
The Ipe manual

Otfried Cheong

June 5, 2004

1 Welcome to the Wonderful World of Ipe!

. . . where making pictures is as easy as π . . .

Preparing figures for a scientific article is a time-consuming process. If you are using the LATEX
document preparation system in an environment where you can include (encapsulated) Postscript
figures or PDF figures, then the extendible drawing editor Ipe may be able to help you in the task.
Ipe allows you to prepare and edit drawings containing a variety of basic geometry primitives like
lines, splines, polygons, circles etc.

Ipe also allows you to add text to your drawings, and unlike most other drawing programs, Ipe
treats these text object as LATEX text. This has the advantage that all usual LATEX commands can
be used within the drawing, which makes the inclusion of mathematical formulae (or even simple
labels like “qi”) much simpler. Ipe processes your LATEX source and includes its Postscript or PDF
rendering in the figure.

In addition, Ipe offers you some editing functions that can usually only be found in professional
drawing programs or cad systems. For instance, it incorporates a context sensitive snapping
mechanism, which allows you to draw objects meeting in a point, having parallel edges, objects
aligned on intersection points of other objects, rectilinear and c-oriented objects and the like.
Whenever one of the snapping modes is enabled, Ipe shows you Fifi, a secondary cursor, which
keeps track of the current aligning.

One of the nicest features of Ipe is the fact that it is extensible. You can easily write your own
functions, so-called ipelets. Once registered with Ipe by adding them to your ipelet path, you can
use those functions like Ipe’s own editing functions. (In fact, some of the functions in the standard
Ipe distribution are actually implemented as ipelets.) Among others, there is an ipelet to compute
Voronoi diagrams.

Making an on-line presentation, or just slides for a presentation, is another task that requires
drawing figures. You can use Ipe to prepare presentations in PDF format, and either print them
on transparencies or display them using Acrobat Reader using a beamer during the presentation.
Ipe gives you access to the presentation-features of Acrobat Reader, such as automatic advance to
the next page and fancy transition modes.

Ipe tries to be self-explanatory. There is online help available, and most commands tell you
about options, shortcuts, or errors. Nevertheless, it would probably be wise to read at least a few
sections of this manual. Strongly suggested is the chapter on general concepts, and the chapter
that explains the snapping functions. If you want to use Ipe to prepare slides, you should also read
the chapter on page views. And if you have used Ipe 5 before, please read this.

2 About Ipe files

Ipe 6.0 creates (Encapsulated) Postscript or PDF files. These files can be used in any way that
PDF or Postscript files are used, such as viewed with Ghostview, with Acrobat Reader or Xpdf,

1

edited with Acrobat, or included in Latex/Pdflatex documents. However, Ipe cannot read arbitrary
Postscript or PDF files, only files it has created itself. This is because files created by Ipe contain a
special hidden stream that describes the Ipe objects. (So if you edit your Ipe-generated PDF file in
a different program such as Adobe Acrobat, Ipe will not be able to read the file again afterwards.)

You decide in what format to store a figure when saving it for the first time. Ipe gives you the
option of saving with extensions “eps” (Encapsulated Postscript), “ps” (Postscript), “pdf” (PDF),
and “xml” (XML). Note that only documents of a single page can be stored in Encapsulated
Postscript format, as this format doesn’t support multi-page documents. Files saved with extension
“xml” are—obviously—XML files and contain no Postscript of PDF information. The precise XML
format used by Ipe is documented later in this manual. XML files can be read by any XML-aware
parser, and it is easy for other programs to generate XML output to be read by Ipe. You probably
don’t want to keep your figures in XML format, but it is excellent for communicating with other
programs, and for converting figures between programs.

There are perhaps two major uses for Ipe documents. The first is for inclusion into Latex
documents, the second is for making presentations. There isn’t much to be said about the second
use: You create a PDF file with Ipe, and either print it on transparencies or present it using a
laptop with Acrobat Reader. You should read the section on page views if you plan to make on-line
presentations, as Ipe now allows you to create pages that are displayed incrementally in Acrobat
Reader.

So let’s concentrate on the first and original use of Ipe documents, inclusion in Latex documents.
Most Latex installations support the inclusion of figures in Encapsulated Postscript (EPS) format
(the “Encapsulated” means that there is only a single Postscript page and that it contains a
bounding box of the figure).

The standard way of including EPS figures is using the graphicx package. If you are not
familiar with it, here is a quick overview. In the preamble of your document, add the declaration:

\usepackage{graphicx}

One useful attribute to this declaration is draft, which stops LATEX from actually including the
figures—instead, a rectangle with the figure filename is shown:

\usepackage[draft]{graphicx}

To include the figure “figure1.eps”, you use the command:

\includegraphics{figs/figure1}

Note that it is common not to specify the file extension “.eps”. The command \includegraphics
has various options to scale and rotate the figure. For instance, to scale the same figure to 50%,
use:

\includegraphics[scale=0.5]{figs/figure1}

To scale such that the width of the figure becomes 5 cm:

\includegraphics[width=5cm]{figs/figure1}

Instead, one can specify the required height with height.
Here is an example that scales a figure to 200% and rotates it by 45 degrees counter-clockwise.

Note that the scale argument should be given before the angle argument.

\includegraphics[scale=2,angle=45]{figs/figure1}

Let’s stress once again that these commands are the standard commands for including EPS files
in a LATEX document. Unlike in previous versions of Ipe, Ipe files neither require nor support any

2

special treatment.1 If you are used to other commands for EPS inclusion, such as the old-fashioned
epsfig package,2 you can use them as well for Ipe figures. If you want to know more about the
LATEX packages for including graphics and producing colour, check the grfguide.tex document
that is probably somewhere in your TEX installation.

If you are a user of Pdflatex (a version of Latex that produces PDF instead of DVI output),
you cannot include EPS files. Instead, save your Ipe figures in PDF format, and include them in
the way described above.

Unfortunately, versions of Pdflatex earlier than 1.10 have a problem including PDF figures.
Each page of a PDF document can carry several “bounding boxes”, such as the MediaBox (which
indicates the paper size), the CropBox (which indicates how the paper will by cut), or the ArtBox
(which indicates the extent of the actual contents of the page). Ipe automatically saves, for each
page, the paper size in the MediaBox, and a bounding box for the drawing in the ArtBox. Versions
of Pdflatex earlier than 1.10, however, look at the CropBox, or, if the CropBox is not set, the
MediaBox. To include PDF figures using an earlier Pdflatex-version, you therefore have to instruct
Ipe to include a CropBox by ticking the Use CropBox checkbox in the Document properties (in
the Edit menu). (This is currently the default for new documents. The only disadvantage is that
Acrobat Reader will not display full pages in documents saved with this option, so when making
PDF presentations you probably want to untick this option.)

If you have Pdflatex 1.10 or higher, you can also solve the problem by including this line in the
preamble:

\expandafter\ifx\csname pdfoptionalwaysusepdfpagebox\endcsname\relax\else
\pdfoptionalwaysusepdfpagebox5
\fi

(Note that this will simply be ignored if you are using normal LATEX or an older version of Pdflatex.)
You can save all your figures in both EPS and PDF format, so that you can run both Latex and

Pdflatex on your document—when including figures, Latex will look for the EPS variant, while
Pdflatex will look for the PDF variant. (Here it comes in handy that you didn’t specify the file
extension in the \includegraphics command.)

You may find it cumbersome to save an Ipe figure in both formats each time you modify it. If
so, you can always save in, say, EPS format, and automate the conversion to PDF by writing a
shell script or batch file that calls ipetoipe to do the conversion.

On the other hand, if you only use Pdflatex, you might opt to exploit a feature of Pdflatex:
You can keep all the figures for a document in a single, multi-page Ipe document, with one figure
per page. You can then include the figures one by one into your document by using the page
argument of \includegraphics.

For example, to include page 3 from the PDF file “figures.pdf” containing several figures, you
could use

\includegraphics[page=3]{figs/figures}

3 Command line options and auxiliary programs

Ipe command line options Ipe supports the following two options:

-sheet style sheet name Adds the designated style sheet to any newly created documents.

-geom WxH+X+Y Places the Ipe main windows at the desired position and size. (Note the
slight difference with the standard Unix option -geometry).

1In particular, the ipe.sty package will not work with figures made with Ipe 6.
2In fact, in modern LATEX installations, epsfig.sty is just a small wrapper around graphics.sty.

3

In addition, you can specify the name of an Ipe file to open on the command line. Finally, Ipe
also understands some standard X11 options on Unix (this is support built into the Qt library, see
there for details).

ipetoipe: converting Ipe file formats The auxiliary program ipetoipe converts between the
different Ipe file formats:

ipetoipe (-xml | -pdf | -eps | -ps) [-export] infile outfile
ipetoipe -png <page> <resolution> infile outfile

For example, the command line syntax

ipetoipe -pdf figure1.eps figure1.pdf

converts figure1.eps to PDF format.
When you use the -export flag, no Ipe markup is included in the resulting output file. Ipe will

not be able to open a file created that way, so make sure you keep your original!
With the option -png ipetoipe converts a page of the document to a bitmap in PNG format.

(Of course the result contains no Ipe markup, so make sure you keep your original.) For instance,
the following command line

ipetoipe -png 3 150.0 presentation.pdf pres3.png

converts page 3 of the Ipe document presentation.pdf to a bitmap, with resolution 150.0 pixels
per inch.

pdftoipe: Importing Postscript and PDF You can convert arbitrary Postscript or PDF files
into Ipe documents, making them editable. The auxiliary program pdftoipe converts (pages from)
a PDF file into an Ipe XML-file. (If your source is Postscript, you have to first convert it to PDF
using Acrobat Distiller or ps2pdf.) Once converted to XML, the file can be opened from Ipe as
usual.

The conversion process should handle any graphics in the PDF file fine, but doesn’t do very
well on text—Ipe’s text model is just too different.

4 General Concepts

After you start up Ipe, you will see a window with a large gray area containing a light yellow
rectangle. This area, the canvas, is the drawing area where you will create your figures. The light
yellow rectangle is your “sheet of paper”, the first page of your document. (While Ipe doesn’t stop
you from drawing outside the paper, such documents generally do not print very well.)

At the top of the window, above the canvas, you find the following toolbars:

• File tools (new document, load, save, as well as cut and paste),

• Resolution tools (screen resolution selection),

• Page tools (page and view number),

• Color tools (stroke and fill color),

• Line tools (line width, dash style, arrow shape and size),

• Mark and text size settings,

• Snap tools (snapping modes, grid size and angular resolution),

4

• Mode tools (mode selection).

On the left hand side of the canvas you find a list of the layers of the current page.
All user interface elements have tool tips—if you move the mouse over them and wait a few

seconds, a short explanation will appear. For a longer explanation, use the “What’s This?” button
on the file tools toolbar (it looks like a cursor pointer with a question mark). Press the button,
then click with the mouse on any part of the user interface for a short explanation.

The mode toolbar allows you to set the current Ipe mode. Roughly speaking, the mode de-
termines what the left mouse button will do when you click it in the figure. The leftmost five
buttons select modes for selecting and transforming objects, the remaining buttons select modes
for creating new objects.

Holding the Control key and pressing the right mouse button, by the way, pops up the object
attribute menu in any mode.

In this chapter we will discuss the general concepts of Ipe. Understanding these properly will
be essential if you want to get the most out of Ipe.

4.1 Order of objects

An Ipe drawing is a sequence of geometric objects. The order of the objects is important—wherever
two objects overlap, the object which comes first in Ipe’s sequence will hide the other ones. When
new objects are created, they are added in front of all other objects. However, you can change the
position of an object by putting it in front or in the back, using the “Front” and “Back” functions
in the Edit menu.

4.2 The current selection

Whenever you call an Ipe function, you have to specify which objects the function should operate
on. This is done by selecting objects. The selected objects (the selection) consists of two parts:
the primary selection consists of exactly one object (of course, this object could be a group). Any
additional selected objects form the secondary selection. Some functions (like Show properties)
operate only on the primary selection, while others treat primary and secondary selections differ-
ently (the align functions, for instance, align the secondary selections with respect to the primary
selection.)

The selection is shown by outlining the selected object in color. Note that the primary selection
is shown with a slightly different look.

The primary and secondary selections can be set in selection mode. Clicking the left mouse
button close to an object makes that object the primary selection and deselects all other objects.
If you keep the Shift key pressed while clicking with the left mouse key, the object closest to the
mouse will be added to or deleted from the current selection. You can also drag a rectangle with
the mouse—when you release the mouse button, all objects inside the rectangle will be selected.

To make it easier to select objects that are below or close to other objects, it is convenient to
understand exactly how selecting objects works. In fact, when you press the mouse button, a list of
all objects is computed that are sufficiently close to the mouse position (the exact distance can be
set as the Select distance in the preferences dialog). This list is then sorted by increasing distance
from the mouse and by increasing depth in the drawing. If Shift was not pressed, the current
selection is now cleared. Then the first object in the list is presented. Now, while still keeping
the mouse button pressed, you can use the Space key to step through the list of objects near the
mouse in order of increasing depth and distance. When you release the right mouse button, the
object is selected (or deselected).

When measuring the distance from the mouse position to objects, Ipe considers the boundary
of objects only. So to select a filled object, don’t just click somewhere in its interior, but close to
its boundary.

5

Another way to select objects is using the Select all function from the Edit menu. It selects
all objects on the page. Similarly, the Select all in layer function in the Layer menu selects all
objects in the active layer.

4.3 Moving and scaling objects

There are three modes for transforming objects: move (translate), stretch, and rotate. If you hold
the shift key while pressing the left mouse button, the stretch function keeps the aspect ratio of
the objects (an operation we call scaling), and the move function is restricted to horizontal and
vertical translations.

Normally, the transformation functions work on the current selection. However, to make it
more convenient to move around many different objects, there is an exception: When the mouse
button is pressed while the cursor is not near the current selection, but there is some other object
close to the cursor, that object is moved, rotated, or scaled instead.

By default, the rotate function rotates around the center of the bounding box for the selected
objects. This behavior can be overridden by specifying an axis system (Section 6.3). If an axis
system is set, then the origin is used as the center.

The scale and stretch functions use a corner of the bounding box for the selected objects as
the fix-point of the transformation. Again, if an axis system is set, the origin of the system is used
instead.

It is often convenient to rotate or scale around a vertex of an object. This is easy to achieve by
setting the origin of the axis system to that vertex, using the Snap to vertex function for setting
the axis system.

4.4 Stroke and fill colors

Most Ipe objects can have two different colors, one for the boundary and one for the interior of
the object. The Postscript terms stroke and fill are used to denote these two colors. They can be
selected independently in the Color toolbar. You can also set stroke and fill to be void. A void
stroke color means that no outline of the object is drawn, a void fill color means that no interior
will be drawn. Setting both colors to void will render an object invisible. Imagine preparing a
drawing by hand, using a pen and black ink. What Ipe draws in its stroke color is what you would
stroke in black ink with your pen. Probably you would not use your pen to fill objects, but you
would use a brush, and maybe even a different kind of paint like water color. Well, the fill color is
Ipe’s “brush”.

This explains why text objects, mark objects, and arrows only use the stroke color, even for
the filled marks (discs and squares) and filled arrows. You would also use a pen for these details,
not the brush (unless you draw very large marks—in which case you probably meant to draw a
filled circle anyway).

An interesting exception to the above rules are lines with arrows. If a line with an arrow has
stroke color void, the arrow will be drawn with the fill color, and the line will not be drawn at
all. This is useful to create arrowheads without body, which can be used to be attached to objects
that cannot have arrows.

4.5 Line width, line dash pattern, and arrows

The Line toolbar permits setting the dash-dot pattern (solid line, dashed, dotted etc.) as well
as the width of lines. This has effect for the boundaries of path objects, such as polygons and
polygonal lines, splines, circles and ellipses, rectangles and circular arcs. It does not effect text or
marks.

6

Line width is given in Postscript points (1/72 inch). A good value is something around 0.4 or
0.6.3

On the same toolbar you can set the current arrow mode and arrow size. Only polygonal lines,
splines, and circular arcs can have arrows.

Arrows are by default drawn as triangles in the stroke color. Note that they extend beyond the
endpoint of the line by an amount linear in the line width. If that is a problem, you can duplicate
the object, give one copy the arrows and line width zero, and move the endpoints of the other copy
slightly so they fall in the interior of the arrows of the first copy.

4.6 Symbolic and absolute attributes

Attributes such as color, line width, dash style, mark size, or text size, can be either absolute (a
number, or a set of numbers specifying a color) or symbolic (a name). Symbolic attributes must
be translated to absolute values by a style sheet for rendering.

One purpose of style sheets is to be able to reuse figures from articles in presentations. Obvi-
ously, the figure has to use much larger fonts, markers, arrows, and fatter lines in the presentation.
If the original figure used symbolic attributes, this can be achieved by simply swapping the style
sheet for another one.

The Ipe user interface can be switched between displaying absolute and symbolic attributes
(using Absolute attributes in the View menu). When creating an object, it takes its attributes
from the current user interface settings, so if you are in symbolic mode, the object gets symbolic
attributes, otherwise it gets absolute attributes. Absolute attributes have the advantage that you
are free to choose any value you wish, including picking arbitrary colors using a color chooser. In
symbolic mode, you can only use the choices provided by the current style sheet .

The choices for symbolic attributes provided in the Ipe user interface are taken from your style
sheet. The standard style sheet is deliberately short, to encourage users to figure out how to make
their own.

The settings for grid size and axis angle can be switched between symbolic and absolute inde-
pendently. The current setting has no influence on objects being created.

4.7 Zoom and pan

You can zoom in and out the current drawing by changing the resolution in the Resolution toolbar.
The number displayed there is the number of pixels that correspond to one inch in your document.

Related are the functions Normal size (which sets the resolution to 72 pixels per inch), Fit page
(which chooses the resolution so that the current page fills the canvas), Fit objects (which chooses
the resolution such that the objects on the page fill the screen), and Fit selection (which does the
same for the selected objects only). All of these are in the Zoom menu.

You can pan the drawing either with the mouse in Pan mode, or by pressing the “.” (period)
key (“here”) with the mouse anywhere on the canvas. The drawing is then panned such that the
cursor position is moved to the center of the canvas. This shortcut has the advantage that it also
works while you are in the middle of any drawing operation. Since the same holds for the zoom
in and zoom out buttons and keys, you can home in on any feature of your drawing while you are
adding or editing another object.

4.8 Groups

It is often convenient to treat a collection of objects as a single object. This can be achieved by
grouping objects. The result is a geometric object, which can be moved, scaled, rotated etc. as

3The line width can be set to zero to get the thinnest line the device can produce (i.e. approximately the same
as 0.15 for a 600 dpi printer or 0.3 for a 300 dpi printer). The PDF and Postscript authorities discourage using this
feature, since it makes your Postscript files device-dependent.

7

a whole. To edit its parts or to move parts of it with respect to others, however, you have to
un-group the object, which decomposes it into its component objects. To un-group a group object,
select it, bring up the object menu, and select the Ungroup function.

Group objects can be elements of other groups, so you can create a hierarchy of objects.

4.9 Layers

A page of an Ipe document consists of one or more layers. Each object on the page belongs to
a layer. There is no relationship between layers and the back-to-front ordering of objects, so the
layer is really just an attribute of the object.

Layers have several attributes. They may be editable or locked. Objects can be selected and
modified only if their layer is editable. A layer may be visible, invisible, or dimmed. A layer may
have snapping on or off—objects will behave magnetically only if their layer has snapping on.

When editing a page in Ipe, there is one active layer. New objects are always created in the
active layer.

Layers are also used to create pages that are displayed incrementally in Acrobat Reader. Once
you have distributed your objects over various layers, you can create page views, which defines in
what order which layers of the page are shown.

4.10 Mouse shortcuts

For the beginner, choosing a selection or transformation mode and working with the left mouse
button is easiest. Frequent Ipe users don’t mind to remember the following shortcuts, as they allow
you to perform panning, and transformations without leaving the current mode:

Left Mouse Middle Mouse
Plain (*) move
Shift (*) pan
Ctrl stretch rotate
Ctrl+Shift scale move horizontal/vertical

The fields marked (*) depend on the current mode.
The right mouse button is used to select objects (just like the left mouse button would do when

in Select mode). Holding the Control key when pressing the right mouse button brings up the
object menu.

If you have to use Ipe with a two-button mouse, you obviously cannot use the shortcuts for
moving, panning, and rotating, and will have to use the mode buttons. In all other situations where
you would normall use the middle mouse button (for instance, to move a vertex when editing a
path object), you can hold the Shift-key and use the right mouse button.

5 Object types

Ipe supports six different types of geometric objects, namely path objects (which includes all
objects with a stroked contour and filled interior, such as (poly)lines, polygons, splines, splinegons,
circles and ellipses, circular and elliptic arcs, and rectangles), mark objects, text objects, image
objects, group objects, and reference objects (which means that a template is reused at a certain
spot).

Most objects are created by clicking the left mouse button somewhere on the canvas in the
right Ipe mode. Group objects are created using the Group function on the Edit menu, and image
objects can be added to the document using the Insert image ipelet.

8

5.1 Path objects

Path objects are defined by a set of subpaths, that is, curves in the plane.4 Each subpath is either
open or closed, and consists of straight line segments, circular or elliptic arc segments, parabola
segments, and cubic B-spline segments. The curves are drawn with the stroke color, dash style,
and line width; the interior of the object specified is filled using the fill color.

The distinction between open and closed subpaths is meaningful for stroking only, for filling
any open subpath is implicitely closed. Stroking a set of subpaths is identical to stroking them
individually. This is not true for filling: using several subpaths, one can construct objects with
holes, and more complicated pattern. The filling algorithm is the even-odd rule of Postscript/PDF:
To determine whether a point lies inside the filled shape, draw a ray from that point in any direction,
and count the number of path segments that cross the ray. If this number is odd, the point is
inside; if even, the point is outside.

Ipe can draw arrows on the first and last segment of a path object, but only if that segment is
part of an open subpath.

There are several Ipe modes that create path objects in different ways. All modes create
an object consisting of a single subpath only. To make more complicated path objects, such as
objects with holes, you create each boundary component separately, then select them all and use
the Compose paths function in the Edit menu. The reverse operation is Decompose path, you find
it in the object menu of a path object that has several subpaths.

You can also create complicated paths by joining curves sequentially. For this to work, the
endpoint of one path must be (nearly) identical to the begin point of the next—easy to achieve
using snapping. You select the object you wish to join, and call Join paths in the Edit menu. You
can also join several open path objects into a single closed path this way.

Circles can be entered in three different ways. To create an ellipse, create a circle and stretch
and rotate it. Circular arcs can be entered by clicking three points on the arc or by clicking the
center of the supporting circle as well as the begin and end vertex of the arc. They can be filled
in Postscript fashion, and can have arrows. You can stretch a circular arc to create an elliptic arc.

A common application for arcs is to mark angles in drawings. The snap keys are useful to
create such arcs: set arc creation to center & 2 pts, select snap to vertex and snap to boundary,
click first on the center point of the angle (which is magnetic) and click then on the two bounding
lines.

There are two modes for creating more complex general path objects. The difference between
the line mode and the polygon mode is that the first creates an open path, the latter generates
a closed one. As a consequence, the line mode uses the current arrow settings, while the polygon
mode doesn’t. Also, objects created in line mode will only have the stroke color set, even if the
current fill color is not void. (However, if the current stroke color is void and the fill color is not,
it will be filled.)

The path created consists of segments of various types. The initial setting is to create straight
segments. By holding the shift-key when pressing the left mouse button one can switch to uniform
B-splines. One can also add parabolic segments and circular arcs to the path by pressing the “q”
and “a” keys. The mode for splines is identical to the polyline mode, but starts in the uniform
B-spline setting.

For the mathematically inclined, a more precise description of the segments that can appear
on a subpath follows. More details can be found in Foley et al.5 and other text books on splines.

A subpath consists of a sequence of segments. Each segment is either a straight line segment,
an elliptic arc, a quadratic Bézier spline, a cubic Bézier spline, or a uniform cubic B-spline.

4Unlike Ipe 5, we can now represent objects consisting of more than one subpath. Note that Ipe 5’s spline and
arc objects are now represented as IpePath objects.

5J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice, Addison-
Wesley, 1990.

9

The quadratic Beziér spline defined by control points p0, p1, and p2, is the curve

P (t) = (1− t)2p0 + 2t(1− t)p1 + t2p2,

where t ranges from 0 to 1. This implies that it starts in p0 tangent to the line p0p1, ends in p2

tangent to the line p1p2, and is contained in the convex hull of the three points. Any segment of
any parabola can be expressed as a quadratic Beziér spline.

For instance, the piece of the unit parabola y = x2 between x = a and x = b can be created
with the control points

p0 = (a, a2)

p1 = (
a + b

2
, ab)

p2 = (b, b2)

Any piece of any parabola can be created by applying some affine transformation to these points.
The cubic Beziér spline with control points p0, p1, and p2 is the curve

R(t) = (1− t)3p0 + 3t(1− t)2p1 + 3t2(1− t)p2 + t3p3.

It starts in p0 being tangent to the line p0p1, ends in p3 being tangent to the line p2p3, and lies in
the convex hull of the four control points.

Uniform cubic B-splines approximate a series of m + 1 control points p0, p1, . . . , pm, m ≥ 3,
with a curve consisting of m − 2 cubic polynomial curve segments s0, s1, . . . , sm−3. Every such
curve segment is defined by four of the control points. In fact, curve segment si is defined by the
points pi, pi+1, pi+2, and pi+3. If the curve is closed (a splinegon), it contains three additional curve
segments sm−2, sm−1, and sm, defined by appending p0, p1, and p2 to the end of the sequence. A
uniform B-spline segment on an open subpath of an Ipe path object is defined by repeating both
the first and last control point three times, so as to make the segment begin and end in these
points.

The segment si is the cubic curve segment with the following parametrization.

Q(t) =
(1− t)3

6
pi +

3t3 − 6t2 + 4
6

pi+1 +
−3t3 + 3t2 + 3t + 1

6
pi+2 +

t3

6
pi+3,

where t ranges from 0 to 1.
Since the point Q(t) is a convex combination of the four control points, the curve segment si

lies in the convex hull of pi to pi+3. Furthermore, it follows that any affine transformation can be
applied to the curve by applying it to the control points. Note that a control point pi has influence
on only four curve segments, si−3, si−2, si−1, and si. Thus, when you edit a spline object and
move a control point, only a short piece of the spline in the neighborhood of the control point will
move.

5.2 Text objects

Text objects come in two flavors: simple labels, and minipages. There are two variants of these:
titles (a label that serves as the title of the page), and textbox (a minipage that spans the entire
width of the page).

The position you have to click to start creating a label object is the lower left corner of the
piece of text. A popup window appears where you can enter Latex source code.

A minipage object is different from a simple text object in that its width is part of its definition.
When you create a minipage object, you first have to drag out a horizontal segment for the
minipage. This is used as the top edge of the minipage—it will extend downwards as far as
necessary to accomodate all the text. Minipages are formatted using, not surprisingly, Latex’s

10

minipage environment. Latex tries to fill the given bounding box as nicely as possible. It is
possible to include center environments, lemmas, and much more in minipages.

To create a textbox object, simply press “F10”. Ipe automatically places the object so that it
spans the entire width of the page (the margins settings in the style sheet determine how much
space is left on the sides), and places it vertically underneath the textboxes already on the page.
This is particularly convenient for creating presentations with a lot of text, or with items that
appear one by one.

(Title objects are not yet supported.)
You can use any LATEX-command that is legal inside a \makebox (for labels) or inside a minipage

(for minipages). You cannot use commands that involve a non-linear translation into PDF, such
as commands to generate hyperlinks or to include external images.

You can use color in your text objects, using the \textcolor command, like this:

This is in black. \textcolor{red}{This is in red.} This is in black.

All the symbolic colors of your current style sheet are also available as arguments to \textcolor.
You can also use absolute colors, for instance:

This is in black. \textcolor[rgb]{1,1,0}{This is in yellow.} This is in black.

If you need LATEX-commands that are defined in additional LATEX packages, you can include
(\usepackage) those in the LATEX preamble, which can be set in Document properties in the Edit
menu.

After you have created or edited a text object, the Ipe screen display will show the beginning
of the Latex source. You can select Run Latex from the File menu to create the PDF/Postscript
representation of the object. This converts all the text objects in your document at once, and Ipe
will display a correct rendition of the text afterwards.

If the Latex conversion process results in errors, Ipe will automatically show you the log file
created by the Latex run. If you cannot figure out the problem, look in the section on troubleshoot-
ing (Section 10).

You can use Unicode text, such as accented characters, Greek, Cyrillic, Chinese, Japanese, or
Korean, in your text objects, once you have set up the necessary style files and fonts (Section 12).

5.3 Mark objects

Mark’s objects are useful to mark points in your drawing. They come with different looks (little
circles, discs, squares, boxes, or crosses). Note that marks behave quite different from other objects.
In particular, you should not confuse a disc mark with a little disc created as a circle object:

• a mark only obeys the stroke color

• when you scale a mark, it will not change its size (you can change the mark size from the
configuration panel, though)

• the bounding box of a mark only contains the mark’s center

• when you rotate a mark, it does not change its orientation

You can change a mark’s type and size later.
Sometimes you may wish you had a mark with, say, black boundary and white interior (because

you want to place it on some dark, but irregular background). The best way to achieve this is to
place two marks, a white disc and a black circle on top of each other. You could either group one
such double-mark and then paste it to the desired locations (the pasting mechanism will put the
center of the mark at the point location, so you can work as usual with marks), but you can also
just place the white discs. Then set snap to vertex on, and place the black circles. Or you may
want to install such a marker as a template.

11

5.4 Image objects

Images are inserted using the Insert image ipelet. Once in a drawing, you can scale, stretch, and
rotate an image. You can read in some scanned drawing and draw on top of it within Ipe. This is
useful if you have a drawing on paper and want to make an Ipe version of it.

Note that there are two separate functions for inserting JPEG images and inserting “other”
images. JPEG images are literally included in the PDF output (using PDF’s DCTDecode filter).
“Other” images are stored as a pixel array, using Flate compression. Note that on some systems
the function for “other” images will also accept JPEG files—obviously, the resulting PDF files will
be much larger than if they had been included as JPEG images.

Images are stored most efficiently in PDF format. It is reasonable to create PDF presentations
with lots of JPEG photographs in Ipe. While the screen display is too slow, Ipe does create
good quality PDF files for these. Storing images in (Encapsulated) Postscript, however, cannot be
recommended for larger images, as each image has to be embedded twice!

5.5 Group objects

Little needs to be said about group objects. You create them by selecting any number of objects
and using the Group function from the Edit menu. The group objects then behave like one. To
modify a group object, it has to be decomposed into its parts using Ungroup.

5.6 Reference objects and templates

A reference object stores nothing more than the name of a template. This name is looked up in the
document’s style to retrieve an object (a template) to be displayed. The reference can be moved,
rotated, and stretched, but that’s it—to modify it in any other way, the original template in the
style sheet has to be modified.

If a templated named “background” exists in your style sheet, a reference to it is automatically
inserted to each new page of your document.

6 Snapping

One of the nice features of Ipe is the possibility of having the mouse snap to other objects during
entry or moving. Certain features on the canvas become “magnetic”, and it is very easy to align
objects to each other, to place new objects properly with respect to the present objects and so on.

Snapping comes in three flavors: grid snapping, context snapping, and angular snapping.
In general, you turn a snapping mode on by pressing one of the buttons in the Snap toolbar, or

selecting the equivalent functions in the Snap menu. The buttons are independent, you can turn
them on and off independently. (The snapping modes, however, are not independent. See below
for the precise interaction.) The keyboard shortcuts are rather convenient since you will want to
toggle snapping modes on and off while in the middle of creating or editing some object.

Whenever one of the snapping modes is enabled, you will see a little cross near the cursor
position. This is the secondary cursor Fifi.6 Fifi marks the position the mouse is snapped to.

6.1 Grid snapping

Grid snapping is easy to explain. It simply means that the mouse position is rounded to the
nearest grid point. Grid points are points whose coordinates are integer multiples of the grid size,
which can be set in the box in the Snap field. You have a choice from a set of possible grid sizes.
The units are Postscript points (in LATEX called bp), which are equal to 1/72 of an inch.

6Fifi is called after the dog in the rogue computer game installed on most Unix systems in the 1980’s, because
it also keeps running around your feet.

12

You can ask Ipe to show the grid points by selecting the function Grid visible from the View
menu. The same function turns it off again.

6.2 Context snapping

When context snapping is enabled, certain features of the objects of your current drawing become
magnetic. There are three buttons to enable three different features of your objects: vertices, the
boundary, and intersection points.

When the mouse is too far away from the nearest interesting feature, the mouse position will
not be “snapped”. The snapping distance can be changed by setting Snapping distance value in
the preference dialog. If you use a high setting, you will need to toggle snapping on and off during
drawing. Some people prefer to set snapping on once and for all, and to set the snap distance to
a very small value like 3 or 4.

The features that you can make “magnetic” are the following:

vertices are vertices of polygonal objects, control points of multiplicity three of splines, centers
of circles and ellipses, centers and end points of circular arcs, and mark positions.

boundaries are the object boundaries of polygonal objects, splines and splinegons, circles and
ellipses, and circular arcs.

intersections are the intersection points between edges of polygonal objects, circles, or circular
arcs.7 Note that intersection points involving splines or ellipses are not recognized.

6.3 Angular snapping

When angular snapping is enabled, the mouse position is restricted to lie on a set of lines through
the origin of your current axis system. The lines are the lines whose angle with the base direction
is an integer multiple of the snap angle. The snap angle can be set in the second box in the Snap
toolbar. The values are indicated in degrees. So, for a snapping angle of 45◦, we get the snap lines
indicated in Figure 1. (In the figure the base direction—indicated with the arrow—is assumed
horizontal.)

For a snap angle of 180 degrees, snapping is to a single line through the current origin.
In order to use angular snapping, it is important to set the axis system correctly. To set the

origin, move the mouse to the correct position, and press the F1-key. Note that angular snapping is
disabled while setting the origin. This way you can set a new origin for angular snapping without
leaving the mode first. Once the origin has been set, the base direction is set by moving to a point
on the desired base line, and pressing the F2-key. Again, angular snapping is disabled. Together,
origin and base direction determine the current axis system. Remember that the origin is also used
as the fix-point of scale, stretch, and rotate operations, if it is set.

You can un-set the current axis system by pressing Shift-F1. This also turns off angular
snapping.

You can set origin and base direction at the same time by pressing F3 when the mouse is very
near (or snapped to) an edge of a polygonal object. The origin is set to an endpoint of the edge,
and the base direction is aligned with it. This is useful to make objects parallel to a given edge.

For drawing rectilinear or c-oriented polygons, the origin should be set to the previous vertex
at every step. This can be done by pressing F1 every time you click the left mouse button, but that
would not be very convenient. Therefore, Ipe offers a second angular snap mode, called automatic
angular snapping. This mode uses an independent origin, which is automatically set every time
you add a vertex when creating a polygonal object. Note that while the origin is independent of
the origin set by F1, the base direction and the snap angle used by automatic angular snapping is

7Snapping to intersections involving circles are not yet implemented.

13

45◦

Figure 1: Snap lines

mouse position

closest point on object

actually snaps here

Figure 2: Snapping priorities

the same as for angular snapping. Hence, you can align the axis system with some edge of your
drawing using F3, and then use automatic angular snapping to draw a new object that is parallel
or orthogonal to this edge.

This snapping mode has another advantage: It remains silent and ineffective until you start
creating a polygonal object. So, even with automatic angular snapping already turned on, you
can still freely place the first point of a polygon, and then the remaining vertices will be properly
aligned to make a c-oriented polygon.

The automatic angular snapping mode is never active for any non-polygonal object. In partic-
ular, to move an object in a prescribed direction, you have to use normal angular snapping.

A final note: Many things that can be done with angular snapping can also be done by drawing
auxiliary lines and using context snapping. It is mostly a matter of taste and exercise to figure out
which mode suits you best.

6.4 Interaction of the snapping modes

Not all the snapping modes can be active at the same time, even if all buttons are pressed. Here
we have a close look at the possible interactions, and the priorities of snapping.

The two angular snapping modes restrict the possible mouse positions to a one-dimensional
subspace of the canvas. Therefore, they are incompatible with the modes that try to snap to
a zero-dimensional subspace, namely vertex snapping, intersection snapping, and grid snapping.
Consequently, when one of the angular snapping modes is on, vertex snapping, intersection snap-
ping, and grid snapping are ineffective.

On the other hand, it is reasonable to snap to boundaries while in an angular snapping mode,
and this function is actually implemented correctly. When both angular and boundary snapping
are on, Ipe will compute intersections between the snap lines with the boundaries of your objects,
and whenever the mouse position on the snap line comes close enough to an intersection, the mouse
is snapped to that intersection.

The two angular snapping modes themselves can also coexist in the same fashion. If both
angular and automatic angular snapping are enabled, Ipe computes the intersection point between
the snap lines defined by the two origins and snaps there. It the snap lines are parallel or coincide,
automatic angular snapping is used.

When no angular snapping mode is active, Ipe has three priorities. First, Ipe checks whether
the closest vertex or intersection point is close enough. If that is not the case, the closest boundary
edge is determined. If even that is too far away, Ipe uses grid snapping (assuming all these modes
are enabled).

Note that this can actually mean that snapping is not to the closest point on an object.
Especially for intersections of two straight edges, the closest point can never be the intersection
point! See Figure 2.

14

6.5 Examples

It takes some time and practice to feel fully at ease with the different snapping modes, especially
angular snapping. Here are some examples showing what can be done with angular snapping.

Example 1: We are given segments s1, s2, and e, and we want to add the dashed vertical
extensions through p and q.

s1

s2

ep
q

p′

• set F4 and F5 snapping on, go into line mode, and reset axis system with Shift-F1,
• go near p, press F1 and F8 to set origin and to turn on angular snap.
• go near p′, click left, and extend segment to s2.
• go near q, press F1 to reset origin, and draw second extension in the same way.

Example 2: We are given the polygon C, and we want to draw the bracket b, indicating its
vertical extension.

p

q

x y

zt

C b

• set F4 and F9 snapping on, go into line mode, reset axis system, set snap angle to 90◦.
• go near p, press F1 and F8 to set origin and angular snapping
• go to x, click left, extend segment to y, click left
• now we want to have z on a horizontal line through q: go near q, and press F1 and F8 to

reset origin and to turn on angular snapping. Now both angular snapping modes are on, the
snap lines intersect in z.

• click left at z, goto x and press F1, goto t and finish bracket.

Example 3: We want to draw the following “skyline”. The only problem is to get q horizontally
aligned with p.

p q

r

15

• draw the baseline using automatic angular snapping to get it horizontal.
• place p with boundary snapping, draw the rectilinear curve up to r with automatic angular

snapping in 90◦ mode.
• now go to p and press F1 and F8. The snap lines intersect in q. Click there, turn off angular

snapping with Shift-F1, and finish curve. The last point is placed with boundary snapping.

Example 4: We want to draw a line through p, tangent to C in q.

p

q

C

• with vertex snapping on, put origin at p with F1
• go to q and press F2. This puts the base direction from p to q.
• set angular snapping with F8 and draw line.

Example 5: We want to draw the following “windmill”. The angle of the sector and between
sectors should be 30◦.

p

q

• set vertex snapping, snap angle to 30◦, reset axis system with Shift-F1,
• with automatic angular snapping, draw a horizontal segment pq.
• go to p, place origin and turn on angular snapping with F1 and F8,
• duplicate segment with d, go to q and pick up q for rotation (with Ctrl and the middle mouse

button). Rotate until segment falls on the next snap line.
• turn off angular snapping with F8. Choose arc mode, variant “center & two points”.

16

• go to p, click for center. Go to q, click for first endpoint of arc, and at r for the second
endpoint. Select all, and group.

• turn angular snapping on again. Duplicate sector, and rotate by 60◦ using angular snapping.
• duplicate and rotate four more times.

Example 6: We want to draw a c-oriented polygon, where the angles between successive segments
are multiples of 30◦. The automatic angular snapping mode makes this pretty easy, but there is a
little catch: How do we place the ultimate vertex such that it is at the same time properly aligned
to the penultimate and to the very first vertex?

p

q

r

• set snap angle to 30◦, and turn on automatic angular snapping.
• click first vertex p and draw the polygon up to the penultimate vertex q.
• it remains to place r such that it is in a legal position both with respect to q and p. The

automatic angular snapping mode ensures the position with respect to q. We will use angular
snapping from p to get it right: Go near p and turn on vertex snapping. Press F1 to place
the origin at p and F8 to turn on angular snapping. Now it is trivial to place r.

7 Style sheets

The symbolic attributes appearing in an Ipe document are translated to absolute values for ren-
dering by a style sheet that is attached to the document. Documents can have multiple “cascaded”
style sheets, the sheets form a stack, and symbols are looked up from top to bottom. At the bottom
of any style sheet cascade is always the standard style sheet, which is built into Ipe. When you
create a new empty document, it automatically gets a copy of this standard style sheet.

The style sheet dialog (in the Edit menu under Style sheets) allows you to inspect the cascade
of style sheets associated with your document, to add and remove style sheets, and to change their
order. You can also save individual style sheets. You can, for instance, save the standard style
sheet and use this as a basis for making your own style sheets.

The style sheets of your document also determine the choices you have in the Ipe user interface
in “symbolic” mode. If you feel that Ipe does not offer you enough choice of colors, line widths,
etc., you are ready to make your own style sheet! As an example for defining a style sheet with
new colors, here is a style sheet that defines all the colors of the X11 color database.

Style sheets can also contain templates, such as background patterns, or logos to be displayed on
each page. These are named Ipe objects that can be reused in documents. If your document’s style
sheets define a template named background, it will be added automatically to all newly created
pages. You can create and use templates using the template ipelet. Here is a (silly) example of a

17

style sheet that defines a background template. This template is automatically added to all new
pages:

<ipestyle name="background">
<template name="background">
<text pos="10 10" stroke="black" size="LARGE">
Background text
</text>
</template>
</ipestyle>

Style sheets can also define a piece of LATEX-preamble for your document. When your text
objects are processed by LATEX, the preamble used consists of the pieces on the style sheet cascade,
from bottom to top, followed by the preamble set for the document itself.

Here is a style sheet presentation.xml that can be used for presentations. It enlarges all standard
sizes by a factor 3:

<ipestyle name="presentation">
<linewidth name="normal" value="1.2"/>
<linewidth name="heavier" value="2.4"/>
<linewidth name="fat" value="3.6"/>
<linewidth name="ultrafat" value="6"/>
<marksize name="normal" value="9"/>
<marksize name="large" value="15"/>
<marksize name="small" value="6"/>
<marksize name="tiny" value="3.3"/>
<arrowsize name="normal" value="21"/>
<arrowsize name="large" value="30"/>
<arrowsize name="small" value="15"/>
<arrowsize name="tiny" value="9"/>
<textstretch name="normal" value="3 3"/>
<textstretch name="large" value="3 3"/>
<textstretch name="Large" value="3 3"/>
<textstretch name="LARGE" value="3 3"/>
<textstretch name="huge" value="3 3"/>
<textstretch name="Huge" value="3 3"/>
<textstretch name="small" value="3 3"/>
<textstretch name="footnote" value="3 3"/>
<textstretch name="tiny" value="3 3"/>
<preamble>
\renewcommand\rmdefault{cmss}
\newenvironment{ITEM}{\begin{itemize}\item}{\end{itemize}}
</preamble>
<margins tl="72 72" br="72 72"/>
<shading type="axial" colora="1 0.9 0.5" colorb="1 0.8 0.75"

coords="0 0 0 200" extend="0 1"/>
</ipestyle>

Note the use of the <textstretch> element to magnify text. The text size you choose from
the Ipe user interface (“large”, for instance) is in fact used for two symbolic attributes, namely
textsize (where large maps to \large) and textstretch (where it maps to no stretch in the
standard style sheet). By setting the text stretch, you can magnify fonts (independently for height
and width).

18

Also note the <margins> element—it determines the boundaries of the “standard” text area.
The Insert text box function (in the Edit menu) uses these margins.

The LATEX-preamble defined in the <preamble> element redefines the standard font shape to
cmss (Computer Modern Sans Serif). Many people find sans-serif fonts easier to read on a screen.

Finally, note the <shading> element. You can use this to define a shading that will be applied
to every page in your PDF/Postscript output, before anything else is drawn on the page. The
shading is invisible in the Ipe user interface, so use this it with care.

8 Page views

When making a PDF presentation with Acrobat Reader, one would often like to present a page
incrementally. For instance, I would first like to show a polygon, then add its triangulation, and
finally color the vertices. Page views (or simply views in the following) make it possible to do this
nicely.

An Ipe document consists of several pages, each of which can consist of an arbitrary number of
views. When saving as PDF or Postscript, each view generates a separate PDF/Postscript page (if
you only look at the result in, say, Acrobat reader, you cannot tell whether two pages are actually
two views of the same Ipe page or two different Ipe pages).

An Ipe page consists of a number of objects, a number of layers, and a number of views. Each
object belongs to exactly one layer. A layer can be shown by any number of views—a view is
really just a list of layers to be presented. In addition, a view keeps a record of the current active
layer—this makes it easy to move around your views and edit them. Finally, views can specify a
transition style, a graphic effect to be used by the PDF viewer when proceeding to the following
PDF page.

To return to our polygon triangulation example, let’s create an empty page. We draw a polygon
into the default layer “alpha.” Now use the New layer, new view function (in the Views menu),
and draw the triangulation into the new layer “beta.” Note that the function not only created a
new layer, but also a second view showing both “alpha” and “beta”. Try moving back and forth
between the two views (using the PageUp and PageDown keys, or the little buttons on the View
counter). You’ll see changes in the layer list on the left: in view 1, layer “alpha” is selected and
active, in view 2, both layers are selected and “beta” is active. Create a third layer and view, and
mark the vertices. In the Document properties (in the Edit menu), turn cropbox off and fullscreen
on, and save in PDF format. Voila, you have a lovely little presentation.

In presentations, one often has slides with mostly text. The textbox object is convenient for
this, as one doesn’t need to use the mouse to create it. To create a slide where several text items
appear one by one, one only needs to press F10 to create a textbox, then Shift+Ctrl+I to make a
new view, F10 again for the next textbox, and so on. Finally, one moves the textboxes vertically for
the most pleasing effect (Shift+Ctrl+Middle Mouse does a constrained vertical move, or Shift+Left
Mouse in Move mode).

9 Writing ipelets

An ipelet is a dynamically loaded library (DLL), that you place on Ipe’s ipelet search path. Ipe
loads all DLLs it can find on that path during start-up. The DLL has to be written in C++, and
must export a function NewIpelet that creates an object derived from the class Ipelet (defined
in ipelet.h). Here is minimal ipelet implementation:

#include "ipelet.h"

class MyIpelet : public Ipelet {
public:

19

virtual int IpelibVersion() const { return IPELIB_VERSION; }
virtual const char *Label() const { return "My label"; }
virtual void Run(IpePage *page, IpeletHelper *helper);

};

void MyIpelet::Run(int function, IpePage *page, IpeletHelper *helper)
{
// this is where you do all the work

}

IPELET_DECLARE Ipelet *NewIpelet()
{
return new MyIpelet;

}

When the ipelet is executed, Ipe hands it a pointer to the current page of the document. The
ipelet can examine the selected objects, and modify the page in any way it wishes. It can also
request services from the Ipe application through the IpeHelper object, for instance to display a
message in the status bar, to pop up message boxes, to obtain input from the user, etc. Through
the IpeHelper, it is also possible to access the complete document (for instance to write an ipelet
that allows the user to reorganize the pages of the document), or to access some Ipe settings.

The Ipelib documentation in HTML-format is available as part of the Ipe distribution (check
the on-line manual). You may want to have a look at the standard ipelets. Kgon, for instance, is a
minimal ipelet that you can use as the basis for your own development. Goodies is an example of
an ipelet that contains more than one function—it also needs to implement the member functions
NumFunctions and SubLabel. Note that it is possible for ipelets to define keyboard shortcuts (the
Align ipelet does that, for instance), but in general it is not a good idea to do that for ipelets you
plan to make available for others.

Compiling ipelets on Windows The ipelet must be compiled as a DLL and must be linked
with the Ipe library “libipe.lib”. C++ mandates that it must be compiled with the same compiler
that was used to compile Ipe. If you use the binary Ipe distribution for Windows, that means you
have to use the free Borland C++ compiler. (Its command-line version is available as a download
after registering on the Borland webpage, the same compiler is also in Borland C++ builder.) The
Ipe Windows distribution contains the necessary header files and the library to compile ipelets, as
well as the source of the “kgon” and “goodies” ipelets as examples. You can compile the “kgon”
example as follows:

bcc32 -WD -tWR -DWIN32 -Iinclude kgon.cpp lib/libipe.lib

Place the resulting kgon.dll in the ipelets subdirectory, and restart Ipe.

Compiling ipelets on Unix The ipelet must be compiled as a shared library and must be linked
with the Ipe library “libipe.so”. C++ mandates that it must be compiled with the same compiler
that was used to compile Ipe. Have a look at the ipelet sources in the Ipe source distribution, and
their project files for details on compiling them.

10 Troubleshooting the LATEX-conversion

Ipe converts text objects from their Latex source representation to a representation that can be
rendered and included in Postscript and PDF by creating a Latex source file and running Pdflatex.
This happens in a dedicated directory, which Ipe creates the first time it is used. The Latex source

20

and output files are left in that directory and not deleted even when you close Ipe, to make it easy
to solve problems with the Latex conversion process.

You can determine the directory used by Ipe by pressing the Search paths button in the Prefer-
ences dialog (from the Help menu). If you’d prefer to use a different directory, set the environment
variable IPELATEXDIR before starting Ipe.

If Ipe fails to translate your text objects, and you cannot find the problem by looking at the
log file displayed by Ipe (or Ipe doesn’t even display the log file), you can terminate Ipe, go to the
conversion directory, and run Pdflatex manually:

pdflatex text.tex

11 Using Truetype fonts

To make PDF presentations that are as “fancy” as the PowerPoint presentations of competing
speakers one needs to use fancy fonts. It’s not hard to find nice fonts, but they are mostly in
Truetype (TTF) format. This section explains how to use TTF fonts in Ipe.

Ipe relies on Pdflatex to translate the text source representation into a string of PDF operators
and font subsets, that can then be used to generate Postscript, PDF, and to display the text on
the screen. Ipe can therefore use any font that Pdflatex can handle, and to use a TTF font we just
have to add it to Pdflatex’s font reportoire.

I’ve made a webpage8 explaining the steps necessary to add a TTF font to Pdftex’s font
repertoire, using the lhandw.ttf font as an example. Let’s assume that you have performed these
steps, and that you can access the font when running Pdflatex normally (not from Ipe).

We are then ready to try the font from within Ipe. Let’s first assume you only want to use
the new font in a few places in your Ipe document. You should define a command analogous to
\textrm to switch to the new font. Open the Document properties dialog in the Edit menu, and
add this line to the Latex preamble:

\DeclareTextFontCommand{\textlh}
{\fontencoding{T1}\fontfamily{lhandw}\selectfont}

You can now use \textlh inside Ipe text objects to typeset in Lucida-Handwriting.
Finally, let’s make a multi-page presentation typeset wholly using Lucida-Handwriting. This

declaration in the Latex preamble will change the document fonts:

\renewcommand{\encodingdefault}{T1}
\renewcommand{\rmdefault}{lhandw}
\renewcommand{\sfdefault}{phv}
\renewcommand{\ttdefault}{pcr}

Note that this switches all text fonts to TTF or Postscript fonts. This is necessary, as we use the
T1 encoding (an 8-bit encoding) for Lucida-Handwriting. Keeping Computer-Modern as the font
for \textsf or \texttt would cause LATEX to load the T1 version of Computer-Modern. These
are bitmapped “Type3” fonts, which Ipe cannot handle.

12 Unicode text

If you make figures containing text objects in languages other than English, you will need to enter
accented characters, or characters from other scripts such as Greek, Hangul, Kana, or Chinese
characters. Of course you can still use the LATEX syntax K\"onig to enter the German word

8http://ipe.compgeom.org/pdftex.html

21

http://ipe.compgeom.org/pdftex.html

“König”, but for larger runs of text it’s more convenient to exploit the fact that the Ipe user inter-
face (thanks to the Qt toolkit) is Unicode-aware, and let’s you enter text in any script supported
by your system.

However, the Unicode text also has to be processed by Pdflatex. The easiest solution, sufficient
for German, French, and other languages for which support is already in a standard LATEX-setup,
is to add the line

\usepackage{ucs}

in your Latex preamble (set in the Document properties dialog, available on the Edit menu). You
will need to install the ucs package for Latex by Dominique Unruh9, if it not yet on your system.

For more complicated needs, you’ll need to read further. When Ipe writes the Pdflatex source
file, it replaces all Unicode characters by a Latex macro, such as \unichar{44032} for the Ko-
rean syllable “ga”. The ucs package implements \unichar for many scripts, including Chinese,
Japanese, and Korean. See the ucs documentation to set this up and for the options you need to
use.

If you have Truetype (TTF) fonts that include the scripts you wish to use in your Ipe document,
there is an alternative solution. You can set up Pdflatex to directly map the \unichar macro to
the right glyph in this font.

Follow the instructions on my webpage10 to declare a Truetype font to be used for Unicode
characters in the document. We first test it “manually”, by running Pdflatex on this test file:

% File ’unitest.tex’
\documentclass{article}
\usepackage{ttfucs}
\DeclareTruetypeFont{cyberb}
\begin{document}
Here is a character from Cyberbit: \unichar{44032}.
\end{document}

Assuming this works fine, we can now try to use the font from Ipe. All you need to do is to
add the lines

\usepackage{ttfucs}
\DeclareTruetypeFont{cyberb}

in the Latex preamble. Unicode characters entered from the Ipe user interface should now be
displayed correctly.

You can use more than one TTF font, and add several \DeclareTruetypeFont declarations
to the Latex preamble of your Ipe document. The last package determines the standard font for
Unicode characters. To select a different Unicode font, use the \TruetypeFont command defined
in the ttfucs package.

You can also mix this strategy with using the ucs package—the command \ucsfamily will
switch to using ucs, until you switch back to using a Truetype font by saying \TruetypeFont.

13 Customizing Ipe

A few features of the Ipe user interface can be changed in the Preferences dialog (in the Help
menu).

Ipe contains support for localizing the user interface into another language. Contact me if you
wish to do such a localization project.

9http://www.unruh.de/DniQ/latex/unicode/
10http://ipe.compgeom.org/pdftex.html

22

http://ipe.compgeom.org/pdftex.html

The keyboard shortcuts used by Ipe can be customized to your personal taste. Save the
current configuration into, say, a file ipekeys.qm using the function Save keys from the Help menu.
Translate ipekeys.qm into XML format using qm2ts (from Qt 3), edit the resulting ipekeys.ts file
(you can discard all the definitions you do not wish to change), and compile back into .qm format
using lrelease. Install the resulting file as .ipekeys.qm in your home directory, and restart Ipe.

Here is an example of an edited ipekeys.ts by Kostas Oikonomou:

<!DOCTYPE TS><TS>
<context>

<name>Key</name>
<message>

<source>Ctrl+V</source>
<comment>Edit|Paste</comment>
<translation>F18</translation>

</message>
<message>

<source>Ctrl+X</source>
<comment>Edit|Cut</comment>
<translation>F20</translation>

</message>
<comment>
If this is not here, although it’s unchanged from the default setting,
File|New Window will show as Ctrl+X,Ctrl+C, because of the translation for
File|Exit, which also has source "none". Tricky! Same goes for other
similar situations.
</comment>
<message>

<source>none</source>
<comment>File|New Window</comment>
<translation>none</translation>

</message>
<message>

<source>none</source>
<comment>File|Save as bitmap</comment>
<translation>none</translation>

</message>
<message>

<source>none</source>
<comment>File|Exit</comment>
<translation>Ctrl+X,Ctrl+C</translation>

</message>
</context>
</TS>

If you are using Qt version 3.1.0 or higher (see Help menu, About Qt if you don’t know), you
can use shortcuts consisting of more than one key, such as Ctrl+X,Ctrl+C as in the example above
(use commas to separate the key presses—up to four are supported).

14 The Ipe file format

Ipe can store documents in several possible formats. Among them are standard PDF and
Postscript, which can be read by any application capable of opening such files, such as Acro-

23

bat Reader, Xpdf, or Ghostview. (Ipe embeds its own information inside PDF and Postscript files.
The way this is done is not documented here.)

There is one other Ipe file format, which is a pure XML implementation. Files stored in this
format can be parsed with any XML-aware application, and you can create XML files for Ipe from
your own applications. The tags understood by Ipe are described informally in this section. A
formal DTD will be provided in due course (volunteers?).

Tags in the XML file can carry attributes other than the ones documented here. Ipe ignores
all attributes it does’t understand, and they will be lost if the document is saved again from Ipe.

14.1 The elements of an Ipe XML file

A file can optionally start with the <?xml> tag, which is simply ignored by Ipe.
The only element in the file must be <ipe>. The optional attribute media indicates the physical

boundaries of the “paper” containing the page. The value is a sequence of four integers, separated
by spaces, in the order min-x, min-y, max-x, max-y, in postscript points (1/72 inch). If the attribute
is not present, A4 size is assumed. The optional attribute version indicates the earliest Ipelib
version that can interpret the document. This allows for extensions to the Ipe file format, but not
withdrawal of features. Ipe will refuse to load documents that require a version larger than its own.
The optional attribute creator indicates the program that created the file, it is not interpreted
by Ipe at all.

The <ipe> element contains, in this order, an optional <info> element, an optional <preamble>
element, an optional series of <ipestyle> elements, an optional series of <bitmap> elements, and
a series of <page> elements.

The <info> element takes the optional attributes title, author, subject, keywords,
pagemode, bbox, created, and modified. The only value for pagemode currently understood
by Ipe is fullscreen. If the value of bbox is cropbox, Ipe will create a CropBox attribute when
saving to PDF. The value of created and modified should be a date in PDF format, that is a
string like “D:20030127204100”.

The contents of the preamble element is used as the LATEX preamble when running LATEX to
process the text objects in the document. It should not contain a \documentclass command, but
can contain \usepackage commands and macro definitions.

The contents of the <ipestyle> element is parsed as an Ipe style sheet, see below. Several
style sheets form a stack or “cascade”, with the last <ipestyle> element becoming the top-level
style sheet. When symbolic names are looked up, the style sheets are checked from top to bottom.
Ipe always appends the built-in standard style sheet at the bottom of the stack.

Each <bitmap> element defines a bitmap to be used by <image> objects. It takes the required
attributes id (the value must be an integer that will define the bitmap throughout the Ipe docu-
ment), width and height (integers, specifying the dimensions of the bitmap in pixels), ColorSpace
(possible values are “DeviceGray”, “DeviceRGB”, and “DeviceCMYK”), BitsPerComponent (only
8 is currently allowed!), and length (indicating the number of bytes of image data). The optional
attribute Filter can take one of the values “FlateDecode” or “DCTDecode” to indicate a com-
pressed image (the latter is used for JPEG images). The length attribute can be omitted if there
is no filter (Ipe can then deduce it from the other attributes).

The contents of the <bitmap> element is the image data in hexadecimal format. White space
between bytes is ignored. If no filter is specified, pixels are stored row by row, with rows padded
to a full byte boundary.

Note that images with color maps are not supported, and such support is not planned. (The
Insert image ipelet does allow you to insert images with color maps, but they are stored as 24-bit
images. Since the data is compressed, this does not seriously increase the image data size.)

24

14.2 The <page> element

The <page> tag has one optional attribute gridsize. The gridsize indicates the default grid
size to be used on this page—Ipe remembers this as it is often advantageous to have the same grid
available that was used when making the page.

The contents of the <page> element consists, in this order, of possibly empty sequences of
<layer> elements, <view> elements, and Ipe object elements.

The <layer> tag takes a required attribute name, and two optional attributes visible and
edit. The name has to be unique within the page. The value of visible should be yes, no,
or dim, and indicates how the layer is displayed on the screen (not in the PDF output—this is
determined by the <view> elements), the value of edit should be yes or no and indicates whether
the user can select and modify the contents of the layer in the Ipe user interface (of course the user
can always modify the setting of the attribute). The layer element must be empty.

If a page contains no layer element, Ipe automatically adds a default layer named “alpha”,
visible and editable.

The <view> tag takes a required attribute layers, and three optional attributes, duration,
transition, and effect. The value of layers must be a sequence of layer names defined in this
page, separated by white space. The value of duration and transition must be a real number,
the value of effect must be an integer between 0 and 16 (see IpeView::TEffect for the exact
meaning of those). The parameters translated directly into the page transition effect in PDF.

It is okay for a page not to contain any <view> element. Such a page will be saved to PDF
including all its layers, with no special effect.

The remaining elements of the <page> are Ipe objects.

14.3 Ipe object elements

In the following, we explain the Ipe object elements currently understood by Ipe.
A “top-level” Ipe object, that is an object directly inside a <page> element, can take the

optional layer attribute. This attribute indicates into which layer the object goes. If it is missing,
the object goes into the same layer as the preceding object. If the first object has no layer attribute,
it goes into the layer defined first in the page, or the default “alpha” layer.

Any Ipe object can take the optional attributes stroke and matrix. The value of stroke
is a color—either a symbolic name defined in one of the style sheets of the document, one of the
predefined names “void”, “black”, or “white”, a single real number between 0 (black) and 1 (white)
indicating a gray level, or three real numbers in the range [0, 1] indicating the red, green, and blue
component (in this order), separated by white space.

The value of matrix is a sequence of six real numbers, separated by white space, indicating a
transformation matrix for all coordinates inside the element (including embedded elements if this
is a <group> element). A missing matrix attribute is interpreted as the identity matrix.

14.3.1 The <mark> element

The <mark> element defines a mark object. It takes the required attributes size (a real number
or symbolic name), type (an integer, see IpeMark), and <pos> (two real numbers, separated by
white space).

14.3.2 The <ref> element

The <ref> element refers to an Ipe object defined in the style sheet. It has one required attribute
name, which must be a name of a <template> defined in the style sheet. The object will be reused
at the position defined in the template, unless the matrix is set.

25

14.3.3 The <image> element

The <image> element defines a bitmap object. The tag takes the required attributes bitmap (the
value is an integer referring to a bitmap defined in a <bitmap> element in the document), and
rect (four real coordinates separated by white space, in the order x1, y1, x2, y2, indicating two
opposite corners of the image in Ipe coordinates), The optional matrix attribute can be used to
transform the image into a non-rectangular shape.

It is also possible to embed a bitmap directly, without first creating a <bitmap> element. In
that case, the bitmap attribute must be omitted, and instead the <image> element must carry all
the attributes of the <bitmap> element, with the exception of id. The element contents is then
the bitmap data, as described for <bitmap>.

14.3.4 The <text> element

The <text> element takes the required attributes size (the font size—either a symbolic name
defined in a style sheet, or a real number) and pos (two real numbers separated by white space,
defining the position of the text on the paper).

The required attribute type, with the possible values label, minipage, textbox, and title deter-
mines the type of object, and the attributes width, height, and depth give its dimensions. Note
that these dimensions are recomputed by Ipe when running LATEX, with the exception of width
for minipage objects whose width is fixed. If the dimensions are missing, Ipe uses some default
values until LATEX has been run. (Obviously, width must not be missing for a minipage object.)
If type is missing, the object is a minipage if width is present, otherwise a label.

The optional attributes valign (with values top (default for a minipage object), bottom (default
for a label object), center, and baseline) and halign (with values left, right, and center, with left
the default) determine the position of the reference point with respect to the text box.

The optional attribute transformable (possible values are yes and no, the latter is the default)
determines whether the text object can be transformed, that is, stretched and rotated. Moving, of
course, is always allowed.

The contents of the element must be a legal LATEX fragment that can be interpreted by LATEX
inside \hbox, possibly using the macros or packages defined in the preamble.

14.3.5 The <path> element

The <path> element is the most complex element, and represents any filled and/or stroked PDF
path, that is, any sequence of Postscript moveto/lineto/curveto/closepath operations, followed by
a single fill/stroke operation. In particular, paths consisting of more than one closed loop are
allowed, and so is any mix of straight segments and Bezier curves in the paths.

The <path> element takes the following optional attributes: stroke, fill, dash, pen, cap,
join, fillrule, matrix, arrow, backarrow.

The value of dash is either the predefined name “solid”, a symbolic name defined in a style
sheet, or a dash pattern in PDF format, such as “[3 1] 0” for “three pixels on, one off, starting
with the first pixel”.

The value of pen is the line width, either symbolic (defined in a style sheet), or as a single real
number.

The values of cap, join are the line cap and line join settings of PDF, as integers.
The value of the fillrule attribute selects one of two algorithms for determining whether a

point lies inside a filled object. Possible values are wind and eofill (the latter is the default if
the attribute is missing).

The value of the <arrow> and <backarrow> attributes is the size of an arrow, either a symbolic
name defined in a style sheet, or a real number. If the attribute is missing, no arrow is drawn.

The contents of the <path> element describes a path using a series of “path construction
operators” with arguments. This generalizes the PDF path construction syntax.

26

Each operator follows its arguments. The operators are

• m (moveto) (1 point argument): begin new subpath,
• l (lineto) (1 point argument): add straight segment to subpath,
• c (curveto) (3 point arguments): add a cubic Bézier curve,
• e (ellipse) (1 matrix argument): add a closed subpath consisting of an ellipse, the ellipse is

the image of the unit circle under the transformation described by the matrix,
• a (arcto) (1 matrix argument, 1 point argument): add an elliptic arc, on the ellipse describe

by the matrix, from current position to given point,
• s (spline) (n point arguments): add a uniform cubic B-spline with n + 5 control points

(current position and nth point have multiplicity 3),
• u (closed spline) (n point arguments): add a closed subpath consisting of a closed uniform

B-spline with n control points.
• h (closepath) (no arguments): close the current subpath. No more segments can be added

to this subpath, so the next operator (if there is one) must start a new subpath.

14.3.6 The <group> element

The <group> element allows to group objects together, so that they appear as one in the user
interface. The contents of the element consists of a series of Ipe object elements.

The <group> element takes all the possible attributes of the <path> element (with the exception
of the two arrow attributes), as well as textsize, marksize, and markshape.

If one of these attributes has been set, its value overrides the corresponding attribute of the
elements inside the group. In other words, the attribute of an object is meaningful only if none of
its parents in the tree structure formed by the grouped objects has this attribute set.

14.4 The Ipe style sheet format

Style sheets can either be embedded in an Ipe document, or reside in a separate file. Separate files
can start with the optional <?xml> tag.

The style sheet itself consists of the single element <ipestyle>. It takes the optional attribute
name, which only serves to identify the style sheet informally.

The contents of the style sheet element can consist of the following elements: template,
color, dashstyle, linewidth, textsize, marksize, arrowsize, grid, angle, media, preamble,
textstretch, margins, and shading.

The template element takes a required attribute name, which identifies the template and must
be unique in the style sheet. Its contents is a single Ipe object.

The contents of the preamble element defines a (piece of) LATEX-preamble.
The margins element takes the two required attributes tl and br, for the top-left and bottom-

right margins of the standard text area on the page.
The shading element sets the background shading of a PDF page. Its required attributes are

type (with the possible values axial and radial), colora and colorb (the two extreme colors
that are being interpolated), extend (two integer flags, indicating whether to extend the shading
to the full page), and coords (for axial shading, the coordinates of the endpoints of the axis, for
radial shading, the center and radius of both circles). The shading will be applied to every PDF
page, before anything else is drawn on it. It is completely invisible in the Ipe user interface, so use
this it with care.

All other elements have empty contents and two required attributes, name and value. name
defines a symbolic name, value an absolute value. The symbolic name must start with a letter ’a’
to ’z’ or ’A’ to ’Z’. The value for the color and dashstyle elements must be a legal absolute value
for the Ipe object attributes of the same name. The value for linewidth, textsize, marksize,
arrowsize, grid, and angle must be single real number. The value for media must be two integers

27

(width and height in Postscript points, i.e. 1/72 inch), separated by white space. The value for
textstretch must be two real numbers (stretch in horizontal and vertical direction).

Note that the symbolic names for grid, angle, and media cannot actually be used by objects in
the document—they are only used to fill the grid size, angular snap angle, and page size selectors
in the user interface with values.

15 If you have used Ipe 5 before. . .

. . . you may be shocked about some of the new developments in Ipe 6. In particular, the clever Ipe
file format that gave Ipe its name has disappeared. (You do remember, of course, that Ipe used to
stand for “Integrated Picture Environment”, because Ipe files were at the same time legal Latex
source code and Postscript files.)

Ipe 6 simply writes Postscript or PDF files. It still maintains text objects as Latex source, and
you edit text objects by editing Latex source, but before creating an Ipe file, Ipe runs Pdflatex and
stores the resulting PDF representation in the file. This is a much better solution, as Ipe figures
now require no special handling. You no longer have to add page-long explanations when you
send Ipe files to a co-author or publisher. The new approach was made possible by two important
developments that have happened since 1993, when I first wrote Ipe. First, all relevant Latex fonts
are now available as scalable Type1 fonts, and so it is possible to embed Latex text and formulas
in figures that may still need to be scaled later. Second, Hàn Thê Thàn’s pdfTeX, a version of
TEX that produces PDF instead of DVI output, makes it possible for Ipe to extract the processed
text objects from a Latex run and to include them in its own output.

The Ghostscript window is also no longer necessary, as Ipe can now render text objects the
way they will look on paper.

Perhaps you are worried now that you cannot continue to use your megabytes worth of existing
Ipe figures with Ipe 6. Fear not. Ipe 6 comes with a tool “ipe5toxml” that converts figures created
with Ipe 5 and earlier to Ipe 6’s XML format. In fact, you can just select an old Ipe file from the
Ipe user interface, and Ipe will run the tool for you automatically. (There was no question that
Ipe 6 would have to be able to communicate in XML, of course.)

Other than the file format, there aren’t really that many changes to Ipe’s functionality. I’ve
added style sheets and layers, because René van Oostrum says that no self-respecting drawing
program can do without. I’ve added page views, which allow you to incrementally build up a page
in a PDF presentation, because Christian Knauer wants to make PowerPoint-like presentations in
Ipe. And obviously it’s now possible to use Korean, Chinese, and Japanese in figures.

I’ve also revised the interface to ipelets (which used to be called “Iums” in the good old times
when people still thought that “applets” were small apples)—it is now based on dynamically loaded
libraries (a technology that was still somewhat poorly understood ten years ago, at least by me).
Ipelets are now much more powerful than they used to be, but buggy ipelets can also crash Ipe
much more easily than in the past. Well, you can always do the real work in a separate program,
I guess.

Finally, Ipe 6 has been rewritten from scratch in clean, beautiful, object-oriented C++. Quite
unlike the previous version. Oh, and there’s a Windows version of Ipe now. Who would have
thought that ten years ago!

16 History and acknowledgments

Many people have contributed with ideas, inspiration, and moral support over the years that I wrote
and used Ipe. Based on my experiences with Idraw, XFig, and Jean-Pierre Merlet’s JPDraw, I
wrote the first version of Ipe at Utrecht University in the summer of 1993. It used IRIS-GL and
Mark Overmars’ FORMS library, and run on SGI workstations only. Due to popular demand, I

28

finally gave in a year later, and spent two weeks in the summer of 1994 to teach myself Motif and to
rewrite Ipe to run under the X window system. Unfortunately, two weeks were really not enough,
and the 1994 X-version of Ipe has always been a hack. I didn’t have time to port the code that
displayed bitmaps on the screen, it crashed on both monochrome and truecolor (24-bit) displays,
and was in general quite unmaintainable.

These two first versions of Ipe were supported by the Netherlands’ Organization for Scientific
Research (NWO), and I would never have started working on it without Geert-Jan Giezeman’s
PLAGEO library. For testing, support, and inspiration in that original period, I’m grateful to Mark
de Berg, Maarten Pennings, Jules Vleugels, Vincenzo Ferrucci, and Anil Rao. Many students of
the department at Utrecht University served as alpha-testers (although I would still like to find
out who coined the phrase “the cute little core-dumper”).

I gave a presentation about Ipe at the Dagstuhl Workshop on Computational Geometry in
1995, and made a poster presentation at the ACM Symposium on Computational Geometry in
Vancouver in the same year. Both served to create a small but faithful community of Ipe addicts
within the Computational Geometry community.

Ipe proved itself invaluable to me over the years, especially when we used it to make all the
illustrations in our book “Computational Geometry: Theory and Applications” (Springer 1997,
with Mark de Berg, Marc van Kreveld, and Mark Overmars). Nevertheless, the problems were
undeniable: It was hard to compile Ipe on other C++ compilers and it only worked on 8-bit
displays. It is only due to the efforts of Ipe fans such as Tycho Strijk, Robert-Paul Berretty,
Alexander Wolff, and Sariel Har-Peled that the 1994 version of Ipe continued to be used until 2003.

I was teaching myself C++ while writing the first version of Ipe, and it shows—Ipe 5 is full
of elementary object-oriented design mistakes. When teaching C++ to second-year students at
Postech in 1996 I started to think about a clean rewrite of Ipe. My first notes on such a rewrite
stem from evenings spent at a hotel in Machida, close to IBM Tokyo in July 1996 (the idea at
that time was to embed Ipe into Emacs!). It proved impossible, though, to do a full rewrite
next to teaching and research, and nothing really happened until the Dagstuhl Workshop on
Computational Geometry in 2001, where Christian Knauer explained to me how he uses Pdflatex
to create presentations. I realized that PDF was ideally suited for a new version of Ipe. By parsing
the PDF output of Pdflatex, Ipe can obtain a PDF representation of text objects, including all
the necessary fonts. The advent of scalable Latex fonts means that Ipe can then create a scalable
PDF or Postscript figure including the processed text information. Directly after the workshop I
implemented a proof-of-concept: I defined the Ipe XML format, wrote “ipe5toxml” (reusing my old
Ipe parsing code) and a program that runs Pdflatex, parses its PDF output, extracts text objects
and font data, and creates a PDF file for the whole Ipe figure. This was only possible, of course,
due to the existence of Hàn Thê Thàn’s Pdflatex and of an open-source PDF parser in the form
of Derek Noonburg’s Xpdf.

Now all that remained was to rewrite the user interface. Since there is plenty of demand for
both Windows and Linux versions, I wanted Ipe to run on both operating systems, and had to
use a toolkit supporting both. I had experimented with V, FLTK, and Qt over the years, and
had used V and Qt in teaching. On the other hand, FLTK is small and compact, free software
on both Windows and Unix, and smells pleasantly like the original FORMS library from which
it is derived—the same that I had used in Ipe 2 in 1993. I actually started writing an FLTK
main window and canvas for Ipe, until Sariel Har-Peled stated with authority that Qt was the
only sensible choice. Fortunately, I had been able to purchase a Windows developers license for
Qt using funding from the Hong Kong Research Grants Council. What a pleasure to work with
Qt, compared to my Motif experiences from 1994!

Finally, Mark de Berg and the TU Eindhoven made it possible for me to take some time
off from teaching and research. The final design changes were made during the Second McGill-
INRIA Workshop on Computational Geometry in Computer Graphics at McGill’s Bellairs Research
Institute, and much inspiration is due to the atmosphere at the workshop and the magnificient
cooking by Gwen, Bellair’s chef.

29

For code actually used in Ipe, I wish to thank

• Hàn Thê Thàn for Pdflatex,

• Derek Noonburg for Xpdf,

• Werner Lemberg and the rest of the Freetype team for Freetype 2,

• Trolltech for Qt.

Looking at the history described briefly above, it is clear that the Dagstuhl series of workshops
has always been a major influence in the existence of Ipe. It is for that reason that I released
Ipe 6.0 formally at the Dagstuhl Workshop on Computational Geometry in March 2003.

17 Copyright

Ipe is “free,” this means that everyone is free to use it and free to redistribute it on certain
conditions. Ipe is not in the public domain; it is copyrighted and there are restrictions on its
distribution as follows:

Copyright c© 1993–2004 Otfried Cheong
This program is free software; you can redistribute it and/or modify it under the terms of the

Gnu General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

As a special exception, you have permission to link Ipe with the CGAL library and distribute
executables, as long as you follow the requirements of the Gnu General Public License in regard
to all of the software in the executable aside from CGAL.

This program is distributed in the hope that it will be useful, but without any warranty ;
without even the implied warranty of merchantability or fitness for a particular purpose. See
the Gnu General Public License for more details. A copy of the Gnu General Public License
is available on the World Wide web.11 You can also obtain it by writing to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

11at http://www.gnu.org/copyleft/gpl.html

30

Contents

1 Welcome to the Wonderful World of Ipe! 1

2 About Ipe files 1

3 Command line options and auxiliary programs 3

4 General Concepts 4
4.1 Order of objects . 5
4.2 The current selection . 5
4.3 Moving and scaling objects . 6
4.4 Stroke and fill colors . 6
4.5 Line width, line dash pattern, and arrows . 6
4.6 Symbolic and absolute attributes . 7
4.7 Zoom and pan . 7
4.8 Groups . 7
4.9 Layers . 8
4.10 Mouse shortcuts . 8

5 Object types 8
5.1 Path objects . 9
5.2 Text objects . 10
5.3 Mark objects . 11
5.4 Image objects . 12
5.5 Group objects . 12
5.6 Reference objects and templates . 12

6 Snapping 12
6.1 Grid snapping . 12
6.2 Context snapping . 13
6.3 Angular snapping . 13
6.4 Interaction of the snapping modes . 14
6.5 Examples . 15

7 Style sheets 17

8 Page views 19

9 Writing ipelets 19

10 Troubleshooting the LATEX-conversion 20

11 Using Truetype fonts 21

12 Unicode text 21

13 Customizing Ipe 22

14 The Ipe file format 23
14.1 The elements of an Ipe XML file . 24
14.2 The page element . 25
14.3 Ipe object elements . 25

14.3.1 The mark element . 25

31

14.3.2 The ref element . 25
14.3.3 The image element . 26
14.3.4 The text element . 26
14.3.5 The path element . 26
14.3.6 The group element . 27

14.4 The Ipe style sheet format . 27

15 If you have used Ipe 5 before. . . 28

16 History and acknowledgments 28

17 Copyright 30

32

	Welcome to the Wonderful World of Ipe!
	About Ipe files
	Command line options and auxiliary programs
	General Concepts
	Order of objects
	The current selection
	Moving and scaling objects
	Stroke and fill colors
	Line width, line dash pattern, and arrows
	Symbolic and absolute attributes
	Zoom and pan
	Groups
	Layers
	Mouse shortcuts

	Object types
	Path objects
	Text objects
	Mark objects
	Image objects
	Group objects
	Reference objects and templates

	Snapping
	Grid snapping
	Context snapping
	Angular snapping
	Interaction of the snapping modes
	Examples

	Style sheets
	Page views
	Writing ipelets
	Troubleshooting the LaTeX-conversion
	Using Truetype fonts
	Unicode text
	Customizing Ipe
	The Ipe file format
	The elements of an Ipe XML file
	The page element
	Ipe object elements
	The mark element
	The ref element
	The image element
	The text element
	The path element
	The group element

	The Ipe style sheet format

	If you have used Ipe 5 before…
	History and acknowledgments
	Copyright

