Solaris and HP-UX

Backend Nsswitch Specification

Contents

Contents
2
Overview
3
Backend file locations
3
Solaris
3
Sparc
3
Intel
4
HP-UX
4
PA-RISC
4
IA64
4
Type definitions
4
Solaris
4
HP-UX
5
Function definitions backend services
6
Passwd
6
Constructor
6
Destructor
7
endpwent
7
setpwent
8
getpwent
8
getpwnam
8
getpwuid
9
Group
10
Constructor
10
Destructor
10
endgrent
10
setgrent
11
getgrent
11
getgrnam
12
getgrgid
12
getgroupsbymember
13
PrPasswd
14
struct pr_passwd type
14
Constructor
15
Destructor
15
endprpwent
16
setprpwent
16
getpwent
16
getprpwnam
17
getprpwuid
17

Overview

An nsswitch backend is a shared library used to query a database of user/group/host information. When a client queries the system using a standard function like getpwnam, the OS's nsswitch implementation will load the backends mentioned in /etc/nsswitch.conf and query them in order until a match is found. The nsswitch backends are run under the user's credentials (they are not always run as root).

The backend exposes its functionality by exporting a specially named constructor function for each service it understands. The constructor function returns a function table for the numerous operations available for that service. The operations take two parameters. The first is the function table it is located in, and the second is an nss_XbyY_args_t, which acts like a blob of all the input and output parameters the function could need. The difficulty in implementing the operations lies in knowing which fields are used in the nss_XbyY_args_t.

Backend file locations

In the following list, <name> refers to the short provider name. Example names are nisplus, files, and ldap.

Solaris

64bit machines need both a 64bit and a 32bit version of the nsswitch library installed. 32bit machines only need the 32bit copy of the library, but it is safe to also install the 64bit version.

Sparc

/usr/lib/nss_<name>.so.1
- 32bit SPARC

/usr/lib/sparcv9/nss_<name>.so.1
-64bit SPARCV9

/usr/lib/sparcv9/libnss_<name>.so
-Symlink to 64bit SPARCV9

/usr/lib/sparcv9/libnss_<name>.so.1
-Symlink to 64bit SPARCV9

Intel

/usr/lib/nss_<name>.so.1
-32bit Intel

/usr/lib/amd64/nss_<name>.so.1
-64bit Intel

Solaris 8 has a symlink from /lib → /usr/lib. On Solaris 10, these directories are not linked, although the /usr/lib directory seems to be the preferred location. So optionally these symlinks may be added for Solaris 10:

/lib/nss_<name>.so.1

-Symlink to /usr/lib/nss_<name>.so.1

/lib/amd64/nss_<name>.so.1

-Symlink to /usr/lib/amd64/nss_<name>.so.1

HP-UX

On HP-UX, there is a symlink from /lib → /usr/lib, so the nsswitch libraries may be accessed in /lib or /usr/lib, but they only need to be installed in /usr/lib.

PA-RISC

These systems must have both the 32bit and 64bit versions of the library installed. New versions of sshd are known to require the 64bit library.

/usr/lib/libnss_<name>.1

-32bit PA-RISC

/usr/lib/pa20_64/libnss_<name>.1
-64bit PA-RISC

IA64

The library should be available in 4 different formats for IA64 systems, however in practice no known software uses the 64bit PA-RISC library.

/usr/lib/libnss_<name>.1

-32bit PA-RISC

/usr/lib/pa20_64/libnss_<name>.1
-64bit PA-RISC

/usr/lib/hpux32/libnss_<name>.so.1
-32bit IA64

/usr/lib/hpux64/libnss_<name>.so.1
-64bit IA64

Type definitions

Solaris

The necessary system types can be defined with this include statement:

#include <nss_dbdefs.h>

HP-UX

HP-UX uses very similar types, but it lacks the appropriate definitions in its system headers. The following type definitions have be been obtained by reverse engineering the nsswitch APIs (and were not copied from Solaris). These may be used on HP-UX machines:

#include <prot.h>

struct nss_backend;

typedef int nss_status_t;

#define NSS_SUCCESS 0

#define NSS_UNAVAIL 1

typedef nss_status_t (*nss_function)(struct nss_backend *be, void *args);

typedef struct nss_backend

{

 nss_function *ops;

 int n_ops; //always 32bit

} nss_backend_t;

typedef struct

{

 struct

 {

 void *result;

 char *buffer;

 size_t buflen;

 } buf;

 char *unknown1;

 char *unknown2;

 union

 {

 char *username;

 uid_t uid;

 gid_t gid;

 } key;

 int unknown3;

 int unknown4;

 void *returnval;

 int erange;

} nss_XbyY_args_t;

struct nss_groupsbymem

{

 const char *username;

 gid_t *gid_array;

 int maxgids;

 int unknown1;

 void *unknown2;

 void *unknown3;

 int numgids;

};

Function definitions backend services

Passwd

Constructor

nss_backend_t* _nss_<name>_passwd_constr(const char *db_name, const char *src_name, const char *cfg_args);

The system nsswitch implementation finds the passwd constructor in the backend library by name. So the function must be exported, and the name must be in the form _nss_<name>_passwd_constr, where <name> is the backend name, like files or ldap.

The db_name parameter will point to “passwd”, and src_name will point to “<name>”. All parameters can be safely ignored.

The constructor returns a nss_backend_t, which is a function table of operations. The returned nss_backend_t may either be statically allocated, or it may be allocated on the heap. If it is allocated on the heap, the passwd destructor should free it.

The n_ops field in the nss_backend_t should be set to the number of operations contained within (6). The ops field should point to an array containing function pointers to the backend's implementation of the following operations:

destructor

endpwent

setpwent

getpwent

getpwnam

getpwuid

Destructor

static nss_status_t passwd_destructor(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function should free any memory associated with be. Often, this means freeing be and possibly the ops array inside.

endpwent

static nss_status_t passwd_endpwent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function frees any memory associated with enumerating users. The backend should not assume this function will be called. If it is not called, the user enumeration memory should instead be freed with the backend in the destructor.

setpwent

static nss_status_t passwd_setpwent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function resets the user enumeration pointer so that the next user enumerated will be the first one.

getpwent

static nss_status_t passwd_getpwent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

buf.buffer

buf.buflen

Output fields used in args:

erange

returnval

This function gets the next user from the database and advances the enumeration pointer. The main passwd structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. If there is not enough space in the buffer (indicated by args->buf.buflen), then args->erange should be set to non-zero. If the function is successful, args->returnval should be set to args->buf.result.

getpwnam

static nss_status_t passwd_getpwnam(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

buf.buffer

buf.buflen

key.name

Output fields used in args:

erange

returnval

This function looks up the user by the name key.name. The main passwd structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. If there is not enough space in the buffer (indicated by args->buf.buflen), then args->erange should be set to non-zero. If the function is successful, args->returnval should be set to args->buf.result.

getpwuid

static nss_status_t passwd_getpwuid(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

buf.buffer

buf.buflen

key.uid

Output fields used in args:

erange

returnval

This function looks up the user by the id key.uid. The main passwd structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. If there is not enough space in the buffer (indicated by args->buf.buflen), then args->erange should be set to non-zero. If the function is successful, args->returnval should be set to args->buf.result.

Group

Constructor

nss_backend_t* _nss_<name>_group_constr(const char *db_name, const char *src_name, const char *cfg_args);

The system nsswitch implementation finds the group constructor in the backend library by name. So the function must be exported, and the name must be in the form _nss_<name>_group_constr, where <name> is the backend name, like files or ldap.

All parameters can be safely ignored.

The constructor returns a nss_backend_t, which is a function table of operations. The returned nss_backend_t may either be statically allocated, or it may be allocated on the heap. If it is allocated on the heap, the group destructor should free it.

The n_ops field in the nss_backend_t should be set to the number of operations contained within (7). The ops field should point to an array containing function pointers to the backend's implementation of the following operations:

destructor

endgrent

setgrent

getgrent

getgrnam

getgrgid

getgroupmembership

Destructor

static nss_status_t group_destructor(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function should free any memory associated with be. Often, this means freeing be and possibly the ops array inside.

endgrent

static nss_status_t group_endgrent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function frees any memory associated with enumerating groups. The backend should not assume this function will be called. If it is not called, the group enumeration memory should instead be freed with the backend in the destructor.

setgrent

static nss_status_t group_setgrent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function resets the group enumeration pointer so that the next group enumerated will be the first one.

getgrent

static nss_status_t group_getgrent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

buf.buffer

buf.buflen

Output fields used in args:

erange

returnval

This function gets the next group from the database and advances the enumeration pointer. The main group structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. If there is not enough space in the buffer (indicated by args->buf.buflen), then args->erange should be set to non-zero. If the function is successful, args->returnval should be set to args->buf.result.

getgrnam

static nss_status_t group_getgrnam(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

buf.buffer

buf.buflen

key.name

Output fields used in args:

erange

returnval

This function looks up the group by the name key.name. The main group structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. If there is not enough space in the buffer (indicated by args->buf.buflen), then args->erange should be set to non-zero. If the function is successful, args->returnval should be set to args->buf.result.

getgrgid

static nss_status_t group_getgrgid(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

buf.buffer

buf.buflen

key.gid

Output fields used in args:

erange

returnval

This function looks up the group by the id key.gid. The main group structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. If there is not enough space in the buffer (indicated by args->buf.buflen), then args->erange should be set to non-zero. If the function is successful, args->returnval should be set to args->buf.result.

getgroupsbymember

static nss_status_t group_bymember(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to a struct nss_groupsbymem. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

numgids

maxgids

username

Output fields used in args:

numgids

gid_array

This function returns the group ids that a given user is a member of. It is used internally by initgroups. If this function is unavailable, libc falls back to enumerating all groups and checking the gr_mem field to see if the user is member.

The function is called for every nsswitch provider, not just the one that owns the user (a domain user can be a member of groups in /etc/group as well as domain groups). The results are coalesced by libc. Duplicates are not automatically removed on Solaris.

The gid_array field points to the array of group ids that user is a member of. The first result in the array should be the user's primary group. This is filled in automatically by libc before any provider-specific backends are queried.

When the function is called, the gid_array field already has numgids items in it and room for a total of maxgids items. On Solaris, the nsswitch module may not resize gid_array.

numgids should be increased to reflect the number of groups which have been added.

If the function is successful, NSS_SUCCESS is returned. Otherwise an nsswitch error code is returned (typically NSS_UNAVAIL). An errno cannot be returned from this function.

It is not considered an error when fewer than the available groups are returned because maxgids is set too low. In this case NSS_SUCCESS is returned, as many groups as possible are filled in, and numgids = maxgids.

PrPasswd

In addition to the passwd and group backends, has HP-UX a prpasswd backend. This backend depends on HP-UX specific types, so it is not available on Solaris. This backend must be implemented in order for logins to succeed on HP-UX in trusted mode. HP-UX in untrusted mode does not use this interface.

struct pr_passwd type

Instead of using the struct passwd type, the prpasswd backend uses struct pr_passwd. This struct is documented at http://docs.hp.com/en/B9106-90010/getprpwent.3.html . The structure contains fields, and flags indicating which fields are valid. A field may be left uninitialized by setting the corresponding flag to false. The entire structure is fixed length and contains no pointers, so it does not need to be freed.

The structure contains all of the system default fields in the sfld field. User-specific overrides are stored in ufld. If a user-specific override for a field is not set, the system value is used instead.

In order to generate a pr_passwd object, the system default fields must be obtained. These values can be obtained by calling getprdfnam(“default”). That function returns a struct pr_default. The prd field of the pr_default contains the value for pr_passwd.sfld, and the prg field of the pr_default contains the value for pr_passwd.sflg.

Any of the fields may be set for the user, but this is the minimum list of user-specific fields which must be set:

name

- The username truncated to 8 characters

uid

- The user id

pswduser
- The uid of the who can change the password. Usually the same as uid

lock

- Set to true if the account is disabled

pw_audid
- The audit id for the user

The audit id is a unique identifier for audit events (such as login or logoff) that are generated by the user. The prpasswd backend on the system seems to be the only way to map between an audit id and a user id (getprpwaid can be called to lookup a user by audit it). So any audit id can be chosen for a user, as long as the id is unique. The uid can even be used as long as it does not conflict with the system audit ids (which seem to be less than 100).

Constructor

nss_backend_t* _nss_<name>_prpasswd_constr(const char *db_name, const char *src_name, const char *cfg_args);

The system nsswitch implementation finds the passwd constructor in the backend library by name. So the function must be exported, and the name must be in the form _nss_<name>_prpasswd_constr, where <name> is the backend name, like files or ldap.

The db_name parameter will point to “prpasswd”, and src_name will point to “<name>”. All parameters can be safely ignored.

The constructor returns a nss_backend_t, which is a function table of operations. The returned nss_backend_t may either be statically allocated, or it may be allocated on the heap. If it is allocated on the heap, the passwd destructor should free it.

The n_ops field in the nss_backend_t should be set to the number of operations contained within (7). The ops field should point to an array containing function pointers to the backend's implementation of the following operations:

destructor

endprpwent

setprpwent

getprpwent

getprpwnam

getprpwuid

unknown6
//This function is exposed by the system, but it is not called

Destructor

static nss_status_t prpasswd_destructor(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function should free any memory associated with be. Often, this means freeing be and possibly the ops array inside.

endprpwent

static nss_status_t prpasswd_endprpwent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function frees any memory associated with enumerating users. The backend should not assume this function will be called. If it is not called, the user enumeration memory should instead be freed with the backend in the destructor.

setprpwent

static nss_status_t prpasswd_setprpwent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter is not used. The be parameter points to the nss_backend_t it was found from.

This function resets the user enumeration pointer so that the next user enumerated will be the first one.

getpwent

static nss_status_t passwd_getpwent(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

Output fields used in args:

returnval

The args->buf.result field points to a comsec_nss_parms_t type

Output fields in args->buf.result:

prpw

This function gets the next user from the database and advances the enumeration pointer. The main prpasswd structure should be stored in args->buf.result.prpw. This structure contains all strings inline, so args->buf.buffer is not used. If the function is successful, args->returnval should be set to args->buf.result.prpw.

getprpwnam

static nss_status_t passwd_getprpwnam(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

key.name

Output fields used in args:

returnval

The args->buf.result field points to a comsec_nss_parms_t type

Output fields in args->buf.result:

prpw

This function looks up the user by the name key.name. The main passwd structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. The main prpasswd structure should be stored in args->buf.result.prpw. This structure contains all strings inline, so args->buf.buffer is not used. If the function is successful, args->returnval should be set to args->buf.result.prpw.

getprpwuid

static nss_status_t prpasswd_getprpwuid(nss_backend_t *be, void *args)

This function is found through the nss_backend_t, so it may be static and its name is not important.

The args parameter points to an nss_XbyY_args_t. The be parameter points to the nss_backend_t it was found from.

Input fields used in args:

buf.result

key.uid

Output fields used in args:

returnval

The args->buf.result field points to a comsec_nss_parms_t type

Output fields in args->buf.result:

prpw

This function looks up the user by the uid key.uid. The main passwd structure should be stored in args->buf.result, and the auxiliary strings should be stored in args->buf.buffer. The main prpasswd structure should be stored in args->buf.result.prpw. This structure contains all strings inline, so args->buf.buffer is not used. If the function is successful, args->returnval should be set to args->buf.result.prpw.

