 154
15.4.7 Binding actions to keys . 156
15.4.8 Preferences support in custom files 156

15.4.8.1 Creating new preferences . 156
15.4.8.2 Setting preferences values . 159

15.4.9 Creating themes . 159
15.4.10 Defining new search patterns . 160
15.4.11 Adding support for new languages 161
15.4.12 Defining text aliases . 165
15.4.13 Aliases files . 168
15.4.14 Defining project attributes . 169

15.4.14.1 Declaring the new attributes 169
15.4.14.2 Declaring the type of the new attributes 172
15.4.14.3 Examples . 173
15.4.14.4 Accessing the project attributes 176

15.4.15 Adding casing exceptions . 176
15.4.16 Adding documentation . 177
15.4.17 Adding stock icons . 178

15.5 Adding support for new tools . 179

iv

15.5.1 Defining supported languages . 180
15.5.2 Defining default command line . 181
15.5.3 Defining tool switches . 181
15.5.4 Executing external tools . 187

15.5.4.1 Chaining commands . 187
15.5.4.2 Saving open windows . 188
15.5.4.3 Querying project switches . 188
15.5.4.4 Querying switches interactively 189
15.5.4.5 Redirecting the command output 190
15.5.4.6 Processing the tool output . 190

15.6 Customization examples . 192
15.6.1 Menu example . 192
15.6.2 Tool example . 193

15.7 Scripting GPS . 193
15.7.1 Scripts . 193
15.7.2 Scripts and GPS actions . 195
15.7.3 The GPS Shell . 195
15.7.4 The Python Interpreter . 196
15.7.5 Python modules . 198
15.7.6 Subprogram parameters . 199
15.7.7 Python FAQ . 202

15.7.7.1 Spawning external processes . 202
15.7.7.2 Redirecting the output of spawned processes 203
15.7.7.3 Contextual menus on object directories only 204
15.7.7.4 Redirecting the output to specific windows 204
15.7.7.5 Reloading a python file in GPS 205
15.7.7.6 Printing the GPS Python documentation 206
15.7.7.7 Automatically loading python files at startup . . . 206

15.7.8 Hooks . 207
15.7.8.1 Adding commands to hooks . 208
15.7.8.2 Action hooks . 209
15.7.8.3 Running hooks . 210
15.7.8.4 Creating new hooks . 211

15.8 Adding support for new Version Control Systems 212
15.8.1 Custom VCS interfaces . 212
15.8.2 Describing a VCS . 213

15.8.2.1 The VCS node . 213
15.8.2.2 Associating actions to operations 213
15.8.2.3 Defining status . 214
15.8.2.4 Output parsers . 214

15.8.3 Implementing VCS actions . 215

v

Using the GNAT Programming System

16 Environment . 219
16.1 Command Line Options . 219
16.2 Environment Variables . 219
16.3 Files . 220
16.4 Reporting Suggestions and Bugs . 222
16.5 Solving Problems . 223

Index . 227

vi

Chapter 1: Introduction

1 Introduction
GPS is a complete integrated development environment that gives access
to a wide range of tools and integrates them smoothly.

GPS gives access to built-in file editing; HTML based help system;
complete compile/build/run cycle; intelligent source navigation; project
management; general graph technology giving access to many different
browsers such as source dependency, project dependency, call graphs,
etc. . . ; fully integrated visual debugger, based on the GVD technology,
and enhanced for inclusion in GPS; generic version control system, pro-
viding access to CVS, ClearCase, and possibly others in the future; many
other tools such as a visual comparison, automatic generation of files,
source reformatting.

GPS is fully customizable, providing several levels of customizations:
a first level, available through the preferences and key manager dialogs;
a second level, which allows you to customize your menu items, tool bar
and key bindings; a third level, which allows you to automate processing
through scripts; and a fourth level, which allows any kind of very specific
or tight integration, due to the open nature of GPS, and to its architec-
ture. See Chapter 15 [Customizing and Extending GPS], page 123 for
more details.

GPS also integrates with existing editors such as Emacs and Vi, see
Section 5.6 [Using an External Editor], page 36.

1

Using the GNAT Programming System

2

Chapter 2: Description of the Main Windows

2 Description of the Main Windows

2.1 The Welcome Dialog

When starting GPS, a welcome dialog is displayed by default, giving the
following choices:

Start with default project in directory
If you select this option and click on the OKbutton, GPS will
create a default internal project with the following proper-
ties:
The project supports Ada files only, using the default GNAT
naming scheme: .ads for spec files, .adb for body files.
A single source directory corresponding to the current di-
rectory. The current directory can be set by modifying the
text entry on clicking on the Browse button. All the Ada
files found in this directory will be considered as part of the
default project.
The object directory where the object and executable files will
be put, corresponding also to the current directory.

Create new project with wizard
Selecting this option and clicking on the OKbutton will start
a wizard allowing you to specify most of the properties for a
new project. Once the project is created, GPS will save it and

3

Using the GNAT Programming System

load it automatically. See Section 7.6 [The Project Wizard],
page 55 for more details on the project wizard.

Open existing project
You can select an existing project by clicking on the Browse
button, or by using a previously loaded project listed in the
combo box. When a project is selected, clicking on the OK
button will load this project and open the main window.

Always show this dialog when GPS starts
If unset, the welcome dialog won’t be shown in future ses-
sions. In this case, GPS will behave as follows: it will first
look for a -P switch on the command line, and load the cor-
responding project if present. Then, it will look for a project
file in the current directory and will load the first project file
found.
If no project file can be found in the current directory, GPS
will start with the default project.
To reset this property, go to the menu Edit->Preferences .
See Section 15.1 [The Preferences Dialog], page 123.

Quit If you click on this button, GPS will terminate immediately.

When you specify a -P switch on the command line, or if there is only
one project file in the current directory, GPS will start immediately with
the project file specified, instead of displaying the welcome dialog.

In addition, if you specify source files on the command line, GPS will
also start immediately, using the default project if no project is specified.

By default, files specified on the command line are taken as is and can
be absolute or relative pathnames. In addition, if you prepend a filename
with the = character, then GPS will look for the file in the source search
path of the project.

2.2 The Menu Bar
This is a standard menu bar that gives access to all the global function-
alities of GPS. It is usually easier to access a given functionality using
the various contextual menus provided throughout GPS: these menus
give direct access to the most relevant actions given the current context
(e.g. a project, a directory, a file, an entity, . . .). Contextual menus pop
up when the right mouse button is clicked.

The menu bar gives access to the following items:

File See [The File Menu], page 30.

Edit See [The Edit Menu], page 33.

4

Chapter 2: Description of the Main Windows

Navigate
See Section 6.2 [The Navigate Menu], page 44.

VCS See Section 12.2 [The VCS Menu], page 112.

Project See Section 7.5 [The Project Menu], page 54.

Build See Section 9.1 [The Build Menu], page 73.

Debug See Section 11.1 [The Debug Menu], page 87.

Tools See Section 13.1 [The Tools Menu], page 117.

Window See Chapter 4 [Multiple Document Interface], page 15.

Help See Section 3.1 [The Help Menu], page 13.

2.3 The Tool Bar
The tool bar provides shortcuts via buttons to some typical actions: cre-
ating a new file, opening a file, saving the current file; undo/redo last
editing; cut to clipboard, copy to clipboard, paste from clipboard; go to
previous/next location; start/continue the debugging session, step/next
execution, finish current procedure.

The icon on the far right of the tool bar will be animated to indicate
that an action (e.g. a build or a search) is going on in the background.

2.4 The Work Space
The whole work space is based on a multiple document interface, See
Chapter 4 [Multiple Document Interface], page 15.

2.5 The Project Explorer
The project explorer is composed of multiple views which can be accessed
by default by clicking on the corresponding pages, or if they are not shown
by using the Project menu items.

2.5.1 The explorer views
The explorer views are initially displayed on the left side of the GPS
window. Their goal is to show a full view of the various components of
your projects. These various components are presented below.

Under Windows, it is possible to drop files (coming e.g. from the
Explorer) in any of these views with the following behavior: a project file
dropped will be loaded; any other file will open a source editor on this
file.

5

Using the GNAT Programming System

The following screen-shot displays the two pages side-by-side: on the
left, the Project View , and on the right the File View .

Each view provides an interactive search capability allowing you to
quickly search in the information currently displayed. The default key
to start an interactive search is 〈Ctrl-i〉. This will open a small window
at the bottom of the explorer where you can interactively type names.
The first matching name in the tree will be selected while you type it.
You can then also use the 〈up〉 and 〈down〉 keys to navigate through all the
items matching the current text.

The various components that are displayed in these explorers are the
following:

projects As mentioned before, all the sources you are working with
are put under control of projects. These projects are a way
to store the switches to use for the various tools, as well as a
number of other properties.
They can be organized into a project hierarchy, where a
root project can import other projects, with their own set
of sources.

6

Chapter 2: Description of the Main Windows

Initially, a default project is created, that includes all the
sources in the current directory.
The Project View page of the explorer displays this project
hierarchy: the top node in this view is the root project of
your application (generally, this is where the source file that
contains the main subprogram will be located). Then a node
is displayed for each imported project, and recursively for
their own imported projects.
A given project might appear multiple times in the Project
View , if it is imported by several other projects.
There exists a second display for this project view, which lists
all projects with no hierarchy: all projects appear only once
in the explorer, at the top level. This display might be useful
for deep project hierarchies, to make it easier to find projects
in the explorer.
This display is activated through the contextual menu en-
try Show flat view , which acts as a switch between the two
displays.
A special icon with an exclamation mark is displayed if the
project was modified, but not saved yet. You can choose to
save it at any time by right-clicking on it. GPS will remind
you to save it before any compilation.

directories
The files inside a project can be organized into several phys-
ical directories on the disk. These directories are displayed
under each project node in the Project View , or directly mim-
icking their physical organization on the disk (including Win-
dows drives) in the File View .
In the Project View , you can chose whether you want to see
the absolute path names for the directories or paths relative
to the location of the project. This is done through the Show
absolute paths contextual menu.
Special nodes are created for object and executables directo-
ries. No files are shown for these.

files The source files themselves are stored in the directories,
and displayed under the corresponding nodes. Note that
in the Project View , only the source files that actually be-
long to the project (i.e. are written in a language supported
by that project and follow its naming scheme) are actually
visible. For more information on supported languages, See
Section 7.2 [Supported Languages], page 49.
The File View will display all the files that actually exist on
the disk. Filters can be set through the contextual menu to

7

Using the GNAT Programming System

only show the files and directories that belong to the project
hierarchy. See the menu Show files from project only .
A given file might appear multiple times in the Project
View , if the project it belongs to is imported by several other
projects.

entities If you open the node for a source file, the file is parsed by
one of the fast parsers integrated in GPS so that all enti-
ties declared in the project can be shown. These entities are
grouped into various categories, which depend on the lan-
guage. Typical categories include subprograms, packages,
types, variables, tasks,. . .

Double-clicking on a file, or simple clicking on any entity will open a
source editor and display respectively the first line in this file or the line
on which the entity is defined.

Moving the mouse over the different components displayed on the
project explorer view will open tooltips with some more information de-
pending on the type of component:
projects The tooltip contains the project full pathname.
directories

The tooltip contains the directory full pathname and the
project name in which it is defined.

files The tooltip contains the base filename and the project name
in which it is defined.

entities The tooltip contains the entity name and parameters for rou-
tines followed by the location in the form filename:line where
it is declared.

If you open the search dialog through the Navigate->Find... menu,
you have the possibility to search for anything in the explorer, either a
file or an entity. Note that searching for an entity might be a little slow
if you have lots of files.

A contextual menu, named Locate in Explorer , is also provided
when inside a source editor. This will automatically search for the first
entry for this file in the explorer. This contextual menu is also available
in other modules, e.g. when selecting a file in the Dependency Browser .

2.5.2 The configuration variables
As described in the GNAT User’s Guide, the project files can be config-
ured through external variables (typically environment variables). This
means that e.g. the exact list of source files, or the exact switches to
use to compile the application can be changed when the value of these
external variables is changed.

8

Chapter 2: Description of the Main Windows

GPS provides a simple access to these variables, through a spe-
cial area on top of the Project View . These variables are called
Configuration Variables , since they provide various scenarios for the
same set of project files.

A combo box is displayed in this area for each environment variable
the project depends on. The current value of the variable can be set
simply by selecting it from the pop-down window that appears when you
click on the arrow on the right of the variable name

New variables can be added through the contextual menu Add
Configuration Variable in the Project View . The list of possible val-
ues for a variable can be changed by clicking on the button on the left of
the variable’s name.

Whenever you change the value of one of the variables, the project
is automatically recomputed, and the list of source files or directories is
changed dynamically to reflect the new status of the project. Starting
a new compilation at that point will use the new switches, and all the
aspects of GPS are immediately affected according to the new setup.

2.6 The Messages Window
The Messages window is used by GPS to display information and feed-
back about operations, such as build output, information about processes
launched, error messages.

This is a read-only window, which means that only output is available,
no input is possible.

For an input/output window, see Section 2.9 [The Execution Window],
page 11 and also Section 2.7 [The Shell and Python Windows], page 9.

2.7 The Shell and Python Windows
These windows give access to the various scripting languages supported
by GPS, and allow you to type commands such as editing a file or com-
piling without using the menu items or the mouse.

9

Using the GNAT Programming System

Some of these windows, especially the python window, might not be
visible in your version of GPS, if GPS wasn’t compiled with the support
for that specific scripting language.

See Section 15.7 [Scripting GPS], page 193 for more information on
using scripting languages within GPS.

You can use the 〈up〉 and 〈down〉 keys to navigate through the history of
commands.

2.8 The Locations Tree
The Location Tree is filled whenever GPS needs to display a list of lo-
cations in the source files (typically, when performing a global search,
compilation results, and so on).

The Location Tree shows a hierarchy of categories, which contain
files, which contain locations. Clicking on a location item will bring up a
file editor at the requested place. Right-clicking on file or category items
brings up a contextual menu allowing you to remove the corresponding
node from the view.

10

Chapter 2: Description of the Main Windows

Every time a new category is created, as a result of a compilation or
a search operation for instance, the first entry of that category is auto-
matically selected, and the corresponding editor opened. This behavior
can be controlled through a preference Jump To First Location .

To navigate through the next and previous location (also called Tag),
you can use the menu items Navigate->Previous Tag and Navigate-
>Next Tag , or the corresponding key bindings.

Left-clicking on a line in the Location Tree brings up a contextual
menu with the following entries:

Sort by subcategory
Toggle the sorting of the entries by sub-categories. This is
useful, for example, for separating the warnings from the
errors in the build results.

Jump to location
Open the location contained in the message, if any.

In some cases, a wrench icon will be associated on the left of a com-
pilation message. See Section 13.3 [Code Fixing], page 118 for more
information on how to make advantage of this icon.

2.9 The Execution Window
Each time a program is launched using the menu Build->Run , a new ex-
ecution window is created to provide input and output for this program.

In order to allow post mortem analysis and copy/pasting, the execu-
tion windows are not destroyed when the application terminates.

To close an execution window, click on the cross icon on the top right
corner of the window, or use the menu File->Close , or the menu Window-
>Close or the key binding 〈Ctrl-W〉.

If you close the execution window while the application is still run-
ning, a dialog window is displayed, asking whether you want to kill the
application, or to cancel the close operation.

2.10 The Status Line
The status line is composed of two areas: on the left a status bar and on
the right one or several progress bars.

The status bar is used to display temporary information about GPS
operations. Note that most of the information GPS displays can be found
in the Messages window.

The progress bars are used to display information about on going oper-
ations such as builds, searches, or VCS commands. These tasks operate

11

Using the GNAT Programming System

in the background, and can be paused/resumed via a contextual menu.
This contextual menu is available by right-clicking on the progress bars
themselves or on the corresponding lines in the Task Manager. See
Section 2.11 [The Task Manager], page 12

2.11 The Task Manager
The Task Manager window lists all the currently running GPS oper-
ations that run in the background, such as builds, searches or VCS
commands.

For each of these tasks, the Task Manager shows the status of the
task, and the current progress. The execution of theses tasks can be
suspended using a contextual menu, brought up by right-clicking on a
line.

When exiting GPS, if there are tasks running in the Task Manager,
a window will display those tasks. You can also bring up a contextual
menu on the items in this window. You can force the exit at any time by
pressing the confirmation button, which will kill all remaining tasks, or
continue working in GPS by pressing the Cancel button.

12

Chapter 3: Integrated Help

3 Integrated Help

By default when you start GPS, the working area contains a help window
displaying HTML help files. On-line help for the GNAT tools is available
from the Help menu item.

Since HTML pages can contain lots of complex information, resizing
the help window can take some time, making the user interface less
responsive. It is therefore recommended to close the Help window when
not using it. You can reopen this window at any time using the Help
menu item.

For the best use of the integrated help, it is recommended to load
small HTML pages each time instead of long pages which will be slow to
load and display.

3.1 The Help Menu
The Help menu item provides the following entries:

Contents
This opens a special HTML file that contains links for all the
documentation files currently registered in GPS, See Sec-
tion 3.2 [Adding New Help Files], page 14.

Zoom in Increase the size of the font used to display the help file.

Zoom out
Decrease the size of the font used to display the help file.

Open HTML file...
Open a file selection dialog to load an HTML file.

About Display a dialog giving information about the versions of GPS
and GNAT used:

13

Using the GNAT Programming System

This menu contains a number of additional entries, depending on
what documentation packages were installed on your system. See the
next section to see how to add new help files.

The help window also provides a contextual menu that gives the
possibility to copy the current selection to the clipboard.

3.2 Adding New Help Files
GPS will search for the help files in the list of directories set in the
environment variable GPS_DOC_PATH(a colon-separated list of directories
on Unix systems, or semicolon-separated list of directories on Windows
systems). In addition, the default directory <prefix>/doc/gps/html is
also searched. If the file cannot be found in any of these directories, the
corresponding menu item will be disabled.

The environment variable GPS_DOC_PATHcan either be set by each
user in his own environment, or can be set system-wide by modifying
the small wrapper script ‘gps ’ itself on Unix systems.

It can also be set programmatically through the GPS shell or any of
the scripting languages. This is done with

GPS.add_doc_directory ("/home/foo")

The specific list of files shown in the menus is set by reading the index
files in each of the directories in GPS_DOC_PATH. These index files must
be called ‘gps_index.xml ’.

The format of these index files is specified in see Section 15.4.16
[Adding documentation], page 177.

14

Chapter 4: Multiple Document Interface

4 Multiple Document Interface
All the windows that are part of the GPS environment are under con-
trol of what is commonly called a multiple document interface (MDI for
short). This is a common paradigm on windowing systems, where re-
lated windows are put into a bigger window which is itself under control
of the system or the windows manager.

This means that, by default, no matter how many editors, browsers,
explorers,. . . windows you have opened, your system will still see only
one window (On Windows systems, the task bar shows only one icon).
However, you can organize the GPS windows exactly the way you want,
all inside the GPS main window.

For instance, you can choose to iconify some windows which are tem-
porarily useless to you; you can choose to put some windows on top of
others; you can resize all the windows to the size you want; and so on.

This section will show the various capacities that GPS provides to
help you organize your workspace.

4.1 Selecting Windows
At any time, there is only one selected window in GPS (the active win-
dow). You can select a window either by clicking in its title bar, which
will then get a different color, or by selecting its name in the menu
Window.

Alternatively, windows can be selected with the keyboard. By default,
the selection key is 〈Alt-Tab〉. When you press it, a temporary dialog
is popped-up on the screen, with the name of the window that will be
selected when the key is released. If you press the selection key multiple
times, this will iterate over all the windows currently open in GPS.

This interactive selection dialog is associated with a filter, displayed
below the name of the selected window. If you maintain 〈Alt〉 pressed
while pressing other keys than 〈Tab〉, this will modify the current filter.
From then on, pressing 〈Alt-Tab〉 will only iterate through those windows
that match the filter.

The filter is matched by any window whose name contains the let-
ter you have typed. For instance, if you are currently editing the files
‘unit1.adb ’ and ‘file.adb ’, pressing 〈t〉 will only leave ‘unit1.adb ’ se-
lectable.

4.2 Closing Windows
Wherever the windows are displayed, they are always closed in the same
manner. In the right side of the title bar of the window, three small

15

Using the GNAT Programming System

buttons are displayed. The rightmost button is a cross. Clicking on this
button will close the window.

When a window is closed, the focus is given to the window of the same
part of the MDI (each of the docks or the middle area) that previously
had the focus. Therefore, if you simply open an editor as a result of
a cross-reference query, you can simply close that editor to go back to
where you were before.

Alternatively, you can also select the window by clicking anywhere in
its title bar, and then select the menu Window->Close

4.3 Maximized and Iconified Windows
The MDI is initially split into three parts: one window to the left, one to
the bottom, and a bigger one that occupies the remaining space.

The first two will be discussed in Section 4.4 [Docked Windows],
page 19. The third area is the one that provides the most flexibility:

maximized windows
The windows in this area are initially maximized. This
means that if you have several windows, a notebook will
be created, and only one window will be visible at any given
time. You select the window you want to see by clicking on
the appropriate tab.
Note that if there are a lot of windows, two small arrows will
appear on the right of the tabs. Clicking on these arrows will
show the remaining tabs.

You can go back to this maximized state in two ways: either
select the menu Window->Maximize All , or click on the mid-
dle button on the right of the title bar of any window (this
button shows two small squares, and will toggle between
maximized and unmaximized states.
You can also double-click on the title bar of any of the win-
dow, or in the tabs that appear at the bottom when multiple
windows are stored in the central area.

16

Chapter 4: Multiple Document Interface

unmaximized windows
Instead of putting all the windows inside a notebook, GPS
lets you organize them freely when they are unmaximized.
Select the menu Window->Unmaximize All , or click again in
the middle button on the right of the title bar.

In this mode, the windows can be resized freely by clicking
on the border of any side or in one of their four corners, as
usual on windowing systems.

They can also be moved around. As a result, you can choose
for instance to display several windows side by side, or one
on top of the others.

To make it easier to get to these standard organizations, GPS
provides a few shortcuts through menus:

Window->Cascade
All the windows will be resized to the same size,
and be moved one on top of the other, so that the
top and left sides of all windows are visible. This
way, you can easily select any window

Window->Tile Horizontally
All the windows are resized to the same dimen-
sions, and are put side by side, from left to right.
No window will overlap any other.

17

Using the GNAT Programming System

Window->Tile Vertically
All the windows are resized to the same dimen-
sions, and are put side by side, from top to bottom.
No window will overlap any other.

Iconified windows
When the windows are unmaximized, you can also choose to
temporarily iconify some of them. This is done by clicking
on the leftmost button in the title bar (the one that shows a
single line).

The window will then be resized so that only part of its title
bar is visible, and none of its actual contents. Icons can still
be moved around as you want, but they cannot be resized.
You need to first de-iconify the window, by clicking once again
on the same button.

18

Chapter 4: Multiple Document Interface

When de-iconified, a window will restore the size and position
it had before it was iconified.

4.4 Docked Windows
As mentioned before, the GPS work space is initially split into three
windows. The one on the left and the one at the bottom are called
docking area.

They have a different behavior from the central area, since windows
in these areas are necessarily grouped into a notebook. Thus, only one
of them is visible at any given time, and you select the one you want to
see by clicking on its name in the tabs area.

GPS includes four such areas, one on each side of the main area.
Some visual objects will initially be displayed in one of these docking
areas instead of in the central one, like the project explorer, the message
window,. . . Although you cannot control this initial position, it is possible
to change it later on (Section 4.7 [Moving Windows], page 21).

However, you can still choose precisely the dimension you want for
this docking area (either its width for the left and right areas, or its
height for the top and bottom ones).

Between each docking area and the central one, there is a small han-
dle (on which a series of dots are drawn), that you can move interactively
with the mouse, to resize the docking areas). By default, when you move
such a handle, a line will appear on top of all other windows in GPS to
show you the new position the docking area will have when you release
the mouse. You can set up a preference (menu Edit->Preferences) to

19

Using the GNAT Programming System

indicate that you want the resizing to be opaque, that is that you want
to see the windows as you resize them.

Note that when a window is docked (i.e. put in a docking area), some
of the buttons in its title bar are grayed out and inactive.

A simple way to dock a window is to select it, and then select the
menu Window->Docked . We will see in Section 4.7 [Moving Windows],
page 21 that there is a more intuitive way to do the same thing.

In some cases GPS will change the color and size of the title (name)
of a window in the notebook tab. This indicates that the window content
has been updated, but the window wasn’t visible. Typically, this is used
to indicate that new messages have been written in the messages or
console window.

4.5 Splitting Windows
The window in the central area of the MDI can be split at will, through
any combination of horizontal and vertical splits. This feature requires
at least two windows (text editors, browsers,...) to be superimposed in
the central area. Selecting either the Window->Split Horizontally or
Window->Split Vertically menus will then split the selected window
in two. In the left (resp. top) pane, the currently selected window will
be left on its own. The rest of the previously superimposed windows will
be put in the right (resp. bottom) pane. You can then in turn split these
remaining windows to achieve any layout you want.

All split windows can be resized interactively by dragging the han-
dles that separate them, just as is done for docked windows. A prefer-
ence (menu Edit->Preferences controls whether this resizing is done
in opaque mode or border mode. In the latter case, only the new handle
position will be displayed while the mouse is dragged.

The current layout is lost when you select one of the menus Window-
>Cascade , Window->Tile Horizontally , Window->Tile Vertically or
Window->Unmaximized . It is also changed if you destroy the last visible
window in a pane. For instance, if you have split the central area in
two, with one editor only on each side, closing any editor will result in
an unsplit central area.

You may want to bind the key shortcuts to the menus Window->Split
Horizontally as well as Window->Split Vertically using either the
preference Dynamic Key Binding , or the key manager. In addition, if you
want to achieve an effect similar to e.g. the standard Emacs behavior
(where 〈control-x 2〉 splits a window horizontally, and 〈control-x 3〉 splits a
window vertically), you can use the key manager (see Section 15.3 [The
Key Manager Dialog], page 139).

20

Chapter 4: Multiple Document Interface

4.6 Floating Windows
Although the MDI, as described so far, is already extremely flexible, it is
possible that you prefer to have several top-level windows under direct
control of your system or window manager. This would be the case for
instance if you want to benefit from some extra possibilities that your
system might provide (virtual desktops, different window decoration
depending on the window’s type, transparent windows,. . .).

GPS is fully compatible with this behavior, since windows can also
be floating windows. Any window that is currently embedded in the
MDI can be made floating at any time, simply by selecting the window
and then selecting the menu Window->Floating . The window will then
be detached, and can be moved anywhere on your screen, even outside
of GPS’s main window.

There are two ways to put a floating window back under control of
GPS. The more general method is to select the window through its title
in the menu Window, and then unselect Window->Floating .

The second method assumes that the preference Destroy Floats in
the menu Edit->Preferences has been set to false. Then, you can
simply close the floating window by clicking in the appropriate title bar
button, and the window will be put back in GPS. If you actually want to
close it, you need to click once again on the cross button in its title bar.

A special mode is also available in GPS, where all windows are float-
ing. The MDI area in the main window becomes invisible. This can
be useful if you rely on windows handling facilities supported by your
system or window manager but not available in GPS. This might also be
useful if you want to have windows on various virtual desktops, should
your window manager support this.

This special mode is activated through a preference (menu Edit-
>Preferences). This preference is entitled All Floating.

4.7 Moving Windows
As we have seen, the windows’ state can be changed at any time, from
maximized to unmaximized to docked to floating and back, in any order.

In all cases, the changes are done either through the buttons in the
title bar or through the Window menu.

A more intuitive method is also provided, based on the drag-and-drop
paradigm. The idea is simply to select a window, wherever it is, and
then, by clicking on it and moving the mouse while keeping the left
button pressed, drop it anywhere else inside GPS.

Selecting an item so that it can be dragged is done simply by clicking
with the left mouse button in its title bar, and keep the button pressed

21

Using the GNAT Programming System

while moving the mouse. Although this is the general scheme, this would
not work for unmaximized items, since the title bar is then used to move
them around. In that case, you need to press the 〈control〉 key in addition
to the left mouse button.

A third possibility can be used for maximized or docked windows: click
with the left mouse button in the notebook tab that contains their name.
This third option is not available under Microsoft Windows systems.

While you keep the mouse button pressed, and move the mouse
around, the selected drop area is highlighted with a dashed border. This
shows precisely where the window would be put if you were to release
the mouse button at that point.

Here are the various places where a window can be dropped:

The central area
If the windows in that area are unmaximized, the window
you are dropping (the current window) will acquire the same
state. However, if the windows are currently maximized in
the central area, or even if the latter was split horizontally,
vertically or any combination of these, the location of the
current window is indicated by the dashed rectangle: either
in the pane where you released the mouse button, or on one
of the sides of that pane (splitting as needed).

Docking areas
The window will be immediately added to this area after
dropping it and a new notebook will be created as needed.
In some cases, you might want to create a docking area that
is not currently visible (for instance, it is often useful to put
the location window in the right docking area).
To achieve this, drop the window on the small handle that
surrounds the whole GPS window (a black rectangle will
appear on the screen when your mouse is over that area). If
you then drop the item, a new docking area will be created.

System window
If you drop a window outside of GPS (for instance, on the
background of your screen), the window will be floated.

If you maintain the 〈shift〉 key pressed while dropping the window, this
might result in a copy operation instead of a simple move. For instance,
if you are dropping an editor, a new view of the same editor will be
created, resulting in two views present in GPS: the original one is left at
its initial location, and a second view is created at the new location.

22

Chapter 5: Editing Files

5 Editing Files

5.1 General Information
Source editing is one of the central parts of GPS, giving in turn access
to many other functionalities, including extended source navigation and
source analyzing tools.

The integrated source editor provides all the usual capabilities found
in integrated environments, including:

A title bar
Showing the full name of the file including path information.

Line number information
This is the left area of the source editor. Line numbers can be
disabled from the preferences. See Section 15.1 [The Prefer-
ences Dialog], page 123. Note that this area can also display
additional information, such as the current line of execution
when debugging, or cvs annotations.

23

Using the GNAT Programming System

A scrollbar
Located on the right of the editor, it allows you to scroll
through the source file.

A Speed Column
This column, when visible, is located on the left of the editor.
It allows you to view all the highlighted lines in a file, at
a glance. For example, all the lines containing compilation
errors are displayed in the Speed Column. See Section 15.1
[The Preferences Dialog], page 123 for information on how to
customize the behavior of the Speed Column.

A status bar
Giving information about the file. It is divided in two sec-
tions, one on the left and one on the right of the window.
The left section

The first box on the left shows the current sub-
program name for languages that support this
capability. Currently Ada, C and C++ have this
ability. See Section 15.1 [The Preferences Dia-
log], page 123 to enable or disable this feature.

The right section
If the file is maintained under version control,
and version control is supported and enabled in
GPS, the first box on the left will show VCS in-
formation on the file: the VCS kind (e.g. CVS),
followed by the revision number, and if available,
the status of the file.
The second box shows the current editing mode.
This is either Insert or Overwrite and can be
changed using the insert keyboard keys by de-
fault.
The third box shows the writable state of the file.
You can change this state by clicking on the label
directly: this will switch between Writable and
Read Only. Note that this will not change the
permissions of the file on disk, it will only change
the writable state of the source editor within GPS.
When trying to save a file which is read only on
the disk, GPS will ask for confirmation, and if
possible, will force saving of the file, keeping its
read only state.
The fourth box shows whether the file has been
modified since the last save. The three possible
states are:

24

Chapter 5: Editing Files

Unmodified
The file has not been modified since
the file has been loaded or saved.

Modified The file has been modified since last
load or save. Note that if you undo all
the editing operations until the last
save operation, this label will change
to Unmodified.

Saved The file has been saved and not mod-
ified since.

The fifth box displays the position of the cursor
in the file by a line and a column number.

A contextual menu
Displayed when you right-click on any area of the source
editor. See in particular Section 6.3 [Contextual Menus for
Source Navigation], page 45 for more details.

Syntax highlighting
Based on the programming language associated with the file,
reserved words and languages constructs such as comments
and strings are highlighted in different colors and fonts. See
Section 15.1 [The Preferences Dialog], page 123 for a list of
settings that can be customized.

Automatic indentation
When enabled, lines are automatically indented each time
you press the 〈Enter〉 key, or by pressing the indentation
key. The indentation key is 〈Ctrl-Tab〉 by default, and can be
changed in the key manager dialog, See Section 15.3 [The
Key Manager Dialog], page 139.
If a set of lines is selected when you press the indentation
key, this whole set of lines will be indented.

Tooltips When you leave the mouse over a word in the source editor, a
small window will automatically pop up if there are relevant
contextual information to display about the word.
The type of information displayed depends on the current
state of GPS.
In normal mode, the entity kind and the location of decla-
ration is displayed when this information is available. That
is, when the cross-reference information about the current
file has been generated. If there is no relevant information,
no tooltip is displayed. See Section 6.1 [Support for Cross-
References], page 43 for more information.

25

Using the GNAT Programming System

In debugging mode, the value of the variable under the mouse
is displayed in the pop up window if the variable is known
to the debugger. Otherwise, the normal mode information is
displayed.
You can disable the automatic pop up of tool tips in the Ed-
itor section of the preferences dialog. See Section 15.1 [The
Preferences Dialog], page 123.

Word completion
It is useful when editing a file and using often the same
words to get automatic word completion. This is possible by
typing the 〈Ctrl-/〉 key combination (customizable through the
key manager dialog) after a partial word: the next possible
completion will be inserted in the editor. Typing this key
again will cycle through the list of possible completions.
Completions are searched in the edited source file, by first
looking at the closest words and then looking further in the
source as needed.

Delimiter highlighting
When the cursor is moved before an opening delimiter or
after a closing delimiter, then both delimiters will be high-
lighted. The following characters are considered delimiters:
()[]{} . You can disable highlighting of delimiters in the pref-
erences.
You can also jump to a corresponding delimiter by using the
〈Ctrl-’〉 key, that can be configured in the preferences. Typing
twice on this key will move the cursor back to its original
position.

Current line highlighting
You can configure the editor to highlight the current line with
a certain color. See Section 15.1 [The Preferences Dialog],
page 123.

Current block highlighting
If this preference is enabled, the editor will highlight the
current block of code, e.g. the current begin...end block, or
loop statement, etc. . .
The block highlighting will also take into account the changes
made in your source code, and will recompute automatically
the current block when needed.
This capability is currently implemented for Ada, C and C++
languages.

Block folding
When enabled, the editor will display - icons on the left
side, corresponding to the beginning of subprograms. If you

26

Chapter 5: Editing Files

click on one of these icons, all the lines corresponding to this
subprogram are hidden, except the first one. As for the block
highlighting, these icons are recomputed automatically when
you modify your sources and are always kept up to date.
This capability is currently implemented for Ada, C and C++
languages.

Auto save
You can configure the editor to periodically save modified
files. See [autosave delay], page 126 for a full description of
this capability.

GPS also integrates with existing third party editors such as Emacs
or vi . See Section 5.6 [Using an External Editor], page 36.

5.2 Editing Sources

5.2.1 Key bindings
In addition to the standard keys used to navigate in the editor (up, down,
right, left, page up, page down), the integrated editor provides a number
of key bindings allowing easy navigation in the file.

In addition, there are several ways to define new key bindings, see
Section 15.4.12 [Defining text aliases], page 165 and Section 15.4.7
[Binding actions to keys], page 156.

〈Ctrl-Shift-〉 Pressing these two keys allow you to enter characters using
their hexadecimal value. For example, pressing 〈Ctrl-Shift-2-0〉
will insert a space character (ASCII 32, which is 20 in hex-
adecimal).

〈Ctrl-x / Shift-delete〉
Cut to clipboard

〈Ctrl-c / Ctrl-insert〉
Copy to clipboard

〈Ctrl-v / Shift-insert〉
Paste from clipboard

〈Ctrl-s〉 Save file to disk

〈Ctrl-z〉 Undo previous insertion/deletion

〈Ctrl-r〉 Redo previous insertion/deletion

〈Insert〉 Toggle overwrite mode

〈Ctrl-a〉 Select the whole file

27

Using the GNAT Programming System

〈Home / Ctrl-Pgup〉
Go to the beginning of the line

〈End / Ctrl-Pgdown〉
Go to the end of the line

〈Ctrl-Home〉 Go to the beginning of the file

〈Ctrl-End〉 Go to the end of the file

〈Ctrl-up〉 Go to the beginning of the line, or to the previous line if
already at the beginning of the line.

〈Ctrl-down〉 Go to the end of the line, or to the beginning of the next line
if already at the end of the line.

〈Ctrl-delete〉 Delete end of the current word.

〈Ctrl-backspace〉
Delete beginning of the current word.

28

Chapter 5: Editing Files

5.3 The File Selector
The file selector is a dialog used to select a file. Under Windows, the de-
fault is to use the standard file selection widget. Under other platforms,
the file selector is a built-in dialog:

This dialog provides the following areas and capabilities:
• A tool bar on the top composed of five buttons giving access to com-

mon navigation features:

left arrow
go back in the list of directories visited

right arrow
go forward

up arrow
go to parent directory

refresh refresh the contents of the directory

29

Using the GNAT Programming System

home go to home directory (value of the HOME environment
variable, or / if not defined)

• A list with the current directory and the last directories explored.
You can modify the current directory by modifying the text entry
and hitting 〈Enter〉, or by clicking on the right arrow and choose a
previous directory in the pop down list displayed.

• A directory tree. You can open or close directories by clicking on
the + and - icons on the left of the directories, or navigate using
the keyboard keys: 〈up〉 and 〈down〉 to select the previous or the next
directory, 〈+〉 and 〈-〉 to expand and collapse the current directory, and
〈backspace〉 to select the parent directory.

• A file list. This area lists the files contained in the selected directory.
If a filter is selected in the filter area, only the relevant files for the
given filter are displayed. Depending on the context, the list of files
may include additional information about the files, e.g. the kind of
a file, its size, etc. . .

• A filter area. Depending on the context, one or several filters are
available to select only a subset of files to display. The filter All
files which is always available will display all files in the directory
selected.

• A file name area. This area will display the name of the current file
selected, if any. You can also type a file or directory name directly,
and complete the name automatically by using the 〈Tab〉 key.

• A button bar with the OK and Cancel buttons. When you have
selected the right file, clock on OKto confirm, or click on Cancel at
any time to cancel and close the file selection.

5.4 Menu Items
The main menus that give access to extended functionalities related to
source editing are described in this section.

5.4.1 The File Menu

New Open a new untitled source editor. No syntax highlighting
is performed until the file is saved, since GPS needs to know
the file name in order to choose the programming language
associated with a file.
When you save a new file for the first time, GPS will ask you
to enter the name of the file. In case you have started typing
Ada code, GPS will try to guess based on the first main entity
in the editor and on the current naming scheme, what should
be the default name of this new file.

30

Chapter 5: Editing Files

New View
Create a new view of the current editor. The new view shares
the same contents: if you modify one of the source views, the
other view is updated at the same time. This is particularly
useful when you want to display two separate parts of the
same file, for example a function spec and its body.
A new view can also be created by keeping the 〈shift〉 key
pressed while drag-and-dropping the editor (see Section 4.7
[Moving Windows], page 21). This second method is pre-
ferred, since you can then specify directly where you want to
put the new view. The default when using the menu is that
the new view is put on top of the editor itself.

Open... Open a file selection dialog where you can select a file to edit.
Under Windows, this is the standard file selector. Under
other platforms, this is a built-in file selector described in
Section 5.3 [The File Selector], page 28.

Open From Project...
Open a dialog where you can easily and rapidly select a
source file from your project.

The first text area allows you to type a file name. You can
start the beginning of a file name, and use the 〈Tab〉 key to
complete the file name. If there are several possible com-
pletions, the common prefix will be displayed, and a list of
all possible completions will be displayed in the second text
area.
You can then either complete the name by typing it, or con-
tinue hitting the 〈Tab〉 key to cycle through the possible com-
pletions, or click on one of the completions in the list dis-
played.

31

Using the GNAT Programming System

If you press the down arrow key, the focus will move to the
list of completions, so that you can select a file from this list
without using the mouse.
Once you have made your choice, click on the OK button to
validate. Clicking on Cancel or hitting the 〈Esc〉 key will
cancel the operation and close the dialog.
This dialog will only show each file once. If you have extended
projects in your hierarchy, some files may be redefined in
some extending project. In this case, only the files from the
extending project are shown, and you cannot have access
through this dialog to the overridden files of the extended
project. Of course, you can still use the project explorer or
the standard File->Open menu to open these files.

Recent Open a sub menu containing a list of the ten most recent files
opened in GPS, so that you can reopen them easily.

Save Save the current source editor if needed.

Save As...
Same current file under a different name, using the file se-
lector dialog. See Section 5.3 [The File Selector], page 28.

Save More
Give access to extra save capabilities.

All Save all items, including projects, etc. . .

Desktop Save the desktop to a file. The desktop includes
information about files, graphs, . . . and their
window size and position in GPS. The desktop
is saved per top level project.

Default Desktop
Save the current desktop as the default desktop.
The next time you start GPS, if there is no saved
desktop associated with the chosen project, then
this desktop will be used.

Change Directory...
Open a directory selection dialog that lets you change the
current working directory.

Messages
This sub menu gives access to functionalities related to the
Messages window. See Section 2.6 [The Messages Window],
page 9.

Clear Clear the contents of the Messages window.

32

Chapter 5: Editing Files

Save As... Save the contents of the Messages window to a
file. A file selector is displayed to choose the name
and location of the file.

Load Contents...
Open a file selector to load the contents of a file
in the Messages window. Source locations are
identified and loaded in the Locations Tree. See
Section 2.8 [The Locations Tree], page 10.

Close Close the current window. This applies to all GPS windows,
not only source editors.

Print Print the current window contents, optionally saving it inter-
actively if it has been modified. The Print Command speci-
fied in the preferences is used if it is defined. On Unix this
command is required; on Windows it is optional.
On Windows, if no command is specified in the preferences
the standard Windows print dialog box is displayed. This
dialog box allows the user to specify the target printer, the
properties of the printer, which pages to print (all, or a spe-
cific range of pages), the number of copies to print, and, when
more than one copy is specified, whether the pages should
be collated. Pressing the Cancel button on the dialog box
returns to GPS without printing the window contents; other-
wise the specified pages and copies are printed on the selected
printer. Each page is printed with a header containing the
name of the file (if the window has ever been saved). The
page number is printed on the bottom of each page. See
[Print Command], page 134.

Exit Exit GPS after confirmation and if needed, confirmation
about saving modified windows and editors.

5.4.2 The Edit Menu

Undo Undo previous insertion/deletion in the current editor.

Redo Redo previous insertion/deletion in the current editor.

Cut Cut the current selection and store it in the clipboard.

Copy Copy the current selection to the clipboard.

Paste Paste the contents of the clipboard to the current cursor po-
sition.

Select All
Select the whole contents of the current source editor.

33

Using the GNAT Programming System

Insert File...
Open a file selection dialog and insert the contents of this file
in the current source editor, at the current cursor location.

Comment Lines
Comment the current selection or line based on the current
programming language syntax.

Uncomment Lines
Remove the comment delimiters from the current selection
or line.

Refill Refill text on the selection or current line according to the
right margin as defined by the column highlight. see Sec-
tion 15.1 [The Preferences Dialog], page 123.

Fold all blocks
Collapse all the blocks in the current file.

Unfold all blocks
Uncollapse all the blocks in the current file.

Generate Body
Generate Ada body stub for the current source editor by call-
ing the external tool gnatstub .

Pretty Print
Pretty print the current source editor by calling the external
tool gnatpp . It is possible to specify gnatpp switches in the
switch editor. See Section 7.8 [The Switches Editor], page 64.

Unit Testing
This sub menu gives access to dialogs that make it easy to
generate AUnit stubs. AUnit is an Ada unit testing frame-
work.

New Test Case...
Create a new test case. See AUnit documentation
for more details.

New Test Suite...
Create a new test suite. See AUnit documenta-
tion for more details.

New Test Harness...
Create a new test harness. See AUnit documen-
tation for more details.

Preferences
Give access to the preferences dialog. See Section 15.1 [The
Preferences Dialog], page 123.

34

Chapter 5: Editing Files

Key shortcuts
Give access to the key manager dialog, to associate com-
mands with special keys. See Section 15.3 [The Key Manager
Dialog], page 139.

5.5 Contextual Menus for Editing Files
Whenever you ask for a contextual menu (using e.g. the third button on
your mouse) on a source file, you will get access to a number of entries,
displayed or not depending on the current context.

Menu entries include the following categories:

Source Navigation
See Section 6.3 [Contextual Menus for Source Navigation],
page 45.

Edit with external editor
See Section 5.6 [Using an External Editor], page 36.

Dependencies
See Section 10.3 [Dependency Browser], page 81.

Entity browsing
See Section 10.4 [Entity Browser], page 84.

Project explorer
See Section 2.5 [The Project Explorer], page 5.

Version control
See Section 12.3 [The Version Control Contextual Menu],
page 112.

Debugger
See Section 11.6 [Using the Source Editor when Debugging],
page 100.

Case exceptions
See [Handling of case exceptions], page 35.

5.5.1 Handling of case exceptions
GPS keeps a set of case exceptions that is used by all case insensitive
languages. When editing or reformatting a buffer for such a language
the case exception dictionary will be checked first. If an exception is
found for this word or a substring of the word, it will be used; otherwise
the specified casing for keywords or identifiers is used. A substring is
defined as a part of the word separated by underscores.

35

Using the GNAT Programming System

Note that this feature is not activated for entities (keywords or iden-
tifiers) for which the casing is set to Unchanged . See see Section 15.1
[The Preferences Dialog], page 123.

A contextual menu named Casing has the following entries:

Lower entity
Set the selected entity in lower case.

Upper entity
Set the selected entity in upper case.

Mixed entity
Set the selected entity in mixed case (set the first letter and
letters before an underscore in upper case, all other letters
are set to lower case).

Smart Mixed entity
Set the selected entity in smart mixed case. Idem as above
except that upper case letters are kept unchanged.

Add exception for entity
Add the current entity into the case exception dictionary.

Remove exception for entity
Remove the current entity from the case exception dictionary.

To add or remove a substring exception into/from the dictionary you
need to first select the substring on the editor. In this case the last two
contextual menu entries will be:

Add substring exception for str
Add the selected substring into the case substring exception
dictionary.

Remove substring exception for str
Remove the selected substring from the case substring ex-
ception dictionary.

5.6 Using an External Editor
GPS is fully integrated with a number of external editors, in particular
Emacs and vi . The choice of the default external editor is done in the
preferences. See Section 15.1 [The Preferences Dialog], page 123. The
following values are recognized:

gnuclient
This is the recommended client. It is based on Emacs, but
needs an extra package to be installed. This is the only client
that provides a full integration in GPS, since any extended
lisp command can be sent to the Emacs server.

36

Chapter 5: Editing Files

By default, gnuclient will open a new Emacs frame for every
file that is opened. You might want to add the following code
to your ‘.emacs ’ file (create one if needed) so that the same
Emacs frame is reused every time:

(setq gnuserv-frame (car (frame-list)))

See http://www.hpl.hp.co.uk/people/ange/gnuserv/ for
more information.

emacsclient
This is a program that is always available if you have in-
stalled Emacs. As opposed to starting a new Emacs every
time, it will reuse an existing Emacs session. It is then ex-
tremely fast to open a file.

emacs This client will start a new Emacs session every time a file
needs to be opened. You should use emacsclient instead,
since it is much faster, and makes it easier to copy and
paste between multiple files. Basically, the only reason to
use this external editor is if your system doesn’t support
emacsclient .

vim Vim is a vi-like editor that provides a number of enhance-
ments, for instance syntax highlighting for all the languages
supported by GPS. Selecting this external editor will start
an xterm (or command window, depending on your system)
with a running vim process editing the file.
Note that one limitation of this editor is that if GPS needs to
open the same file a second time, it will open a new editor,
instead of reusing the existing one.
To enable this capability, the xterm executable must be found
in the PATH, and thus is not supported on Windows systems.
Under Windows systems, you can use the custom editor in-
stead.

vi This editor works exactly like vim, but uses the standard vi
command instead of vim .

custom You can specify any external editor by choosing this item.
The full command line used to call the editor can be specified
in the preferences (see [custom editor command], page 127).

none No external editor is used, and the contextual menus simply
won’t appear.

In the cases that require an Emacs server, GPS will try several solu-
tions if no already running server was found. It will first try to spawn
the glide environment distributed with GNAT. If not found in the PATH,
it will then start a standard Emacs. The project file currently used in

37

http://www.hpl.hp.co.uk/people/ange/gnuserv/

Using the GNAT Programming System

GPS will be set appropriately the first time Emacs is spawned. This
means that if you load a new project in GPS, or modify the paths of the
current project, you should kill any running Emacs, so that a new one is
spawned by GPS with the appropriate project.

Alternatively, you can reload explicitly the project from Emacs itself
by using the menu Project->Load

In the preferences, there are three settings that allow you to select
the external editor (if left to an empty string, GPS will automatically
select the first editor available on your system), to specify the custom
editor command, in case you’ve selector this item, and whether this
editor should always be used every time you double-click on a file, or
whether you need to explicitly select the contextual menu to open the
external editor.

5.7 Using the Clipboard
This section concerns X-Window users who are used to cutting and past-
ing with the middle mouse button. In the GPS text editor, as in many
recent X applications, the GPS clipboard is set by explicit cut/copy/paste
actions, either through menu items or keyboard shortcuts, and the pri-
mary clipboard (i.e. the “middle button” clipboard) is set by the current
selection.

Therefore, copy/paste between GPS and other X applications using
the primary clipboard will still work, provided that there is some text
currently selected. The GPS clipboard, when set, will override the pri-
mary clipboard.

See http://www.freedesktop.org/standards/clipboards.txt for
more information.

5.8 Saving Files
After you have finished modifying your files, you need to save them. The
basic method to do that is to select the menu File->Save , which saves
the currently selected file.

You can also use the menu File->Save As... if you want to save the
file with another name, or in another directory.

If you have multiple files to save, another possibility is to use the menu
File->Save More->All . This will open a dialog listing all the currently
modified editors that need saving. You can then select individually which
one should be saved, and click on Save to do the actual saving.

When calling external commands, such as compiling a file, if the Auto
save preference is disabled, this same dialog is also used, to make sure

38

http://www.freedesktop.org/standards/clipboards.txt

Chapter 5: Editing Files

that e.g. the compiler will take into account your local changes. If the
preference is enabled, the saving is performed automatically.

You can conveniently select or unselect all the files at once by clicking
on the title of the first column (labeled Select). This will toggle the
selection status of the first line, and have the same status for all other
editors.

If you press Cancel instead of Save , no saving will take place, and the
action that displayed this dialog is also canceled. Such actions can be for
instance starting a compilation command, a VCS operation, or quitting
GPS with unsaved files.

5.9 Remote Files
GPS has a basic support for working with files on remote hosts. This
includes a number of protocols, described below, which allow you to read
a file from a remote host, edit it locally, and then save it transparently
to the remote machine.

For now, the support for remote files is only available through the GPS
shell window. You start editing a remote file by typing a line similar to

Editor.edit protocol://user@machine/full/path

where " protocol" should be replaced by the name of the protocol you
want to use, " user" is the login name you wish to use on the remote
" machine" , and " /full/path" is the full path on the remote machine to
access the file.

39

Using the GNAT Programming System

The user name is optional. If it is the same as on the local machine,
you can omit the user name as well as the "@" sign.

Likewise, the machine name is optional, if you want to get a file from
the local host. This can be used to access files belonging to another user.
In this case, you need to specify the "@" sign, but do not insert a machine
name right after it.

Remote files can also be used if you want to work with GPS, but the
machine on which the files are found isn’t supported by GPS.

The following protocols are supported:

ssh This protocol is based on the ssh command line tool, which
must therefore be available in the path. It provides encrypted
and secure connections to the remote host. Files are trans-
fered in-line, that is the connection is established the first
time you access the remote host, and kept open for all fur-
ther access.
Although ssh can be setup not to require a password, GPS
will automatically detect if a password is asked and open a
dialog to query it.
The remote system must be a Unix-like system with support
for standard Unix commands like test , echo , rm and ls .
In the sample shell command above, you would replace the
word " protocol" with " ssh" to use this protocol.

rsh This protocol behaves like ssh, except that the connections
are not encrypted. However, this protocol is generally avail-
able on all Unix machines by default.
It has the same requirements that the ssh protocol. To use
it, substitute the word " rsh" to " protocol" in the example
above.

telnet This protocol is based on the standard telnet protocol. It
behaves much like the two protocols above, with an unen-
crypted connection.
To use it, substitute the word " telnet" to " protocol" in the
example above.

scp This protocol is also based on one of the tools of the ssh
suite. It provides encrypted connections, and uses a mixture
of ssh and scp connections. Various commands like querying
the time stamp of a file are executed through a permanent
ssh connection, whereas files are downloaded and uploaded
through a one-time scp command.
It basically has the same behavior as the ssh protocol, al-
though it might be slightly slower since a new connection

40

Chapter 5: Editing Files

has to be established every time a file is fetched from, or
written to the remote host. However, it might work better
than ssh if the file contains 8 bit characters.
To use it, substitute the word " scp" to " protocol" in the ex-
ample above.

rsync Just like scp is based on ssh, this protocol is based on rsh. It
depends on the external tool rsync, and uses a mixture of a
rsh connection for commands like querying the time stamp
of a file, and one-time connections with rsync to transfer the
files.
Rsync is specially optimized to transfer only the parts of a
file that are different from the one already on the remote
host. Therefore, it will generally provide the best perfor-
mance when writing the file back to the remote host.
If you set up the environment variable RSYNC RSH to ssh
before starting gps, the connection will then be encrypted
when transferring the files.
To use this protocol, substitute the word " rsync" to " proto-
col" in the example above.

ftp This protocol provides only limited capabilities, but can be
used to retrieve or write a file back through an ftp connection,
possibly even through an anonymous ftp connection.
To use this protocol, substitute the word " ftp" to " protocol"
in the example above.

http This is the usual http protocol to download documents from
the web. It is in particular useful for documentation

41

Using the GNAT Programming System

42

Chapter 6: Source Navigation

6 Source Navigation

6.1 Support for Cross-References
GPS provides cross-reference navigation for program entities, such as
types, procedures, functions, variables, . . . , defined in your application.
The cross-reference support in GPS relies on language-specific tools as
explained below.

Ada The GNAT compiler is used to generate the cross-references
information needed by GPS. This means that you must com-
pile your application before you browse through the cross-
references or view various graphs in GPS. If sources have
been modified, you should recompile the modified files.
If you need to navigate through sources that do not com-
pile (e.g after modifications, or while porting an application),
GNAT can still generate partial cross-reference information
if you specify the -gnatQ compilation option. Along with
the -k option of gnatmake, it is then possible to generate as
much relevant information as possible for your non compil-
able sources.
There are a few special cases where GPS cannot find the ex-
ternal file (called ‘ALI file ’) that contains the cross-reference
information. Most likely, this is either because you haven’t
compiled your sources yet, or because the source code has
changed since the ‘ALI file ’ was generated.
It could also be that you haven’t included in the project the
object directories that contain the ‘ALI files ’.
In addition, one special case cannot be handled automati-
cally. This is for separate units, whose file names have been
crunched through the gnatkr command. To handle this, you
should force GPS to parse all the ‘ALI files ’ in the appro-
priate object directory. This is done by right-clicking on the
object directory in the explorer (left-side panel on the main
window), and selecting the menu " Parse all xref informa-
tion" .

C/C++ To enable the navigation features for C and C++ source files,
you need to first generate a database of symbol references, by
going through the menu Build->Recompute C/C++ Xref info.
Messages in the console window will indicate the state of the
processing. Due to the nature of these languages, in order
to provide accurate cross-references, GPS needs to generate
the database in two phases: a first pass parses all the files

43

Using the GNAT Programming System

that have been modified since the previous parsing, and a
second pass generates global cross-references by analyzing
the complete database. It is thus expected that for large
projects, this phase can take a significant amount of CPU to
proceed.
In some cases, GPS won’t be able to determine the exact func-
tion involved in a cross-reference. This will typically occur for
overloaded functions, or if multiple functions with the same
name, but under different #ifdef sections, are defined. In
this case, GPS will display a dialog listing the possible choices
to resolve the ambiguity.
In addition, the C/C++ parser has the following limitations:
namespaces are currently ignored (no specific processing is
done for namespaces); minimal support for templates; no
attempt is made to process the macros and other preprocessor
defines. Macros are considered as special entities, so it is
possible to navigate from a macro use to its definition, but
the macro content is ignored, which means for example that
function calls made through macros won’t be detected.

6.2 The Navigate Menu

Find/Replace...
Open the find and replace dialog. See Chapter 8 [Searching
and Replacing], page 69.

Find Next
Find next occurrence of the current search. See Chapter 8
[Searching and Replacing], page 69.

Find Previous
Find previous occurrence of the current search. See Chap-
ter 8 [Searching and Replacing], page 69.

Goto Declaration
Go to the declaration/spec of the current entity. The current
entity is determined by the word located around the cursor.
This item is also accessible through the editor’s contextual
menu directly. This capability requires the availability of
cross-reference information. See Section 6.1 [Support for
Cross-References], page 43.

Goto Body
Go to the body/implementation of the current entity. This
item is also accessible through the editor’s contextual menu

44

Chapter 6: Source Navigation

directly. This capability requires the availability of cross-
reference information. See Section 6.1 [Support for Cross-
References], page 43.

Goto Line...
Open a dialog where you can type a line number, in order to
jump to a specific location in the current source editor.

Goto File Spec<->Body
Open the corresponding spec file if the current edited file is a
body file, or body file otherwise. This option is only available
for the Ada language. This item is also accessible through
the editor’s contextual menu

Find All References
Find all the references to the current entity in the project.
The search is based on the semantic information extracted
from the sources, this is not a simple text search. The re-
sult of the search is displayed in the location window, see
Section 2.8 [The Locations Tree], page 10.
This capability requires support for cross-references. This
item is also accessible through the editor’s contextual menu

Start Of Statement
Move the cursor position to the start of the current statement,
does nothing if the current position is not inside a statement.

End Of Statement
Move the current cursor position to the end of the statement,
does nothing if the current position is not inside a statement.

Previous Subprogram
Move the current cursor position to the start of the previous
procedure, function, task, protected record or entry.

Next Subprogram
Move the current cursor position to the start of the next
procedure, function, task, protected record or entry.

Previous Tag
Go to previous tag/location. See Section 2.8 [The Locations
Tree], page 10.

Next Tag Go to next tag/location. See Section 2.8 [The Locations Tree],
page 10.

6.3 Contextual Menus for Source Navigation
This contextual menu is available from any source editor. If you right
click over an entity, or first select text, the contextual menu will apply
to this selection or entity.

45

Using the GNAT Programming System

Goto declaration of entity
Go to the declaration/spec of entity. The current entity is
determined by the word located around the cursor or by the
current selection if any. This capability requires support for
cross-references.

Goto body of entity
Go to the body/implementation of entity. This capability re-
quires support for cross-references.

Goto file spec/body
Open the corresponding spec file if the current edited file is a
body file, or body file otherwise. This option is only available
for the Ada language.

References
This item gives access to different capabilities related to list-
ing or displaying references to the current entity or selection.
Entity calls

Open or raise the call graph browser on the speci-
fied entity and display all the subprograms called
by entity. See Section 10.2 [Call Graph], page 79.

Entity is called by
Open or raise the call graph browser on the spec-
ified entity and display all the subprograms call-
ing entity. See Section 10.2 [Call Graph], page 79.
Note that this capability requires a global look up
in the project cross-references, which may take a
significant amount of time the first time. After a
global look up, information is cached in memory,
so that further global queries will be faster.

Find all references to entity
See [Find All References], page 45.

Find all local references to entity
Find all references to entity in the current file (or
in the current top level unit for Ada sources). See
[Find All References], page 45 for more details.

Find all writes to entity
Find all writes to an entity. This is a search global
to the project. See [Find All References], page 45
for more details.

Find all reads of entity
Find all non write accesses to an entity. This
is a search global to the project. See [Find All
References], page 45 for more details.

46

Chapter 7: Project Handling

7 Project Handling
The section on the project explorer (Section 2.5 [The Project Explorer],
page 5) has already given a brief overview of what the projects are, and
the information they contain.

This chapter provides more in-depth information, and describes how
such projects can be created and maintained.

7.1 Description of the Projects

7.1.1 Project files and GNAT tools
This section describes what the projects are, and what information they
contain.

The most important thing to note is that the projects used by GPS
are the same as the ones used by GNAT. These are text files (using the
extension ‘.gpr ’) which can be edited either manually, with any text
editor, or through the more advanced GPS interface.

The exact syntax of the project files is fully described in the GNAT
User’s Guide (gnat_ug.html) and GNAT Reference Manual (gnat_
rm.html). This is recommended reading if you want to use some of the
more advanced capabilities of project files which are not yet supported
by the graphical interface.

GPS can load any project file, even those that you have been edited
manually. Furthermore, you can manually edit project files created by
GPS.

Typically you will not need to edit project files manually, since sev-
eral graphical tools such as the project wizard (Section 7.6 [The Project
Wizard], page 55) and the properties editor(Section 7.7 [The Project
Properties Editor], page 62) are provided.

GPS doesn’t preserve the layout nor comments of manually created
projects after you have edited them in GPS. For instance, multiple case
statements in the project will be coalesced into a single case statement.
This normalization is required for GPS to be able to preserve the previous
semantic of the project in addition to the new settings.

All command-line GNAT tools are project aware, meaning that the
notion of project goes well beyond GPS’ user interface. Most capabilities
of project files can be accessed without using GPS itself, making project
files very attractive.

GPS uses the same mechanisms to locate project files as GNAT itself:
• absolute paths

47

gnat_ug.html
gnat_rm.html
gnat_rm.html

Using the GNAT Programming System

• relative paths. These paths, when used in a with line as described
below, are relative to the location of the project that does the with.

• ADA PROJECT PATH. If this environment variable is set, it con-
tains a colon-separated (or semicolon under Windows) list of direc-
tories in which the project files are searched.

7.1.2 Contents of project files
Project files contain all the information that describe the organization of
your source files, object files and executables.

Generally, one project file will not be enough to describe a complex
organization. In this case, you will create and use a project hierarchy,
with a root project importing other sub projects. Each of the projects and
sub projects is responsible for its own set of sources (compiling them with
the appropriate switches, put the resulting files in the right directories,
. . .).

Each project contains the following information (see the GNAT user’s
guide for the full list)
• List of imported projects: When you are compiling sources from

this project, the compiler (either through GNAT or the automati-
cally generated Makefiles) will first make sure that all the imported
projects have been correctly recompiled and are up-to-date. This
way, dependencies between source files are properly handled.
If one of the source files of project A depends on some source files
from project B, then B must be imported by A. If this isn’t the case,
the compiler will complain that some of the source files cannot be
found.
One important rule is that each source file name must be unique
in the project hierarchy (i.e. a file cannot be under control of two
different projects). This ensures that the same file will be found no
matter what project is managing the source file that uses

• List of source directories: All the sources managed by a project
are found in one or more source directories. Each project can have
multiple source directories, and a given source directory might be
shared by multiple projects.

• Object directory: When the sources of the project are compiled,
the resulting object files are put into this object directory. There
exist exactly one object directory for each project. If you need to
split the object files among multiple object directories, you need to
create multiple projects importing one another as appropriate.
When sources from imported sub-projects are recompiled, the re-
sulting object files are put in the sub project’s own object directory,
and will never pollute the parent’s object directory.

48

Chapter 7: Project Handling

• Exec directory: When a set of object files is linked into an exe-
cutable, this executable is put in the exec directory of the project
file. If this attribute is unspecified, the object directory is used.

• List of source files: The project is responsible for managing a
set of source files. These files can be written in any programming
languages. Currently, the graphical interface supports Ada, C and
C++.
The default to find this set of source files is to take all the files in
the source directories that follow the naming scheme (see below) for
each language. In addition if you edit the project file manually, it is
possible to provide an explicit list of source files.
This attribute cannot be modified graphically yet.

• List of main units: The main units of a project (or main files in
some languages) are the units that contain the main subprogram of
the application, and that can be used to link the rest of the applica-
tion.
The name of the file is generally related to the name of the exe-
cutable.
A given project file hierarchy can be used to compile and link several
executables. GPS will automatically update the Compile, Run and
Debug menu with the list of executables, based on this list.

• Naming schemes: The naming scheme refers to the way files are
named for each languages of the project. This is used by GPS to
choose the language support to use when a source file is opened.
This is also used to know what tools should be used to compile or
otherwise work with a source file.

• Embedded targets and cross environments: GPS supports
cross environment software development: GPS itself can run on
a given host, such as GNU/Linux, while compilations, runs and de-
bugging occur on a different remote host, such as Sun/Solaris.
GPS also supports embedded targets (VxWorks, . . .) by specifying
alternate names for the build and debug tools.
The project file contains the information required to log on the re-
mote host.

• Tools: Project files provide a simple way to specify the compiler and
debugger commands to use.

• Switches: Each tool that is used by GPS (compiler, pretty-printer,
debugger, . . .) has its own set of switches. Moreover, these switches
may depend on the specific file being processed, and the program-
ming language it is written in.

49

Using the GNAT Programming System

7.2 Supported Languages
Another information stored in the project is the list of languages that this
project knows about. GPS support any number of language, with any
name you choose. However, advanced support is only provided by default
for some languages (Ada, C and C++), and you can specify other prop-
erties of the languages through customization files (see Section 15.4.11
[Adding support for new languages], page 161).

By default, the graphical interface will only give you a choice of lan-
guages among the ones that are known to GPS at that point, either
through the default GPS support or your customization files. But you
can also edit the project files by hand to add support for any language.

Languages are a very important part of the project definition. For
each language, you should specify a naming scheme that allows GPS to
associate files with that language. You would for instance specify that
all ‘.adb ’ files are Ada, all ‘.txt ’ files are standard text files, and so on.

Only the files that have a known language associated with them are
displayed in the Project View , or available for easy selection through the
File->Open From Project menu. Similarly, only these files are shown
in the Version Control System interface.

It is therefore important to properly setup your project to make these
files available conveniently in GPS, although of course you can still open
any file through the File->Open menu.

If your project includes some README files, or other text files, you
should add " txt" as a language (or any other name you want), and make
sure that these files are associated with that language in the Project
properties editor .

7.3 Scenarios and Configuration Variables
The behavior of projects can be further tailored by the use of scenarios.

All the attributes of a project, except its list of imported projects,
can be chosen based on the value of external variables, whose value is
generally coming from the host computer environment, or directly set
in GPS (using the small area on top of the project explorer (Section 2.5
[The Project Explorer], page 5).

This facility can for instance be used to compile all the sources either
in debug mode (so that the executables can be run in the debugger), or
in optimized mode (to reduce the space and increase the speed when de-
livering the software). In this configuration scenario, all the attributes
(source directories, tools, . . .) remain the same, except for the compi-
lation switches. It would be more difficult to maintain a completely
separate hierarchy of project, and it is much more efficient to create

50

Chapter 7: Project Handling

a new configuration variable and edit the switches for the appropriate
scenario (Section 7.7 [The Project Properties Editor], page 62).

7.3.1 Creating new configuration variables
Creating a new scenario variable is done through the contextual menu
(right-click) in the project explorer. Select the menu Add Configuration
Variable . This opens the following dialog:

There are two main areas in this dialog: in the top line, you specify
the name of the variable. This name is used for two purposes:
• It is displayed in the project explorer
• This is the name of the environment variable from which the initial

value is read. When GPS is started, all configuration variables are
initialized from the host computer environment, although you can
of course change its value later on inside GPS.

If you click on the arrow on the right of this name area, GPS will dis-
play the list of all the environment variables that are currently defined.
However, you don’t need to pick the name of an existing variable, neither
must the variable exist when GPS is started.

The second part of this dialog is the list of authorized value for this
variable. Any other value will generate an error reported by GPS, and
the project won’t be loaded as a result.

One of these values is the default value (the one whose button in the
Default column is selected). This means that if the environment variable
doesn’t exist when GPS is started, GPS will behave as if it did exist with
this default value.

The list of possible values can be edited through the Remove, Add and
Renamebuttons, although you can also simply click on the value itself to
change it.

51

Using the GNAT Programming System

7.3.2 Editing existing configuration variables
If at least one configuration variable is defined in your project, the area
on top of the project explorer will contain something similar to:

This screen shot shows two configuration variables, named Build and
OS, with their current value (resp. Debug and Unix).

You can easily change the current value of any of these variables by
clicking on the arrow on the right of the value. This will display a pop-up
window with the list of possible values, from which you select the one
you wish to use.

As soon as a new value is selected, GPS will recompute the project
explorer (in case source directories, object directories or list of source
files have changed). A number of things will also be updated (like the
list of executables in the Compile , Run and Debug menus).

Currently, GPS will not recompute the contents of the various
browsers (call graph, dependencies, . . .) for this updated project. This
would be too expensive to do every time the value changes, and therefore
you need to explicitly request an update.

You can change the list of possible values for a configuration variable
at any time by clicking on the button to the far left of the variable’s name.
This will pop up the same dialog that is used to create new variables

Removing a variable is done by clicking on the button immediately
to the left of the variable’s name. GPS will then display a confirmation
dialog.

If you confirm that you want to delete the variable, GPS will simply
remove the variable, and from now on act as if the variable always had
the value it had when it was deleted.

7.4 The Project Explorer
The project explorer, as mentioned in the general description of the GPS
window, is one of the two explorers found by default on the left of the
window. It shows in a tree structure the project hierarchy, along with all
the source files belonging to the project, and the entities declared in the
source files.

52

Chapter 7: Project Handling

It is worth noting that the explorer provides a tree representation of
the project hierarchy. If a project is imported by multiple other projects
in the hierarchy, then this project will appear multiple times in the
explorer.

Likewise, if you have edited the project manually and have used the
limited with construct to have cycles in the project dependencies, the
cycle will expand infinitely. For instance, if project ‘a’ imports project ‘b’,
which in turns imports project ‘a’ through a limited with clause, then
expanding the node for ‘a’ will show ‘b’. In turn, expanding the node for
‘b’ will show a node for ‘a’, and so on.

The contextual menu in this explorer provides a number of items
to modify the project hierarchy (what each project imports), as well as
to visualize and modify the attributes for each projects (compilation
switches, naming scheme, . . .)

The following entries are available in the contextual menu:

Show Projects Imported by...
This item will open a new window in GPS, the project
browser, which displays graphically the relationships be-
tween each project in the hierarchy.

Save The Project...
This item can be selected to save a single project in the hier-
archy after it was modified. Modified but unsaved projects in
the hierarchy have a special icon (a red exclamation mark is
drawn on top of the standard icon). If you would rather save
all the modified projects in a single step, use the menu bar
item Project->Save All .

Edit Project Properties
This item will open a new dialog, and give access to all the at-
tributes of the project: tool switches, naming schemes, source
directories, . . . See Section 7.7 [The Project Properties Edi-
tor], page 62.

Add Dependency...
This menu and its two sub-menus are the primary way to
change the relationship between projects in the hierarchy.
You can either add a dependency on an already existing
project, or a dependency on a newly created project.

Remove Dependency...
This menu item is the opposite of the previous one, and will
remove a dependency between two projects

53

Using the GNAT Programming System

Add Configuration Variable
This menu item should be used to add new configuration
variables, as described in Section 7.3 [Scenarios and Config-
uration Variables], page 50.

Edit Project Source File
This menu will load the project file into an editor, so that
you can manually edit it. This should be used if you need to
access some features of the project files that are not accessible
graphically (renames statements, variables, . . .)

Any time one or several projects are modified, the contents of the
explorer is automatically refreshed. No project is automatically saved.
This provides a simple way to temporarily test new values for the project
attributes. Unsaved modified projects are shown with a special icon in
the project explorer, displaying a red exclamation mark on top of the
standard icon:

7.5 The Project Menu
The menu bar item Project contains several commands that generally
act on the whole project hierarchy. If you only want to act on a single
project, use the contextual menu in the project explorer.

Some of these menus apply to the currently selected project. This
notion depends on what window is currently active in GPS: if it is the
project explorer, the selected project is either the selected node (if it is a
project), or its parent project (for a file, directory, . . .). If the currently
active window is an editor, the selected project is the one that contains
the file.

In all cases, if there is no currently selected project, the menu will
apply to the root project of the hierarchy.

These commands are:

New This menu will open the project wizard (Section 7.6 [The
Project Wizard], page 55), so that you can create new project.
On exit, the wizard asks whether the newly created project
should be loaded. If you select Yes, the new project will
replace the currently loaded project hierarchy.

Open This menu opens a file selection dialog, so that any existing
project can be loaded into GPS. The newly loaded project
replaces the currently loaded project hierarchy. GPS works
on a single project hierarchy at a time.

54

Chapter 7: Project Handling

Recent This menu can be used to easily switch between the last
projects that were loaded in GPS.

Edit Project Properties
This menu applies to the currently selected project, and will
open the project properties dialog for this project.

Save All This will save all the modified projects in the hierarchy.

Edit File Switches
This menu applies to the currently selected project. This will
open a new window in GPS, listing all the source files for this
project, along with the switches that will be used to compile
them, See Section 7.8 [The Switches Editor], page 64.

Recompute Project
Recompute the contents of the project after modifications
outside of GPS. In particular, it will take into account new
files added externally to the source directories. This isn’t
needed for modifications made through GPS. Note also that
this doesn’t re-parse the physical project file on disk. In-
stead, you can reopen the project if you have done manual
modifications to it.

File View and Project View
These two menus will open (or raise if they are already open)
the explorers on the left side of the GPS window.

7.6 The Project Wizard
The project wizard allows you to create in a few steps a new project
file. It has a number of pages, each dedicated to editing a specific set of
attributes for the project.

The typical way to access this wizard is through the Project->New...
menu. On exit, the wizard will ask whether the newly created project
should replace the currently loaded ones.

55

Using the GNAT Programming System

The project wizard is also launched when a new dependency is cre-
ated between two projects, through the contextual menu in the project
explorer.

The wizard gives access to the following list of pages:
• Project Naming
• Languages Selection
• Version Control System Selection
• Source Directories Selection
• Build Directory
• Main Units
• Naming Scheme
• Switches

7.6.1 Project Naming
This is the first page displayed by the wizard.

56

Chapter 7: Project Handling

You must enter the name and location of the project to create. This
name must be a valid Ada identifier (i.e. start with a letter, optionally
followed by a series of digits, letters or underscores). Spaces are not
allowed. Likewise, reserved Ada keywords must be avoided. If the
name is invalid, GPS will display an error message when you press the
Forward button.

Child projects can be created from this dialog. These are project whose
name is of the form Parent.Child . However, the generated project is
invalid, since one of the restrictions for these projects, which is currently
not enforced by GPS, is that the project must import or extend its parent
project. Therefore, you will not be able to load this project in GPS until
you have manually edited it.

In this page, you should also select what languages the source files
in this project are written in. Currently supported languages are Ada, C
and C++. Multiple languages can be used for a single project.

The last part of this page is used to indicate how the path should be
stored in the generated project file. Most of the time, this setting will
have no impact on your work. However, if you wish to edit the project files
by hand, or be able to duplicate a project hierarchy to another location
on your disk, it might be useful to indicate that paths should be stored
as relative paths (they will be relative to the location of the project file).

7.6.2 Languages Selection
This page is used to select the programming languages used for the
sources of this project. By default, only Ada is selected. New languages
can be added to this list by using XML files, see the section on cus-
tomizing GPS (see Section 15.4.11 [Adding support for new languages],
page 161).

7.6.3 VCS Selection
The second page in the project wizard allows you to select which Version
Control system is to be used for the source files of this project.

GPS doesn’t attempt to automatically guess what it should use, so
you must specify it if you want the VCS operations to be available to
you.

The two actions Log checker and File checker are the name and
location of programs to be run just prior an actual commit of the files
in the Version Control System. These should be used for instance if you
wish to enforce style checks before a file is actually made available to
other developers in your team.

If left blank, no program will be run.

57

Using the GNAT Programming System

7.6.4 Source Directories Selection
This page lists and edits the list of source directories for the project.
Any number of source directory can be used (the default is to use the
directory which contains the project file, as specified in the first page of
the wizard).

If you do not specify any source directory, no source file will be as-
sociated with the project, since GPS wouldn’t know where to look for
them.

To add source directories to the project, select a directory in the top
frame, and click on the down arrow. This will add the directory to the
bottom frame, which contains the current list of source directories.

You can also add a directory and all its subdirectories recursively by
using the contextual menu in the top frame. This contextual menu also
provides an entry to create new directories, if needed.

To remove source directories from the project, select the directory in
the bottom frame, and click on the up arrow, or use the contextual menu.

All the files in these directories that match one of the language sup-
ported by the project are automatically associated with that project.

The relative sizes of the top and bottom frame can be changed by
clicking on the separation line between the two frames and dragging the
line up or down.

7.6.5 Build Directory
The object directory is the location where the files resulting from the
compilation of sources (e.g. ‘.o ’ files) are placed. One object directory is
associated for each project.

The exec directory is the location where the executables are put. By
default, this is the same directory as the object directory.

7.6.6 Main Units
The main units of a project are the files that should be compiled and
linked to obtain executables.

Typically, for C applications, these are the files that contain the
main() function. For Ada applications, these are the files that contain
the main subprogram each partition in the project.

These files are treated specially by GPS. Some sub-menus of Build
and Debug will have predefined entries for the main units, which make
it more convenient to compile and link your executables.

58

Chapter 7: Project Handling

To add main units click on the Add button. This opens a file selection
dialog. No check is currently done that the selected file belongs to the
project, but GPS will complain later if it doesn’t.

When compiled, each main unit will generate an executable, whose
name is visible in the second column in this page. If you are using a
recent enough version of GNAT (3.16 or more recent), you can change the
name of this executable by clicking in the second column and changing
the name interactively.

7.6.7 Naming Scheme
A naming scheme indicates the file naming conventions used in the
different languages supported by a given project. For example, all ‘.adb ’
files are Ada files, all ‘.c ’ files are C files.

GPS is very flexible in this respect, and allows you to specify the
default extension for the files in a given programming language. GPS
makes a distinction between spec (or header) files, which generally con-
tain no executable code, only declarations, and body files which contain
the actual code. For languages other than Ada, this header file is used
rather than the body file when you select Go To Declaration in the con-
textual menu of editors.

In a language like Ada, the distinction between spec and body is part
of the definition of the language itself, and you should be sure to specify
the appropriate extensions.

The default naming scheme for Ada is GNAT’s naming scheme (‘.ads ’
for specs and ‘.adb ’ for bodies). In addition, a number of predefined
naming schemes for other compilers are available in the first combo

59

Using the GNAT Programming System

box on the page. You can also create your own customized scheme by
entering a free text in the text entries.

For all languages, GPS accepts exceptions to this standard naming
scheme. For instance, this let you specify that in addition to using ‘.adb ’
for Ada body files, the file ‘foo.ada ’ should also be considered as an Ada
file.

The list of exceptions is displayed in the bottom list of the naming
scheme editor. To remove entries from this list, select the line you want
to remove, and then press the 〈Del〉 key. The contents of the lines can be
edited interactively, by double-clicking on the line and column you want
to edit.

To add new entries to this list, use the fields at the bottom of the
window, and press the update button.

7.6.8 Switches

60

Chapter 7: Project Handling

The last page of the project wizard is used to select the default switches
to be used by the various tools that GPS calls (compiler, linker, binder,
pretty printer, . . .).

This page appears as a notebook, where each page is associated with
a specific tool. All these pages have the same structure:

Graphical selection of switches
The top part of each page contains a set of buttons, combo
boxes, entry fields, . . . which give fast and intuitive access
to the most commonly used switches for that tool.

Textual selection of switches
The bottom part is an editable entry field, where you can
directly type the switches. This makes it easier to move from
an older setup (e.g. Makefile, script) to GPS, by copy-pasting
switches.

The two parts of the pages are kept synchronized at any time: clicking
on a button will edit the entry field to show the new switch; adding a new
switch by hand in the entry field will activate the corresponding button
if there is one.

61

Using the GNAT Programming System

Any switch can be added to the entry field, even if there is no cor-
responding button. In this case, GPS will simply forward it to the tool
when it is called, without trying to represent it graphically.

7.7 The Project Properties Editor
The project properties editor gives you access at any time to the prop-
erties of your project. It is accessible through the menu Project->Edit
Project Properties , and through the contextual menu Edit project
properties on any project item, e.g. from the Project View or the Project
Browser.

If there was an error loading the project (invalid syntax, non-existing
directories, . . .), a warning dialog is displayed when you select the menu.
This reminds you that the project might be only partially loaded, and
editing it might result in the loss of data. In such cases, it is recom-
mended that you edit the project file manually, which you can do directly
from the pop-up dialog.

62

Chapter 7: Project Handling

Fix the project file as you would for any text file, and then reload it
manually (through the Project->Open... or Project->Recent menus.

The project properties editor is divided in three parts:

The attributes editor
The contents of this editor are very similar to that of the
project wizard (see Section 7.6 [The Project Wizard], page 55).
In fact, all pages but the General page are exactly the same,
and you should therefore read the description for these in the
project wizard chapter.
The general page gives access to more attributes than the
general page of the project wizard does. In addition, you can
select the name of the external tools that GPS uses (such as
compilers, debugger, . . .).

63

Using the GNAT Programming System

See also Chapter 14 [Working in a Cross Environment],
page 121 for more info on the Cross environment attributes.

The project selector
This area, in the top-right corner of the properties editor,
contains a list of all the projects in the hierarchy. The value
in the attributes editor is applied to all the selected projects
in this selector. You cannot unselect the project for which
you activated the contextual menu.
Clicking on the right title bar (Project) of this selector will
sort the projects in ascending or descending order.
Clicking on the left title bar (untitled) will select or unselect
all the projects.
This selector has two different possible presentations, chosen
by the toggle button on top: you can either get a sorted list
of all the projects, each one appearing only once. Or you can
have the same project hierarchy as displayed in the project
explorer.

The scenario selector
This area, in the bottom-right corner of the properties editor,
lists all the scenario variables declared for the project hier-
archy. By selecting some or all of their values, you can chose
to which scenario the modifications in the attributes editor
apply.
Clicking on the left title bar (untitled, on the left of the
Scenario label) will select or unselect all values of all vari-
ables.
To select all values of a given variable, click on the corre-
sponding check button.

7.8 The Switches Editor
The switches editor, available through the menu Project->Edit
Switches , lists all the source files associated with the selected project.

For each file, the compiler switches are listed. These switches are
displayed in gray if they are the default switches defined at the project
level (see Section 7.7 [The Project Properties Editor], page 62). They are
defined in black if they are specific to a given file.

Double-clicking in the switches column allows you to edit the switches
for a specific file. It is possible to edit the switches for multiple files at
the same time by selecting them before displaying the contextual menu
(Edit switches for all selected files).

64

Chapter 7: Project Handling

When you double-click in one of the columns that contain the switches,
a new dialog is opened that allows you to edit the switches specific to the
selected files.

This dialog has a button titled Revert . Clicking on this button will
cancel any file-specific switch, and revert to the default switches defined
at the project level.

7.9 The Project Browser
The project graph is a special kind of browser (see Chapter 10 [Source
Browsing], page 77). It shows the dependencies between all the project
in the project hierarchy. Two items in this browser will be linked if one
of them imports the other.

It is accessed through the contextual menu in the project explorer, by
selecting the Show projects imported by... item, when right-clicking
on a project node.

Clicking on the left arrow in the title bar of the items will display
all the projects that import that project. Similarly, clicking on the right
arrow will display all the projects that are imported by that project.

The contextual menu obtained by right-clicking on a project item
contains several items. Most of them are added by the project ed-

65

Using the GNAT Programming System

itor, and gives direct access to editing the properties of the project,
adding dependencies. . . See Section 7.4 [The Project Explorer (Editing
Projects)], page 52.

Some new items are added to the menu:

Locate in explorer
Selecting this item will switch the focus to the project ex-
plorer, and highlight the first project node found that matches
the project in the browser item. This is a convenient way to
get information like the list of directories or source files for
that project.

Show dependencies
This item plays the same role as the right arrow in the title
bar, and display all the projects in the hierarchy that are
imported directly by the selected project

Show recursive dependencies
This item will display all the dependencies recursively for
the project (i.e. the projects it imports directly, the projects
that are imported by them, and so on).

66

Chapter 7: Project Handling

Show projects depending on
This item plays the same role as the left arrow in the title bar,
and displays all the projects that directly import the selected
project.

67

Using the GNAT Programming System

68

Chapter 8: Searching and Replacing

8 Searching and Replacing
GPS provides extensive search capabilities among its different elements.
For instance, it is possible to search in the currently edited source file,
or in all the source files belonging to the project, even those that are not
currently open. It is also possible to search in the project explorer (on
the left side of the main GPS window), or the help modules,. . .

All these search contexts are grouped into a single graphical
window, that you can open either through the menu Navigate-
>Find/Replace... , or the shortcut 〈Ctrl-F〉.

Selecting either of these two options will pop up a dialog on the screen,
similar to the following:

On this screen shot, you can see three entry fields:

Search for
This is the location where you type the string or pattern
you are looking for. The search widget supports two modes,
either fixed strings or regular expressions. You can commute
between the two modes by either clicking on the Options
button and selecting the appropriate check box, or by opening
the combo box (click on the arrow on the right of the entry
field).
In this combo box, a number of predefined patterns are pro-
vided. The top two ones are empty patterns, that automati-
cally set up the appropriate fixed strings/regular expression
mode. The other regular expressions are language-specific,
and will match patterns like Ada type definition, C++ method
declaration,. . .

Replace with
This field should contain the string that will replace the oc-
currences of the pattern defined above. The combo box pro-
vides a history of previously used replacement strings.

69

Using the GNAT Programming System

Look in This field defines the context in which the search should
occur. GPS will automatically select the most appropriate
context when you open the search dialog, depending on which
component currently has the focus. You can of course change
the context to another one if needed.
Clicking on the arrow on the right will display the list of all
possible contexts. This list includes:
Project Explorer

Search in the project explorer. An extra Scope box
will be displayed where you can specify the scope
of your search, which can be a set of: Projects,
Directories, Files, Entities . The search in
entities may take a long time, search each file is
parsed during the search.

Open Files
Search in all the files that are currently open in
the source editor. The Scope entry is described in
the Files... section below.

Files... Search in a given set of files. An extra Files box
will be displayed where you can specify the files
by using standard shell (Unix or Windows) reg-
ular expression, e.g. *.ad? for all files ending
with .ad and any trailing character. The direc-
tory specified where the search starts, and the
Recursive search button whether sub directories
will be searched as well.
The Scope entry is used to restrict the search to a
set of language constructs, e.g. to avoid matching
on comments when you are only interested in ac-
tual code, or to only search strings and comments,
and ignore the code.

Files From Project
Search in all the files from the project, including
files from project dependencies. The Scope entry
is described in the Files... section above.

Current File
Search in the current source editor. The Scope
entry is described in the Files... section above.

Project Browser
Search in the project browser (see Section 7.9
[The Project Browser], page 65).

Help Search in the help window.

70

Chapter 8: Searching and Replacing

The second part of the window is a row of buttons, to start the search
(or continue to the next occurrence), to stop the current search when it
is taking too long, or to display the options.

There are four check boxes in this options box.

"Search All Occurrences"
The default mode for the search widget is interactive search-
ing: its stops as soon as one occurrence of the pattern is
found. You then have to press the Next button (or the equiv-
alent shortcut 〈Ctrl-N〉) to go to the next occurrence.
However, if you enable this check box, the search widget will
start searching for all occurrences right away, and put the
results in a new window called Locations (initially found in
the bottom dock of the GPS window). You can interrupt the
search at any time by pressing the Stop button: this will stop
when the next occurrence is found.
This button is reset to its default value whenever you modify
the searched pattern or the replacement text.

71

Using the GNAT Programming System

"Case Sensitive"
By default, patterns are case insensitive (upper-case letters
and lower-case letters are considered as equivalent). You can
change this behavior by clicking on this check box.

"Whole Word Only"
If activated, this check box will force the search engine to
ignore substrings. " sensitive" will no longer match " insen-
sitive" .

"Regular Expression"
This button commutes between fixed string patterns and reg-
ular expressions. You can also commute between these two
modes by selecting the arrow on the right of the Search for:
field. The grammar followed by the regular expressions is
similar to the Perl and Python regular expressions grammar,
and is documented in the GNAT run time file ‘g-regpat.ads ’.
To open it from GPS, you can use the open from project di-
alog (File->Open From Project...) and type g-regpat.ads.
See [Open From Project], page 31 for more information on
this dialog.

As most GPS components, the search window is under control of the
multiple document interface, and can thus be integrated into the main
GPS window instead of being an external window.

To force this behavior, open the menu Window, select Search in the list
at the bottom of the menu, and then select either Floating or Docked .

If you save the desktop (File->Save More->Desktop , GPS will auto-
matically reopen the search dialog in its new place when it is started
next time.

72

Chapter 9: Compilation/Build

9 Compilation/Build
This chapter describes how to compile files, build executables and run
them. Most capabilities can be accessed through the Build menu item,
or through the Build and Run contextual menu items, as described in
the following section.

When compiler messages are detected by GPS, an entry is added in
the Locations tree, allowing you to easily navigate through the compiler
messages (see Section 2.8 [The Locations Tree], page 10), or even to
automatically correct some errors or warnings (see Section 13.3 [Code
Fixing], page 118).

9.1 The Build Menu
The build menu gives access to capabilities related to checking, parsing
and compiling files, as well as creating and running executables.

Check Syntax
Check the syntax of the current source file. Display an er-
ror message in the Messages window if no file is currently
selected.

Compile File
Compile the current file. Display an error message in the
Messages window if no file is selected.
If errors or warnings occur during the compilation, the cor-
responding locations will appear in the Locations Tree. If
the corresponding Preference is set, the source lines will be
highlighted in the editors (see Section 15.1 [The Preferences
Dialog], page 123). To remove the highlighting on these lines,
remove the files from the Locations Tree.

Make
main For each main source file defined in your top level

project, an entry is listed to build (compile, bind,
link) this source file. Similarly the Build contex-
tual menu accessible from a project entity con-
tains the same entries.

Compile all sources
Compile all source files defined in the currently
selected project, or by default the top level project.

All Build and link all main units defined in your
project. If no main unit is specified in your
project, build all files defined in your project and

73

Using the GNAT Programming System

subprojects recursively. For a library project file,
compile sources and recreate the library when
needed.

<current file>
Consider the currently selected file as a main file,
and build it.

Custom... Display a text entry where you can enter any ex-
ternal command. This menu is very useful when
you already have existing build scripts, make
files, . . . and want to invoke them from GPS.

Recompute C/C++ Xref info
Recompute the cross-reference information for C and C++
source files. See Section 6.1 [Support for Cross-References],
page 43.

Run
main For each main source file defined in your top level

project, an entry is listed to run the executable
associated with this main file. Running an ap-
plication will first open a dialog where you can
specify command line arguments to your appli-
cation, if needed. You can also specify whether
the application should be run within GPS (the
default), or using an external terminal.
When running an application from GPS, a new
execution window is added in the bottom area
where input and output of the application is han-
dled. This window is never closed automatically,
even when the application terminates, so that you
can still have access to the application’s output. If
you explicitly close an execution window while an
application is still running, a dialog window will
be displayed to confirm whether the application
should be terminated.
When using an external terminal, GPS launches
an external terminal utility that will take care
of the execution and input/output of your appli-
cation. This external utility can be configured
in the preferences dialog (Helpers->Execute com-
mand).
Similarly, the Run contextual menu accessible
from a project entity contains the same entries.

Custom... Similar to the entry above, except that you can
run any arbitrary executable.

74

Chapter 9: Compilation/Build

Interrupt
Interrupt the current compilation or build.

75

Using the GNAT Programming System

76

Chapter 10: Source Browsing

10 Source Browsing

10.1 General Issues
GPS contains several kinds of browsers, that have a common set of basic
functionalities. There are currently four such browsers: the project
browser (see Section 7.9 [The Project Browser], page 65), the call graph
(see Section 10.2 [Call Graph], page 79), the dependency browser (see
Section 10.3 [Dependency Browser], page 81) and the entity browser (see
Section 10.4 [Entity Browser], page 84).

All these browsers are interactive viewers. They contain a number of
items, whose visual representation depends on the type of information
displayed in the browser (they can be projects, files, entities, . . .).

In addition, the following capabilities are provided in all browsers:

Scrolling
When a lot of items are displayed in the canvas, the currently
visible area might be too small to display all of them. In this
case, scrollbars will be added on the sides, so that you can
make other items visible. Scrolling can also be done with the
arrow keys.

Layout A basic layout algorithm is used to organize the items. This
algorithm is layer oriented: items with no parents are put in
the first layer, then their direct children are put in the second
layer, and so on. Depending on the type of browser, these
layers are organized either vertically or horizontally. This
algorithm tries to preserve as much as possible the positions
of the items that were moved interactively.
The refresh layout menu item in the background contex-
tual menu can be used to recompute the layout of items at
any time, even for items that were previously moved inter-
actively.

Interactive moving of items
Items can be moved interactively with the mouse. Click and
drag the item by clicking on its title bar. The links will still
be displayed during the move, so that you can check whether
it overlaps any other item. If you are trying to move the item
outside of the visible part of the browser, the latter will be
scrolled.

Links Items can be linked together, and will remain connected
when items are moved. Different types of links exist, see
the description of the various browsers.

77

Using the GNAT Programming System

By default, links are displayed as straight lines. You can
choose to use orthogonal links instead, which are displayed
only with vertical or horizontal lines. Select the entry
orthogonal links in the background contextual menu.

Exporting
The entire contents of a browser can be exported as a png im-
age using the entry Export... in the background contextual
menu.

Zooming Several different zoom levels are available. The contextual
menu in the background of the browser contains three en-
tries: zoom in , zoom out and zoom. The latter is used to
select directly the zoom level you want.
This zooming capability is generally useful when lots of items
are displayed in the browser, to get a more general view of
the layout and the relationships between the items.

Selecting items
Items can be selected by clicking inside them. Multiple items
can be selected by holding the 〈control〉 key while clicking in
the item. Alternatively, you can click and drag the mouse
inside the background of the browser. All the items found
in the selection rectangle when the mouse is released will be
selected.
Selected items are drawn with a different title bar color. All
items linked to them also use a different title bar color, as
well as the links. This is the most convenient way to under-
stand the relationships between items when lots of them are
present in the browser.

Hyper-links
Some of the items will contain hyper links, displayed in blue
by default, and underlined. Clicking on these will generally
display new items.

Two types of contextual menus are available in the browsers: the
background contextual menu is available by right-clicking in the back-
ground area (i.e. outside of any item). As described above, it contains
entries for the zooming, selecting of orthogonal links, and refresh; the
second kind of contextual menu is available by right-clicking in items.

The latter menu contains various entries. Most of the entries are
added by various modules in GPS (VCS module, source editor, . . .). In
addition, each kind of browser also has some specific entries, which is
described in the corresponding browser’s section.

There are two common items in all item contextual menus:

78

Chapter 10: Source Browsing

Hide Links
Browsers can become confusing if there are many items and
many links. You can lighten them by selecting this menu
entry. As a result, the item will remain in the canvas, but
none of the links to or from it will be visible. Selecting the
item will still highlight linked items, so that this information
remains available.

Remove all other items
Selecting this menu item will remove all items but the se-
lected one.

10.2 Call Graph
The call graph shows graphically the relationship between subprogram
callers and callees. A link between two items indicate that one of them
is calling the other.

A special handling is provided for renaming entities (in Ada): if a
subprogram is a renaming of another one, both items will be displayed
in the browser, with a special hashed link between the two. Since the

79

Using the GNAT Programming System

renaming subprogram doesn’t have a proper body, you will then need to
ask for the subprograms called by the renamed to get the list.

In this browser, clicking on the right arrow in the title bar will display
all the entities that are called by the selected item.

Clicking on the left arrow will display all the entities that call the
selected item (i.e. its callers).

This browser is accessible through the contextual menu in the project
explorer and source editor, by selecting one of the items:

All boxes in this browser list several information: the location of
their declaration, and the list of all their references in the other entities
currently displayed in the browser. If you close the box for an entity that
calls them, the matching references are also hidden, to keep the contents
of the browser simpler.

References-> Entity calls
Display all the entities called by the selected entity. This has
the same effect as clicking on the right title bar arrow if the
item is already present in the call graph.

80

Chapter 10: Source Browsing

References-> Entity is called by
Display all the entities called by the selected entity. This has
the same effect as clicking on the left title bar arrow if the
item is already present in the call graph.

The contextual menu available by right-clicking on the entities in the
browser has the following new entries, in addition to the ones added by
other modules of GPS.

Entity calls
Same as described above.

Entity is called by
Same as described above.

Go To Spec
Selecting this item will open a source editor that displays the
declaration of the entity.

Go To Body
Selecting this item will open a source editor that displays the
body of the entity.

Locate in explorer
Selecting this menu entry will move the focus to the project
explorer, and select the first node representing the file in
which the entity is declared. This makes it easier to see
which other entities are declared in the same file.

81

Using the GNAT Programming System

10.3 Dependency Browser
The dependency browser shows the dependencies between source files.
Each item in the browser represents one source file.

In this browser, clicking on the right arrow in the title bar will display
the list of files that the selected file depends on. A file depend on an-
other one if it explicitly imports it (with statement in Ada, or #include
in C/C++). Implicit dependencies are currently not displayed in this
browser, since the information is accessible by opening the other direct
dependencies.

Clicking on the left arrow in the title bar will display the list of files
that depend on the selected file.

This browser is accessible through the contextual menu in the ex-
plorer and the source editor, by selecting one of the following items:

Show dependencies for file
This has the same effect as clicking on the right arrow for a
file already in the browser, and will display the direct depen-
dencies for that file.

82

Chapter 10: Source Browsing

Show files depending on file
This has the same effect as clicking on the left arrow for a
file already in the browser, and will display the list of files
that directly depend on that file.

The background contextual menu in the browser adds a few entries
to the standard menu:

Open file...
This menu entry will display an external dialog in which you
can select the name of a file to analyze.

Refresh

This menu entry will check that all links displays in the
dependency browser are still valid. If not, they are removed.
The arrows in the title bar are also reset if necessary, in case
new dependencies were added for the files.
The browser is not refreshed automatically, since there are
lots of cases where the dependencies might change (editing
source files, changing the project hierarchy or the value of
the scenario variables,...)

Show system files
This menu entry indicates whether standard system files
(runtime files for instance in the case of Ada) are displayed
in the browser. By default, these files will only be displayed
if you explicitly select them through the Open file menu, or
the contextual menu in the project explorer.

Show implicit dependencies
This menu entry indicates whether implicit dependencies
should also be displayed for the files. Implicit dependencies
are files that are required to compile the selected file, but
that are not explicitly imported through a with or #include
statement. For instance, the body of generics in Ada is an im-
plicit dependency. Any time one of the implicit dependencies
is modified, the selected file should be recompiled as well.

The contextual menu available by right clicking on an item also adds
a number of entries:

Analyze other file
This will open a new item in the browser, displaying the
complement file for the selected one. In Ada, this would be
the body if you clicked on a spec file, or the opposite. In C,
it depends on the naming conventions you specified in the
project properties, but you would generally go from a ‘.h ’ file
to a ‘.c ’ file and back.

83

Using the GNAT Programming System

Show dependencies for file
These play the same role as in the project explorer contextual
menu

10.4 Entity Browser
The entity browser displays static information about any source entity.

The exact content of the items depend on the type of the item. For
instance:

Ada record / C struct
The list of fields, each as an hyper link, is displayed. Clicking
on one of the fields will open a new item for the type.

Ada tagged type / C++ class
The list of attributes and methods is displayed. They are
also click-able hyper-links.

Subprograms
The list of parameters is displayed

Packages The list of all the entities declared in that package is dis-
played

84

Chapter 10: Source Browsing

and more ...

This browser is accessible through the contextual menu in the ex-
plorer and source editor, when clicking on an entity:
Examine entity entity

Open a new item in the entity browser that displays infor-
mation for the selected entity.

Most information in the items are click-able (by default, they appear
as underlined blue text). Clicking on one of these hyper links will open
a new item in the entity browser for the selected entity.

This browser can display the parent entities for an item. For instance,
for a C++ class or Ada tagged type, this would be the types it derives from.
This is accessible by clicking on the up arrow in the title bar of the item.

Likewise, children entities (for instance types that derive from the
item) can be displayed by clicking on the down arrow in the title bar.

An extra button appear in the title bar for the C++ class or Ada tagged
types, which toggles whether the inherited methods (or primitive oper-

85

Using the GNAT Programming System

ations in Ada) should be displayed. By default, only the new methods,
or the ones that override an inherited one, are displayed. The parent’s
methods are not shown, unless you click on this title bar button.

86

Chapter 11: Debugging

11 Debugging
GPS is also a graphical front-end for text-based debuggers such as GDB.
A knowledge of the basics of the underlying debugger used by GPS will
help understanding how GPS works and what kind of functionalities it
provides.

Please refer to the debugger-specific documentation - e.g. the GDB
documentation - for more details.

The integrated debugger provided by GPS is using an improved ver-
sion of the GVD engine, so the functionalities between GVD and GPS
are very similar. If you are familiar with GVD, you may be interested
in reading Section 11.9 [Upgrading from GVD to GPS], page 105 which
explains the differences between the two environments.

Debugging is tightly integrated with the other components of GPS.
For example, it is possible to edit files and navigate through your sources
while debugging.

To start a debug session, go to the menu Debug->Initialize , and
choose either the name of your executable, if you have specified the
name of your main program(s) in the project properties, or start an empty
debug session using the <no main file> item. It is then possible to load
any file to debug, by using the menu Debug->Debug->Load File...

Note that you can create multiple debuggers by using the Initialize
menu several times: this will create a new debugger each time. All the
debugger-related actions (e.g. stepping, running) are performed on the
current debugger, which is represented by the current debugger console.
To switch between debuggers, simply select its corresponding console.

After the debugger has been initialized, you have access to two new
windows: the data window (in the top of the working area), and the
debugger console (in a new page, after the Messages and Shell windows).
All the menus under Debugger are now also accessible, and you also have
access to additional contextual menus, in particular in the source editor
where it is possible to easily display variables, set breakpoints, and get
automatic display (via tool tips) of object values.

When you want to quit the debugger without quitting GPS, go to
the menu Debug->Terminate Current , that will terminate your current
debug session, or the menu Debug->Terminate that will terminate all
your debug sessions at once.

11.1 The Debug Menu
The Debug entry in the menu bar provides operations that act at a global
level. Key shortcuts are available for the most common operations, and

87

Using the GNAT Programming System

are displayed in the menus themselves. Here is a detailed list of the
menu items that can be found in the menu bar:
Run... Opens a dialog window allowing you to specify the argu-

ments to pass to the program to be debugged, and whether
this program should be stopped at the beginning of the main
subprogram. If you confirm by clicking on the OK button,
the program will be launched according to the arguments
entered.

Step Execute the program until it reaches a different source line.
Step Instruction

Execute the program for one machine instruction only.
Next Execute the program until it reaches the next source line,

stepping over subroutine calls.
Next Instruction

Execute the program until it reaches the next machine in-
struction, stepping over subroutine calls.

Finish Continue execution until selected stack frame returns.
Continue

Continue execution of the program being debugged.
Interrupt

Asynchronously interrupt the program being debugged. Note
that depending on the state of the program, you may stop it in
low-level system code that does not have debug information,
or in some cases, not even a coherent state. Use of break-
points is preferable to interrupting programs. Interrupting
programs is nevertheless indispensable in some situations,
for example when the program appears to be in an infinite
(or at least very time-consuming) loop.

Terminate Current
Terminate the current debug session, by closing the data
window and the debugger console, as well as terminating the
underlying debugger (e.g gdb) used to handle the low level
debugging.

Terminate
Terminate all your debug sessions. Same as Terminate
Current if there is only one debugger open.

11.1.1 Debug
Connect to Board...

Opens a simple dialog to connect to a remote board. This
option is only relevant to cross debuggers.

88

Chapter 11: Debugging

Load File...
Opens a file selection dialog that allows you to choose a pro-
gram to debug. The program to debug is either an executable
for native debugging, or a partially linked module for cross
environments (e.g VxWorks).

Add Symbols...
Add the symbols from a given file/module. This corresponds
to the gdb command add-symbol-file. This menu is particu-
larly useful under VxWorks targets, where the modules can
be loaded independently of the debugger. For instance, if
a module is independently loaded on the target (e.g. using
windshell), it is absolutely required to use this functionality,
otherwise the debugger won’t work properly.

Attach... Instead of starting a program to debug, you can instead at-
tach to an already running process. To do so, you need to
specify the process id of the process you want to debug. The
process might be busy in an infinite loop, or waiting for event
processing. Note that as for [core files], page 89, you need to
specify an executable before attaching to a process.

Detach Detaches the currently debugged process from the underly-
ing debugger. This means that the executable will continue
to run independently. You can use the Attach To Process
menu later to re-attach to this process.

Debug Core File...
This will open a file selection dialog that allows you to debug
a core file instead of debugging a running process. Note that
you must first specify an executable to debug before loading
a core file.

Kill Kills the process being debugged.

11.1.2 Data
Note that most items in this menu need to access the underlying debug-
ger when the process is stopped, not when it is running. This means
that you first need to stop the process on a breakpoint or interrupt it, be-
fore using the following commands. Failing to do so will result in blank
windows.
Call Stack

Displays the Call Stack window. See Section 11.2 [The Call
Stack Window], page 91 for more details.

Threads Opens a new window containing the list of threads currently
present in the executable as reported by the underlying de-
bugger. For each thread, it will give information such as

89

Using the GNAT Programming System

internal identifier, name and status. This information is
language- and debugger-dependent. You should refer to the
underlying debugger’s documentation for more details. As
indicated above, the process being debugged needs to be
stopped before using this command, otherwise a blank list
will be displayed.
When supported by the underlying debugger, clicking on a
thread will change the context (variables, call stack, source
file) displayed, allowing you to inspect the stack of the se-
lected thread.

Tasks For GDB only, this will open a new window containing the
list of Ada tasks currently present in the executable. Simi-
larly to the thread window, you can switch to a selected task
context by clicking on it, if supported by GDB. See the GDB
documentation for the list of items displayed for each task.
As for the thread window, the process being debugged needs
to be stopped before using this window.

Protection Domains
For VxWorks AE only, this will open a new window containing
the list of available protection domains in the target. To
change to a different protection domain, simply click on it. A
indicates the current protection domain.

Assembly
Opens a new window displaying an assembly dump of the
current code being executed. See Section 11.7 [The Assembly
Window], page 102 for more details.

Edit Breakpoints
Opens an advanced window to create and modify any kind
of breakpoint (see Section 11.4 [The Breakpoint Editor],

90

Chapter 11: Debugging

page 97). For simple breakpoint creation, see the descrip-
tion of the source window.

Examine Memory
Opens a memory viewer/editor. See Section 11.5 [The Mem-
ory Window], page 99 for more details.

Command History
Opens a dialog with the list of commands executed in the
current session. You can select any number of items in this
list and replay the selection automatically.

Display Local Variables
Opens an item in the Data Window containing all the local
variables for the current frame.

Display Arguments
Opens an item in the Data Window containing the arguments
for the current frame.

Display Registers
Opens an item in the Data Window containing the machine
registers for the current frame.

Display Any Expression...
Opens a small dialog letting you specify an arbitrary expres-
sion in the Data Window. This expression can be a variable
name, or a more complex expression, following the syntax of
the underlying debugger. See the documentation of e.g gdb
for more details on the syntax. The check button Expression
is a subprogram call should be enabled if the expression is
actually a debugger command (e.g p/x var) or a procedure
call in the program being debugged (e.g call my_proc).

Refresh Refreshes all the items displayed in the Data Window.

11.2 The Call Stack Window
The call stack window gives a list of frames corresponding to the current
execution stack for the current thread/task.

91

Using the GNAT Programming System

The bottom frame corresponds to the outermost frame where the
thread is currently stopped. This frame corresponds to the first function
executed by the current thread (e.g main if the main thread is in C). You
can click on any frame to switch to the caller’s context, this will update
the display in the source window. See also the up and down buttons in
the tool bar to go up and down one frame in the call stack.

The contextual menu (right mouse button) allows you to choose which
information you want to display in the call stack window (via check
buttons):

• Frame number: the debugger frame number (usually starts at 0 or
1)

• Program Counter: the low level address corresponding to the func-
tion’s entry point.

• Subprogram Name: the name of the subprogram in a given frame

• Parameters: the parameters of the subprogram

• File Location: the filename and line number information.

By default, only the subprogram name is displayed. You can hide the
call stack window by closing it, as for other windows, and show it again
using the menu Data->Call Stack .

11.3 The Data Window

11.3.1 Description
The data window contains all the graphic boxes that can be accessed
using the Data->Display menu items, or the data window Display Ex-
pression... contextual menu, or the source window Display contextual
menu items, or finally the graph command in the debugger console.

92

Chapter 11: Debugging

For each of these commands, a box is displayed in the data window
with the following information:

• A title bar containing:
• The number of this expression: this is a positive number start-

ing from 1 and incremented for each new box displayed. It
represents the internal identifier of the box.

• The name of the expression: this is the expression or variable
specified when creating the box.

• An icon representing either a flash light, or a lock. This is a
click-able icon that will change the state of the box from auto-
matically updated (the flash light icon) to frozen (the lock icon).
When frozen, the value is grayed, and will not change until
you change the state. When updated, the value of the box will
be recomputed each time an execution command is sent to the
debugger (e.g step, next).

• An icon representing an ’X’. You can click on this icon to
close/delete any box.

• A main area. The main area will display the data value hierarchi-
cally in a language-sensitive manner. The canvas knows about data
structures of various languages (e.g C, Ada, C++) and will organize
them accordingly. For example, each field of a record/struct/class,
or each item of an array will be displayed separately. For each sub-
component, a thin box is displayed to distinguish it from the other
components.

A contextual menu, that takes into account the current component
selected by the mouse, gives access to the following capabilities:
Close component

Closes the selected item.

93

Using the GNAT Programming System

Hide all component
Hides all subcomponents of the selected item. To select a
particular field or item in a record/array, move your mouse
over the name of this component, not over the box containing
the values for this item.

Show all component
Shows all subcomponents of the selected item.

Clone component
Clones the selected component into a new, independent item.

View memory at address of component
Brings up the memory view dialog and explore memory at
the address of the component.

Set value of component
Sets the value of a selected component. This will open an
entry box where you can enter the new value of a vari-
able/component. Note that GDB does not perform any type
or range checking on the value entered.

Update Value
Refreshes the value displayed in the selected item.

Show Value
Shows only the value of the item.

Show Type
Shows only the type of each field for the item.

Show Value+Type
Shows both the value and the type of the item.

Auto refresh
Enables or disables the automatic refreshing of the item upon
program execution (e.g step, next).

A contextual menu can be accessed in the canvas itself (point the
mouse to an empty area in the canvas, and click on the right mouse
button) with the following entries:
Display Expression...

Open a small dialog letting you specify an arbitrary expres-
sion in the Data Window. This expression can be a variable
name, or a more complex expression, following the syntax
of the current language and underlying debugger. See the
documentation of e.g gdb for more details on the syntax.
The check button Expression is a subprogram call should
be enabled if the expression is actually not an expression but
rather a debugger command (e.g p/x var) or a procedure call
in the program being debugged (e.g call my_proc).

94

Chapter 11: Debugging

Align On Grid
Enables or disables alignment of items on the grid.

Detect Aliases
Enables or disables the automatic detection of shared data
structures. Each time you display an item or dereference a
pointer, all the items already displayed on the canvas are con-
sidered and their addresses are compared with the address
of the new item to display. If they match, (for example if you
tried to dereference a pointer to an object already displayed)
instead of creating a new item a link will be displayed.

Zoom in Redisplays the items in the data window with a bigger font

Zoom out
Displays the items in the data window with smaller fonts
and pixmaps. This can be used when you have several items
in the window and you can’t see all of them at the same time
(for instance if you are displaying a tree and want to clearly
see its structure).

Zoom Allows you to choose the zoom level directly from a menu.

11.3.2 Manipulating items

11.3.2.1 Moving items
All the items on the canvas have some common behavior and can be fully
manipulated with the mouse. They can be moved freely anywhere on the
canvas, simply by clicking on them and then dragging the mouse. Note
that if you are trying to move an item outside of the visible area of the
data window, the latter will be scrolled so as to make the new position
visible.

Automatic scrolling is also provided if you move the mouse while
dragging an item near the borders of the data window. As long as the
mouse remains close to the border and the button is pressed on the item,
the data window is scrolled and the item is moved. This provides an
easy way to move an item a long distance from its initial position.

11.3.2.2 Colors
Most of the items are displayed using several colors, each conveying a
special meaning. Here is the meaning assigned to all colors (note that

95

Using the GNAT Programming System

the exact color can be changed through the preferences dialog; these are
the default colors):

black This is the default color used to print the value of variables
or expressions.

blue This color is used for C pointers (or Ada access values), i.e.
all the variables and fields that are memory addresses that
denote some other value in memory.
You can easily dereference these (that is to say see the value
pointed to) by double-clicking on the blue text itself.

red This color is used for variables and fields whose value has
changed since the data window was last displayed. For in-
stance, if you display an array in the data window and then
select the Next button in the tool bar, then the elements of
the array whose value has just changed will appear in red.
As another example, if you choose to display the value of
local variables in the data window (Display->Display Local
Variables), then only the variables whose value has changed
are highlighted, the others are left in black.

11.3.2.3 Icons
Several different icons can be used in the display of items. They also
convey special meanings.

trash bin icon
This icon indicates that the debugger could not get the value
of the variable or expression. There might be several reasons,
for instance the variable is currently not in scope (and thus
does not exist), or it might have been optimized away by the

96

Chapter 11: Debugging

compiler. In all cases, the display will be updated as soon as
the variable becomes visible again.

package icon
This icon indicates that part of a complex structure is cur-
rently hidden. Manipulating huge items in the data window
(for instance if the variable is an array of hundreds of com-
plex elements) might not be very helpful. As a result, you can
shrink part of the value to save some screen space and make
it easier to visualize the interesting parts of these variables.
Double-clicking on this icon will expand the hidden part, and
clicking on any sub-rectangle in the display of the variable
will hide that part and replace it with that icon.
See also the description of the contextual menu to automati-
cally show or hide all the contents of an item. Note also that
one alternative to hiding subcomponents is to clone them in
a separate item (see the contextual menu again).

11.4 The Breakpoint Editor

97

Using the GNAT Programming System

The breakpoint editor can be accessed from the menu Data->Edit Break-
points. It gives access to the different kind of breakpoints: on source
location, subprogram, address and Ada exceptions.

The top area provides an interface to easily create the different kinds
of breakpoints, while the bottom area lists the existing breakpoints and
their characteristics.

It is possible to access to advanced breakpoint characteristics for a
given breakpoint, by first selecting a breakpoint in the list, and then by
clicking on the Advanced button, which will display a new dialog window
where you can specify commands to run automatically after a breakpoint
is hit, or specify how many times a selected breakpoint will be ignored.
If running VxWorks AE, you can also change the Scope and Action of
breakpoints.

11.4.1 Scope/Action Settings for VxWorks AE
In VxWorks AE breakpoints have two extra properties:
• Scope: which task(s) can hit a given breakpoint. Possible Scope

values are:
− task: the breakpoint can only be hit by the task that was active

when the breakpoint was set. If the breakpoint is set before the
program is run, the breakpoint will affect the environment task

− pd: any task in the current protection domain can hit that
breakpoint

98

Chapter 11: Debugging

− any: any task in any protection domain can hit that breakpoint.
This setting is only allowed for tasks in the Kernel domain.

• Action: when a task hits a breakpoints, which tasks are stopped:
− task: stop only the task that hit the breakpoint.
− pd: stop all tasks in the current protection domain
− all: stop all breakable tasks in the system

These two properties can be set/changed through the advanced break-
points characteristics by clicking on the Advanced button. There are two
ways of setting these properties:
• Per breakpoint settings: after setting a breakpoint (the default

Scope/Action values will be task/task), select the Scope/Action tab
in the Advanced settings. To change these settings on a given break-
point, select it from the breakpoints list, select the desired values of
Scope and Action and click on the Update button.

• Default session settings: select the Scope/Action tab in the Ad-
vanced settings. Select the desired Scope and Action settings, check
the Set as session defaults check box below and click the Close but-
ton. From now on, every new breakpoint will have the selected
values for Scope and Action.

11.5 The Memory Window

The memory window allows you to display the contents of memory by
specifying either an address, or a variable name.

To display memory contents, enter the address using the C hexadeci-
mal notation: 0xabcd, or the name of a variable, e.g foo, in the Location

99

Using the GNAT Programming System

text entry. In the latter case, its address is computed automatically.
Then either press Enter or click on the View button. This will display
the memory with the corresponding addresses in the bottom text area.

You can also specify the unit size (Byte, Halfword or Word), the for-
mat (Hexadecimal, Decimal, Octal or ASCII), and you can display the
corresponding ASCII value at the same time.

The up and down arrows as well as the 〈Page up〉 and 〈Page down〉 keys in
the memory text area allows you to walk through the memory in order
of ascending/descending addresses respectively.

Finally, you can modify a memory area by simply clicking on the
location you want to modify, and by entering the new values. Modified
values will appear in a different color (red by default) and will only
be taken into account (i.e written to the target) when you click on the
Submit changes button. Clicking on the Undo changes or going up/down
in the memory will undo your editing.

Clicking on Close will close the memory window, canceling your last
pending changes, if any.

11.6 Using the Source Editor when Debugging
When debugging, the left area of each source editor provides the follow-
ing information:

Lines with code
In this area, blue dots are present next to lines for which the
debugger has debug information, in other words, lines that
have been compiled with debug information and for which
the compiler has generated some code. Currently, there is
no check when you try to set a breakpoint on a non dotted
line: this will simply send the breakpoint command to the
underlying debugger, and usually (e.g in the case of gdb)
result in setting a breakpoint at the closest location that
matches the file and line that you specified.

Current line executed
This is a green arrow showing the line about to be executed.

Lines with breakpoints
For lines where breakpoints have been set, a red mark is
displayed on top of the blue dot for the line. You can add and
delete breakpoints by clicking on this area (the first click will
set a breakpoint, the second click will remove it).

100

Chapter 11: Debugging

The second area in the source window is a text window on the right
that displays the source files, with syntax highlighting. If you leave the
cursor over a variable, a tooltip will appear showing the value of this
variable. Automatic tooltips can be disabled in the preferences menu.
See [preferences dialog], page 123.

When the debugger is active, the contextual menu of the source win-
dow contains a sub menu called Debug providing the following entries.

Note that these entries are dynamic: they will apply to the entity
found under the cursor when the menu is displayed (depending on the
current language). In addition, if a selection has been made in the source
window the text of the selection will be used instead. This allows you
to display more complex expressions easily (for example by adding some
comments to your code with the complex expressions you want to be able
to display in the debugger).

Print selection
Prints the selection (or by default the name under the cursor)
in the debugger console.

Display selection
Displays the selection (or by default the name under the cur-
sor) in the data window. The value will be automatically
refreshed each time the process state changes (e.g after a
step or a next command). To freeze the display in the can-
vas, you can either click on the corresponding icon in the data
window, or use the contextual menu for the specific item (see
Section 11.3 [The Data Window], page 92 for more informa-
tion).

Print selection.all
Dereferences the selection (or by default the name under the
cursor) and prints the value in the debugger console.

101

Using the GNAT Programming System

Display selection.all
Dereferences the selection (or by default the name under the
cursor) and displays the value in the data window.

View memory at address of selection
Brings up the memory view dialog and explores memory at
the address of the selection.

Set Breakpoint on Line xx
Sets a breakpoint on the line under the cursor, in the current
file.

Set Breakpoint on selection
Sets a breakpoint at the beginning of the subprogram named
selection

Continue Until Line xx
Continues execution (the program must have been started
previously) until it reaches the specified line.

Show Current Location
Jumps to the current line of execution. This is particularly
useful after navigating through your source code.

11.7 The Assembly Window
It is sometimes convenient to look at the assembly code for the subpro-
gram or source line you are currently debugging.

102

Chapter 11: Debugging

You can open the assembly window by using the menu Debug->Data-
>Assembly .

The current assembly instruction is highlighted with a green arrow
on its left. The instructions corresponding to the current source line are
highlighted in red by default. This allows you to easily see where the
program counter will point to, once you have pressed the " Next" button
on the tool bar.

Moving to the next assembly instruction is done through the " Nexti"
(next instruction) button in the tool bar. If you choose " Stepi" instead
(step instruction), this will also jump to the subprogram being called.

For efficiency reasons, only a small part of the assembly code around
the current instruction is displayed. You can specify in the [preferences
dialog], page 123 how many instructions are displayed by default. Also,
you can easily display the instructions immediately preceding or follow-
ing the currently displayed instructions by pressing one of the 〈Page up〉 or
〈Page down〉 keys, or by using the contextual menu in the assembly window.

A convenient complement when debugging at the assembly level is
the ability of displaying the contents of machine registers. When the
debugger supports it (as gdb does), you can select the Data->Display

103

Using the GNAT Programming System

Registers menu to get an item in the canvas that will show the current
contents of each machine register, and that will be updated every time
one of them changes.

You might also choose to look at a single register. With gdb, select the
Data->Display Any Expression , entering something like

output /x $eax

in the field, and selecting the toggle button " Expression is a subpro-
gram call" . This will create a new canvas item that will be refreshed
every time the value of the register (in this case eax) changes.

11.8 The Debugger Console
This is the text window located at the bottom of the main window. In
this console, you have direct access to the underlying debugger, and
can send commands (you need to refer to the underlying debugger’s
documentation, but usually typing help will give you an overview of the
commands available).

If the underlying debugger allows it, pressing 〈Tab〉 in this window
will provide completion for the command that is being typed (or for its
arguments).

There are also additional commands defined to provide a simple text
interface to some graphical features.

Here is the complete list of such commands. The arguments between
square brackets are optional and can be omitted.

graph (print|display) expression [dependent on display_num]
[link_name name]

This command creates a new item in the canvas, that shows
the value of Expression . Expression should be the name of
a variable, or one of its fields, that is in the current scope for
the debugger.
The command graph print will create a frozen item, that
is not automatically refreshed when the debugger stops,
whereas graph display displays an automatically refreshed
item.
The new item is associated with a number, that is visible in
its title bar. These numbers can be used to create links be-
tween the items, using the second argument to the command,
dependent on . The link itself (i.e. the line) can be given a
name that is automatically displayed, using the third argu-
ment.

104

Chapter 11: Debugging

graph (print|display) ‘command‘
This command is similar to the one above, except it should
be used to display the result of a debugger command in the
canvas.
For instance, if you want to display the value of a variable in
hexadecimal rather than the default decimal with gdb, you
should use a command like:

graph display ‘print /x my_variable‘

This will evaluate the command between back-quotes every
time the debugger stops, and display this in the canvas. The
lines that have changed will be automatically highlighted (in
red by default).
This command is the one used by default to display the value
of registers for instance.

graph (enable|disable) display display_num [display_num ...]
This command will change the refresh status of items in the
canvas. As explained above, items are associated with a
number visible in their title bar.
Using the graph enable command will force the item to
be automatically refreshed every time the debugger stops,
whereas the graph disable command will freeze the item.

graph undisplay display_num
This command will remove an item from the canvas

view (source|asm|source_asm)
This command indicates what should be displayed in the
source window. The first option indicates that only the source
code should be visible, the second one specifies that only the
assembly code should be visible, and the last one indicates
that both should be displayed.

11.9 Upgrading from GVD to GPS
This section is intended for users already familiar with GVD, in order
to help them transitioning to GPS. If you have not used GVD, you may
want to skip this section.

This section outlines the differences between GVD and GPS, and also
lists some of the advantages of GPS compared to GVD.

11.9.1 Command Line Switches
The following command line switches related to debugging are available
in GPS:

105

Using the GNAT Programming System

--debug Automatically start a debug session, as done by GVD. You can
also specify a program name and its arguments, so this option
replaces the --pargs and executable-file arguments in
GVD.

--debugger
Equivalent to the same GVD option, with the difference that
arguments can be specified as well, replacing the --dargs
option.

--target Same as in GVD.

For example, the equivalent of the following command line using a
sh-like shell would be:

$ gvd --debugger=gdb-5 executable --pargs 1 2 3

would be
$ gps --debug="executable 1 2 3" --debugger=gdb-5

--traceon=GVD.OUT
This switch replaces the –log-level=4 option that was used to
get the full log of the communications between GVD and the
underlying debugger.

11.9.2 Menu Items
All the debugger-related menus in GVD can be found under the ’Debug’
menu in GPS, with the following mapping:

File->xxx
available under Debug->Debug->xxx

Program->xxx
available under Debug->xxx

Data->xxx
available under Debug->Data->xxx

The menu File->New Debugger... is replaced by the combination of
the menu Debug->Initialize and the project properties, available un-
der Project->Edit Project Properties where you can similarly specify
your Debugger Host (called Tools Host), your Program Host, the Protocol
used by the underlying debugger to communicate with the target, and
the name of the debugger. To conveniently switch between multiple de-
bugger configurations, we recommend to use a scenario variable and set
different properties based on the value of this variable. See Section 7.3
[Scenarios and Configuration Variables], page 50 and Chapter 14 [Work-
ing in a Cross Environment], page 121 for more details.

106

Chapter 11: Debugging

11.9.3 Tool Bar Buttons
GPS provides by default fewer debugger buttons than GVD, because
some buttons are actually not used very often, and others have been
merged. In addition, it will be possible in the future to completely
configure the GPS tool bar.

Run Menu Debug->Run... (〈F2〉)

Start Start/Continue button

Step Step button

Stepi Menu Debug->Step Instruction (〈Shift-F5〉)

Next Next button

Nexti Menu Debug->Next Instruction (〈Shift-F6〉)

Finish Finish button

Cont Start/Continue button

Up Up button

Down Down button

Interrupt
Menu Debug->Interrupt (〈Control-Backslash〉)

11.9.4 Key Short Cuts
The same key shortcuts have been kept by default between GVD and
GPS except for the Interrupt menu, which is now 〈Control-Backslash〉 instead
of 〈Esc〉.

11.9.5 Contextual Menus
All the debugger-related contextual menus can now be found under the
Debug sub-menu.

The only difference is the contextual menu Show used to display the
assembly dump of the current code. It is replaced by the menu Debug-
>Data->Assembly , see Section 11.7 [The Assembly Window], page 102
for more details.

11.9.6 File Explorer
The file explorer provided in GVD is replaced by the Project View and
the File View in GPS.

When using the --debug command line switch and no explicit project
file, GPS will automatically create a project file in a way very similar

107

Using the GNAT Programming System

to what GVD does to display its file explorer, and available under the
Project View .

In addition, the File View gives access to any file in your file system,
even if it is not available as part of the debug information.

11.9.7 Advantages of GPS
The advantages when using GPS instead of GVD can be classified in two
main categories: when not using project files, and when using them.

When not using project files, you get access to the following advan-
tages in GPS:
• Complete source editor including indentation, shortcuts, multiple

views, . . . See Chapter 5 [Editing Files], page 23 for more details.
• A more stable and robust debugger engine. The debugger engine

included in GPS corresponds to GVD version 2.0. In effect, GPS is
the new version of GVD.

• Integrated help, see Chapter 3 [Integrated Help], page 13 for more
details.

• Better look and feel. GPS uses the new version of the graphical
toolkit used by GVD, which provides a modern look and feel and a
more stable interface under Windows (with additions such as sup-
port for the mouse wheel).

• Support for version control systems which is integrated and avail-
able through a few mouse clicks or key bindings. See Chapter 12
[Version Control System], page 109 for more details.

• A more flexible window handling, see Chapter 4 [Multiple Document
Interface], page 15 for more details.

When using project files, you will get, in addition to the advantages
listed above:
• Source navigation, see Chapter 6 [Source Navigation], page 43 for

more details.
• Source Browsers, in particular the entity browser, a nice comple-

ment of the debugger data window. See Chapter 10 [Source Brows-
ing], page 77 for more details.

• Builds, see Chapter 9 [Compilation/Build], page 73 for more details.
• Semantic support. In particular, GPS is be able to e.g. differentiate

variables from types when displaying a contextual menu, which is
not possible in GVD.

• Flexibility of project files, see Chapter 7 [Project Handling], page 47
for more details.

108

Chapter 12: Version Control System

12 Version Control System

GPS offers the possibility for multiple developers to work on the same
project, through the integration of version control systems (VCS). Each
project can be associated to a VCS, through the VCS tab in the Project
property editor. See Section 7.7 [The Project Properties Editor], page 62.

GPS does not come with any version control system: it will use an
underlying command-line system such as CVS or ClearCase to perform
the low level operations, and provides a high level user iterface on top of
them. Be sure to have a properly installed version control system before
enabling it under GPS.

The systems that are supported out of the box in GPS are CVS
and ClearCase. There are two interfaces to ClearCase: the standard
ClearCase interface, which is built-in and uses a generic GPS termi-
nology for VCS operations, and the Native ClearCase interface, which
is fully customizable and uses by default the terminology specific to
ClearCase.

Note that, at the moment, only Snapshot Views are supported in the
ClearCase integration; Dynamic Views are not supported.

It is also possible to add your own support for other version control
systems, or modify the existing CVS and ClearCase interfaces, see Sec-
tion 15.8 [Adding support for new Version Control Systems], page 212
for more information.

When using CVS, GPS will also need a corresponding patch command
that usually comes with it. If you are under Windows, be sure to install
a set of CVS and patch executables that are compatible.

It is recommended that you first get familiar with the version control
system that you intend to use in GPS first, since many concepts used in
GPS assume basic knowledge of the underlying system.

Associating a VCS to a project enables the use of basic VCS features
on the source files contained in the project. Those basic features typically
include the checking in and out of files, the querying of file status, file
revision history, comparison between various revisions, and so on.

Administration of VCS systems is not handled by GPS at this stage.
Therefore, before working on a project using version control system,
make sure that the system is properly set-up before launching GPS.

Note: the set-up must make sure that the VCS commands can be
launched without entering a password.

109

Using the GNAT Programming System

12.1 The VCS Explorer
The VCS Explorer provides an overview of source files and their sta-

tus.

The easiest way to bring up the VCS Explorer is through the menu
VCS->Explorer . The Explorer can also be brought up using the con-
textual menu Version Control->Query status on files, directories and
projects in the file and project views, and on file editors. See Section 12.3
[The Version Control Contextual Menu], page 112.

The VCS Explorer contains the following columns:

Status Shows the status of the file. This column can be sorted by
clicking on the header. The different possible status for files
are the following:

Unknown The status is not yet determined or the VCS
repository is not able to give this information (for
example if it is unavailable, or locked).

Not registered

The file is not known to the VCS repository.

110

Chapter 12: Version Control System

Up-to-date

The file corresponds to the latest version in the
corresponding branch on the repository.

Added The file has been added remotely but is not
yet updated in the local view.

Removed The file still exists locally but is known to
have been removed from the VCS repository.

Modified The file has been modified by the user or has
been explicitly opened for editing.

Needs merge

The file has been modified locally and on the
repository.

Needs update

The file has been modified in the repository but
not locally.

Contains merge conflicts

The file contains conflicts from a previous update
operation.

Log This column indicates whether a revision log exists for this
file.

File The name of the file. This column can be sorted by clicking
on the header.

111

Using the GNAT Programming System

Working rev.
Indicates the version of the local file.

Head rev.
Indicates the most recent version of the file in the repository.

The VCS Explorer supports multiple selections. To select a single
line, simply left-click on it. To select a range of lines, select the first
line in the range, then hold down the 〈Shift〉 key and select the last line
in the range. To add or remove single columns from the selection, hold
down the 〈Control〉 key and left-click on the columns that you want to
select/unselect.

The explorer also provides an interactive search capability allowing
you to quickly look for a given file name. The default key to start an
interactive search is 〈Ctrl-i〉. See [Interactive Search], page 6 for more
details.

The VCS contextual menu can be brought up from the VCS explorer
by left-clicking on a selection or on a single line. See Section 12.3 [The
Version Control Contextual Menu], page 112.

12.2 The VCS Menu
Basic VCS operations can be accessed through the VCS menu. Most

of these functions act on the current selection, i.e. on the selected items
in the VCS Explorer if it is present, or on the currently selected file
editor, or on the currently selected item in the Project/File View. In most
cases, the VCS contextual menu offers more control on VCS operations.
See Section 12.3 [The Version Control Contextual Menu], page 112.

Explorer Open or raise the VCS Explorer. See Section 12.1 [The VCS
Explorer], page 109.

Update all projects
Update the source files in the current project, and all im-
ported sub-projects, recursively.

Query status for all projects
Query the status of all files in the project and all imported
sub-projects.

For a description of the other entries in the VCS menu, see Sec-
tion 12.3 [The Version Control Contextual Menu], page 112

12.3 The Version Control Contextual Menu
This section describes the version control contextual menu displayed
when you right-click on an entity (e.g. a file, a directory, a project) from

112

Chapter 12: Version Control System

various parts of GPS, including the project explorer, the source editor
and the VCS Explorer.

Depending on the context, some of the items described in this section
won’t be shown, which means that they are not relevant to the current
context.

Query status
Query the status of the selected item. Brings up the VCS
Explorer.

Update Update the currently selected item (file, directory or project).

Commit Submits the changes made to the file to the repository, and
queries the status for the file once the change is made.
It is possible to tell GPS to check the file before the actual
commit happens. This is done by specifying a File checker
in the VCS tab of the project properties dialog. This File
checker is in fact a script or executable that takes an abso-
lute file name as argument, and displays any error message
on the standard output. The VCS commit operation will
actually occur only if nothing was written on the standard
output.
It is also possible to check the change-log of a file before
commit, by specifying a Log checker in the project properties
dialog. This works on change-log files in the same way as the
File checker works on source files.

Open Open the currently selected file for writing. On some VCS
systems, this is a necessary operation, and on other systems
it is not.

View entire revision history
Show the revision logs for all previous revisions of this file.

View specific revision history
Show the revision logs for one previous revision of this file.

Compare against head revision
Show a visual comparison between the local file and the most
recent version of that file in the repository.

Compare against other revision
Show a visual comparison between the local file and one spe-
cific version of that file in the repository.

Compare between two revisions
Show a visual comparison between two specific revisions of
the file in the repository.

113

Using the GNAT Programming System

Compare base against head
Show a visual comparison between the corresponding version
of the file in the repository and the most recent version of that
file.

Annotate
Display the annotations for the file, i.e. the information for
each line of the file showing the revision corresponding to
that file, and additional information depending on the VCS
system.
When using CVS, the annotations are clickable. Left-clicking
on an annotation line will query and display the changelog
associated to the specific revision for this line.

Remove Annotate
Remove the annotations from the selected file.

Edit revision log
Edit the current revision log for the selected file.

Edit global ChangeLog
Edit the global ChangeLog entry for the selected file. see
Section 12.4 [Working with global ChangeLog file], page 115.

Remove revision log
Clear the current revision associated to the selected file.

Add Add a file to the repository, using the current revision log for
this file. If no revision log exists, activating this menu will
create one.

Remove Remove a file from the repository, using the current revision
log for this file. If no revision log exists, activating this menu
will create one.

Revert Revert a locale file to the repository revision, discarding all
local changes.

Directory
Only available when the current context contains directory
information
Query status for directory

Query status for the files contained in the se-
lected directory.

Update directory
Update the files in the selected directory.

Query status for directory recursively
Query status for the files in the selected direc-
tory and all subdirectories recursively, links not
included.

114

Chapter 12: Version Control System

Update directory recursively
Update the files in the selected directory and all
subdirectories recursively, links not included..

Project Only available when the current context contains project in-
formation

List all files in project
Brings up the VCS Explorer with all the source
files contained in the project.

Query status for project
Queries the status for all the source files con-
tained in the project.

Update project
Updates all the source files in the project.

List all files in project and sub-projects
Brings up the VCS Explorer with all the source
files contained in the project and all imported
sub-projects.

Query status for project and sub-projects
Queries the status for all the source files con-
tained in the project and all imported sub-
projects.

Update project and sub-projects
Updates all the source files in the project and all
imported sub-projects.

Hide up-to-date files
Only available from the VCS Explorer. Filter out up-to-date
files, that is files that have not been modified locally and that
do not need to be updated.

Hide non registered files
Only available from the VCS Explorer. Filter out non regis-
tered files, that is files unknown to the version control sys-
tem, or whose information could not be retrieved (e.g. the
version control server is temporarily unavailable).

12.4 Working with global ChangeLog file
A global ChangeLog file contains revision logs for all files in a direc-

tory and is named ‘ChangeLog ’. The format for such a file is:
ISO-DATE name <e-mail>

115

Using the GNAT Programming System

<HT>* filename[, filename]:
<HT>revision history

where:

ISO-DATE
A date with the ISO format YYYY-MM-DD

name A name, generally the developer name

<e-mail> The e-mail address of the developer surrounded with ’<’ and
’>’ characters.

HT Horizontal tabulation (or 8 spaces)

The name and <e-mail> items can be entered automatically by setting
the GPS_CHANGELOG_USERenvironment variable. Note that there is two
spaces between the name and the <e-mail>.

On sh shell:

export GPS_CHANGELOG_USER="John Doe <john.doe@home.com>"

On Windows shell:

set GPS_CHANGELOG_USER="John Doe <john.doe@home.com>"

Using the menu entry Edit global ChangeLog will open the file
‘ChangeLog ’ in the directory where the current selected file is and create
the corresponding ‘ChangeLog ’ entry. This means that the ISO date and
filename headers will be created if not yet present. You will have to
enter your name and e-mail address.

This ‘ChangeLog ’ file serve as a repository for revision logs, when ready
to check-in a file use the standard Edit revision log menu command.
This will open the standard revision log buffer with the content filled
from the global ‘ChangeLog ’ file.

116

Chapter 13: Tools

13 Tools

13.1 The Tools Menu
The Tools menu gives access to additional tools. Some items are cur-
rently disabled, meaning that these are planned tools not yet available.

The list of active items includes:

Shell Console
Open a shell console at the bottom are of GPS. See Section 2.7
[The Shell and Python Windows], page 9.

Call Graph
See Section 10.2 [Call Graph], page 79.

Dependency Browser
See Section 10.3 [Dependency Browser], page 81.

Entity Browser
See Section 10.4 [Entity Browser], page 84.

Compare
See Section 13.2 [Visual Comparison], page 117.

Task Manager
See Section 2.11 [The Task Manager], page 12.

13.2 Visual Comparison
Note that this tool is in a preliminary stage. More capabilities will
be added in the future such as comparison of multiple files, interactive
merge,

The visual comparison, available either from the VCS menus or from
the Tools menu, provide a way to display graphically differences between
two files, or two different versions of the same file.

This tool is based on the standard text command diff , available on
all Unix systems. Under Windows, a default implementation is provided
with GPS, called gnudiff.exe . You may want to provide an alternate
implementation by e.g. installing a set of Unix tools such as cygwin
(http://www.cygwin.com).

The dialog is composed of two main areas: on the left side, the refer-
ence file is displayed; on the right side, the modified file.

By default, only chunks of differences are displayed, with a number
of lines of context around, that can be parametrized in the preferences
dialog.

117

http://www.cygwin.com

Using the GNAT Programming System

Vertical and horizontal scroll bars are available for each file that allow
you to scroll both files at the same time. In addition, empty lines are
added when needed so that the two files can always be displayed side by
side and stay synchronized.

Colors are used to display the different kinds of chunks:

gray This color is used for all the chunks on the reference (left)
file. Only the modified (right) file is displayed with different
colors.

blue This color is used to display lines that have been modified
compared to the reference file.

green Used to display lines added compared to the reference file; in
other words, lines that are not present in the reference file.

red Used to display lines removed from the reference file; in other
words, lines that are present only in the reference file.

13.3 Code Fixing
GPS provides an interactive way to fix or improve your source code,

based on messages (errors and warnings) generated by the GNAT com-
piler.

118

Chapter 13: Tools

This capability is integrated with the Locations tree (see Section 2.8
[The Locations Tree], page 10): when GPS can take advantage of a
compiler message, an icon is added on the left side of the line.

For a simple fix, a wrench icon is displayed. If you click with the left
button on this icon, the code will be fixed automatically, and you will see
the change in the corresponding source editor. An example of a simple
fix, is the addition of a missing semicolon.

You can also check what action will be performed by clicking on the
right button which will display a contextual menu with a text explaining
the action that will be performed. Similarly, if you display the contextual
menu anywhere else on the message line, a sub menu called Code Fixing
gives you access to the same information. In the previous example of a
missing semicolon, the menu will contain an entry labeled Add expected
string " ;" .

Once the code change has been performed, the tool icon is no longer
displayed.

For more complex fixes, where more than one change is possible, the
icon will display in additional of the tool, a red question mark. In this
case, clicking on the icon will display the contextual menu directly, giving
you access to the possible choices. For example, this will be the case when
an ambiguity is reported by the compiler for resolving an entity.

119

Using the GNAT Programming System

120

Chapter 14: Working in a Cross Environment

14 Working in a Cross Environment
This chapter explains how to adapt your project and configure GPS when
working in a cross environment.

14.1 Customizing your Projects
This section describes some possible ways to customize your projects
when working in a cross environment. For more details on the project
capabilities, see Chapter 7 [Project Handling], page 47.

When using the project editor to modify the project’s properties, two
areas are particularly relevant to cross environments: Tools and Cross
environment , part of the General page.

In the Tools section, you will typically need to change the name of
the compiler(s) and the debugger, as well as gnatls’ name if you are using
Ada.

For example, assuming you have an Ada project, and using a pow-
erpc VxWorks configuration. You will set the Ada compiler to powerpc-
wrs-vxworks-gnatmake ; Gnatls to powerpc-wrs-vxworks-gnatls and
Debugger to powerpc-wrs-vxworks-gdb .

If you are using an alternative run time, e.g. a soft float run time, you
need to add the option --RTS=soft-float to the Gnatls property, e.g:
powerpc-wrs-vxworks-gnatls --RTS=soft-float , and add this same
option to the Make switches in the switch editor. See [Switches], page 60
for more details on the switch editor.

To modify your project to support configurations such as multiple
targets, or multiple hosts, you can create scenario variables, and modify
the setting of the Tools parameters based on the value of these variables.
See Section 7.3 [Scenarios and Configuration Variables], page 50 for more
information on these variables.

For example, you may want to create a variable called Target to
handle the different kind of targets handled in your project:
Target Native, Embedded
Target Native, PowerPC, M68K

Similarly, you may define a Board variable listing the different boards
used in your environment and change the Program host and Protocol
settings accordingly.

In some cases, it is useful to provide a different body file for a given
package (e.g. to handle target specific differences). A possible approach
in this case is to use a configuration variable (e.g. called TARGET), and
specify a different naming scheme for this body file (in the project prop-
erties, Naming tab), based on the value of TARGET.

121

Using the GNAT Programming System

14.2 Debugger Issues
This section describes some debugger issues that are specific to cross
environments. You will find more information on debugging by reading
Chapter 11 [Debugging], page 87.

To connect automatically to the right remote debug agent when start-
ing a debugging session (using the menu Debug->Initialize), be sure to
specify the Program host and Protocol project properties, as described
in the previous section.

For example, if you are using the Tornado environment, with a target
server called target_ppc , set the Protocol to wtx and the Program host
to target_ppc .

Once the debugger is initialized, you can also connect to a remote
agent by using the menu Debug->Debug->Connect to Board... . This
will open a dialog where you can specify the target name (e.g. the name
of your board or debug agent) and the communication protocol.

In order to load a new module on the target, you can select the menu
Debug->Debug->Load File... .

If a module has been loaded on the target and is not known to the
current debug session, use the menu Debug->Debug->Add Symbols... to
load the symbol tables in the current debugger.

Similarly, if you are running the underlying debugger (gdb) on a
remote machine, you can specify the name of this machine by setting the
Tools host field of the project properties.

122

Chapter 15: Customizing and Extending GPS

15 Customizing and Extending GPS
GPS provides several levels of customization, from simple preferences
dialog to powerful scripting capability through the python language.
This chapters describes each of these capabilities.

15.1 The Preferences Dialog
This dialog, available through the menu Edit->Preferences , allows you
to modify the global preferences of GPS. To enable the new preferences,
you simply need to confirm by pressing the OK button. To test your
changes, you can use the Apply button. Pressing the Cancel button will
undo all your changes.

Each preference is composed of a label displaying the name of the
preference, and an editing area to modify its value. If you leave to
mouse over the label, a tool tip will be displayed giving an on-line help
on the preference.

The preferences dialog is composed of several areas, accessible
through the tabs at the left of the dialog. Each page corresponds to
a set of preferences.
• Themes

This page allows you to quickly change the current settings for GPS,
including preferences, key bindings, menus. . . . See Section 15.2

123

Using the GNAT Programming System

[GPS Themes], page 137 for more information on themes. It is only
displayed when there are themes registered.

• General

Default font
The default font used in GPS

Character set
Name of character set to use for displaying text. The
default value is ISO-8859-1, which corresponds to Latin-
1 (Western European) characters.

Dynamic key bindings
Whether the menu key bindings can be changed interac-
tively.
When this preference is enabled, you can navigate
through the menus, and type the key binding you want to
associate to a particular item. To remove a key binding,
use the 〈Backspace〉 key. Your changes will be saved when
GPS exits, in a file called ‘$HOME/.gps/custom_keys ’. In
particular, this means that if for some reason you need
to edit the file manually, you need to do it outside of GPS,
or save the file under a different name, and rename it
after exiting GPS.

Display splash screen
Whether a splash screen should be displayed when start-
ing GPS.

Display welcome window
Whether GPS should display the welcome window for
the selection of the project to use.

Tool bar style
How the tool bar should be displayed: not at all, with
small icons or with large icons

Show text in tool bar
Whether the tool bar should show both text and icons, or
only icons.

Auto save Whether unsaved files and projects should be saved au-
tomatically before calling external tools (e.g. before a
build).

Save desktop on exit
Whether the desktop (size and positions of all windows)
should be saved when exiting.

124

Chapter 15: Customizing and Extending GPS

Multi language build
Whether GPS should build (using gprmake) more than
just Ada sources for projects containing Ada and other
(e.g. C) languages.
By default, GPS will call gnatmake to build projects
containing Ada sources, meaning that non Ada sources
won’t be built. By enabling this preference, a multi-
language build tool, called gprmake will be called. Note
that this tool is still under development, so this option
should only be activated with caution.

Jump to first location
Whether the first entry of the location window should
be selected automatically, and thus whether the corre-
sponding editor should be immediately open.

• Windows
This section specifies preferences that apply to the Multiple Doc-
ument Interface described in Chapter 4 [Multiple Document Inter-
face], page 15.

Opaque If True, items will be resized or moved opaquely when
not maximized.

Destroy floats
If False, closing the window associated with a floating
item will put the item back in the main GPS window,
but will not destroy it. If True, the item is destroyed.

All floating
If True, then all the windows will be floating by default,
i.e. be under the control of your system (Windows) or
your window manager (Unix machines). This replaces
the MDI.

Background color
Color to use for the background of the MDI.

Title bar color
Color to use for the title bar of unselected items.

Selected title bar color
Color to use for the title bar of selected items.

Show title bars
If True, each window in GPS will have its own title bars,
showing some particular information (like the name of
the file edited for editors), and some buttons to iconify,
maximize or close the window. This title bar is high-
lighted when the window is the one currently selected.

125

Using the GNAT Programming System

If False, the title bar is not displayed, to save space on
the screen. The tabs of the notebooks will then be high-
lighted.

Notebook tabs policy
Indicates when the notebook tabs should be displayed.
If set to " Never" , you will have to select the window in
the Window menu, or through the keyboard. If set to
" Automatic" , then the tabs will be shown when two or
more windows are stacked.

Notebook tabs position
Indicates where the notebook tabs should be displayed

• Editor

General

Strip blanks
Whether the editor should remove trailing
blanks when saving a file.

Line terminator
Choose between Unix, Windows and Un-
changed line terminators when saving files.
Choosing Unchanged will use the original
line terminator when saving the file; Unix
will use LF line terminators; Windows will
use CRLF line terminators.

Display line numbers
Whether the line numbers should be dis-
played in file editors.

Display subprogram names
Whether the subprogram name should be
displayed in the editor’s status bar.

Tooltips Whether tool tips should be displayed auto-
matically.

Highlight delimiters
Determine whether the delimiter matching
the character following the cursor should be
highlighted. The list of delimiters includes:
{}[]()

Autosave delay
The period (in seconds) after which an editor
is automatically saved, 0 if none.

126

Chapter 15: Customizing and Extending GPS

Each modified file is saved under a file called
.#filename# , which is removed on the next
explicit save operation.

Column highlight
The column number to highlight and draw in
the editors. 0 if none.

Block highlighting
Whether the editor should highlight the cur-
rent block. The current block depends on the
programming language, and will include e.g.
procedures, loops, if statements, . . .

Block folding
Whether the editor should provide the ability
to fold/unfold blocks.

Automatic syntax check
Whether GPS should automatically check
syntax in background for the source files that
are being edited.

Speed Column Policy
When the Speed Column should be shown on
the side of the editors:
Never The Speed Column is never dis-

played.
Automatic

The Speed Column is shown
whenever lines are highlighted
in the editor, for example to show
the current execution point, or
lines containing compilation
errors, . . . It disappears when
no lines are highlighted.

Always The Speed Column is always dis-
played.

External editor
The default external editor to use.

Custom editor command
Specify the command line for launching a
custom editor. It is assumed that the com-
mand will create a new window/terminal as
needed. If the editor itself does not provide
this capability (such as vi or pico under Unix

127

Using the GNAT Programming System

systems), you can use an external terminal
command, e.g:

xterm -geo 80x50 -exe vi +%l %f

The following substitutions are provided:

%l line to display

%c column to display

%f full pathname of file to edit

%e extended lisp inline command

%p top level project file name

%% percent sign (’%’)

Always use external editor
True if all editions should be done with the
external editor. This will deactivate com-
pletely the internal editor. False if the ex-
ternal editor needs to be explicitly called by
the user.

Fonts & Colors
Default The default font, default foreground and de-

fault background colors used in the source
editor.

Keywords
Font and colors used to highlight keywords.

Comments
Font and colors used to highlight comments.
Setting the color to white will set a transpar-
ent color.

Strings Font and colors used to highlight strings.
Setting the color to white will set a trans-
parent color.

Current line color
Color for highlighting the current line. Leave
it to blank for no highlighting. Setting the
color to white will set a transparent color.

Current block color
Color for highlighting the current source
block.

Delimiter highlighting color
Color for highlighting delimiters.

128

Chapter 15: Customizing and Extending GPS

Search results highlighting
Color for highlighting the search results in
the text of source editors.

Cursor color
Color used for the cursor in editors and in-
teractive consoles

Cursor aspect ratio
Defines the size of the cursor, relatively to
characters. 100 means the cursor will occupy
the same size as a character, 10 means it
will only occupy 10% of the size occupies by
a character.

Ada

Auto indentation
How the editor should indent Ada sources.
None means no indentation; Simple means
that indentation from the previous line is
used for the next line; Extended means that
a language specific parser is used for indent-
ing sources.

Use tabulations
Whether the editor should use tabulations
when indenting.

Default indentation
The number of spaces for the default Ada
indentation.

Continuation lines
The number of extra spaces for continuation
lines.

Declaration lines
The number of extra spaces for multiple line
declarations. For example, using a value of
4, here is how the following code would be
indented:

variable1,

variable2,

variable3 : Integer;

Case indentation
Whether GPS should indent case statements
with an extra level, as used in the Ada Ref-
erence Manual, e.g:

129

Using the GNAT Programming System

case Value is

when others =>

null;

end case;

If this preference is set to Non_Rm_Style , this
would be indented as:

case Value is

when others =>

null;

end case;

By default (Automatic), GPS will choose to
indent with an extra level or not based on
the first when construct: if the first when is
indented by an extra level, the whole case
statement will be indented following the RM
style.

Reserved word casing
How the editor should handle reserved words
casing. Unchanged will keep the casing as-is;
Upper will change the casing of all reserved
words to upper case; Lower will change the
casing to lower case; Mixed will change the
casing to mixed case (all characters to lower
case except first character and characters
after an underscore which are set to upper
case); Smart_Mixed As above but do not force
upper case characters to lower case.

Identifier casing
How the editor should handle identifiers cas-
ing. The values are the same as for the Re-
served word casing preference.

Format operators/delimiters
Whether the editor should add extra spaces
around operators and delimiters if needed. If
enabled, an extra space will be added when
needed in the following cases: before an
opening parenthesis; after a closing paren-
thesis, comma, semicolon; around all Ada op-
erators (e.g. <=, := , =>, . . .)

Align colons in declarations
Whether the editor should automatically
align colons in declarations and parameter
lists. Note that the alignment is computed
by taking into account the current buffer up

130

Chapter 15: Customizing and Extending GPS

to the current line (or end of the current se-
lection), so if declarations continue after the
current line, you can select the declarations
lines and hit the reformat key.

Align associations on arrows
Whether the editor should automatically
align arrows in associations (e.g. aggregates
or function calls). See also previous prefer-
ence.

Align declarations after colon
Whether the editor should align continuation
lines in variable declarations based on the
colon character.
Consider the following code:

Variable : constant String :=

"a string";

If this preference is enabled, it will be in-
dented as follows:

Variable : constant String :=

"a string";

C/C++

Auto indentation
How the editor should indent C/C++ sources.
None means no indentation; Simple means
that indentation from the previous line is
used for the next line; Extended means that
a language specific parser is used for indent-
ing sources.

Use tabulations
Whether the editor should use tabulations
when indenting. If True, the editor will re-
place each occurrence of eight characters by
a tabulation character.

Default indentation
The number of spaces for the default inden-
tation.

• Debugger
General

Color highlighting
Color used for highlighting in the debugger
console.

131

Using the GNAT Programming System

Break on exceptions
Specifies whether a breakpoint on all excep-
tions should be set by default when load-
ing a program. This setup is only taken
into account when a new debugger is initial-
ized, and will not modify a running debugger
(use the breakpoint editor for running debug-
gers).

Execution window
Specifies whether the debugger should create
a separate execution window for the program
being debugged. If true, a separate console
will be created. Under Unix systems, this
console is another window in the bottom part
of the main window; under Windows, this is
a separate window created by the underlying
gdb, since Windows does not have the notion
of separate terminals (aka ttys).
Note that in this mode under Windows, the
Debug->Interrupt menu will not interrupt
the debugged program. Instead, you need to
hit 〈Ctrl-C〉 in the separate execution window
to interrupt it while it is running. On Win-
dows this separate execution window uses
the default system-wide console properties
(the size of the window, the colors...). It is
possible to change those properties using the
default console menu (top-left of the console)
on Windows XP or using the control panel on
Windows NT.
If false, no execution window will be created.
The debugger assumes that the program be-
ing debugged does not require input, or that
if it does, input is handled outside GPS. For
example, when you attach to a running pro-
cess, this process already has a separate as-
sociated terminal.

Show lines with code
Specifies whether the source editor should
display blue dots for lines that contain code.
If set to False, gray dots will be displayed
instead on each line, allowing breakpoint on
any line. Disabling this option provides a
faster feedback, since GPS does not need to

132

Chapter 15: Customizing and Extending GPS

query the debugger about which lines con-
tain code.

Assembly

Current assembly line
Color used to highlight the assembly code for
the current line.

Range size
Number of assembly lines to display in the
initial display of the assembly window. If
the size is 0, then the whole subprogram is
displayed, but this can take a very long time
on slow machines.

Data Lets you change the preferences of the Data Window, in
particular the fonts and colors used to display the data
graphically.

Click-able item
Indicates color to be used for the items that
are click-able (e.g pointers).

Changed data
Indicates color to be used to highlight fields
that have changed since the last update.

Item name
Indicates font to be used for the name of the
item.

Item type
Indicates font to be used to display the type
of the item.

Detect aliases
If enabled, do not create new items when
an item with the same address is already
present on the canvas.

Memory

Default color
Color used by default in the memory view
window.

Color highlighting
Color used for highlighted items.

Selection
Color used for selected items.

133

Using the GNAT Programming System

• Helpers
List processes

Command used to list processes running on the machine.
Remote shell

Program used to run a process on a remote machine. You
can specify arguments, e.g. rsh -l user

Remote copy
Program used to copy a file from a remote machine. You
can specify arguments, e.g. rcp -l user

Execute command
Program used to execute commands externally.

Print command
External program used to print files.
This program is required under Unix systems in or-
der to print, and is set to a2ps by default. If a2ps is
not installed on your system, you can download it from
www.inf.enst.fr/˜demaille/a2ps

Under Windows systems, this program is optional and
is empty by default, since a built-in printing is pro-
vided. An external tool will be used if specified,
such as the PrintFile freeware utility available from
www.lerup.com/printfile/descr.html

• Browsers
General

Selected item color
Color to use to draw the selected item.

Background color
Color used to draw the background of the
browsers.

Hyper link color
Color used to draw the hyper links in the
items.

Selected link color
Color to use for links between selected items.

Default link color
Color used to draw the links between unse-
lected items.

Ancestor items color
Color to use for the background of the items
linked to the selected item.

134

www.inf.enst.fr/~demaille/a2ps
www.lerup.com/printfile/descr.html

Chapter 15: Customizing and Extending GPS

Offspring items color
Color to use for the background of the items
linked from the selected item.

Vertical layout
Whether the layout of the graph should be
vertical (True) or horizontal (False).

File Dependencies
Show system files

Whether the system files (Ada runtime or
standard C include files) should be visible in
the browser.

Show implicit dependencies
If False, then only the explicit dependencies
are shown in the browser. Otherwise, all de-
pendencies, even implicit, are displayed.

• Visual diff
Note that in order to perform visual comparison between files, GPS
needs to call external tool (not distributed with GPS) such as diff
or patch . These tools are usually found on most unix systems,
and may not be available by default on other OSes. Under Win-
dows, you can download them from one of the unix toolsets avail-
able, such as msys (http://www.mingw.org/msys.shtml) or cygwin
(http://www.cygwin.com).

Context length
The number of lines displayed before and after each
chunk of differences. Specifying -1 will display the whole
file.

Diff command
Command used to compute differences between two files.
Arguments can also be specified. The visual diff expects
a standard diff output with no context (that is, no -c nor
-u switch). Arguments of interest may include (this will
depend on the version of diff used):

-b Ignore changes in amount of white space.

-B Ignore changes that just insert or delete
blank lines.

-i Ignore changes in case; consider upper and
lower case letters equivalent.

-w Ignore white space when comparing lines.

135

http://www.mingw.org/msys.shtml
http://www.cygwin.com

Using the GNAT Programming System

Patch command
Command used to apply a patch. Arguments can also
be specified. This command is used internally by GPS
to perform the visual comparison on versioned files (e.g.
when performing a comparison with a version control
system).
This command should be compatible with the GNU patch
utility.

• Messages
Color highlighting

Color used to highlight text in the messages window.
Color highlighting

Color used to highlight lines causing compilation er-
rors/warnings in the source editors. When this color
is set to white, the errors/warnings are not highlighted.
(Chapter 9 [Compilation/Build], page 73)

File pattern
Pattern used to detect file locations and the type of the
output from the messages window. This is particularly
useful when using an external tool such as a compiler
or a search tool, so that GPS will highlight and allow
navigation through source locations. This is a standard
system V regular expression containing from two to five
parenthesized subexpressions corresponding to the file,
line, column, warnings or style error patterns.

File index Index of filename in the file pattern.
Line index

Index of the line number in the file pattern.
Column index

Index of the column number in the file pattern.
Warning index

Index of the warning identifier in the file pattern.
Style index

Index of the style error identifier in the file pattern.
• Project

Relative project paths
Whether paths should be absolute or relative when the
projects are modified.

Fast Project Loading
If the project respects a number of restrictions, activat-
ing the preference will provide major speed up when

136

Chapter 15: Customizing and Extending GPS

GPS parses the project. This is especially noticeable if
the source files are on a network drive.
GPS assumes that the following restricitions are true
when the preference is activated. If this isn’t the case,
no error is reported, and only minor drawacks will be
visible in GPS (no detection that two files are the same
if one of them is a symbolic link for instance, although
GPS will still warn you if you are trying to overwrite a
file modified on the disk).
The restrictions are the following:

- Symbolic links shouldn’t be used in the project.
More precisely, you can only have symbolic links
that point to files outside of the project, but not to
another file in the project

- Directories can’t have source names. No directory
name should match the naming scheme defined in
the project. For instance, if you are using the default
GNAT naming scheme, you cannot have directories
with names ending with " .ads" or " .adb"

15.2 GPS Themes
GPS provides an extensive support for themes. Themes are predefined
set of value for the preferences, for the key bindings, or any other con-
figurable aspect of GPS.

For instance, color themes are a convenient way to change all colors in
GPS at once, according to predefined choices (strongly contrasted colors,
monochrome,...). It is also possible to have key themes, defining a set of
key bindings to emulate e.g. other editors.

Any number of themes can be activated at the same time through the
preferences dialog (Edit->Preferences). This dialog contains a list of all
themes that GPS knows about, organized into categories for convenient
handling. Just click on the buttons on the left of each theme name to
activate that theme.

Note that this will immediately change the current preferences set-
tings. For instance, if the theme you just selected changes the colors
in the editor, these are changed immediately in the Editor->Fonts &
Colors . You can of course still press Cancel to keep your previous set-
tings

If multiple themes are active at the same time and try to override the
same preferences, the last theme which is loaded by GPS will override
all previously loaded themes. However, there is no predefined order in
which the themes are loaded.

137

Using the GNAT Programming System

15.2.1 The Emacs Theme
The Emacs Theme, which is provided by default with GPS, defines a
number of key bindings similar to Emacs.

control-c n
Create a title box above the current Ada subprogram

control-k
Remove text from the cursor to the end of line

control-d
Remove the character after the cursor

control-t
Transpose the characters before and after the cursor

control-x control-s
Save the current editor

control-a
Go to the beginning of the line

control-e
Go to the end of the line

alt-less Go to the beginning of the buffer
control-c control-d

Navigate to the declaration or the body of the current entity
control-c o

Goto from the specification to the body, and vice-versa
control-y

Paste the current clipboard
alt-w Copy the current selection to the clipboard
control-w

Cut the current selection to the clipboard
shift-control-underscore

Undo the previous edition
control-x k

Close the current window
control-x control-c

Exit GPS
control-s

Bring up the " Find/Replace" dialog
control-x 3

Split the window horizontally

138

Chapter 15: Customizing and Extending GPS

control-x 2
Split the window vertically

control-x o
Select the other window

control-l
Center the cursor on the screen

alt-backspace
Delete the previous word

alt-right
Go to the next word

alt-left Go to the previous word

15.3 The Key Manager Dialog
The key manager is accessible through the menu Edit->Key

Shortcuts . This dialog provides an easy way to associate key short-
cuts with actions. These actions are either predefined in GPS, or defined
in your own customization files, as documented in Section 15.4 [Cus-
tomizing through XML files], page 140. It also provides an easy way to
redefine the menu shortcuts.

Actions are referenced by their name, and are grouped into cate-
gories. These categories indicate when the action applies. For instance,
the indentation command only applies in source editors, whereas the
command to change the current window applies anywhere in GPS. The
categories correspond in fact to filters that indicate when the action
can be executed. You can create your own new categories by using the
<filter> tag in the customization files (see Section 15.4 [Customizing
through XML files], page 140).

139

Using the GNAT Programming System

Through the key manager, you can define key bindings similar to
what Emacs uses (〈control-x〉 followed by 〈control-k〉 for instance). To register
such key bindings, you need to press the Grab button as usual, and then
type the shortcut. The recording of the key binding will stop a short
while after the last key stroke.

If you define complex shortcuts for menus, they will not appear next
to the menu name when you select it with the mouse. This is expected,
and is due to technical limitations in the graphical toolkit that GPS uses.

15.4 Customizing through XML files
You can customize lots of capabilities in GPS using XML files that are
loaded by GPS at start up.

For example, you can add items in the menu and tool bars, as well as
defining new key bindings, new languages, new tools, . . .

XML files are found through three mechanisms, described here in
the order in which they are searched. Files with the ‘.xml ’ extension
found through GPS_CUSTOM_PATHor the user’s directory can override any
setup found in the system directory. Likewise, files found in the user’s
directory can override any file found in the GPS_CUSTOM_PATHdirectories.

Note that only files with the ‘.xml ’ extension are considered, other
files are ignored.
• System wide customization

The ‘INSTALL/share/gps/customize ’ directory, where ‘INSTALL ’ is
the name of the GPS installation directory, should contain the files
that will always be loaded whenever GPS is started, by any user on
the system.

• GPS_CUSTOM_PATH

This environment variable can be set before launching GPS. It
should contain a list of directories, separated by semicolons (’;’) on
Windows systems and colons (’:’) on Unix systems. All the files
found in these directories will be searched for customization files.
This is a convenient way to have project-specific customization files.
You can for instance create scripts, or icons, that set the appropri-
ate value for the variable and then start GPS. Depending on your
project, this allows you to load specific aliases which do not make
sense for other projects.

• User directory
The directory ‘$HOME/.gps/customize ’ on Unix systems, and
‘%HOME%\.gps\customize ’ on Windows systems, can also contain
customization files which are parsed at startup. This is a conve-
nient way for users to define their own customization, that they

140

Chapter 15: Customizing and Extending GPS

want to load no matter which project they are working on. Note
that you can use the environment variable GPS_HOMEto override the
value of the HOMEvariable.
Alternatively, if none of HOME and GPS_HOME are defined,
USERPROFILEis also considered.

XML files must be utf8-encoded by default. In addition, you can spec-
ify any specific encoding through the standard <?xml encoding="..."
?> declaration, as in the following example:

<?xml version="1.0" encoding="iso-8859-1"?>

<submenu>

<title>encoded text/title>

</submenu>

Any given XML file can contain customization for various aspects of
GPS, mixing aliases, new languages or menus,. . . in a single file. This
is a convenient way to distribute your customization to other users.

These files must be valid XML files, i.e. must start with the <?xml?>
tag, and contain a single root XML node, the name of which is left to
your consideration. The general format is therefore

<?xml version="1.0" ?>

<root_node>

...

</root_node>

The list of valid XML child nodes that can be specified under <root>
is described in later sections. It includes:

<action> (see Section 15.4.1 [Defining Actions], page 142)

<key> (see Section 15.4.7 [Binding actions to keys], page 156)

<submenu>
(see Section 15.4.4 [Adding new menus], page 151)

<pref> (see Section 15.4.8 [Preferences support in custom files],
page 156)

<preference>
(see Section 15.4.8 [Preferences support in custom files],
page 156)

<alias> (see Section 15.4.12 [Defining text aliases], page 165)

<language>
(see Section 15.4.11 [Adding support for new languages],
page 161)

<button> (see Section 15.4.6 [Adding tool bar buttons], page 154)

<entry> (see Section 15.4.6 [Adding tool bar buttons], page 154)

141

Using the GNAT Programming System

<vsearch-pattern>
(see Section 15.4.10 [Defining new search patterns],
page 160)

<tool> (see Section 15.5 [Adding support for new tools], page 179)
<filter> (see Section 15.4.3 [Filtering actions], page 148)
<contextual>

(see Section 15.4.5 [Adding contextual menus], page 154)
<case_exceptions>

(see Section 15.4.15 [Adding casing exceptions], page 176)
<documentation_file>

(see Section 15.4.16 [Adding documentation], page 177)
<stock> (see Section 15.4.17 [Adding stock icons], page 178)
<project_attribute>

(see Section 15.4.14 [Defining project attributes], page 169)

15.4.1 Defining Actions
This facility distinguishes the actions from their associated menus or
key bindings. Actions can take several forms: external commands, shell
commands and predefined commands, as will be explained in more de-
tails below.

The general form to define new actions is to use the <action> tag.
This tag accepts the following attributes:

name (mandatory)
This tag must be specified. It provides the name by which the
action is referenced in other parts of the customization files,
for instance when it is associated with a menu or a toolbar
button. The name can contain any character, although it is
recommended to avoid XML special characters. It mustn’t
start with a ’/’.

output (optional)
If specified, this attribute indicates where the output of the
commands will be sent by default. This can be overridden
by each command, using the same attribute for <shell> and
<external> tags, See Section 15.5.4.5 [Redirecting the com-
mand output], page 190.

show-command (optional)
If specified, this attribute indicates whether the text of the
command itself should be displayed at the same location as
its output. Neither will be displayed if the output is hidden.
The default is to show the command along with its output.

142

Chapter 15: Customizing and Extending GPS

This attribute can be overridden for each command.

If you are defining the same action multiple times, the last definition
will be kept. However, existing menus, buttons,. . . that already refer-
ence that action will keep their existing semantic. The new definition
will only be used for all new menus created from that point on.

The <action> can have one or several children, all of which define
a particular command to execute. All of these commands are executed
one after the other, unless one of them fails in which case the following
commands are not executed.

The following XML tags are valid children for <action> .

<external>
This defines a command to execute through the system (i.e.
a standard Unix or Windows command)
Note for Windows users: like under UNIX, scripts can be
called from custom menu. In order to do that, you must
write your script in a ‘.bat ’ or ‘.cmd ’ file, and call this file
using cmd /c . Thus, the external tag would look like:

<?xml version="1.0" ?>

<external_example>

<action name="my_command">

<external>cmd /c c:\.gps\my_scripts\my_cmd.cmd</external>

</action>

</external_example>

This tag accepts the following attributes:

show-command (optional)
This attribute can be used to override the
homonym attribute specified for the <action>
tag.

output (optional)
This attribute can be used to override the
homonym attribute specified for the <action>
tag.

progress-regexp (optional)
This attribute specifies a regular expression that
the output of the command will be checked
against. Every time the regular expression
matches, it should provide two numeric values
that are used to display the usual progress in-
dicators at the bottom-right corner of the GPS
window, as happens during regular compilations.
The name of the action is printed in the progress
bar while the action is executing.

143

Using the GNAT Programming System

<?xml version="1.0" ?>

<progress_action>

<action name="progress" >

<external

progress-regexp="(\d+) out of (\d+).*$"

progress-current="1"

progress-final="2"

progress-hide="true">gnatmake foo.adb

</external>

</action>

</progress_action>

progress-current (optional)
This is the opening parenthesis count index in
progress-regexp that contains the current step.

progress-final (optional)
This is the opening parenthesis count index in
progress-regexp that contains the current last
step. This last index can grow as needed. For ex-
ample, gnatmake will output the number of the
file it is currently examining, and the total num-
ber of files to be examined. However, that last
number may grow up, since parsing a new file
might generate a list of additional files to parse
later on.

progress-hide (optional)
If this attribute is set to the value " true" , then
all the lines that match progress-regexp and
are used to compute the progress will not be dis-
played in the output console. For any other value
of this attribute, these lines are displayed along
will the rest of the output.

<on-failure>
This tag specifies a group of command to be executed if the
previous external command fails. Typically, this is used to
parse the output of the command and fill the location win-
dow appropriately (see Section 15.5.4.6 [Processing the tool
output], page 190).
For instance, the following action spawn an external tool, and
parses its output to the location window and the automatic
fixing tool if the external tool happens to fail.
In this group of commands the %... and $... macros can be
used.

<?xml version="1.0" ?>

<action_launch_to_location>

144

Chapter 15: Customizing and Extending GPS

<action name="launch tool to location" >

<external>tool-path</external>

<on-failure>

<shell>Locations.parse "%1" category<shell>

<external>echo the error message is "%2"</external>

</on-failure>

<external>echo the tool succeeded with message %1</external>

</action>

</action_launch_to_location>

<shell> As well as external commands, you can use custom menu
items to invoke GPS commands using the shell tag. These
are command written in one of the shell scripts supported by
GPS.
This tag supports the same show-command and output at-
tributes as the <action> tag.
The following example shows how to create two actions to
invoke the help interactive command and to open the file
‘main.c ’.

<?xml version="1.0" ?>

<help>

<action name="help">

<shell>help</shell>

</action>

<action name="edit">

<shell>edit main.c</shell>

</action>

</help>

By default, commands are expected to be written in the
GPS shell language. However, you can specify the language
through the lang attribute. Its default value is "shell" .
The value of this attribute could also be " python" .
When programming with the GPS shell, you can execute mul-
tiple commands by separating them with semicolons. There-
fore, the following example adds a menu which lists all the
files used by the current file, in a project browser.

<?xml version="1.0" ?>

<current_file_uses>

<action name="current file uses">

<shell lang="shell">File %f</shell>

<shell lang="shell">File.uses %1</shell>

</action>

</current_file_uses>

<description>
This tag contains a description for the command, which is
used in the graphical editor for the key manager. See Sec-
tion 15.3 [The Key Manager Dialog], page 139.

145

Using the GNAT Programming System

<filter>, <filter_and>, <filter_or>
This is the context in which the action can be executed, See
Section 15.4.3 [Filtering actions], page 148.

It is possible to mix both shell commands and external commands.
For instance, the following command opens an xterm (on Unix systems
only) in the current directory, which depends on the context.

<?xml version="1.0" ?>

<xterm_directory>

<action "xterm in current directory">

<shell lang="shell">cd %d</shell>

<external>xterm</external>

</action>

</xterm_directory>

As seen in some of the examples above, some special strings are
expanded by GPS just prior to executing the command. These are the
" %f" , " %d" ,.. See below for a full list.

More information on chaining commands is provided in See Sec-
tion 15.5.4.1 [Chaining commands], page 187.

Some actions are also predefined in GPS itself. This include for
instance aliases expansion, manipulating MDI windows,... All known
actions (predefined and the ones you have defined in your own cus-
tomization files) can be discovered by opening the key shortcut editor
(Edit->Key shortcuts menu).

15.4.2 Macro arguments
When an action is defined, you can use macro arguments to pass to your
shell or external commands. Macro arguments are special parameters
that are transformed every time the command is executed. The following
macro arguments are provided.

The equivalent python command is given for all tests. These com-
mands are useful when you are writing a full python script, and want to
test for yourself whether the context is properly defined.

%f Base name of the currently opened file.
Python equivalent:

import os.path

os.path.basename (GPS.current_context().file().name())

%F Absolute name of the currently opened file.
Python equivalent:

GPS.current_context().file().name()

%d The currently directory.
Python equivalent:

146

Chapter 15: Customizing and Extending GPS

GPS.current_context().directory()

%p The current project. This is the name of the project, not the
project file.
Python equivalent:

GPS.current_context().project().name()

%P The root project. This is the name of the project, not the
project file.
Python equivalent:

GPS.Project.root().name()

%pp The current project file pathname. If a file is selected, this is
the project file to which the source file belongs.
Python equivalent:

GPS.current_context().project().file().name()

%PP The root project pathname.
Python equivalent:

GPS.Project.root().file().name()

%pps This is similar to %pp, except it returns the project name
prepended with -P , or an empty string if there is no project
file selected and the current source file doesn’t belong to any
project. This is mostly for use with the GNAT command line
tools.
Python equivalent:

if GPS.current_context().project():

return "-P" & GPS.current_context().project().path()

%PPs This is similar to %PP, except it returns the project name
prepended with -P , or an empty string if the root project is
the default project. This is mostly for use with the GNAT
command line tools.

%(p|P)[r](d|s)[f]
Substituted by the list of sources or directories of a given
project. This list is a list of space-separated, quoted names
(all names are surrounded by double quotes, for proper han-
dling of spaces in directories or file names).
P the root project.
p the selected project, or the root project if there is

no project selected.
r recurse through the projects: sub projects will be

listed as well as their sub projects, etc. . .
d list the source directories.

Python equivalent:

147

Using the GNAT Programming System

GPS.current_context().project().source_dirs()

s list the source files.
Python equivalent:

GPS.current_context().project().sources()

f output the list into a file and substitute the pa-
rameter with the name of that file. This file is
never deleted by GPS, it is your responsibility to
do so.

Examples:

%Ps Replaced by a list of source files in the root project.
%prs Replaced by a list of files in the current project, and all im-

ported sub projects, recursively.
%prdf Replaced by the name of a file that contains a list of source di-

rectories in the current project, and all imported sub projects,
recursively.

15.4.3 Filtering actions
By default, an action will execute in any context in GPS. The user just
selects the menu or key, and GPS tries to execute the action.

It is possible to restrict when an action should be considered as valid.
If the current context is incorrect for the action, GPS will not attempt to
run anything, and will display an error message for the user.

Actions can be restricted in several ways:
1. Using macro arguments (see Section 15.4.2 [Macro arguments],

page 146). If you are using one of the macro arguments defined
in the previous section, anywhere in the chain of commands for that
action, GPS will first check that the information is available, and
if not will not start running any of the shell commands or external
commands for that action.
For instance, if you have specified %Fas a parameter to one of the
commands, GPS will check prior to running the action that there
is a current file. This can be either a currently selected file editor,
or for instance that the project explorer is selected, and a file node
inside it is also selected.
You do not have to specify anything else, this filtering is automatic

2. Defining explicit filters Explicit restrictions can be specified in the
customization files. These are specified through the <filter> ,
<filter_and> and <filter_or> tags, see below.
These tags can be used to further restrict when the command is
valid. For instance, you can use them to specify that the command

148

Chapter 15: Customizing and Extending GPS

only applies to Ada files, or only if a source editor is currently se-
lected.

15.4.3.1 The filters tags
Such filters can be defined in one of two places in the customization files:
1. At the toplevel At the same level as other tags such as <action> ,

<menu> or <button> tags, you can define named filters. These are
general filters, that can be referenced elsewhere without requiring
code duplication. They also appear explicitly in the key shortcuts
editor if at least one action is depending on them.

2. As a child of the <action> tag Such filters are anonymous, although
they provide exactly the same capabilities as the ones above. These
are mostly meant for simple filters, or filters that you use only once,
or don’t want to appear in the key shortcuts manager.

There are three different kinds of tags:
<filter> This defines a simple filter. This tag takes no child tag.
<filter_and>

All the children of this tag are composed together to form a
compound filter. They are evaluated in turn, and as soon as
one of them fails, the whole filter fails. Children of this tag
can be of type <filter> , <filter_and> and <filter_or> .

<filter_or>
All the children of this tag are composed together to form
a compound filter. They are evaluated in turn, and as soon
as one of them succeeds, the whole filter succeeds. Chil-
dren of this tag can be of type <filter> , <filter_and> and
<filter_or> .

If several such tags are found following one another under an
<action> tag, they are combined through " or" , i.e. any of the filters
may match for the action to be executed.

The <filter> , <filter_and> and <filter_or> tags accept the fol-
lowing set of common attributes:
name (optional)

This attribute is used to create named filters, that can be
reused elsewhere in actions or compound filters through the
id attribute. The name can take any form. This is also the
name that appears in the context of the key shortcuts editor.

error (optional)
This is the error message printed in the GPS console if
the filter doesn’t match, and thus the action cannot be ex-
ecuted. If you are composing filters through <filter_and>

149

Using the GNAT Programming System

and <filter_or> , only the error message of the top-level
filter will be printed.

In addition, the <filter> has the following specific attributes:

id (optional)
If this attribute is specified, all other attributes are ignored.
This is used to reference a named filter previously defined.
Here is for instance how you can make an action depend on
a named filter:

<?xml version="1.0" ?>

<test_filter>

<filter name="Test filter" language="ada" />

<action name="Test action" >

<filter id="Test filter" />

<shell>pwd</shell>

</action>

</test_filter>

A number of filters are predefined by GPS itself. The full list
appears in the key shortcut editor, and is listed here:

Source editor
This filter will only match if the currently selected
window in GPS is an editor.

language (optional)
This attribute specifies the name of the language that must
be associated with the current file to match. For instance,
if you specify ada , you must have an Ada file selected, or
the action won’t execute. The language for a file is found
by GPS following several algorithms (file extensions, and via
the naming scheme defined in the project files).

shell_cmd (optional)
This attribute specifies a shell command to execute. The
output value of this command is used to find whether the
filter matches: if it returns " 1" or " true" , the filter matches.
In any other case, the filter fails.
Note that currently no expansion of macro arguments (%f,
%p,. . .) is done in this command.

shell_lang (optional)
This attribute specifies in which language the shell command
above is written. Its default value indicates that the com-
mand is written using the GPS shell.

module (optional)
This attribute specifies that the filter only matches if the
current window was setup by this specific GPS module. For

150

Chapter 15: Customizing and Extending GPS

instance, if you specify " Source Editor" , this filter will only
match when the active window is a source editor.
The list of module names can be obtained by typing lsmod in
the shell console at the bottom of the GPS window.
This attribute is mostly useful when creating new contextual
menus.

When several attributes are specified for a <filter> node (which is
not possible with id), they must all match for the action to be executed.

<?xml version="1.0" ?>

<!-- The following filter will only match if the currently selected

window is a text editor editing an Ada source file -->

<ada_editor>

<filter_and name="Source editor in Ada" >

<filter language="ada" />

<filter id="Source editor" />

</filter_and>

<!-- The following action will only be executed for such an editor -->

<action name="Test Ada action" >

<filter id="Source editor in Ada" />

<shell>pwd</shell>

</action>

<!-- An action with an anonymous filter. It will be executed if the

selected file is in Ada, even if the file was selected through

the project explorer -->

<action name="Test for Ada files" >

<filter language="ada" />

<shell>pwd</shell>

</action>

</ada_editor>

15.4.4 Adding new menus
These commands can be associated with menus, tool bar buttons and
keys. All of these use similar syntax.

Binding a menu to an action is done through the <menu> and
<submenu> tags.

The <menu> tag takes the following attributes:

action (mandatory)
This attribute specifies which action to execute when the
menu is selected by the user. If no action by this name was
defined, no new menu is added. The action name can start

151

Using the GNAT Programming System

with a ’/’, in which case it represents the absolute path to a
menu to execute instead.
This attribute can be omitted only when no title is specified
for the menu to make it a separator (see below).

before (optional)
It specifies the name of another menu item before which the
new menu should be inserted. The reference menu must have
been created before, otherwise the new menu is inserted at
the end. This attribute can be used to control where precisely
the new menu should be made visible.

after (optional)
This attribute is similar to before , but has a lower priority.
If it is specified, and there is no before attribute, it specifies a
reference menu after which the new menu should be inserted.

It should also have one XML child called <title> which specifies the
label of the menu. This is really a path to a menu, and thus you can
define submenus by specifying something like " /Parent1/Parent2/Menu"
in the title to automatically create the parent menus if they don’t exist
yet.

You can define the accelerator keys for your menus, using underscores
in the titles. Thus, if you want an accelerator on the first letter in a menu
named File , set its title as _File .

The tag <submenu> accepts the following attributes:

before (optional)
See description above, same as for <menu>

after (optional)
See description above, same as for <menu>

It accepts several children, among <title> (which must be specified
at most once), <submenu> (for nested menus), and <menu>.

Since <submenu> doesn’t accept the action attribute, you should use
<menu> for clickable items that should result in an action, and <submenu>
if you want to define several menus with the same path.

You can specify which menu the new item is added to in one of two
ways:
• Specify a path in the title attribute of <menu>

• Put the <menu> as a child of a <submenu> node This requires slightly
more typing, but it allows you to specify the exact location, at each
level, of the parent menu (before or after an existing menu).

For example, this adds an item named mymenuto the standard Edit
menu.

152

Chapter 15: Customizing and Extending GPS

<?xml version="1.0" ?>

<test>

<submenu>

<title>Edit</title>

<menu action="current file uses">

<title>mymenu</title>

</menu>

</submenu>

</test>

The following has exactly the same effect:
<?xml version="1.0" ?>

<test>

<menu action="current file uses">

<title>Edit/mymenu</title>

</menu>

</test>

The following adds a new item " stats" to the " unit testing" submenu
in " my tools" .

<?xml version="1.0" ?>

<test>

<menu action="execute my stats">

<title>/My_Tools/unit testing/stats</title>

</menu>

</test>

The previous syntax is shorter, but less flexible than the following,
where we also force the My Tools menu, if it doesn’t exist yet, to appear
after the File menu. This is not doable by using only <menu> tags. We
also insert several items in that new menu

<?xml version="1.0" ?>

<test>

<submenu after="File">

<title>My_Tools</title>

<menu action="execute my stats">

<title>unit testing/stats</title>

</menu>

<menu action="execute my stats2">

<title>unit testing/stats2</title>

</menu>

</submenu>

</test>

Adding an item with an empty title or no title at all inserts a menu
separator. For instance, the following example will insert a separator
followed by a File/Custom menu:

<?xml version="1.0" ?>

<menus>

<action name="execute my stats" />

<submenu>

<title>File</title>

153

Using the GNAT Programming System

<menu><title/></menu>

<menu action="execute my stats">

<title>Custom</title>

</menu>

</submenu>

</menus>

15.4.5 Adding contextual menus
The actions can also be used to contribute new entries in the contextual
menus everywhere in GPS. These menus are displayed when the user
presses the right mouse button, and should only show actions relevant
to the current context.

Such contributions are done through the <contextual> tag, which
takes one mandatory attribute action , which is the name of the action
to execute, and must be defined elsewhere in one of the customization
files.

It accepts one child tag, <Title> which specifies the name of the menu
entry. If this child is not specified, the menu entry will use the name
of the action itself. The title is in fact the full path to the new menu
entry. Therefore, you can create submenus by using a title of the form
" Parent1/Parent2/Menu" .

The new contextual menu will only be shown if the filters associated
with the action match the current context.

For instance, the following example inserts a new contextual menu
which prints the name of the current file in the GPS console. This
contextual menu is only displayed in source editors.

<?xml version="1.0" ?>

<print>

<action name="print current file name" >

<filter module="Source_Editor" />

<shell>echo %f</shell>

</action>

<contextual action="print current file name" >

<Title>Print Current File Name</Title>

</contextual>

</print>

15.4.6 Adding tool bar buttons
As an alternative to creating new menu items, you can create new but-
tons on the tool bar, with a similar syntax, by using the <button> tag. As
for the <menu> tag, it requires an action attribute which specifies what
should be done when the button is pressed. The button is not created if
no such action was created.

154

Chapter 15: Customizing and Extending GPS

Within this tag, the tag <pixmap> can be used to indicate the location
of an image file (of the type jpeg, png, gif or xpm) to be used as icon for
the button. An empty <button> tag indicates a separator in the tool bar.

A title can also be specified with <title> . This will be visible only if
the user choses to see both text and icons in the tool bar.

The following example defines a new button:
<?xml version="1.0" ?>

<stats>

<button action="execute my stats">

<title>stats</title>

<pixmap>/my_pixmaps/button.jpg</pixmap>

</button>

</stats>

The <button> tag allows you to create a simple button that the user
can press to start an action. GPS also supports another type of button, a
combo box, from which the user can choose among a list of choices. Such
a combo box can be created with the <entry> tag.

This tag accepts the following arguments:

id (mandatory)
This should be a unique id for this combo box, and will be used
later on to refer it, in particular from the scripting languages.
It can be any string

label (default is "")
The text of a label to display on the left of the combo box. If
this isn’t specified, no text will be displayed

on-changed (default is "")
The name of a GPS action to execute whenever the user
selects a new value in the combo box. This action is called
with two parameters, the unique id of the combo box and the
newly selected text respectively.

It also accepts any number of <choice> tags, each of which defines one
of the values the user can choose from. These tags accepts one optional
attribute, " on-selected" , which is the name of a GPS action to call when
that particular value is selected.

<action name="animal_changed">

<shell>echo A new animal was selected in combo $1: animal is $2"</shell>

</action>

<action name="gnu-selected">

<shell>echo Congratulations on choosing a Gnu</shell>

</action>

<entry id="foo" label="Animal" on-changed="animal_changed">

<choice>Elephant</choice>

<choice on-selected="gnu-selected">Gnu</choice>

</entry>

155

Using the GNAT Programming System

A more convenient interface exists for Python, the GPS.Toolbar class,
which gives you the same flexibility as above, but also gives you dynamic
control over the entry. See the python documentation.

15.4.7 Binding actions to keys
All the actions defined above can be bound to specific key shortcuts
through the <key> attribute. As usual, it requires one <action> at-
tribute to specify what to do when the key is pressed. The name of the
action can start with a ’/’ to indicate that a menu should be executed
instead of a user-defined action.

This tag doesn’t contain any child tag. Instead, its text contents
specified the keyboard shortcut. The name of the key can be prefixed by
control- , alt- , shift- or any combination of these to specify the key
modifiers to apply.

You can also define multiple key bindings similar to Emacs’s by sep-
arating them by a space. For instance, control-x control-k means
that the user should press 〈control-x〉, followed by a 〈control-k〉 to activate the
corresponding action.

Use an empty string to describe the key binding if you wish to deac-
tivate a preexisting binding. The second example below deactivates the
standard binding.

<?xml version="1.0" ?>

<keys>

<key action="expand alias">control-o</key>

<key action="Jump to matching delimiter" />

<!-- Bind a key to a menu -->

<key action="/Window/Close">control-x control-w</key>

</key>

Multiple actions can be bound to the same key binding. The first one
with a filter valid for the current context is executed. If no action with a
filter can be executed, then the first action with no filter will be executed.

15.4.8 Preferences support in custom files

15.4.8.1 Creating new preferences
GPS has a number of predefined preferences to configure its behavior and
its appearance. They are all customizable through the Edit->Preferences
menu.

However, you might wish to add your own kind of preferences for
your extension modules. This can easily be done through the usual GPS
customization files. Preferences are different from project attributes

156

Chapter 15: Customizing and Extending GPS

(see Section 15.4.14 [Defining project attributes], page 169), in that the
latter will vary depending on which project is loaded by the user, whereas
preferences are always set to the same value no matter what project is
loaded.

Such preferences are created with the <preference> tag, which takes
a number of attributes.
name (mandatory)

This is the name of the preference, used when the preference
is saved by GPS in the ‘$HOME/.gps/preferences ’ file, and
to query the value of a preference interactively through the
GPS.Preference class in the GPS shell or python. There
are a few limitation to the form of these names: they cannot
contain space or underscore characters. You should replace
the latter with minus signs for instance.

page (optional, default is "General")
The name of the page in the preferences editor where the
preference can be edited. If this is the name of a non-existing
page, GPS will automatically create it. If this is the empty
string (""), the preference will not be editable interactively.
This could be used to save a value from one session of GPS
to the next, without allowing the user to alter it.
Subpages are references by separating pages name with
colons (’:’).

default (optional, default depends on the type of the
preference)

The default value of the preference, when not set by the user.
This is 0 for integer preferences, the empty string for string
preferences, True for boolean values, and the first possible
choice for choice preferences.

tip (optional, default is "")
This is the text of the tooltip that appears in the preferences
editor dialog.

label (mandatory)
This is the name of the preference as it appears in the pref-
erences editor dialog

type (mandatory)
This is the type of the preference, and should be one of:
• " boolean"

The preference can be True or False.
• " integer"

The preference is an integer. Two optional attributes can
be specified for <preference> , " minimum" and " maxi-

157

Using the GNAT Programming System

mum" , which define the range of valid values for that
integer. Default values are 0 and 10 respectively.

• " string"

The preference is a string, which might contain any value
• " color"

The preference is a color name, in the format of a
named color such as " yellow" , or a string similar to
" #RRGGBB" , where RR is the red component, GG is
the green component, and BB is the blue component

• " font"

The preference is a font
• " choices"

The preference is a string, whose value is chosen among
a static list of possible values. Each possible value is
defined in a <choice> child of the <preference> node.

Here is an example that defines a few new preferences:
<?xml version="1.0"?>

<custom>

<preference name="my-int"

page="Editor"

label="My Integer"

default="30"

minimum="20"

maximum="35"

page="Manu"

type="integer" />

<preference name="my-enum"

page="Editor:Fonts & Colors"

label="My Enum"

default="1"

type="choices" >

<choice>Choice1</choice>

<choice>Choice2</choice> <!-- The default choice -->

<choice>Choice3</choice>

</preference>

</custom>

The values of the above preferences can be queries in the scripting
languages:
• GPS shell

Preference "my-enum"

Preference.get %1

• Python
val = GPS.Preference ("my-enum").get ()

val2 = GPS.Preference ("my-int").get ()

158

Chapter 15: Customizing and Extending GPS

15.4.8.2 Setting preferences values
You can force specific default values for the preferences in the customiza-
tion files through the <pref> tag. This is the same tag that is used by
GPS itself when it saves the preferences edited through the preferences
dialog.

This tag requires on attribute:

name This is the name of the preference of which you are setting a
default value. Such names are predefined when the prefer-
ence is registered in GPS, and can be found by looking at the
‘$HOME/.gps/preferences ’ file for each user, or by looking at
one of the predefined GPS themes.

It accepts no child tag, but the value of the <pref> tag defines the
default value of the preference, which will be used unless the user has
overridden it in his own preferences file.

Any setting that you have defined in the customization files will be
overridden by the user’s preferences file itself, unless the user was still
using the default value of that preference.

This <pref> tag is mostly intended for use through the themes (see
Section 15.4.9 [Creating themes], page 159).

15.4.9 Creating themes
In addition to the predefined themes that come with GPS, you can create
your own themes and share them between users. You can then selectively
chose which themes they want to activate through the preferences dialog
(see Section 15.2 [GPS Themes], page 137).

Creating new themes is done in the customization files through the
<theme> tag.

This tag accepts a number of attributes:

name (mandatory)
This is the name of the theme, as it will appear in the pref-
erences dialog

description (optional)
This text should explain what the text does. It appears in
the preferences dialog when the user selects that theme.

category (optional, default is General)
This is the name of the category in which the theme should be
presented in the preferences dialog. Categories are currently
only used to organize themes graphically. New categories are
created automatically if you chose one that doesn’t exist yet.

159

Using the GNAT Programming System

This tag accepts any other customization tag that can be put in the
customization files. This includes setting preferences (<pref> , defining
key bindings (<key), defining menus (<menu>),. . .

If the same theme is defined in multiple locations (multiple times
in the same customization file or in different files), their effects will be
cumulated. The first definition of the theme seen by GPS will set the
description and category for this theme.

All the children tags of the theme will be executed when the theme
is activated through the preferences dialog. Although there is no strict
ordering in which order the children will be executed, the global order
is the same as for the customization files themselves: first the prede-
fined themes of GPS, then the ones defined in customization files found
through the GPS_CUSTOM_PATHdirectories, and finally the ones defined
in files found in the user’s own GPS directory.

<?xml version="1.0" ?>

<customize>

<theme name="my theme" description="Create a new menu">

<menu action="my action"><title>/Edit/My Theme Menu</title></menu>

</theme>

</customize>

15.4.10 Defining new search patterns
The search dialog contains a number of predefined search patterns for
Ada, C and C++. These are generally complex regular expressions, pre-
sented in the dialog with a more descriptive name. This includes for
instance " Ada assignment" , which will match all such assignments.

You can define your own search patterns in the customization files.
This is done through the <vsearch-pattern> tag. This tag can have a
number of children tags:

<name>

This tag is the string that is displayed in the search dialog
to represent the new pattern. This is the text that the user
will effectively see, instead of the often hard to understand
regular expression.

<regexp>

This tag provides the regular expression to use when the pat-
tern has been selected by the user. Be careful that you must
protect reserved XML characters such as ’<’ and replace them
by their equivalent expansion (" <" for this character).
This accepts one optional attribute, named case-sensitive .
This attribute accepts one of two possible values (" true" or
" false") which indicates whether the search should distin-

160

Chapter 15: Customizing and Extending GPS

guish lower case and upper case letters. Its default value is
" false" .

<string>

This tag provides a constant string that should be searched.
Only one of <regexp> and <string> should be provided. If
both exists, the first <regexp> child found is used. If there is
none, the first <string> child is used.
The tag accepts the same optional attribute case-sensitive
as above

Here is a small example on how the " Ada assignment" pattern was
defined.

<?xml version="1.0" ?>

<search>

<vsearch-pattern>

<name>Ada: assignment</name>

<regexp case-sensitive="false">\b(\w+)\s*:=</regexp>

</vsearch-pattern>

</search>

15.4.11 Adding support for new languages
You can define new languages in a custom file by using the Language
tag. Defining languages gives GPS the ability to highlight the syntax of
a file, explore a file (using e.g. the project explorer), find files associated
with a given language, . . .

As described previously for menu items, any file in the ‘customize ’
directory will be loaded by GPS at start up. Therefore, you can either
define new languages in a separate file, or reuse a file where you already
define actions and menus.

The following tags are available in a Language section:

Name A short string describing the name of the language.

Parent If set to the name of an existing language (e.g. Ada, C++)
or another custom language, this language will inherit by
default all its properties from this language. Any field ex-
plicitly defined for this language will override the inherited
settings.

Spec_Suffix
A string describing the suffix of spec/definition files for this
language. If the language does not have the notion of spec or
definition file, you can ignore this value, and consider using
the Extension tag instead. This tag must be unique.

161

Using the GNAT Programming System

Body_Suffix
A string describing the suffix of body/implementation files
for this language. This tag works in coordination with the
Spec_Suffix , so that the user can choose to easily go from
one file to the other. This tag must be unique.

Extension
A string describing one of the valid extensions for this lan-
guage. There can be several such children. The extension
must start with a ’.’ character

Keywords A V7 style regular expression for recognizing and highlight-
ing keywords. Multiple Keywords tags can be specified, and
will be concatenated into a single regular expression.
The full grammar of the regular expression can be found in
the spec of the file ‘g-regpat.ads ’ in the GNAT run time.

Engine The name of a dynamic library providing one or several of
the functions described below.
The name can be a full pathname, or a short name. E.g.
under most Unix systems if you specify custom , GPS will look
for libcustom.so in the LD_LIBRARY_PATHrun time search
path. You can also specify explicitly e.g. libcustom.so or
/usr/lib/libcustom.so .
For each of the following five items, GPS will look for the
corresponding symbol in Engine and if found, will call this
symbol when needed. Otherwise, it will default to the static
behavior, as defined by the other language-related items de-
scribing a language.
You will find the required specification for the C and Ada
languages to implement the following functions in the direc-
tory ‘<prefix>/share/gps/doc/examples/language ’ of your
GPS installation. ‘language_custom.ads ’ is the Ada spec
file; ‘language_custom.h ’ is the C spec file; ‘gpr_custom.ad? ’
are example files showing a possible Ada implementation of
the function Comment_Line for the GPS project files (‘.gpr ’
files), or any other Ada-like language; ‘gprcustom.c ’ is the C
version of gpr custom.adb.

Comment_Line
Name of a symbol in the specified shared library correspond-
ing to a function that will comment or uncomment a line
(used to implement the menu Edit->Un/Comment Lines).

Parse_Constructs
Name of a symbol in the specified shared library correspond-
ing to a function that will parse constructs of a given buffer.

162

Chapter 15: Customizing and Extending GPS

This procedure is used by GPS to implement several capabil-
ities such as listing constructs in the project explorer, high-
lighting the current block of code, going to the next or previ-
ous procedure, . . .

Format_Buffer
Name of a symbol in the specified shared library correspond-
ing to a function that will indent and format a given buffer.
This procedure is used to implement the auto indentation
when hitting the 〈enter〉 key, or when using the format key on
the current selection or the current line.

Parse_Entities
Name of a symbol in the specified shared library correspond-
ing to a function that will parse entities (e.g. comments,
keywords, . . .) of a given buffer. This procedure is used to
highlight the syntax of a file, and overrides the Context node
described below.

Context Describes the context used to highlight the syntax of a file.
Comment_Start

A string defining the beginning of a multiple-line
comment.

Comment_End
A string defining the end of a multiple-line com-
ment.

New_Line_Comment_Start
A regular expression defining the beginning of
a single line comment (ended at the next end of
line). This regular expression may contain multi-
ple possible line starts, such as ;|# for comments
starting after a semicolon or after the hash sign.

String_Delimiter
A character defining the string delimiter.

Quote_Character
A character defining the quote character, used for
e.g. canceling the meaning of a string delimiter
(\ in C).

Constant_Character
A character defining the beginning of a character
literal.

Can_Indent
A boolean indicating whether indentation should
be enabled for this language. The indentation

163

Using the GNAT Programming System

mechanism used will be the same for all lan-
guages: the number of spaces at the beginning
of the current line is used when indenting the
next line.

Syntax_Highlighting
A boolean indicating whether the syntax should
be highlighted/colorized.

Case_Sensitive
A boolean indicating whether the language (and
in particular the identifiers and keywords) is case
sensitive.

Categories
Optional node to describe the categories supported by the
project explorer for the current language. This node contains
a list of Category nodes, each describing the characteristics
of a given category, with the following nodes:

Name Name of the category, which can be one of:
package, namespace, procedure, function,
task, method, constructor, destructor, pro-
tected, entry, class, structure, union, type,
subtype, variable, local variable, representa-
tion clause, with, use, include, loop statement,
case statement, if statement, select statement,
accept statement, declare block, simple block,
exception handler.

Pattern Regular expression used to detect a language
category. As for the Keywords node, multiple
Pattern tags can be specified and will be con-
catenated into a single regular expression.

Index Index in the pattern used to extract the name of
the entity contained in this category.

Here is an example of a language definition for the GPS project files:
<?xml version="1.0"?>

<Custom>

<Language>

<Name>Project File</Name>

<Spec_Suffix>.gpr</Spec_Suffix>

<Keywords>^(case|e(nd|xte(nds|rnal))|for|is|</Keywords>

<Keywords>limited|null|others|</Keywords>

<Keywords>p(ackage|roject)|renames|type|use|w(hen|ith))\b</Keywords>

<Context>

<New_Line_Comment_Start>--</New_Line_Comment_Start>

164

Chapter 15: Customizing and Extending GPS

<String_Delimiter>"</String_Delimiter>

<Constant_Character>’</Constant_Character>

<Can_Indent>True</Can_Indent>

<Syntax_Highlighting>True</Syntax_Highlighting>

<Case_Sensitive>False</Case_Sensitive>

</Context>

<Categories>

<Category>

<Name>package</Name>

<Pattern>^[\t]*package[\t]+((\w|\.)+)</Pattern>

<Index>1</Index>

</Category>

<Category>

<Name>type</Name>

<Pattern>^[\t]*type[\t]+(\w+)</Pattern>

<Index>1</Index>

</Category>

</Categories>

<Engine>gpr</Engine>

<Comment_Line>gpr_comment_line</Comment_Line>

</Language>

</Custom>

15.4.12 Defining text aliases
GPS provides a mechanism known as aliases. These are defined through
the menu Edit->Aliases .

Each alias has a name, which is generally a short string of charac-
ters. When you type them in any textual entry in GPS (generally a
source editor, but also entry fields for instance in the file selector), and
then press the special activation key (by default 〈control-o〉, controlled by a
preference), this name is removed from the source editor, and replaced
by the text you have associated with it.

Alias names may be composed of any character except newlines, but
must start with a letter. GPS will jump to the start of each word before

165

Using the GNAT Programming System

the current cursor position, and if the characters between this word start
and the cursor position is an alias name, this alias is expanded.

The alias editor is divided into three main parts: on the left side, the
list of currently defined aliases is shown. Clicking on any of them will
display the replacement text for this alias. If you click again the selected
alias, GPS displays a text entry which you can use to rename an existing
alias. Alias names must start with a letter. A check button at the bottom
selects whether the read-only aliases (i.e. system-wide aliases) should
be displayed.

The second part is the expansion text for the alias, at the bottom
right corner. This replacement text can used multiple lines, and contain
some special text that act as a special replacement. These special texts
are highlighted in a different color. You can insert these special entities
either by typing them, or by right-clicking in the editor, and select the
entity in the contextual menu.

The following special entities are currently defined:

%_ This is the position where the cursor should be put once the
replacement text has been inserted in the editor.

%(name) This is the name of a parameter. name can be any string
you want, excluding closing parenthesis. See below for more
information on parameters.

%D This is the current date, in ISO format. The year is displayed
first, then the month and the day

%H This is the current time (hour, minutes and seconds)

166

Chapter 15: Customizing and Extending GPS

%l If the expansion of the alias is done in a source editor, this is
the line on which the cursor is when pressing 〈control-o〉.

%c This is similar to %l, except it returns the current column.

%f If the expansion is done in a source editor, this is the name of
the current file (its base name only, this doesn’t include the
directory)

%d If the expansion is done in a source editor, this is the directory
in which the current file is

%p If the expansion is done in a source editor, this is the base
name of the project file to which the file belongs.

%P If the expansion is done in a source editor, this is the full
path name to the project file (directory and base name).

%O Used for recursive aliases expansion. This special character
will expand the text seen before it in the current alias, after
replacement of the parameters and possibly other recursive
expansions. This is similar to pressing 〈control-o〉 (or any key
you have defined for alias expansion) in the expanded form
of the alias.
You cannot expand an alias recursively when already ex-
panding that alias. For instance, if the alias expansion for
procedure contains procedure%O, the inner procedure will
not be expanded.

The indentation as set in the expansion of the alias is preserved when
the alias is expanded. All the lines will be indented the same amount to
the right as the alias name. You can override this default behavior by
selecting the check button Indent source editor after expansion . In
this case, GPS will replace the name of the alias by its expansion, and
then automatically recompute the position of each line with its internal
indentation engine, as if the text had been inserted manually.

The third part of the aliases editor, at the top right corner, lists the pa-
rameters for the currently selected alias. Any time you insert a %(name)
string in the expansion text, GPS automatically detects there is a new
parameter reference (or an old reference has changed name or was re-
moved); the list of parameters is automatically updated to show the
current list.

Each parameters has three attributes:

name This is the name you use in the expansion text of the alias in
the %(name) special entity.

167

Using the GNAT Programming System

Environment
This specifies whether the default value of the parameter
comes from the list of environment variables set before GPS
was started.

default value
Instead of getting the default value from the environment
variable, you can also specify a fixed text. Clicking on the
initial value of the currently selected variable opens a text
entry which you can use to edit this default value.

When an alias that contains parameters is expanded, GPS will first
display a dialog to ask for the value of the parameters. You can inter-
actively enter this value, which replaces all the %(name) entities in the
expansion text.

15.4.13 Aliases files
The customization files described earlier can also contain aliases defi-
nition. This can be used for instance to create project or system wide
aliases. All the customization files will be parsed to look for aliases
definition.

All these customization files are considered as read-only by GPS, and
therefore cannot be edited through the graphical interface. It is possible
to override some of the aliases in your own custom files.

There is one specific files, which must contain only aliases definition.
This is the file ‘$HOME/.gps/aliases ’. Whenever you edit aliases graph-
ically, or create new ones, they are stored in this file, which is the only
one that GPS will ever modify automatically.

The system files are loaded first, and aliases defined there can be
overridden by the user-defined file.

These files are standard XML customization files. The specific XML
tag to use is <alias>, one per new alias. The following example contains
a standalone customization file, but you might wish to merge the <alias>
tag in any other customization file.

The following tags are available:

alias This indicates the start of a new alias. It has one mandatory
attribute, name, which the text to type in the source editor be-
fore pressing 〈control-o〉. It has one optional attribute, indent ,
which, if set to true, indicate that GPS should recompute
the indentation of the newly inserted paragraph after the
expansion.

param These are children of the alias node. There is one per pa-
rameter of the alias. They have one mandatory attribute,

168

Chapter 15: Customizing and Extending GPS

name, which is the name to type between %(name) in the
alias expansion text.
They have one optional attribute, environment , which indi-
cates the default value must be read from the environment
variables if it is set to true.
These tags contain text, which is the default value for the
parameter.

text This is a child of the alias node, whose value is the replace-
ment text for the alias.

Here is an example of an alias file:
<?xml version="1.0"?>

<Aliases>

<alias name="proc" >

<param name="p" >Proc1</param>

<param environment="true" name="env" />

<text>procedure %(p) is

%(env)%_

end %(p);</text>

</alias>

</Aliases>

15.4.14 Defining project attributes
The project files are required by GPS, and are used to store various pieces
of information related to the current set of source files. This includes how
to find the source files, how the files should be compiled, or manipulated
through various tools,. . . .

However, the default set of attributes that are usable in a project file
is limited to the attributes needed by the tool packaged with GPS or
GNAT.

If you are delivering your own tools, you might want to store similar
information in the project files themselves, since these are a very conve-
nient place to associate some specific settings with a given set of source
files.

GPS lets manipulate the contents of projects through XML customiza-
tion files and script commands. You can therefore add you own typed
attributes into the projects, so that they are saved automatically when
the user saves the project, and reloaded automatically the next time GPS
is started.

15.4.14.1 Declaring the new attributes
New project attributes can be declared in two ways: either using the
advanced XML tags below, or using the <tool> tag (see Section 15.5.3
[Defining tool switches], page 181).

169

Using the GNAT Programming System

The customization files support the <project_attribute> tag, which
is used to declare all the new attributes that GPS should expect in a
project. Attributes that have not been declared explictly will not be ac-
cessible through the GPS scripting languagues, and will generate warn-
ings in the Messages window.

Project attributes are typed: they can either have a single value, or
have a set of such values (a list). The values can in turn be a free-form
string, a file name, a directory name, or a value extracted from a list of
preset values.

Attributes that have been declared in these customization files will
also be graphically editable through the project properties dialog, or
the project wizard. Therefore, you should specify when an attribute is
defined how it should be presented to the GPS user.

The <project_attribute> tag accepts the following attributes:
• package (a string, default value: "")

This is the package in the project file in which the attribute is stored.
Common practice suggests that one such package should be used for
each tool. These packages provide namespaces, so that attributes
with the same name, but for different tools, do not conflict with each
other.

• name (a string, mandatory)
This is the name of the attribute. This should be a string with
no space, and that represents a valid Ada identifier (typically, it
should start with a letter and be followed by a set of letters, digits or
underscore characters). This is an internal name that is used when
saving the attribute in a project file.

• editor_page (a string, default value: " General")
This is the name of the page in the Project Properties editor dialog
in which the attribute is presented. If no such page already exists,
a new one will be created as needed. If the page already exists, the
attribute will be appended at its bottom.

• editor_section (a string, default value: "")
This is the name of the section, inside editor page, in which the
attribute is displayed. These sections are surrounded by frames,
the title of which is given by the editor_section attribute. If this
attribute is not specified, the attribute is put in an untitled section.

• label (a string, default value: the name of the attribute)
If this attribute is set to a value other than the empty string "" , a
textual label is displayed to the left of the attribute in the graphical
editor. This should be used to identify the attribute. However, it can
be left to the empty string if the attribute is in a named section of its
own, since the title of the section might be a good enough indication.

170

Chapter 15: Customizing and Extending GPS

• description (a string, default value: "")
This is the help message that describes the role of the attribute. It
is displayed in a tooltip if the user leaves the mouse on top of the
attribute for a while.

• list (a boolean, default value: " false")
If this is set to "true" , the project attribute will in fact contains a
list of values, as opposed to a single value. This is used for instance
for the list of source directories in standard projects.

• ordered (a boolean, default value: " false")
This is only relevant if the project attribute contains a list of values.
This indicates whether the order of the values is relevant. In most
cases, it will not matter. However, for instance, the order of source
directories matters, since this also indicates where the source files
will be searched, stopping at the first match.

• omit_if_default (a boolean, default value: " true")
This indicates whether the project attribute should be set explicitly
in the project if the user has left it to its default value. This can
be used to keep the project files a simple as possible, if all the tools
that will use this project attribute know about the default value.
If this isn’t the case, set omit_if_default to " false" to force the
generation of the project attribute.

• base_name_only (a boolean, default value: " false")
If the attribute contains a file name or a directory name, this indi-
cates whether the full path should be stored, or only the base name.
In most cases, the full path should be used. However, since GPS
automatically looks for source files in the list of directories, for in-
stance, the list of source files should only contain base names. This
also increases the portability of project files.

• case_sensitive_index (a boolean, default value: " false")
This XML attribute is only relevant for project attributes that are
indexed on another one (see below for more information on indexed
attributes). It indicates whether two indexes that differ only by their
casing should be considered the same. For instance, if the index is
the name of one of the languages supported by GPS, the index is
case insensitive since " Ada" is the same as " C" . However, if the
index is the name of a file on Windows, the index is case-insensitive.

• hide_in (a string, default value: "")
This XML attribute defines the various context in which this at-
tribute should not be editable graphically. Currently, GPS provides
two such contexts (" wizard" and " properties" , corresponding to the
project creation wizard and the project properties editor). If any of
those context is specified in hide in, then the widget to edit this at-

171

Using the GNAT Programming System

tribute will not be shown. The goal is to keep the graphical interface
simple.

15.4.14.2 Declaring the type of the new attributes
The type of the project attribute is specified through one or several child
tags of <project_attribute> . The following tags are recognized.
• <string>

This tag indicates that the attribute is made of one (or more if it is
a list) strings. This tag accepts the following XML attributes:

- default (a string, default value: "")
This gives the default value to be used for the string (and there-
fore the project attribute), in case the user hasn’t overridden
it.

- type (one of "" , " file" , " directory" , default "")
This indicates what the string represents. In the first case, any
value can be used. In the second case, it should represent a file
name, although no check is done to make sure the file actually
exists on the disk. But GPS will be able to do some special
marshalling with the file name. The third case indicates that
GPS should expect a directory.

• <choice>

This tag can be repeated several times. It indicates one of the valid
values for the attribute, and can be used to provide a static list of
such values. If it is combined with a <string> tag, this indicates
that the attribute can be any string, although a set of possible values
is provided to the user for ease of use. This tag accepts one optional
attribute, "default" , which is a boolean. It indicates whether this
value is the default to use for the project attribute.
If several <choice> tags are used, it is possible that several of them
are part of the default value if the project attribute is a list, as
opposed to a single value.

• <shell>

This tag is a GPS scripting command to execute to get a list of
valid values for the attribute. The command should return a list.
As for the <choice> tag, the <shell> tag can be combined with
a <string> tag to indicate that the list of values returned by the
scripting command is only a set of possible values, but that the
project attribute can in fact take any value.
The <shell> tag accepts two attributes:

- lang (a string, default value: " shell")
The scripting language in which the command is written. Cur-
rently, the only other possible value is " python" .

172

Chapter 15: Customizing and Extending GPS

- default (a string, default value: "")
The default value that the project attribute takes if the user
hasn’t overridden it.

In some cases, the type of the project attribute, or at least its default
value, depends on what the attribute applies to. The project file support
this in the form of indexed project attribute. This is for instance used
to specify what should be the name of the executable generated when
compiling each of the main files in the project (ie the executable name
for gps.adb should be gps.exe , the one for main.c should be myapp.exe ,
and so on).

Such attributes can also be declared through XML files. In such cases,
the <project_attribute> tag should have one <index> child, and zero
or more <specialized_index> children. Each of these two tags in turn
take one of the already mentioned <string> , <choice> or <shell> tag.

The <index> tag indicates what other project attribute is used to
index the current one. In the example given above for the executable
names, the index is the attribute that contains the list of main files for
the project.

It accepts the following XML attributes:
• attribute (a string, mandatory)

The name of the other attribute. This other attribute must be de-
clared elsewhere in the customization files, and must be a list of
values, not a single value.

• package (a string, default value: "")
The package in which the index project attribute is defined. This is
used to uniquely identify homonym attributes.

The <specialized_index> is used to override the default type of
the attribute for specific values of the index. For instance, the project
files contains an attribute that specify what the name of the compiler
is for each language. It is indexed on the project attribute that list
the languages used for the source files of the project. Its default value
depends on the language (" gnatmake" for Ada, " gcc" for C, and so on).
This attribute accepts requires one XML attribute:
• value (a string, mandatory)

This is the value of the attribute for which the type is overriden.

Note that almost all the standard project attributes are defined
through an XML file, ‘projects.xml ’, which is part of the GPS installa-
tion. Check this file to get advanced examples on how to declare project
attributes.

173

Using the GNAT Programming System

15.4.14.3 Examples
The following example declares three attributes, with a single string
as their value. This string represents a file or a directory in the
last two cases. You can simply copy this into a ‘.xml ’ file in your
‘$HOME/.gps/customize ’ directory, as usual.

<?xml version="1.0"?>

<custom>

<project_attribute

name="Single1"

package="Test"

editor_page="Tests single"

editor_section="Single"

description="Any string">

<string default="Default value" />

</project_attribute>

<project_attribute

name="File1"

package="Test"

editor_page="Tests single"

editor_section="Single"

description="Any file" >

<string type="file" default="/my/file" />

</project_attribute>

<project_attribute

name="Directory1"

package="Test"

editor_page="Tests single"

editor_section="Single"

description="Any directory" >

<string type="directory" default="/my/directory/" />

</project_attribute>

</custom>

The following example declares an attribute whose value is a string.
However, a list of predefined possible values is also provided, as an help
for interactive edition for the user. If the <string> tag wasn’t given, the
attribute’s value would have two be one of the three possible choices.

<?xml version="1.0" ?>

<custom>

<project_attribute

name="Static2"

package="Test"

editor_page="Tests single"

editor_section="Single"

description="Choice from static list (or any string)" >

174

Chapter 15: Customizing and Extending GPS

<choice>Choice1</choice>

<choice default="true" >Choice2</choice>

<choice>Choice3</choice>

<string />

</project_attribute>

</custom>

The following example declares an attribute whose value is one of
the languages currently supported by GPS. Since this list of languages
is only know when GPS is executed, a script command is used to query
this list.

<?xml version="1.0" ?>

<custom>

<project_attribute

name="Dynamic1"

package="Test"

editor_page="Tests single"

editor_section="Single"

description="Choice from dynamic list" >

<shell default="C" >supported_languages</shell>

</project_attribute>

</custom>

The following example declares an attribute whose value is a set of
file names. The order of files in this list matters to the tools that are
using this project attribute.

<?xml version="1.0" ?>

<custom>

<project_attribute

name="File_List1"

package="Test"

editor_page="Tests list"

editor_section="Lists"

list="true"

ordered="true"

description="List of any file" >

<string type="file" default="Default file" />

</project_attribute>

</custom>

The following example declares an attribute whose value is a set of
predefined possible values. By default, two such values are selected,
unless the user overrides this default setting.

<?xml version="1.0" ?>

<custom>

<project_attribute

name="Static_List1"

package="Test"

175

Using the GNAT Programming System

editor_page="Tests list"

editor_section="Lists"

list="true"

description="Any set of values from a static list" >

<choice>Choice1</choice>

<choice default="true">Choice2</choice>

<choice default="true">Choice3</choice>

</project_attribute>

</custom>

The following example declares an attribute whose value is a string.
However, the value is specific to each language (this could for instance
be used for the name of the compiler to use for a given language). This
is an indexed project attribute. It has two default values, one for Ada,
one for C. All other languages have no default value.

<?xml version="1.0" ?>

<custom>

<project_attribute

name="Compiler_Name"

package="Test"

editor_page="Tests indexed"

editor_section="Single"

<index attribute="languages" package="">

<string default="" />

</index>

<specialized_index value="Ada" >

<string default="gnatmake" />

</specialized_index>

<specialized_index value="C" >

<string default="gcc" />

</specialized_index>

</project_attribute>

</custom>

15.4.14.4 Accessing the project attributes
The new attributes that were defined are accessible from the GPS script-
ing languages, like all the standard attributes, see Section 15.5.4.3
[Querying project switches], page 188.

You can for instance access the Compiler Name attribute we created
above with a python command similar to:

GPS.Project.root().get_attribute_as_string ("Compiler_Name", "Test", "Ada")

You can also access the list of main files for the project, for instance,
by calling

GPS.Project.root().get_attribute_as_list ("main")

176

Chapter 15: Customizing and Extending GPS

15.4.15 Adding casing exceptions
A set of case exceptions can be declared in this file. Each case exception
is put inside the tag <word> or <substring> . These exceptions are used
by GPS to set identifiers or keywords case when editing case insensi-
tive languages (except if corresponding case is set to Unchanged). see
Section 15.1 [The Preferences Dialog], page 123.

<?xml version="1.0" ?>

<exceptions>

<case_exceptions>

<word>GNAT</word>

<word>OS_Lib</word>

<substring>IO</substring>

</case_exceptions>

</exceptions>

15.4.16 Adding documentation
New documentation can be added in GPS in various ways. This is useful
if you want to point to your own project documentation for instance.

The first possibility is to create a new menu, through a <menu> tag
in an XML file, associated with an action that either spawn an external
web browser or calls the internal GPS.Help.browse() shell command.

However, this will not show the documentation in the Help-
>Contents menu, which you also might want to do.

To have both results, you should use the <documentation_file> tag
in an XML file. These tags are generally found in the ‘gps_index.xml ’
files, as documented in see Section 3.2 [Adding New Help Files], page 14,
but you can in fact add them in any of your customization files.

The documentation files you display can contain the usual type of
html links. In addition, GPS will treat specially links starting with
’%’, and consider them as script commands to execute instead of file to
display. The following example show how to insert a link that will in
effect open a file in GPS when clicked by the user

Open runtime file

The first word after ’%’ is the name of the language, and the command
to execute is found after the ’:’ character.

The <documentation_file> tag accepts two attributes.

before (optional, default="")
The name of the menu before which the new entry should be
inserted. If the new menu is inserted in some submenus, this
tag controls the deeper nesting. Parent menus are created
as needed, but if you wish to control their specific order, you
should create them first with a <menu> tag.

177

Using the GNAT Programming System

after (optional, default="")
The name of the menu after which the new entry should be
inserted.

The <documentation_file> accepts a number of child nodes:

name This is the name of the file. It can be either an absolute
file name, or a file name relative to one of the directories in
GPS_DOC_PATH. If this child is omitted, you must specify a
<shell> child.
This name can contain a reference to a specific anchor in the
html file, using the standard HTML syntax.

<name>file#anchor</name>

shell This child specifies the name of a shell command to execute
to get the name of the HTML file. This command can for
instance create the HTML file dynamically, or download it
locally using some special mechanism. This child accepts
one attribute, "lang" , which is the name of the language in
which the command is written

descr This is the description for this help file. It appears in a tool
tip for the menu item.

category This is used in the Help->Contents menu to organize all the
documentation files.

menu This is the full path to the menu. It behaves like a UNIX
path, except it reference the various menus, starting from
the menu bar itself. The first character of this path must be
"/" . The last part of the path is the name of the new menu
item. If not set, no menu is displayed for this file, although
it will still appear in the Help->Contents menu

The following example shows how to create a new entry " item" in the
Help menu, that will display ‘file.html ’. The latter is searched in the
GPS_DOC_PATHlist of directories.

<?xml version="1.0"?>

<index>

<documentation_file>

<name>file.html</name>

<descr>Tooltip text</descr>

<category>name</category>

<menu>/Help/item</menu>

</documentation_file>

</index>

178

Chapter 15: Customizing and Extending GPS

15.4.17 Adding stock icons
XML files can be used to define “stock icons”. Stock icons are pictures
that are identified by their label, and which are used through GPS in
various places, such as buttons, menus, toolbars, and so on.

The stock icons must be declared using the tag <icon> , within the
global tag <stock> . The attribute id indicates the label used to identify
the stock icon, and the attribute file points to the file which contains
the actual picture, either in absolute format, or relative to the directory
which contains the XML file.

For a better rendering, icons that are to be used in menus and buttons
should have a size of 24x24 pixels, whereas icons used in toolbars should
be 48x48 pixels.

Here is an example:
<?xml version="1.0"?>

<my_visual_preferences>

<stock>

<icon id="myproject-my-picture" file="icons/my-picture.png" />

</stock>

</my_visual_preferences>

Note: as shown in the example above, it is a good practice to prefix
the label by a unique name (e.g. myproject-), in order to make sure that
predefined stock icons will not get overridden by your icons.

15.5 Adding support for new tools
GPS has built-in support for external tools. This feature can be used to
support a wide variety of tools (in particular, to specify different compil-
ers). Regular enhancements are done in this area, so if you are planning
to use the external tool support in GPS, check for the latest GPS version
available.

Typically, the following things need to be achieved to successfully use
a tool:
• Specify its command line switches
• Pass it the appropriate arguments depending on the current context,

or on user input
• Spawn the tool
• Optionally parse its result and act accordingly

Each of these points is discussed in further sections. In all these cases,
most of the work can be done statically through XML customization files.
These files have the same format as other XML customization files (see
Section 15.4 [Customizing through XML files], page 140), and the tool
descriptions are found in <tool> tags.

179

Using the GNAT Programming System

This tag accepts the following attributes:
name (mandatory)

This is the name of the tool. This is purely descriptive, and
will appear throughout the GPS interface whenever this tool
is referenced. This includes for instances the tabs of the
switches editor.

package (Default value is ide)
This optional attribute specifies which package should be
used in the project to store information about this tool, in
particular its switches. Most of the time the default value
should be used, unless you are working with one of the pre-
defined packages.
See also See Section 15.4.14 [Defining project attributes],
page 169, for more information on defining your own project
attributes. Using the " package" , " attribute" or " index"
XML attributes of <tool> will implicitly create new project
attributes as needed.
If this attribute is set to " ide" , then the switches cannot be
set for a specific file, only at the project level. Support for
file-specific switches currently requires modification of the
GPS sources themselves.

attribute (Default value is default_switches)
This optional attribute specifies the name of the attribute in
the project which is used to store the switches for that tool.

index (Default value is the tool name)
This optional attribute specifies what index is used in the
project. This is mostly for internal use by GPS, and de-
scribes what index of the project attribute is used to store
the switches for that tool.

This tag accepts the following children, described in separate sections:
<switches>

(see Section 15.5.3 [Defining tool switches], page 181)
<language>

(see Section 15.5.1 [Defining supported languages], page 180)
<default-cmd-line>

(see Section 15.5.2 [Defining default command line],
page 181)

15.5.1 Defining supported languages
This is the language to which the tool applies. There can be from no to
any number of such nodes for one <tool> tag.

180

Chapter 15: Customizing and Extending GPS

If no language is specified, the tool applies to all languages. In par-
ticular, the switches editor page will be displayed for all languages, no
matter what languages they support.

If at least one language is specified, the switches editor page will only
be displayed if that language is supported by the project.

<?xml version="1.0" ?>

<my_tool>

<tool name="My Tool" >

<language>Ada</language>

<language>C</language>

</tool>

</my_tool>

15.5.2 Defining default command line
It is possible to define the command line that should be used for a tool
when the user is using the default project, or hasn’t overridden this
command line in the project.

This is done through the <initial-cmd-line> tag, as a child of the
<tool> tag. Its value is the command line that would be passed to the
tool. This command line is parsed as usual, e.g. quotes are taken into
account to avoid splitting switches each time a space is encountered.

<?xml version="1.0" ?>

<my_tool>

<tool name="My tool" >

<initial-cmd-line>-a -b -c</initial-cmd-line>

</tool>

</my_tool>

15.5.3 Defining tool switches
The user has to be able to specify which switches to use with the tool. If
the tool is simply called through custom menus, you might want to hard
code some or all of the switches. However, in the general case it is better
to use the project properties editor, so that project-specific switches can
be specified.

This is what GPS does by default for Ada, C and C++. You can find in
the GPS installation directory how the switches for these languages are
defined in an XML file. These provide extended examples of the use of
customization files.

The switches editor in the project properties editor provides a power-
ful interface to the command line, where the user can edit the command
line both as text and through GUI widgets.

The switches are declared through the <switches> tag in the cus-
tomization file, which must be a child of a <tool> tag as described above.

181

Using the GNAT Programming System

This <switches> tag accepts the following attributes:

lines (default value is 1)
The switches in the project properties editor are organized
into boxes, each surrounded by a frame, optionally with a
title. This attribute specifies the number of rows of such
frames.

columns (default value is 1)
This attribute specifies the number of columns of frames in
the project properties page.

separator (default value is "")
This attribute specifies the default character that should go
between a switch and its value, to distinguishes cases like
" -a 1" , " -a1" and " -a=1" . This can be overridden separately
for each switch. Note that if you want the separator to be a
space, you must use the value " " rather than " " , since
XML parser must normalize the latter to the empty string
when reading the XML file.

This <switches> tag can have any number of child tag, among the
following. They can be repeated multiple times if you need several check
boxes. For consistency, most of these child tags accept attributes among
the following:

line (default value is 1)
This indicates the row of the frame that should contain the
switch. See the description of lines above.

column (default value is 1)
This indicates the column of the frame that should contain
the switch. See the description of columns above.

label (mandatory)
This is the label which is displayed in the graphical interface

switch (mandatory)
This is the text that should be put on the command line if
that switch is selected. Depending on its type, a variant of
the text might be put instead, see the description of combo
and spin below. This switch shouldn’t contain any space.

tip (default value is empty)
This is the tooltip which describes that switch more exten-
sively. It is displayed in a small popup window if the user
leaves the mouse on top of the widget.

min (default value is 1)
This attribute is used for <spin> tags, and indicates the min-
imum value authorized for that switch.

182

Chapter 15: Customizing and Extending GPS

max (default value is 1)
This attribute is used for <spin> tags, and indicates the max-
imum value authorized for that switch.

default (default value is 1)
This attribute is used for <spin> tags. See the description
below.

noswitch (default is empty)
This attribute is only valid for <combo> tags, and described
below.

nodigit (default is empty)
This attribute is only valid for <combo> tags, and described
below.

value (mandatory)
This attribute is only valid for <combo-entry> tags.

separator (default is the value given to <switches>
This attribute specifies the separator to use between the
switch and its value. See the description of this attribute
for <switches> .

Here are the valid children for <switches> :

<title> This tag, which accepts the line and column attributes, is
used to give a name to a specific frame. The value of the tag
is the title itself. You do not have to specify a name, and this
can be left to an empty value.
Extra attributes for <title> are:

line-span (default value is 1)
This indicates how many rows the frame should
span. If this is set to 0, then the frame is hidden
from the user. See for instance the Ada or C
switches editor.

column-span (default value is 1)
This indicates how many columns the frame
should span. If this is set to 0, then the frame
is hidden from the user. See for instance the Ada
or C switches editor.

<check> This tag accepts the line , column , label , switch and tip
attributes. It creates a toggle button. When the latter is
active, the text defined in the switch attribute is added as
is to the command line. This tag doesn’t have any value or
child tags.

183

Using the GNAT Programming System

<spin> This tag accepts the line , column , label , switch , tip , min ,
max, separator and default attributes. This switch will add
the contents of the switch attribute followed by the current
numeric value of the widget to the command line. This is
typically used to indicate indentation length for instance.
If the current value of the widget is equal to the default
attribute, then nothing is added to the command line.

<radio> This tag accepts the line and column attributes. It groups
any number of children, each of which is associated with its
own switch. However, only one of the children can be selected
at any given time.
The children must have the tag radio-entry . This tag ac-
cepts the attributes label , switch and tip . As a special case,
the switch attribute can have an empty value ("") to indicate
this is the default switch to use in this group of radio buttons.

<field> This tag accepts the line , column , label , switch , separator
and tip attributes. This tag describes a text edition field,
which can contain any text the user types. This text will
be prefixed by the value of the switch attribute, and the
separator (by default nothing). If no text is entered in the
field by the user, nothing is put on the command line.
This tag accepts two extra attributes:

as-directory (optional)
If this attribute is specified and set to " true" ,
then an extra " Browse" button is displayed, so
that the user can easily select a directory.

as-file (optional)
This attribute is similar to as-directory , but
opens a dialog to select a file instead of a directory.
If both attributes are set to " true" , the user will
select a file.

<combo> This tags accepts the line , column , label , switch , tip ,
noswitch , separator and nodigit attributes.
The text inserted in the command line is the text from the
switch attribute, concatenated with the text of the value
attribute for the currently selected entry. If the value of the
current entry is the same as that of the nodigit attribute,
then only the text of the switch attribute is put on the com-
mand line. This is in fact necessary to interpret the gcc
switch " -O" as " -O1" .
If the value of the current entry is that of the noswitch
attribute, then nothing is put in the command line.

184

Chapter 15: Customizing and Extending GPS

The tag <combo> accepts any number of combo-entry chil-
dren tags, each of which accepts the label and value at-
tribute.

<popup> This tag accepts the line , column , label , lines and columns
attributes. This displays a simply button that, when clicked,
displays a dialog with some extra switches. This dialog,
just as the switches editor itself, is organizes into lines and
columns of frames, the number of which is provided by the
lines and columns attributes.
This tag accepts any number of children, which are the same
as the <switches> attribute itself.

<dependency>
This tag is used to describe a relationship between two
switches. It is used for instance when the " Debug Infor-
mation" switch is selected for " Make" , which forces it for the
Ada compiler as well.
It has its own set of attributes:
master-page master-switch

These two attributes define the switch that possi-
bly forces a specific setting on the slave switch. In
our example, they would have the values " Make"
and " -g" . The switch referenced by these at-
tributes must be of type <check> .

slave-page slave-switch
These two attributes define the switch which is
acted upon by the master switch. In our example,
they would have the values " Ada" and " -g" . The
switch referenced by these attributes must be of
type <check> .

master-status slave-status
These two switches indicate which state of the
master switch forces which state of the slave-
status. In our example, they would have the
values " on" and " on" , so that when the make
debug information is activated, the compiler de-
bug information is also activated. However, if
the make debug information is not activated, no
specific setup is forced for the compiler debug in-
formation.

<expansion>
This tag is used to describe how switches can be grouped
together on the command line to keep it shorter. It is also
used to define aliases between switches.

185

Using the GNAT Programming System

It is easier to explain it through an example. Specifying
the GNAT switch " -gnaty" is equivalent to specifying " -
gnatyabcefhiklmnprst" . This is in fact a style check switch,
with a number of default values. But it is also equivalent
to decomposing it into several switches, as in " -gnatya" , " -
gnatyb" ,. . . With this information, GPS will try to keep the
command line length as short as possible, to keep it readable.
Both these aspects are defined in a unique <expansion>
tag, which accepts two attributes: switch is manda-
tory, and alias is optional. Alias contains the text " -
gnatyabcefhiklmnprst" in our example.
It also accepts any number of <entry> children, each has a
mandatory switch access. The set of all these children define
the expanded equivalent of the switch. In our example, we
need one <entry> child for " -gnatya" , one for " -gnatyb" ,. . . .
The exact algorithm used by GPS is the following:
• For each switch on the command line, it is expanded

either through the standard GNAT handling (thus " -
gnatwuv" is made equivalent to " -gnatwu -gnatwv"),
or through the definition in the custom file (if an XML
node has a switch attribute that matches exactly, then
it is replaced by all the switches given in the <entry>
children).

If we have

<expansion switch="-gnatwa">

<entry switch="-gnatwc" />

<entry switch="-gnatwd" />

</expansion>

then any occurrence of "-gnatwa" on the command line is ex-

panded to

"-gnatwc -gnatwd"

• Then the switches on the command line are grouped to-
gether as much as possible. For all switch on the com-
mand line, if it starts with one of the values given to
the switch attribute of an <expansion> node, then it is
grouped with all other similar switches.

if the XML file contains

<expansion switch="-gnatw" />

then the command line "-gnatwc -gnatt -gnatwd" is transformed

into "-gnatwcd -gnatt", grouping the switches that start with

"-gnatw".

• Finally, the resuling switches are compared with the
alias attributes of the <expansion> nodes, and replaced
appropriately.

if the XML file contains

186

Chapter 15: Customizing and Extending GPS

<expansion switch="-gnatwa" alias="-gnatwcd" />

then the command line generated at the second step is further

transformed into "-gnatwa -gnatt".

This rather complex mechanism allows one to either use the
various buttons and GUI widgets to edit the switches, or to
manually edit the command line.

15.5.4 Executing external tools
The user has now specified the default switches he wants to use for the
external tool. Spawning the external tool can be done either from a
menu item, or as a result of a key press.

Both cases are described in an XML customization file, as described
previously, and both are setup to execute what GPS calls an action, i.e.
a set of commands defined by the <action> tag.

15.5.4.1 Chaining commands
This action tag, as described previously, executes one or more commands,
which can either be internal GPS commands (written in any of the script-
ing language supported by GPS), or external commands provided by
executables found on the PATH.

The command line for each of these commands can either be hard-
coded in the customization file, or be the result of previous commands
executed as part of the same action. As GPS executes each command
from the action in turn, it saves its output on a stack as needed. If a com-
mand line contains a special construct %1, %2. . . then these constructs
will be replaced by the result of respectively the last command executed,
the previous from last command, and so on. They are replaced by the
returned value of the command, not by any output it might have done to
some of the consoles in GPS.

Every time you execute a new command, it pushes the previous %1,
%2. . . parameters one step further on the stack, so that they become
respectively %2, %3. . . and the output of that command becomes %1.

The result value of the previous commands is substituted exactly as
is. However, if the output is surrounded by quotes, they are ignored
when a substitution takes place, so you need to put them back if they are
needed. The reason for this behavior is so that for scripting languages
that systematically protect their output with quotes (simple or double),
these quotes are sometimes in the way when calling external commands.

<?xml version="1.0" ?>

<quotes>

<action name="test quotes">

<shell lang="python">’-a -b -c’</shell>

187

Using the GNAT Programming System

<external> echo with quotes: "%1"</external>

<external> echo without quotes: %2</external/>

</action>

</quotes>

If one of the commands in the action raises an error, the execution of
the action is stopped immediately, and no further command is performed.

15.5.4.2 Saving open windows
Before launching the external tool, you might want to force GPS to save
all open files, the project. . . . This is done using the same command
GPS itself uses before starting a compilation. This command is called
MDI.save_all , and takes one optional boolean argument which specifies
whether an interactive dialog should be displayed for the user.

Since this command aborts when the user presses cancel, you can
simply put it in its own <shell> command, as in:

<?xml version="1.0" ?>

<save_children>

<action name="test save children">

<shell>MDI.save_all 0</shell>

<external>echo Run unless Cancel was pressed</external>

</action>

</save_children>

15.5.4.3 Querying project switches
Some GPS shell commands can be used to query the default switches set
by the user in the project file. These are get_tool_switches_as_string ,
get_tool_switches_as_list , or, more generally, get_attribute_as_
string and get_attribute_as_list . The first two require a unique
parameter which is the name of the tool as specified in the <tool> tag.
This name is case-sensitive. The last two commands are more general
and can be used to query the status of any attribute from the project.
See their description by typing the following in the GPS shell console
window:

help Project.get_attribute_as_string

help Project.get_attribute_as_list

The following is a short example on how to query the switches for the
tool " Find" from the project, See Section 15.6.2 [Tool example], page 193.
It first creates an object representing the current project, then passes this
object as the first argument of the get_tool_switches_as_string com-
mand. The last external command is a simple output of these switches

<?xml version="1.0" ?>

<find_switches>

<action name="Get switches for Find">

<shell>Project %p</shell>

188

Chapter 15: Customizing and Extending GPS

<shell>Project.get_tool_switches_as_string %1 Find </shell>

<external>echo %1</external>

</action>

</find_switches>

The following example shows how something similar can be done
from Python, in a simpler manner. For a change, this function queries
the Ada compiler switches for the current project, and prints them out
in the messages window. The

<?xml version="1.0" ?>

<query_switches>

<action name="Query compiler switches">

<shell lang="python">GPS.Project("%p").get_attribute_as_list

(package="compiler",

attribute="default_switches",

index="ada")</shell>

<external>echo compiler switches= %1</external>

</action>

</query_switches>

15.5.4.4 Querying switches interactively
Another solution to query the arguments for the tool is to ask the user
interactively. The scripting languages provides a number of solutions
for these.

They generally have their own native way to read input, possibly by
creating a dialog.

In addition, the simplest solution is to use the predefined GPS com-
mands for this. These are the two functions:

yes_no_dialog
This function takes a single argument, which is a question
to display. Two buttons are then available to the user, " Yes"
and " No" . The result of this function is the button the user
has selected, as a boolean value.

input_dialog
This function is more general. It takes a minimum of two
arguments, with no upper limit. The first argument is a
message describing what input is expected from the user.
The second, third and following arguments each correspond
to an entry line in the dialog, to query one specific value (as
a string). The result of this function is a list of strings, each
corresponding to these arguments.
From the GPS shell, it is only convenient to query one value
at a time, since it doesn’t have support for lists, and would
return a concatenation of the values. However, this function
is especially useful with other scripting languages.

189

Using the GNAT Programming System

The following is a short example that queries the name of a directory
and a file name, and displays each in the Messages window.

<?xml version="1.0" ?>

<query_file>

<action name="query file and dir">

<shell lang="python">list=GPS.MDI.input_dialog \

("Please enter directory and file name", "Directory", "File")</shell>

<shell lang="python">print ("Dir=" + list[0], "File=" + list[1])</shell>

</shell>

</action>

</query_file>

15.5.4.5 Redirecting the command output
The output of external commands is send by default to the GPS console
window. In addition, finer control can be exercised using the output
attribute of the <external> and <shell> tags.

This attribute is a string that may take any value. Two values have
specific meanings:

"none" The output of the command, as well as the text of the com-
mand itself, will not be shown to the user at all.

"" The output of the command is sent to the GPS console win-
dow, entitled " Messages" .

other values
A new window is created, with the title given by the attribute.
If such a window already exists, it is cleared up before any
of the command in the chain is executed. The output of the
command, as well as the text of the command itself, are sent
to this new window.

This attribute can also be specified at the <action> tag level, in
which case it defines the default value for all <shell> and <external>
tags underneath. If it isn’t specified for the action itself, its default value
will always be the empty string, i.e. output is sent to the GPS console.

<?xml version="1.0" ?>

<ls>

<action name="ls current directory" output="default output" >

<shell output="Current directory" >pwd</shell>

<external output="Current directory contents" >/bin/ls</external>

</action>

</ls>

15.5.4.6 Processing the tool output
The output of the tool has now either been hidden or made visible to the
user in one or more windows.

190

Chapter 15: Customizing and Extending GPS

There are several additional things that can be done with this output,
for further integration of the tool in GPS.
1. Parsing error messages

External tools can usually display error messages for the user that
are associated with specific files and locations in these files. This is
for instance the way the GPS builder itself analyzes the output of
make.
This can be done for your own tools using the shell command
Locations.parse . This command takes several arguments, so that
you can specify your own regular expression to find the file name,
line number and so on in the error message. By default, it is config-
ured to work seamlessly with error message of the forms:

file:line: message

file:line:column: message

Please refer to the online help for this command to get more infor-
mation (by e.g. typing help Locations.parse in the GPS Shell).
Here is a small example on how to run a make command and send
the errors to the location window afterward.
For languages that support it, it is also recommended that you quote
the argument with triple quotes, so that any special character (new-
lines, quotes, . . .) in the output of the tool are not specially inter-
preted by GPS. Note also that you should leave a space at the end,
in case the output itself ends with a quote.

<?xml version="1.0" ?>

<make>

<action name="make example" >

<external>make</external>

<on-failure>

<shell>Locations.parse """%1 """ make_example</shell>

</on-failure>

</action>

</make>

2. Auto-correcting errors
GPS has support for automatically correcting errors for some of the
languages. You can get access to this auto-fixing feature through the
Codefix.parse shell command, which takes the same arguments as
for Locations.parse .
This will automatically add pixmaps to the relevant entries in the
location window, and therefore Locations.parse should be called
first prior to calling this command.
Errors can also be fixed automatically by calling the methods of
the Codefix class. Several codefix sessions can be active at the
same time, each of which is associated with a specific category.

191

Using the GNAT Programming System

The list of currently active sessions can be retrieved through the
Codefix.sessions() command.
If support for python is enabled, you can also manipulate the fixable
errors for a given session. To do so, you must first get a handle on
that section, as shown in the example below. You can then get the
list of fixable errors through the errors command.
Each error is of the class CodefixError , which has one important
method fix which allows you to perform an automatic fixing for that
error. The list of possible fixes is retrieved through possible_fixes .

print GPS.Codefix.sessions ()

session = GPS.Codefix ("category")

errors = session.errors ()

print errors [0].possible_fixes ()

errors [0].fix ()

15.6 Customization examples

15.6.1 Menu example
This section provides a full example of a customization file. It creates a
top-level menu named custom menu . This menu contains a menu item
named item 1 , which is associated to the external command external-
command 1, a sub menu named other menu , etc. . .

<?xml version="1.0"?>

<menu-example>

<action name="action1">

<external>external-command 1</external>

</action>

<action name="action2">

<shell>edit %f</shell>

</action>

<submenu>

<title>custom menu</title>

<menu action="action1">

<title>item 1</title>

</menu>

<submenu>

<title>other menu</title>

<menu action="action2">

<title>item 2</title>

</menu>

</submenu>

</submenu>

</menu-example>

192

Chapter 15: Customizing and Extending GPS

15.6.2 Tool example
This section provides an example that defines a new tool. This is only
a short example, since Ada, C and C++ support themselves are provided
through such a file, available in the GPS installation.

This example adds support for the " find" Unix utility, with a few
switches. All these switches are editable through the project properties
editor.

It also adds a new action and menu. The action associated with this
menu gets the default switches from the currently selected project, and
then ask the user interactively for the name of the file to search.

<?xml version="1.0" ?>

<toolexample>

<tool name="Find" >

<switches columns="2" >

<title column="1" >Filters</title>

<title column="2" >Actions</title>

<spin label="Modified less than n days ago" switch="-mtime-"

min="0" max="365" default="0" />

<check label="Follow symbolic links" switch="-follow" />

<check label="Print matching files" switch="-print" column="2" />

</switches>

</tool>

<action name="action find">

<shell>Project %p</shell>

<shell>Project.get_tool_switches_as_string %1 Find </shell>

<shell>input_dialog "Name of file to search" Filename</shell>

<external>find . -name %1 %2</external>

</action>

<Submenu>

<Title>External</Title>

<menu action="action find">

<Title>Launch find</Title>

</menu>

</Submenu>

</toolexample>

15.7 Scripting GPS

15.7.1 Scripts
Scripts are small programs that interact with GPS and allow you to
perform complex tasks repetitively and easily. GPS includes support

193

Using the GNAT Programming System

for two scripting languages currently, although additional languages
might be added in the future. These two languages are described in the
following section.

Support for scripting is currently work in progress in GPS. As a re-
sult, not many commands are currently exported by GPS, although their
number is increasing daily. These commands are similar to what is
available to people who extend GPS directly in Ada, but with a strong
advantage: they do not require any recompilation of the GPS core, and
can be tested and executed interactively.

The goal of such scripts is to be able to help automate processes such
as builds, automatic generation of graphs,. . .

These languages all have a separate console associated with them,
which you can open from the Tools menu. In each of these console,
GPS will display a prompt, at which you can type interactive commands.
These console provide completion of the command names through the
〈tab〉 key.

For instance, in the GPS shell console you can start typing
GPS> File

then press the 〈tab〉 key, which will list all the functions whose name
starts with " File" .

A similar feature is available in the python console, which also pro-
vides completion for all the standard python commands and modules.

All the scripting languages share the same set of commands exported
by GPS, thanks to a abstract interface defined in the GPS core. As a
result, GPS modules do not have to be modified when new scripting
languages are added.

Scripts can be executed immediately upon startup of GPS by using
the command line switch --load . Specifying the following command
line:

gps --load=shell:mytest.gps

will force the gps script ‘mytest.gps ’ to be executed immediately,
before GPS starts reacting to user’s requests. This is useful if you want
to do some special initializations of the environment. It can also be used
as a command line interface to GPS, if you script’s last command is to
exit GPS.

In-line commands can also be given directly on the command line
through --eval command line switch.

For instance, if you want to analyze an entity in the entity browser
from the command line, you would pass the following command switches:

gps --eval=shell:’Entity entity_name file_name; Entity.show %1’

See the section Section 15.4 [Customizing through XML files],
page 140 on how to bind key shortcuts to shell commands.

194

Chapter 15: Customizing and Extending GPS

15.7.2 Scripts and GPS actions
There is a strong relationship between GPS actions, as defined in the
customization files (see Section 15.4.1 [Defining Actions], page 142), and
scripting languages

Actions can be bound to menus and keys through the customization
files or the Edit->Key shortcuts dialog.

These actions can execute any script command, See Section 15.4.1
[Defining Actions], page 142. This is done through the <shell> XML
tag.

But the opposite is also true. From a script, you can execute any
action registered in GPS. This can for instance be used to split windows,
highlight lines in the editor,. . . when no equivalent shell function exists.
This can also be used to execute external commands, if the scripting
language doesn’t support this in an easy manner.

Such calls are made through a call to execute_action , as in the
following example:

execute_action "Split horizontally"

GPS.execute_action (action="Split horizontally")

The list of actions known to GPS can be found through the Edit->Key
shortcuts dialog. Action names are case sensitive.

Some of the shell commands take subprograms as parameters. If you
are using the GPS shell, this means you have to pass the name of a GPS
action. If you are using Python, this means that you pass a subprogram,
See Section 15.7.6 [Subprogram parameters], page 199.

15.7.3 The GPS Shell
The GPS shell is a very simple-minded, line-oriented language. It is
accessible through the Shell window at the bottom of the GPS window.
It is similar to a Unix shell, or a command window on Windows systems.

Type help at the prompt to get the list of available commands, or
help followed by the name of a command to get more information on
that specific command.

The following example shows how to get some information on a source
entity, and find all references to this entity in the application. It searches
for the entity " entity name" , which has at least one reference anywhere
in the file " file name.adb" . After the first command, GPS returns an
identifier for this entity, which can be used for all commands that need an
entity as a parameter, as is the case for the second command. When run,
the second command will automatically display all matching references
in the location window.

GPS> Entity my_entity file_name.adb

195

Using the GNAT Programming System

<Entity_0x09055790>

GPS> Entity.find_all_refs <Entity_0x09055790>

Since the GPS shell is very simple, it doesn’t provide any reference
counting for the result types. As a result, all the values returned by a
command, such as <Entity_0x09055790> in the example above, are kept
in memory.

The GPS shell provides the command clear_cache which removes
all such values from the memory. After this command is run, you can
no longer use references obtained from previous commands, although of
course you can run these commands again to get a new reference.

The return value of the 9 previous commands can easily be recalled
by passing %1, %2,. . . on the command line. For instance, the previous
example could be rewritten as

GPS> Entity my_entity file_name.adb

<Entity_0x09055790>

GPS> Entity.find_all_refs %1

These return values will be modified also for internal commands sent
by GPS, so you should really only use this when you emit multiple com-
mands at the same time, and don’t do any other action in GPS. This is
mostly useful when used for command-line scripts (see --eval and --
load), or for custom files, See Section 15.4 [Customizing through XML
files], page 140.

Arguments to commands can, but need not, be quoted. If they don’t
contain any space, double-quote (’" ’) or newline characters, you do not
need to quote them. Otherwise, you should surround them with double-
quotes, and protect any double-quote part of the argument by preceding
it with a backslash.

There is another way to quote a command: use three double-quotes
characters in a row. Any character loses its special meaning until the
next three double-quotes characters set. This is useful if you do not know
in advance the contents of the string you are quoting.

Locations.parse """%1 """ category_name

15.7.4 The Python Interpreter
Python is an interpreted object-oriented language, created by Guido Van
Rossum. It is similar in its capabilities to languages such as Perl, Tcl
or Lisp. This section is not a tutorial on python programming. See
http://www.python.org/doc/current/ to access the documentation for
the current version of python.

If python support has been enabled, the python shell is accessible
through the Python window at the bottom of the GPS window. You can
also display it by using the menu ‘Tools->Python Console ’.

196

http://www.python.org/doc/current/

Chapter 15: Customizing and Extending GPS

You can type help(GPS) in the python console to see the list of func-
tions exported by GPS to python. If you want to save the output of this
(or any) command to a file, you can do:

>>> e=file("/tmp/gps-help.txt", "w")

>>> sys.stdout=e

>>> help(GPS)

>>> e.flush()

>>> sys.stdout=sys.__stdout__

The same example that was used to show the GPS shell follows, now
using python. As you can notice, the name of the commands is similar,
although they are not run exactly in the same way. Specifically, GPS
benefits from the object-oriented aspects of python to create classes and
instances of these classes.

In the first line, a new instance of the class Entity is created through
the create_entity function. Various methods can then be applied to
that instance, including find_all_refs , which lists all references to
that entity in the location window:

>>> e=GPS.Entity ("entity_name", "file_name.adb")

>>> e.find_all_refs()

The screen representation of the classes exported by GPS to python
has been modified, so that most GPS functions will return an instance
of a class, but still display their output in a user-readable manner.

Python has extensive introspection capabilities. Continuing the pre-
vious example, you can find what class e is an instance of with the
following command:

>>> help(e)

Help on instance of Entity:

<GPS.Entity instance>

It is also possible to find all attributes and methods that can be applied
to e, as in the following example:

>>> dir (e)

[’__doc__’, ’__gps_data__’, ’__module__’, ’called_by’, ’calls’,

’find_all_refs’]

Note that the list of methods may vary depending on what modules
were loaded in GPS, since each module can add its own methods to any
class.

In addition, the list of all existing modules and objects currently
known in the interpreter can be found with the following command:

>>> dir ()

[’GPS’, ’GPSStdout’, ’__builtins__’, ’__doc__’, ’__name__’, ’e’, ’sys’]

You can also load and execute python scripts with the execfile com-
mand, as in the following example:

>>> execfile ("test.py")

197

Using the GNAT Programming System

Python supports named parameters. Most functions exported by GPS
define names for their parameters, so that you can use this Python
feature, and make your scripts more readable. A notable exception to
this rule are the functions that take a variable number of parameters.
Using named parameters allows you to specify the parameters in any
order you wish, e.g:

>>> e=GPS.Entity (name="foo", file="file.adb")

15.7.5 Python modules
On startup, GPS will automatically import (with python’s import com-
mand) all the files with the extension ‘.py ’ found in the directory
‘$HOME/.gps/python_startup ’. These files are loaded only after all
standard GPS modules have been loaded, as well as the custom files,
but before the script file or batch commands specified on the command
lines with the --eval or --load switches.

As a result, one can use the usual GPS functions exported to python
in these startup scripts. Likewise, the script run from the command line
can use functions defined in the startup files.

Since the import command is used, the functions defined in this
modules will only be accessible by prefixing their name by the name of
the file in which they are defined. For instance if a file ‘mystartup.py ’ is
copied to the startup directory, and defines the function func , then the
latter will be accessible in GPS through mystartup.func .

The standard python mechanism for loading scripts on startup is
still available. As usual, python can automatically load a script on
startup. You can do this by setting an environment variable named
PYTHONSTARTUPto the name of a file containing your start-up commands.

If you are writing a set of python scripts that other people will use,
you need to provide several things:
• The python files themselves. This is a set of ‘.py ’ files, which the

user should install in his ‘python_startup ’ directory.
• An XML file with the format described in the customization section

of this documentation. This XML file should create a series of ac-
tions, through the <action> tag, exported to the user. This allows
him to either create menus to execute these commands or to bind
them to special key shortcuts

Alternatively, your python script can call the command GPS.parse_
xml to specify some inline XML tags to interpret. These tags can directly
create the new menus or key bindings associated with your command.

The following example defines a python command that inserts a line
full of dashes (’-’) at the current cursor location. This command is asso-

198

Chapter 15: Customizing and Extending GPS

ciated with the key binding 〈control-c n〉, and can be distributed as a single
XML file.

This code must be stored in a file test.py in $HOME/.gps/python_startup

from GPS import *

def add_dashes_line():

replace_text (current_context().file().name(),

current_context().location().line(),

current_context().location().column(),

"--------------------------------", 0, 0)

parse_xml ("""

<action name="dashes line">

<shell lang="python">test.add_dashes_line()</shell>

<context>Source editor</context>

</action>

<key action="dashes line">control-c n</key>

""")

Several complex examples are provided in the GPS distribution, in
the directory ‘examples/python ’. These are modules that you might
want to use for your own GPS, but more important that will show how
GPS can be extended from Python.

If your script doesn’t do what you expect it to do, there are several
ways to debug it, among which the easiest is probably to add some
" print" statements. Since some output of the scripts is sometimes hid-
den by GPS (for instance for interactive commands), you might not see
this output.

In this case, you can reuse the tracing facility embedded in GPS itself.
Modify the file ‘$HOME/.gps/traces.cfg ’, and add the following line:

PYTHON.OUT=yes

This will include the python traces as part of the general traces avail-
able in the file ‘$HOME/.gps/log ’. Note that it may slow down GPS if
there is a lot of output to process.

15.7.6 Subprogram parameters
A few of the functions exported by GPS in the GPS shell or in python
expect a subprogram as a parameter.

This is handled in different ways depending on what language your
are using:
• GPS shell

It isn’t possible to define new functions in the GPS shell. How-
ever, this concept is similar to the GPS actions (see Section 15.4.1
[Defining Actions], page 142), which allow you to execute a set of
commands and launch external processes.

199

Using the GNAT Programming System

Therefore, a subprogram parameter in the GPS shell is a string,
which is the name of the action to execute.
For instance, the following code defines the action " on edition" ,
which is called every time a new file is edited. The action is de-
fined in the shell itself, although this could be more conveniently
done in a separate customization file.

parse_xml """<action name="on_edition">

<shell>echo "File edited"</shell></action>"""

Hook "file_edited"

Hook.add %1 "on_edition"

• Python
Python of course has its own notion of subprogram, and GPS is fully
compatible with it. As a result, the syntax is much more natural
than in the GPS shell. The following example has the same result
as above:

import GPS

def on_edition(self, *arg):

print "File edited"

GPS.Hook ("file_edited").add (on_edition)

Things are in fact slightly more complex if you want to pass meth-
ods are arguments. Python has basically three notions of callable
subprograms, detailed below. The following examples all create a
combo box in the toolbar, which calls a subprogram whenever its
value is changed. The documentation for the combo box indicates
that the callback in this case takes two parameters:

- The instance of the combo
- The current selection in the combo box

The first parameter is the instance of the combo box associated with
the toolbar widget, and, as always in python, you can store your own
data in the instance, as shown in the examples below.
Here is the description of the various subprograms:
• Global subprograms

These are standard subprograms, found outside class defini-
tions. There is no implicit parameter in this case. However, if
you need to pass data to such a subprogram, you need to use
global variables

import GPS

my_var = "global data"

def on_changed (combo, choice):

global my_var

print "on_changed called: " + \

my_var + " " + combo.data + " " + choice

200

Chapter 15: Customizing and Extending GPS

combo = GPS.Combo \

("name", label="name", on_changed=on_changed)

GPS.Toolbar().append (combo)

combo.data = "My own data"

• Unbound methods
These are methods of a class. You do not specify, when you
pass the method in parameter to the combo box, what instance
should be passed as its first parameter. Therefore, there is no
extra parameter either.
Note however than whatever class the method is defined in, the
first parameter is always an instance of the class documented
in the GPS documentation (in this case a GPS.Combo instance),
not an instance of the current class.
In this first example, since we do not have access to the instance
of MyClass, we also need to store the global data as a class
component. This is a problem if multiple instances of the class
can be created.

import GPS

class MyClass:

my_var = "global data"

def __init__ (self):

self.combo = GPS.Combo \

("name", label="name", on_changed=MyClass.on_changed)

GPS.Toolbar().append (self.combo)

self.combo.data = "My own data"

def on_changed (combo, choice):

No direct access to the instance of MyClass.

print "on_changed called: " + \

MyClass.my_var + " " + combo.data + " " + choice

MyClass()

As the example above explains, there is no direct access to My-
Class when executing on changed. An easy workaround is the
following, in which the global data can be stored in the instance
of MyClass, and thus be different for each instance of MyClass.

import GPS

class MyClass:

def __init__ (self):

self.combo = GPS.Combo \

("name", label="name", on_changed=MyClass.on_changed)

GPS.Toolbar().append (self.combo)

self.combo.data = "My own data"

self.combo.myclass = self ## Save the instance

self.my_var = "global data"

201

Using the GNAT Programming System

def on_changed (combo, choice):

print "on_changed called: " + \

combo.myclass.my_var + " " + combo.data + " " + choice

MyClass()

• Bound methods
The last example works as expected, but is not convenient to
use. The solution here is to use a bound method, which is a
method for a specific instance of a class. Such a method always
has an extra first parameter, set implicitly by Python or GPS,
which is the instance of the class the method is defined in.
Notice the way we pass the method in parameter to append(),
and the extra third argument to on changed in the example
below.

import GPS

class MyClass:

def __init__ (self):

self.combo = GPS.Combo \

("name", label="name", on_changed=self.on_changed)

GPS.Toolbar().append (self.combo)

self.combo.data = "My own data"

self.my_var = "global data"

def on_changed (self, combo, choice):

self is the instance of MyClass specified in call to append()

print "on_changed called: " + \

self.my_var + " " + combo.data + " " + choice

MyClass()

15.7.7 Python FAQ
This section lists some of the problems that have been encountered while
using Python inside GPS. This is not a general Python discussion.

15.7.7.1 Spawning external processes
There exist various solutions to spawn external processes from a script:
• Use the functionalities provided by the GPS.Process class
• Execute a GPS action through GPS.execute_action .

This action should have an <external> XML node indicating how
to launch the process

• Create a pipe and execute the process with os.popen() calls
This solution doesn’t provide a full interaction with the process,
though.

202

Chapter 15: Customizing and Extending GPS

• Use a standard expect library of Python
The use of an expect library may be a good solution. There are
various python expect libraries that already exist.
These libraries generally try to copy the parameters of the standard
file class. They may fail doing so, as GPS’s consoles do not fully
emulate all the primitive functions of that class (there is no file
descriptor for instance).
When possible, it is recommended to use one of the methods above
instead.

15.7.7.2 Redirecting the output of spawned processes
In general, it is possible to redirect the output of any Python script
to any GPS window (either an already existing one, or creating one
automatically), through the "output" attribute of XML configuration
files.

However, there is a limitation in python that the output of processes
spawned through os.exec() or os.spawn() is redirected to the standard
output, and not to the usual python output that GPS has overriden.

There are two solutions for this:
• Execute the external process through a pipe

The output of the pipe is then redirected to Python’s output, as in:
import os, sys

def my_external():

f = os.popen (’ls’)

console = GPS.Console ("ls")

for l in f.readlines():

console.write (’ ’ + l)

This solution allows you, at the same time, to modify the output, for
instance to indent it as in the example above.

• Execute the process through GPS
You can go through the process of defining an XML customization
string for GPS, and execute your process this way, as in:

GPS.parse_xml ("""

<action name="ls">

<external output="output of ls">ls</external>

</action>""")

def my_external():

GPS.execute_action ("ls")

This solution also allows you to send the output to a different window
than the rest of your script. But you cannot filter or modify the
output as in the first solution.

203

Using the GNAT Programming System

15.7.7.3 Contextual menus on object directories only
The following filter can be used for actions that can only execute in the
Project View, and only when the user clicks on an object directory. The
contextual menu entry will not be visible in other contexts

<?xml version="1.0" ?>

<root>

<filter name="object directory"

shell_cmd="import os.path; os.path.samefile (GPS.current_context().project().object_dirs()[0],GPS.current_context().directory())"

shell_lang="python"

module="Explorer" />

<action name="Test on object directory">

<filter id="object directory" />

<shell>echo "Success"</shell>

</action>

<contextual action="Test on object directory" >

<Title>Test on object directory</Title>

</contextual>

</root>

15.7.7.4 Redirecting the output to specific windows
By default, the output of all python commands is displayed in the Python
console. However, you might want in some cases to create other windows
in GPS for this output. This can be done in one of two ways:
• Define a new action

If the whole output of your script should be redirected to the same
window, or if the script will only be used interactively through a
menu or a key binding, the easiest way is to create a new XML
action, and redirect the output, as in

<?xml version="1.0" ?>

<root>

<action name="redirect output" output="New Window">

<shell lang="python">print "a"</shell>

</action>

</root>

All the various shell commands in your action can be output in a
different window, and this also applies for the output of external
commands.

• Explicit redirection
If, however, you want to control in your script where the output
should be sent, for instance if you can’t know that statically when
you write your commands, you can use the following code:

sys.stdin = sys.stdout = GPS.Console ("New window")

print "foo"

204

Chapter 15: Customizing and Extending GPS

print (sys.stdin.read ())

sys.stdin = sys.stdout = GPS.Console ("Python")

The first line redirect all input and output to a new window, which is
created if it doesn’t exist yet. Note however that the output of stderr
is not redirected, and you need to explicitely do it for sys.stderr .
The last line restore the default Python console. You must do this
at the end of your script, or all scripts will continue to use the new
consoles.
You can alternatively create separate objects for the output, and use
them in turn:

my_out = GPS.Console ("New Window")

my_out2 = GPS.Console ("New Window2")

sys.stdout=my_out

print "a"

sys.stdout=my_out2

print "b"

sys.stdout=GPS.Console ("Python")

The parameter to the constructor GPS.Console indicates whether
any output sent to that console should be saved by GPS, and reused
for the %1, %2,... parameters if the command is executed in a GPS
action. That should generally be 1, except for stderr where it should
be 0.

15.7.7.5 Reloading a python file in GPS
After you have made modification to a python file, you might want to
reload it in GPS. This requires careful use of python commands.

Here is an example. Lets assume you have a python file (‘"mymod.py" ’)
which contains the following:

GPS.parse_xml ("""

<action name="my_action">

<shell lang="python">mymod.myfunc()</shell>

</action>""")

def myfunc():

print "In myfunc\n"

As you can guess from this file, it defines an action " my action" , that
you can for instance associate with a keybinding through the Edit->Key
shortcuts menu.

If this file has been copied in the ‘$HOME/.gps/python_startup/ ’ di-
rectory, it will be automatically loaded at startup.

Notice that the function myfunc is thus found in a separate names-
pace, with the name mymod, same as the file.

205

Using the GNAT Programming System

If you decide, during your GPS session, to edit this file and have the
function print " In myfunc2" instead, you then have to reload the file by
typing the following command in the Python console:

> execfile ("HOME/.gps/python_startup/mymod.py", mymod.__dict__)

The first parameter is the full path to the file that you want to reload.
The second argument is less obvious, but indicates that the file should
be reloaded in the namespace mymod.

If you omit the optional second parameter, Python will load the file,
but the function myfunc will be defined in the global namespace, and
thus the new definition is accessible through

> myfunc()

Thus, the key shortcut you had set, which still executes
mymod.myfunc() will keep executing the old definition.

By default, GPS provides a contextual menu when you are editing a
Python file. This contextual menu (Python->Reload module) will take
care of all the above details.

15.7.7.6 Printing the GPS Python documentation
The python extension provided by GPS is fully documentation in this
manual and a separate manual accessible through the Help menu in
GPS.

However, this documentation is provided in HTML, and might not be
the best suitable for printing, if you wish to do so.

The following paragraph explains how you can generate your own
documentation for any python module, including GPS, and print the
result.

import pydoc

pydoc.writedoc (GPS)

In the last comamnd, GPSis the name of the module that you want to
print the documentation for.

These commands generate a ‘.html ’ file in the current directory.
Alternatively, you can generate a simple text file with
e=file("./python_doc", "w")

e.write (pydoc.text.document (GPS))

e.flush()

This text file includes bold characters by default. Such bold characters
are correctly interpreted by tools such as ‘a2ps ’ which can be used to
convert the text file into a postscript document.

206

Chapter 15: Customizing and Extending GPS

15.7.7.7 Automatically loading python files at startup
At startup, GPS will automatically load a few python files.
This includes the file ‘autoexec.py ’ in its installation directory
‘share/gps/python ’, as well as all the files that each user has put in his
own ‘$HOME/.gps/python_startup ’ directory.

In addition, in order to make python files available to a group of users,
several approaches are possible:
• Each user can install them in his ‘$HOME/.gps/python_startup ’

directory
• The system administrator copies them in GPS installation directory

in ‘<prefix>/share/gps/python ’
• The system administrator copies them to any directory on your sys-

tem. This directory then needs to be added by each user to his
PYTHONPATHenvironment variable. Under unix, you can alterna-
tively modify the small ‘gps ’ wrapper script to do this automatically
on startup.

The above steps will make your files available to GPS, but will not
execute them automatically (apart for the first solution described above).

If you want to automatically execute a script, there are again a num-
ber of possibilities:
• Modify the file ‘autoexec.py ’ installed by GPS in

‘<prefix>/share/gps/python/ ’, and add an import state-
ment for each python package to execute.
This will need to be redone after each new installation of GPS

• Ask the users to select what packages they want to load, and ask
them to create a file (named for instance myautoexec.py) which
contains one import statement for each package to load, as in

import common_package1, common_package2

All the methods above require you to modify the installation of GPS
somehow. Alternatively, you can also provide a small wrapper script to
launch GPS. Here is an example of such a script, assuming your files are
in /dir/support and the file to load is support autoexec.py.

This is a unix-shell syntax. Such shells are also available on Windows,
but you can also do the following using a windows ‘.bat ’ file

LD_LIBRARY_PATH=/dir/support:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH

gps --eval=python:’import support_autoexec.py’ $*

15.7.8 Hooks
A hook is a named set of commands to be executed on particular occa-
sions as a result of user actions in GPS.

207

Using the GNAT Programming System

GPS and its various modules define a number of standard hooks,
which are called for instance when a new project is loaded, when a file
is edited, and so on. You can define your own commands to be executed
in such cases.

You can find out the list of hooks that GPS currently knows about by
calling the Hook.list function, which takes no argument, and returns a
list of hook names that you can use. More advanced description for each
hook is available through the describe hook command.

GPS> Hook.list

project_changed

open_file_action_hook

preferences_changed

[...]

GPS> hook preferences_changed

GPS> Hook.describe %1

Hook called when a file needs to be opened or closed

This hook is of type "open_file" -- see describe_hook_type

Python> GPS.Hook (" preferences changed").describe()
The description of each hooks includes a pointer to the type of the

hook, that is what parameters the subprograms in this hook will receive.
For instance:

GPS> Hook.describe_type "open_file"

Common type for all hooks related to opening files.

Arguments are the following: (file, line, column,

column_end, enable_navigation, new_file, force_reload)

The list of all known hook types can be found through the
Hook.list types command. This takes no argument and returns a list
of all known types of hooks. As before, you can more information for
each of these type through a call to Hook.describe type.

15.7.8.1 Adding commands to hooks
You can add your own command to existing hooks through a call to
the Hook.add command. Whenever the hook is executed by GPS or
another script, your command will also be executed, and will be given
the parameters that were specified when the hook is run. The first
parameter is always the name of the hook being executed.

This Hook.add applies to an instance of the hook class, and takes
one parameter, the command to be executed. This is a subprogram
parameter (see Section 15.7.6 [Subprogram parameters], page 199).
• GPS shell

The command can be any GPS action (see Section 15.4.1 [Defining
Actions], page 142). The arguments for the hook will be passed to the
action, and are available as $1, $2,. . . . In the following example, the

208

Chapter 15: Customizing and Extending GPS

message " Just executed the hook: project changed" will be printed
in the Shell console. Note that we are defining the action to be
executed inline, but this could in fact be defined in a separate XML
customization file for convenience.

GPS> parse_xml """<action name="my_action"><shell>echo "Just executed the hook"</shell></action_name>"""

GPS> Hook project_changed

GPS> Hook.add %1 "my_action"

• Python
The command must be the name of a subprogram to execute. The
arguments for the hook will be passed to this subprogram. In the
following example, the message " The hook project changed was ex-
ecuted by GPS" will be displayed in the Python console whenever
the project changes.

def my_callback (name):

print "The hook " + name + " was executed by GPS"

GPS.Hook ("project_changed").add (my_callback)

The example above shows the simplest type of hook, which doesn’t
take any argument. However, most hooks receive several parameters.
For instance, the hook " file edited" receives the file name as a parameter.
• GPS shell

The following code will print the name of the hook (" file edited")
and the name of the file in the shell console every time a file is open
by GPS.

GPS> parse_xml """<action name="my_action"><shell>echo name=$1 file=$2</shell></action>"""

GPS> Hook "file_edited"

GPS> Hook.add %1 "my_action"

• Python
The following code prints the name of the file being edited by GPS
in the python console whenever a new editor is opened. The second
argument is of type GPS.File.

def my_file_callback (name, file):

print "Editing " + file.name()

GPS.Hook ("file_edited").add (my_file_callback)

15.7.8.2 Action hooks
Some hooks have a special use in GPS. Their name always ends with
" action hook" .

As opposed to the standard hooks described in the previous section,
the execution of the action hooks stops as soon as one of the subprograms
returns a True value (" 1" or " true"). The subprograms associated with
that hook are executed one after the other. If any such subprogram
knows how to act for that hook, it should do the appropriate action and
return " 1" .

209

Using the GNAT Programming System

This mechanism is used extensively by GPS internally. For instance,
whenever a file needs to be opened in an editor, GPS executes the
" open file action hook" hook to request its editing. Several modules
are connected to that hook.

One of the first modules to be executed is the external editor mod-
ule. If the user has chosen to use an external editor, this module
will simply spawn Emacs or the external editor that the user has se-
lected, and return 1. This immediately stops the execution of the
" open file action hook" .

However, if the user doesn’t want to use external editors, this module
will return 0. This will keep executing the hook, and in particular will
execute the source editor module, which will always act and open an
editor internally in GPS.

This is a very flexible mechanism. In your own script, you could
choose to have some special handling for files with a " .foo" extension
for instance. If the user wants to open such a file, you would spawn for
instance an external command (say " my editor") on this file, instead of
opening it in GPS.

This is done with a code similar to the following
from os.path import *

import os

def my_foo_handler (name, file, line, column, \

column_end, enable_nav, new_file, reload):

if splitext (file.name())[1] == ".foo":

os.spawnv \

(os.P_NOWAIT, "/usr/bin/emacs", ("emacs", file.name()))

return 1 ## Prevent further execution of the hook

return 0 ## Let other subprograms in the hook do their job

GPS.Hook ("open_file_action_hook").add (my_foo_handler)

15.7.8.3 Running hooks
Any module in GPS is responsible for running the hooks when appropri-
ate. Most of the time, the subprograms exported by GPS to the scripting
languages will properly run the hook. But you might also need to run
them in your own scripts.

As usual, this will result in the execution of all the functions bound
to that hook, whether they are defined in Ada or in any of the scripting
languages.

This is done through the Hook.run command. This applies to an
instance of the Hook class, and a variable number of arguments These
must be in the right order and of the right type for that specific type of
hook.

210

Chapter 15: Customizing and Extending GPS

If you are running an action hook, the execution will stop as usual as
soon as one of the subprograms return a True value.

The following example shows how to run a simple hook with no pa-
rameter, and a more complex hook with several parameters. The latter
will in fact request the opening of an editor for the file in GPS, and thus
has an immediately visible effect on the interface. The file is opened at
line 100. See the description of the hook for more information on the
other parameters.

GPS.Hook ("project_changed").run()

GPS.Hook ("open_file_action_hook").run \

(GPS.File ("test.adb"), 100, 1, 0, 1, 1, 1)

15.7.8.4 Creating new hooks
The list of hooks known to GPS is fully dynamic. GPS itself declares a
number of hooks, mostly for its internal use although of course you can
also connect to them.

But you can also create your own hooks to report events happening
in your own modules and programs. This way, any other script or GPS
module can react to these events.

Such hooks can either be of a type exported by GPS, which constraints
the list of parameters for the callbacks, but make such hooks more
portable and secure; or they can be of a general type, which allows
basically any kind of parameters. In the latter case, checks are done
at runtime to ensure that the subprogram that is called as a result of
running the hook has the right number of parameters. If this isn’t the
case, GPS will complain and display error messages.

Creating new hooks is done through a call to Hook.register. This
function takes three arguments: the name of the hook you are creating,
a description of when the hook is executed for the interactive help, and
the type of the hook.

The name of the hook is left to you. Any character is allowed in that
name, although using only alphanumerical characters.

The description is displayed when the user calls Hook.describe.
The type of the hook must be one of the following:
• "" (the empty string)

This indicates that the hook doesn’t take any argument. None
should be given to Hook.run, apart of course from the hook name,
and none should be expected by the various commands connected to
that hook, once again apart from the hook name itself.

• one of the values returned by Hook.list types
This indicates that the hook is of one of the types exported by GPS
itself. The advantage of using such explicit types as opposed to

211

Using the GNAT Programming System

" general" is that GPS is able to make more tests for the validity of
the parameters.

• " general"
This indicates that the hook is of the general type that allows any
number of parameter, of any type. Other script will be able to
connect to it, but will not be executed when the hook is run if they
do not expect the same number of parameters that was given to
Hook.run

A small trick worth noting: if the command bound to a hook doesn’t
have the right number of parameters that this hook provide, the com-
mand will not be executed and GPS will report an error. You can make
sure that your command will always be executed by either giving de-
fault values for its parameter, or by using python’s syntax to indicate a
variable number of arguments.

This is especially useful if you are connecting to a " general" hook,
since you do not really know in advance how many parameters the call
of Hook.run will provide.

This callback can be connected to any type of hook

def trace (name, *args):

print "hook=" + name

This callback can be connected to hooks with one or two parameters

def trace2 (name, arg1, arg2=100):

print "hook=" + str (arg1) + str (arg2)

Hook.register ("my_custom_hook", "some description", "general")

Hook ("my_custom_hook").add (trace2)

Hook ("my_custom_hook").run (1, 2) ## Prints 1 2

Hook ("my_custom_hook").run (1) ## Prints 1 100

15.8 Adding support for new Version Control
Systems

15.8.1 Custom VCS interfaces
The Version Control interface in GPS can be customized, either to refine
the behavior of the existing system and adapt it to specific needs, or to
add support for other Version Control systems.

Custom VCS interfaces are defined entirely through XML files. Those
files are read in the same location as all the other XML customizations
that GPS offers. See Section 15.4 [Customizing through XML files],
page 140 for a complete description.

There are two steps to follow when creating a custom VCS interface.
The first step is to describe the VCS itself, and the second step is to

212

Chapter 15: Customizing and Extending GPS

implement actions corresponding to all the operations that this VCS can
perform. The following two sections (Section 15.8.2 [Describing a VCS],
page 213 and Section 15.8.3 [Implementing VCS actions], page 215)
describe those steps.

GPS is distributed with XML files describing the interfaces to
ClearCase and CVS. These XML files are located in the directory
share/gps/customize in the GPS installation, and can be used as a
reference for implementing new custom VCS interfaces.

15.8.2 Describing a VCS

15.8.2.1 The VCS node
The vcs node is the toplevel node which contains the description of the
general behavior expected from the VCS. It has two attributes.

The attribute name indicates the identifier of the VCS. The casing of
this name is important, and the same casing must be used in the project
files.

The attribute absolute_name indicates the behavior of the VCS rel-
ative to file names, and can take the values TRUEor FALSE. If it is set
to TRUE, it means that all commands in the VCS will work on absolute
file names. If it set to FALSE, it means that all actions work on base
file names, and that GPS will move to the appropriate directory before
executing an action.

Here is an example, adapted to the use of CVS:
<vcs name="Custom CVS" absolute_names="FALSE">

(... description of action associations ...)

(... description of supported status ...)

(... description of output parsers ...)

</vcs>

15.8.2.2 Associating actions to operations
GPS knows about a certain set of predefined “operations” that a VCS
can perform. The user can decide to implement some of them - not
necessarily all of them - in this section.

The following node is used to associate a predefined operation to an
action:

<OPERATION action="ACTION_LABEL" label="NAME OF OPERATION" />

Where:

213

Using the GNAT Programming System

‘OPERATION’
is the name of the predefined action. The list of predefined
actions is described in Section 15.8.3 [Implementing VCS
actions], page 215,

‘ACTION_LABEL’
is the name of the corresponding gps Action that will be
launched when GPS wants to ask the VCS to perform OP-
ERATION,

‘NAME OF OPERATION’
is the name that will appear in the GPS menus when working
on a file under the control of the defined VCS.

15.8.2.3 Defining status
All VCS have the notion of “status” or “state” to describe the relationship
between the local file and the repository. The XML node status is used
to describe the status that are known to a custom VCS, and the icons
associated to it:

<status label="STATUS_LABEL" stock="STOCK_LABEL" />

Where:

‘STATUS_LABEL’
is the name of the status, for example “Up to date” or “Needs
update” in the context of CVS.

‘STOCK_LABEL’
is the stock identifier of the icon associated to this status,
that will be used, for example, in the VCS Explorer. See
section Section 15.4.17 [Adding stock icons], page 178 for
more details on how to define stock icons.

Note that the order in which status are defined in the XML file is
important: the first status to be displayed must correspond to the status
“Up-to-date” or equivalent.

15.8.2.4 Output parsers
There are cases in which GPS needs to parse the output of the VCS
commands: when querying the status, or when “annotating” a file.

The following parsers can be implemented in the vcs node.

status_parser and local_status_parser
These parsers are used by the command VCS.status parse,
to parse a string for the status of files controlled by a VCS.
They accept the following child nodes:

214

Chapter 15: Customizing and Extending GPS

<regexp> (mandatory)
Indicates the regular expression to match.

<file_index>
An index of a parenthesized expression in regexp
that contains the name of a file.

<status_index>
An index of a parenthesized expression in regexp
that contains the file status. This status is passed
through the regular expressions defined in the
status_matcher nodes, see below.

<local_revision_index>
An index of a parenthesized expression in regexp
that contains the name of the local revision (the
version of the file that was checked out).

<repository_revision_index>
An index of a parenthesized expression in regexp
that contains the name of the repository revision
(the latest version of the file in the VCS).

<status_matcher>
A regular expression which, when matching an
expressions, identifies the status passed in the
node attribute label .

<annotations_parser>
This parser is used by the command VCS.annotations parse,
to parse a string for annotations in a file controlled by a VCS.
It accepts the following child nodes:
<regexp> (mandatory)

Indicates the regular expression to match.
<repository_revision_index>

An index of a parenthesized expression in regexp
that contains the repository revision of the line.

<file_index>
An index of a parenthesized expression in regexp
that indicates the part of the line that belongs to
the file.

15.8.3 Implementing VCS actions
A number of “standard” VCS operations are known to GPS. Each of these
operations can be implemented, using Actions. See Section 15.4.1 [Defin-
ing Actions], page 142) for a complete description of how to implement
actions.

215

Using the GNAT Programming System

Here is a list of all the defined VCS operations, and their parameters:

status_files

$1 = whether the log files should be cleared when
obtaining up-to-date status
$2- = the list of files to query status for.

Query the status for a list of files. This should perform a
complete VCS query and return results as complete as pos-
sible.

status_dir

$1 = the directory.

Same as above, but works on all the files in one directory.

local_status_files

$* = list of files

Query the local status for specified files. This query should
be as fast as possible, not connecting to any remote VCS. The
results need not be complete, but it is not useful to implement
this command if the output does not contain at least the
working revision.

open

$* = list of files

Open files or directories for editing. This command should
be implemented on any VCS that require an explicit check-
out/open/edit action before being able to edit a file.

update

$* = list of files

Bring the specified files in sync with the latest repository
revision.

update_dir

$* = directory

Update the contents of one directory.

commit

$1 = log file
$2- = list of files

Commit/submit/check-in files or directories with provided
log. The log is passed in a file.

commit_dir

$1 = log

216

Chapter 15: Customizing and Extending GPS

$2 = directory

Commit/submit one directory with provided log. The log is
passed in a file.

history

$1 = file

Query the entire changelog history for the specified file.
history_revision

$1 = revision
$2 = file

Query the history for corresponding revision of the specified
file.

annotate

$1 = file

Query the annotations for a file.
add

$1 = log

$2 = file or dir

Add file/dir to the repository, with the provided revision log.
remove

$1 = log

$2 = file or dir

Remove file/dir from the repository, with the provided revi-
sion log.

revert

$* = files

Revert the local file to repository revision, cancelling all local
changes, and close the file for editing if it was open.

diff_head

$1 = file

Display a visual comparison between the local file and the
latest repository revision.

diff_base_head

$1 = file

Display a visual comparison between the revision from which
the file has been checked-out and the latest revision.

217

Using the GNAT Programming System

diff_working

$1 = file

Display a visual comparison between the local file and the
revision from which it was obtained.

diff

$1 = rev

$2 = file

Display a visual comparison between the local file and the
specified revision.

diff2

$1 = revision 1
$2 = revision 2
$3 = file

Display a visual comparison between the two specified revi-
sions of the file.

218

Chapter 16: Environment

16 Environment

16.1 Command Line Options
Usage:

gps [options] [-P project-file] [source1] [source2] ...

Options:

--help Show this help message and exit

--version Show the GPS version and exit

--debug[=program] Start a debug session and optionally load the

program with the given arguments

--debugger debugger Specify the debugger’s command line

--host=tools_host Use tools_host to launch tools (e.g. gdb)

--target=TARG:PRO Load program on machine TARG using protocol PRO

--load=lang:file Execute an external file written in the

language lang

--eval=lang:file Execute an in-line script written in the

language lang

--tracelist Output the current configuration for logs

--traceon=name Activate the logs for a given module

--traceoff=name Deactivate the logs for a given module

--tracefile=file Parse an alternate configuration file for the logs

Source files can be absolute or relative pathnames.

If you prepend a file name with ’=’, this file will be

searched anywhere on the project’s source path

16.2 Environment Variables
The following environment variables can be set to override some default
settings in GPS:

‘GPS_ROOT’
Override the default root directory specified when GPS is
built (during the configure process, see the file INSTALL in
the GPS sources for more details) to access information such
as the location of the translation files.

‘GPS_HOME’
Override the variable HOME if present. All the config-
uration files and directories used by GPS are either rel-
ative to $HOME/.gps (%HOME%\ .gps under Windows) if
GPS HOME is not set, or to $GPS HOME/.gps (respectively
%GPS HOME%\ .gps) if set.

‘GPS_DOC_PATH’
Set the search path for the documentation. See Chapter 3
[Integrated Help], page 13 for more details.

219

Using the GNAT Programming System

‘GPS_CUSTOM_PATH’
Contains a list of directories to search for custom files. See
Section 15.4 [Customizing through XML files], page 140 for
more details.

‘GPS_CHANGELOG_USER’
Contains the user and e-mail to use in the global ChangeLog
files. Note that the common usage is to have two spa-
ces between the name and the e-mail. Ex: " John Does
<john.doe@home.com>"

‘GDK_USE_XFT’
Only relevant to Linux and Solaris (8 and above) systems. If
this variable is set to 1, then the fonts used in most parts of
gps will be anti-aliased fonts.
This option is enabled by default when running GPS locally
(DISPLAY set to ":0.0") and disabled otherwise. Setting this
variable explicitely overrides the default behavior.

16.3 Files
‘$HOME/.gps ’

GPS state directory. Defaults to C:\ .gps under Windows sys-
tems if HOME is not defined.

‘$HOME/.gps/log ’
Log file created automatically by GPS. When GPS is running,
it will create a file named ‘log.<pid> ’, where ‘<pid> ’ is the
GPS process id, so that multiple GPS sessions do not clobber
each other’s log. In case of a successful session, this file is
renamed ‘log ’ when exiting; in case of an unexpected exit
(a bug box will be displayed), the log file is kept under its
original name.
Note that the name of the log file is configured by the
‘traces.cfg ’ file.

‘$HOME/.gps/aliases ’
File containing the user-defined aliases (see Section 15.4.12
[Defining text aliases], page 165).

‘$HOME/.gps/customize ’
Directory containing files with user-defined customizations.
All files found under this directory are loaded by GPS dur-
ing start up. You can create/edit these files to add your own
menu/tool-bar entries in GPS, or define support for new lan-
guages. see Section 15.4 [Customizing through XML files],

220

Chapter 16: Environment

page 140 and see Section 15.4.11 [Adding support for new
languages], page 161.

‘$HOME/.gps/custom_key ’
Contains all the menu shortcuts defined in GPS. This file is
automatically created if you have activated the dynamic key
bindings feature (see [Dynamic key bindings], page 124).

‘$HOME/.gps/keys.xml ’
Contains all the key bindings for the actions defined in GPS
or in the custom files. This only contains the key bindings
overridden through the key shortcuts editor (see Section 15.3
[The Key Manager Dialog], page 139).

‘$HOME/.gps/debugger.log ’
Log file created by the integrated debugger to trace of com-
munication between GPS and gdb.

‘$HOME/.gps/desktop ’
Desktop file in XML format (using the menu File->Save
More->Desktop), loaded automatically if found.

‘$HOME/.gps/history ’
Contains the state and history of combo boxes (e.g. the Run-
>Custom... dialog).

‘$HOME/.gps/preferences ’
Contains all the preferences in XML format, as specified in
the preferences menu.

‘$HOME/.gps/sessions ’
Directory containing the debugging sessions.

‘$HOME/.gps/sessions/ session’
Each file in the sessions directory represents a particular
session saved by the user.

‘$HOME/.gps/traces.cfg ’
Default configuration for the system traces. These traces are
used to analyze problems with GPS. By default, they are sent
to the file ‘$HOME/.gps/log.<pid> ’.
This file is created automatically when the ‘$HOME/.gps/ ’
directory is created. If you remove it manually, it won’t be
recreated the next time you start GPS. When upgrading to a
new version of GPS, it is recommended to remove it since its
contents may change from version to version.

‘prefix’ The prefix directory where GPS is installed, e.g ‘/opt/gps ’.

‘prefix/bin ’
The directory containing the GPS executables.

221

Using the GNAT Programming System

‘prefix/etc/gps ’
The directory containing global configuration files for GPS.

‘prefix/lib ’
This directory contains the shared libraries used by GPS.

‘prefix/doc/gps/html ’
GPS will look for all the documentation files under this di-
rectory.

‘prefix/doc/gps/examples ’
This directory contains source code examples.

‘prefix/doc/gps/examples/language ’
This directory contains sources showing how to provide
a shared library to dynamically define a new language.
See Section 15.4.11 [Adding support for new languages],
page 161.

‘prefix/doc/gps/examples/tutorial ’
This directory contains the sources used by the GPS tutorial.

‘prefix/share/gps/customize ’
Directory containing files with system-wide customiza-
tions (see Section 15.4.11 [Adding support for new lan-
guages], page 161 and Section 15.4.12 [Defining text aliases],
page 165).

‘prefix/share/gps/gps-animation.gif ’
Animated image displayed in the top right corner of GPS to
indicate that actions (e.g compilation) are on going.

‘prefix/share/gps/gps-splash.jpg ’
Splash screen displayed by default when GPS is started.

‘prefix/share/locale ’
Directory used to retrieve the translation files, when rele-
vant.

16.4 Reporting Suggestions and Bugs
If you would like to make suggestions about GPS, or if you encountered a
bug, please report it to mailto:report@gnat.com if you are a supported
user, and to mailto:gps-devel@lists.act-europe.fr otherwise.

Please try to include a detailed description of the problem, including
sources to reproduce it if possible/needed, and/or a scenario describing
the actions performed to reproduce the problem, as well as the tools (e.g
debugger, compiler, call graph) involved.

The files ‘$HOME/.gps/log ’ and ‘$HOME/.gps/debugger.log ’ may also
bring some useful information when reporting a bug.

222

mailto:report@gnat.com
mailto:gps-devel@lists.act-europe.fr

Chapter 16: Environment

In case GPS generates a bug box, the log file will be kept under a
separate name (‘$HOME/.gps/log.<pid> ’ so that it does not get erased
by further sessions. Be sure to include the right log file when reporting
a bug box.

16.5 Solving Problems
This section addresses some common problems that may arise when
using or installing GPS.

‘Non-privileged users cannot start GPS ’
Q: I have installed GPS originally as super user, and ran GPS
successfully, but normal users can’t.
A: You should check the permissions of the directory
$HOME/.gps and its subdirectories, they should be owned
by the user.

‘GPS crashes whenever I open a source editor ’
This is usually due to font problems. Editing the file
‘$HOME/.gps/preferences ’ and changing the name of the
fonts, e.g changing Courier by Courier Medium, and Hel-
vetica by Sans should solve the problem.

‘GPS refuses to start the debugger ’
If GPS cannot properly initialize the debugger (using the
menu Debug->Initialize), it is usually because the under-
lying debugger (gdb) cannot be launched properly. To verify
this, try to launch the ’gdb’ command from a shell (i.e out-
side GPS). If gdb cannot be launched from a shell, it usually
means that you are using a wrong version of gdb (e.g a ver-
sion of gdb built for Solaris 8, but run on Solaris 2.6).

‘GPS is frozen during a debugging session ’
If GPS is no longer responding while debugging an applica-
tion you should first wait a little bit, since some communi-
cations between GPS and gdb can take a long time to finish.
If GPS is still not responding after a few minutes, you can
usually get the control back in GPS by either typing 〈Ctrl-C〉 in
the shell where you’ve started GPS: this should unblock it;
if it does not work, you can kill the gdb process launched by
GPS using the ps and kill , or the top command under Unix,
and the Task Manager under Windows: this will terminate
your debugging session, and will unblock GPS.

‘My Ada program fails during elaboration. How can I debug it ? ’
If your program was compiled with GNAT, the main program
is generated by the binder. This program is an ordinary Ada

223

Using the GNAT Programming System

(or C if the ‘-C ’ switch was used) program, compiled in the
usual manner, and fully debuggable provided that the ‘-g ’
switch is used on the gnatlink command (or ‘-g ’ is used in
the gnatmake command itself).
The name of this package containing the main program is
‘b˜xxx.ads/adb ’ where xxx is the name of the Ada main unit
given in the gnatbind command, and you can edit and debug
this file in the normal manner. You will see a series of calls to
the elaboration routines of the packages, and you can debug
these in the usual manner, just as if you were debugging code
in your application.

‘How can I debug the Ada run-time library ? ’
The run time distributed in binary versions of GNAT hasn’t
been compiled with debug information. Thus, it needs to be
recompiled before you can actually debug it.
The simplest is to recompile your application by adding the
switches ‘-a ’ and ‘-f ’ to the gnatmake command line. This
extra step is then no longer required, assuming that you
keep the generated object and ali files corresponding to the
GNAT run time available.
Another possibility on Unix systems is to use the file
‘Makefile.adalib ’ that can be found in the adalib directory
of your GNAT installation and specify e.g ‘-g -O2 ’ for the
‘CFLAGS’ switches.

‘The GPS main window is not displayed ’
If when launching GPS, nothing happens, you can try to re-
name the ‘.gps ’ directory (see Section 16.3 [Files], page 220)
to start from a fresh set up.

‘My project have several files with the same name. How can I
import it in GPS? ’

GPS’s projects do not allow implicit overriding of sources file,
i.e. you cannot have multiple times the same file name in
the project hierarchy. The reason is that GPS needs to know
exactly where the file is, and cannot reliably guess which
occurrence to use.
There are several solutions to handle this issue:
• Put all duplicate files in the same project

There is one specific case where a project is allowed to
have duplicate source files: if the list of source directories
is specified explicitly. All duplicate files must be in the
same project. With these conditions, there is no ambi-
guity for GPS and the GNAT tools which file to use, and

224

Chapter 16: Environment

the first file found on the source path is the one hiding
all the others. GPS only shows the first file.
You can then have a scenario variable that changes the
order of source directories to give visibility on one of the
other duplicate files.

• Use scenario variables in the project
The idea is that you define various scenarios in your
project (For instance compiling in " debug" mode or " pro-
duction" mode), and change the source directories de-
pending on this setup. Such projects can be edited di-
rectly from GPS (in the project properties editor, this is
the right part of the window, as described in this docu-
mentation). On top of the project explorer (left part of the
GPS main window), you have a combo box displayed for
each of the variable, allowing a simple switch between
scenarios depending on what you want to build.

• Use extending projects
These projects cannot currently be created through GPS,
so you will need to edit them by hand. See the GNAT
user’s guide for more information on extending projects.
The idea behind this approach is that you can have a
local overriding of some source files from the common
build/source setup (if you are working on a small part of
the whole system, you may not want to have a complete
copy of the code on your local machine).

225

Using the GNAT Programming System

226

Chapter 16: Index

Index

#
#ifdef. 44

-
–eval . 194
–load . 194
-c . 135
-g . 223
-gnatQ . 43
-k . 43
-u . 135

<
<action> . 142
<alias> . 165
<button> . 154
<case exceptions> 177
<check> . 183
<choice> . 172
<combo-entry>. 184
<combo> . 184
<contextual> . 154
<dependency> . 185
<documentation file> 177
<entry> . 154, 185
<expansion> . 185
<external> . 142
<field> . 184
<filter> . 142, 148
<filter and> . 148
<filter or> . 148
<index> . 173
<initial-cmd-line> 181
<key> . 156
<language> . 180
<Language> . 161
<menu> . 151
<popup> . 185
<pref> . 159
<preference> . 156
<project attribute> 169
<radio-entry> . 184
<radio> . 184
<shell> . 142, 172
<specialized index> 173

<spin> . 184
<stock icons> . 179
<string> . 172
<submenu> . 151
<switches> . 181
<theme> . 159
<title> . 151, 183
<tool> . 179
<vsearch-pattern> 160

A
a2ps . 134
action . 99, 142
Ada 3, 30, 43, 45, 46, 69, 96, 129, 135
ADA PROJECT PATH 47
add configuration variable 54
add dependency . 53
add symbols . 89
ALI . 43
aliases 95, 133, 165, 220
align . 95
all floating . 21
analyze other file . 83
argument . 146
arguments . 91
as-directory . 184
as-file . 184
ASCII . 27, 100
asm . 105
assembly . 90, 133
attach . 89
AUnit . 34
auto refresh . 94
auto save . 27, 124
automatic syntax 127
autosave delay . 126

B
background tasks . 12
block . 26
block folding . 127
block highlighting 127
board . 88, 122
breakpoint. 90, 97, 100, 102, 132
breakpoint editor . 97

227

Using the GNAT Programming System

browsers . 52, 134
build . 9, 10, 11, 73

C
C 43, 55, 74, 96, 99, 131, 135
C++ 43, 55, 69, 74, 131
call graph . 46, 52, 79
call stack . 89, 91
called by . 46
calls . 46
cascade . 17
case exceptions . 35
case indentation . 129
case sensitive . 72
case exceptions . 177
category . 10
central area . 22
ChangeLog file . 115
character set . 124
clear . 32
clear cache command 196
clipboard . 5, 38
clone . 94
close . 15, 33
code fixing . 118
Codefix.errors . 192
Codefix.parse . 191
CodefixError.fix . 192
CodefixError.possible fixes 192
color 125, 128, 131, 134, 135, 136
column highlight . 127
column index . 136
command . 9, 91
command line . 4, 219
comment . 34
compare . 113
compilation . 10, 73
compile . 50
completion . 26
configuration variable 8, 50
connect . 88
context length . 135
contextual menu 45, 92, 93, 94, 101
continuation line . 129
continue. 88
continue until . 102
copy . 33, 38
core file . 89
creating configuration variable 51
cross debugger . 88

cross environment 49, 121
cross-references . 43
current line . 26, 100
current location. 102
custom editor . 37
customization 1, 123, 140
cut . 33, 38

D
data . 89, 92, 133
data window . 92
debug . 50, 87, 100
debugger . . . 5, 87, 104, 122, 131, 221, 223
debugger console . 104
debugging . 87
declaration line . 129
delimiter . 26
dependency . 135
dependency browser 82
description . 145
desktop . 124
detach . 89
diff . 135
directory . 7, 32
display . 101
display expression 91, 94
display line numbers 126
Display subprogram names 126
docked. 19, 22
docked window . 19
docking area . 22
drag-n-drop . 5, 21
dynamic key binding 124

E
edit . 33
edit project source file 54
editing . 23, 27, 100
editing configuration variable 52
editor . 1, 36, 126
emacs . 1, 27, 36, 37
emacs theme . 138
emacsclient . 37
End Of Statement 45
entity . 8
entity browser . 84
environment . 219
environment variables 219
errors . 9, 136

228

Chapter 16: Index

examine entity . 85
examine projects imported by 65
example 37, 104, 105, 129, 130, 148,

164, 219
exception . 132
exec directory . 49, 58
execute action . 195
execution 9, 11, 132, 134
execution window 9, 11
exit . 33
explorer . 8
explorer views . 5
export . 78
external . 143
external editor 36, 127
external tool . 179

F
fast project loading 136
file . 7, 10
file comparison . 135
file index . 136
file pattern . 136
file selector . 29
file view . 7
files . 220
filter . 115, 146
find . 8, 44, 69
find all local references 46
find all reads . 46
find all references 45, 46
find all writes . 46
find next . 44
find previous . 44
finish . 88
float . 125
floating . 21
fold . 34
font . 124, 128
ftp . 39

G
GDK USE XFT . 220
generate body . 34
generic vcs . 212
get attribute as list 188
get attribute as string 188
get tool switches as list 188
get tool switches as string 188

gif . 154, 222

global ChangeLog 115

GNAT 3, 8, 43, 47, 48

gnatmake . 223

gnatpp . 34

gnatstub . 34

gnuclient . 36

goto body. 44, 46

goto declaration 44, 46

goto file spec/body 45, 46

goto line . 45

gps shell . 195

GPS CHANGELOG USER 220

GPS CUSTOM PATH 220

GPS DOC PATH. 219

GPS HOME . 219

gps index.xml . 14

GPS ROOT . 219

graph disable . 105

graph display . 104

graph enable . 105

graph print . 104

graph undisplay . 105

H
handle . 19

help . 1, 13

helper. 134

hexadecimal. 27, 99

hide . 94

highlight delimiter 126

history . 91, 221

HOME . 220

hooks . 207

hooks, action hooks 209

hooks, creating . 211

hooks, Hook.describe 208

hooks, Hook.describe type 208

hooks, Hook.list . 208

hooks, Hook.list types. 208

hooks, Hook.register 211

hooks, Hook.run . 210

hooks, open file action hook 209

HTML . 1, 13

http . 39

229

Using the GNAT Programming System

I
icon . 93, 96

iconified . 16, 18

iconify . 15

image . 78

implicit dependency 135

imported project . 48

indentation 25, 129, 131

indentation level . 129

indexed project attributes 173

input dialog . 189

integrated help . 13

interactive command. 9, 145

interactive search 6, 112

interrupt . 88

introduction . 1

ISO-8859-1 . 124

J
jpeg . 154, 222

K
key 10, 11, 27, 31, 69, 100, 124, 156

key binding . 124

key shortcuts . 35

kill . 89

L
languages . 50

Languages . 57

limited with . 53

line index . 136

line terminator . 126

load . 33, 89

local variables . 91

locate in explorer 8, 66

location . 10, 125, 136

locations tree . 10, 45

Locations.parse . 191

log . 220, 221

look in . 70

M
macro . 44

main unit . 49

main units . 58

main windows . 3

maximized . 16, 21

MDI . 5, 15, 72, 125

MDI.save all . 188

memory view 91, 94, 99, 102, 133

menu . . . 11, 16, 17, 20, 21, 30, 33, 38, 69,
72, 87, 89, 92, 96, 98, 112, 146

menu bar . 4

menu separator . 153

menus . 151

messages 9, 11, 32, 136

messages window . 9

moving . 21

Multiple Document Interface . . . 5, 15, 72,
125

N
namespace . 44

naming scheme 49, 59

navigate. 44

navigation . 43

new file . 30

new view . 31

next . 88

Next Subprogram . 45

next tag . 45

nexti . 88

normalization of projects 47

O
object directory 48, 58

on-failure . 144

opaque . 125

open . 31

options . 219

output . 190

overloaded . 44

230

Chapter 16: Index

P
paste . 33, 38
patch . 136
png . 78, 154
predefined patterns 160
preferences 4, 20, 21, 34, 36, 38, 101,

123, 221
pretty print . 34
Previous Subprogram 45
previous tag . 45
print . 33, 101, 134
PrintFile . 134
problems . 223
progress bar . 11
project 3, 4, 5, 8, 31, 43, 47, 121
project attribute . 50
project attributes 169
project attributes, indexed. 173
project browser . 65
project description 47
project explorer 5, 47, 51, 52, 69
project file . 8, 47, 48
project menu . 54
project properties editor 62
project variable 8, 50
project view . 6, 9
project wizard . 55
protection domain. 90, 98, 99
python . 196, 202
python window . 9

Q
quit . 33

R
range size . 133
recent . 32
recompute project 55
redo . 33
references . 46
refill . 34
refresh . 83, 91
registers . 91
regular expression . 72
relative project path 136
remote copy . 134
remote files . 39
remote shell . 134

remove dependency 53
removing variable . 52
renaming entities . 79
replace . 44, 69
replace with . 69
rsh . 39
rsync . 39
run . 11, 88

S
save . 32
save all . 32
save as . 32, 33
save default desktop. 32
save desktop . 32
saving . 38
saving projects 53, 54
scope . 98
screen shot . . 3, 6, 9, 10, 12, 13, 16, 17, 18,

19, 23, 29, 31, 39, 51, 52, 54, 56, 60,
61, 63, 65, 66, 69, 71, 80, 82, 85, 90,
91, 93, 96, 97, 98, 99, 101, 103, 110,
118, 123, 139, 166

scripts . 193
search . 8, 10, 44, 69
search all occurrences 71
search context . 69, 70
search for . 69
select all . 33
separate unit . 43
shell . 9, 117, 145
shell window. 9
show . 94
Show absolute paths 7
show dependencies 66
show dependencies for 82
show files depending on 83
show files depending on file 84
Show files from project only 7
Show flat view . 7
show implicit dependencies 83
show projects depending on 67
show recursive dependencies 66
show system files . 83
show type . 94
show value . 94
solving problems . 223
source browsing . 77
source directory . 48
source file 27, 49, 100

231

Using the GNAT Programming System

source navigation . 43
speed column policy 127
splash screen . 124
Splitting . 20
ssh . 39
Start Of Statement 45
status . 11
status bar . 11
status line . 11
step . 88
stepi . 88
stock icons . 179
strip blanks . 126
sub project . 48
submitting bugs . 222
subprogram parameters 199
substitution . 146
suggestions . 222
switches . 49, 60
switches editor . 64
syntax highlighting 101

T
tabulation . 129, 131
tag . 45
target . 88
task . 90, 98, 99
task manager . 12
tasks . 12
telnet . 39
terminate . 88
testing . 34
text files . 50
themes . 137
themes creation . 159
thread . 89
title . 17, 18
title bar . 15, 93
tool bar . 5, 124, 154
tools . 49, 117
tooltip . 25, 101, 126
top level . 21
tty. 132

U
uncomment. 34
undo . 33
unfold . 34

unit testing . 34
Unix . 52, 223
unmaximized . 17, 21
update value . 94
url . 37, 38

V
variable . 8, 50
VCS . 57
VCS explorer . 110
version control 109, 110, 112
Version Control System 57
vertical layout . 135
vi . 36, 37
view . 31, 105
vim . 37
visual diff . 117, 135
VxWorks . 49
VxWorks AE . 98

W
warning index . 136
welcome dialog 3, 124
whole word . 72
window manager . 15
window selection . 15
Windows 7, 29, 31, 37, 219, 220, 223
work space . 5, 15, 19
wrench icon . 118

X
X-Window . 38
xpm . 154

Y
yank . 33, 38
yes no dialog . 189

Z
zoom . 95
zoom in . 95
zoom out . 95

232

	Introduction
	Description of the Main Windows
	The Welcome Dialog
	The Menu Bar
	The Tool Bar
	The Work Space
	The Project Explorer
	The explorer views
	The configuration variables

	The Messages Window
	The Shell and Python Windows
	The Locations Tree
	The Execution Window
	The Status Line
	The Task Manager

	Integrated Help
	The Help Menu
	Adding New Help Files

	Multiple Document Interface
	Selecting Windows
	Closing Windows
	Maximized and Iconified Windows
	Docked Windows
	Splitting Windows
	Floating Windows
	Moving Windows

	Editing Files
	General Information
	Editing Sources
	Key bindings

	The File Selector
	Menu Items
	The File Menu
	The Edit Menu

	Contextual Menus for Editing Files
	Handling of case exceptions

	Using an External Editor
	Using the Clipboard
	Saving Files
	Remote Files

	Source Navigation
	Support for Cross-References
	The Navigate Menu
	Contextual Menus for Source Navigation

	Project Handling
	Description of the Projects
	Project files and GNAT tools
	Contents of project files

	Supported Languages
	Scenarios and Configuration Variables
	Creating new configuration variables
	Editing existing configuration variables

	The Project Explorer
	The Project Menu
	The Project Wizard
	Project Naming
	Languages Selection
	VCS Selection
	Source Directories Selection
	Build Directory
	Main Units
	Naming Scheme
	Switches

	The Project Properties Editor
	The Switches Editor
	The Project Browser

	Searching and Replacing
	Compilation/Build
	The Build Menu

	Source Browsing
	General Issues
	Call Graph
	Dependency Browser
	Entity Browser

	Debugging
	The Debug Menu
	Debug
	Data

	The Call Stack Window
	The Data Window
	Description
	Manipulating items
	Moving items
	Colors
	Icons

	The Breakpoint Editor
	Scope/Action Settings for VxWorks AE

	The Memory Window
	Using the Source Editor when Debugging
	The Assembly Window
	The Debugger Console
	Upgrading from GVD to GPS
	Command Line Switches
	Menu Items
	Tool Bar Buttons
	Key Short Cuts
	Contextual Menus
	File Explorer
	Advantages of GPS

	Version Control System
	The VCS Explorer
	The VCS Menu
	The Version Control Contextual Menu
	Working with global ChangeLog file

	Tools
	The Tools Menu
	Visual Comparison
	Code Fixing

	Working in a Cross Environment
	Customizing your Projects
	Debugger Issues

	Customizing and Extending GPS
	The Preferences Dialog
	GPS Themes
	The Emacs Theme

	The Key Manager Dialog
	Customizing through XML files
	Defining Actions
	Macro arguments
	Filtering actions
	The filters tags

	Adding new menus
	Adding contextual menus
	Adding tool bar buttons
	Binding actions to keys
	Preferences support in custom files
	Creating new preferences
	Setting preferences values

	Creating themes
	Defining new search patterns
	Adding support for new languages
	Defining text aliases
	Aliases files
	Defining project attributes
	Declaring the new attributes
	Declaring the type of the new attributes
	Examples
	Accessing the project attributes

	Adding casing exceptions
	Adding documentation
	Adding stock icons

	Adding support for new tools
	Defining supported languages
	Defining default command line
	Defining tool switches
	Executing external tools
	Chaining commands
	Saving open windows
	Querying project switches
	Querying switches interactively
	Redirecting the command output
	Processing the tool output

	Customization examples
	Menu example
	Tool example

	Scripting GPS
	Scripts
	Scripts and GPS actions
	The GPS Shell
	The Python Interpreter
	Python modules
	Subprogram parameters
	Python FAQ
	Spawning external processes
	Redirecting the output of spawned processes
	Contextual menus on object directories only
	Redirecting the output to specific windows
	Reloading a python file in GPS
	Printing the GPS Python documentation
	Automatically loading python files at startup

	Hooks
	Adding commands to hooks
	Action hooks
	Running hooks
	Creating new hooks

	Adding support for new Version Control Systems
	Custom VCS interfaces
	Describing a VCS
	The VCS node
	Associating actions to operations
	Defining status
	Output parsers

	Implementing VCS actions

	Environment
	Command Line Options
	Environment Variables
	Files
	Reporting Suggestions and Bugs
	Solving Problems

	Index

