Likewise Security and Authentication Subsystem (LSASS)

Technical Specification

Users and Groups Lookup

Likewise Software

July 18, 2008

Introduction
4

 Active Directory Authentication Provider
5

1.1 Un-provisioned Mode
5
1.1.1 Lookup User by Name
6
1.1.2 Lookup User by Id
6
1.1.3 Lookup Group by Name
6
1.1.4 Lookup Group by Id
6
1.1.5 Lookup Alias (User/Group)
6
1.2 Default (Cell) Schema Mode
7
1.2.1 Lookup User by Name (UPN)
7
1.2.2 Lookup User by Name (NT4)
7
1.2.3 Lookup User by Name (Alias)
7
1.2.4 Lookup User by Id
8
1.2.5 Lookup Group by Name (NT4)
8
1.2.6 Lookup Group by Name (Alias)
8
1.2.7 Lookup Group by Id
8
1.2.8 Enumerate Users
8
1.2.9 Enumerate Groups
8
1.3 Default (Cell) Non-Schema Mode
8
1.3.1 Lookup User by Name (UPN)
9
1.3.2 Lookup User by Name (NT4)
9
1.3.3 Lookup User by Name (Alias)
10
1.3.4 Lookup User by Id
10
1.3.5 Lookup Group by Name (NT4)
10
1.3.6 Lookup Group by Name (Alias)
10
1.3.7 Lookup Group by Id
11
1.3.8 Enumerate Users
11
1.3.9 Enumerate Groups
11
1.4 Cell Schema Mode
11
1.4.1 Lookup User by Name (UPN)
12
1.4.2 Lookup User by Name (NT4)
13
1.4.3 Lookup User by Name (Alias)
13
1.4.4 Lookup User by Id
13
1.4.5 Lookup Group by Name (NT4)
14
1.4.6 Lookup Group by Name (Alias)
14
1.4.7 Lookup Group by Id
14
1.4.8 Enumerate Users
15
1.4.9 Enumerate Groups
15
1.5 Cell Non-Schema Mode
15
1.5.1 Lookup User by Name (UPN)
16
1.5.2 Lookup User by Name (NT4)
16
1.5.3 Lookup User by Name (Alias)
17
1.5.4 Lookup User by Id
17
1.5.5 Lookup Group by Name (NT4)
17
1.5.6 Lookup Group by Name (Alias)
18
1.5.7 Lookup Group by Id
18
1.5.8 Enumerate Users
18
1.5.9 Enumerate Groups
19
LSASS Multi-forest support (MFS)
20

1.6 Trusts
20
1.6.1 Trust types
20
1.6.2 Gather trust information for the joined domain
21
1.7 Lookup Users/Groups in MFS with caching
22
1.7.1 AD Lookup Users in MFS
23
1.7.2 AD Lookup Groups in MFS
24
1.7.3 Alias/ID Converter in MFS with linked cell support
25
1.7.4 User/Group lookup Major Module
30
1.7.5 Linked Cell support
31
 Appendix A: Searching the Global Catalog
32

Appendix B: User Info Attributes (Schema Mode)
33

Appendix C: User Info Attributes (Non-Schema Mode)
34

Appendix C: User Info Attributes (Un-provisioned Mode)
35

Appendix D: Group Info Attributes (Schema Mode)
36

Appendix G: Calculating a UID/GID
37

Appendix E: Group Info Attributes (Non-Schema Mode)
38

Appendix F: Group Info Attributes (Un-provisioned Mode)
39

Appendix G: SID Formats
40

1.8 Textual format for sids with an Identifier Authority less than 0x100000000:
40
1.9 Textual format for sids with an Identifier Authority larger than 0xFFFFFFFF:
40
1.10 Binary Format
40

Introduction

The Likewise Security and Authentication Subsystem (LSASS) interfaces authentication services from various authentication providers. Likewise provides the following authentication providers.

 Local Authentication Provider

 The user/group information is provided on the local system.

 Active Directory Authentication Provider

 The user/group information is provided in Active Directory.

This document describes how the Active Directory Authentication Provider performs searches for user and group information.

 Active Directory Authentication Provider

For the purpose of this document, we believe that the local UNIX/Linux system is joined to an Active Directory Domain. The provider will also recognize various trusted domains affiliated to this primary domain.

The Active Directory Domain may be found in one of the following configurations.

· Schema Configuration

The Schema mode is active when the Active Directory Schema has been augmented according to RFC2307 to support POSIX Attributes. The definitions for posixAccount and posixGroup are of primary interest in this discussion. These definitions have the required fields to store user and group information specific to UNIX/Linux systems.

· Non-Schema Configuration

In this configuration, the Active Directory schema does not have any additional fields for storing UNIX/Linux specific user and group information.

At the discretion of the customer, Likewise may extend the Active Directory schema (and data) to provide authentication features. Based on the current Active Directory Configuration and extensions, the authentication provider will operate in one of the following modes.

1. Un-provisioned

2. Default (Cell) Schema

3. Default (Cell) Non-Schema

4. Cell schema

5. Cell non-schema

1.1 Un-provisioned Mode

This mode is effective when, relative to the location of the computer account in Active Directory, there must be no presence of a container named $LikewiseIdentityCell at the current level or at any parent level.

In this mode, Likewise must not make any changes to the Active Directory Schema.

For the purposes of this document, consider <root-dn> to represent the Root Distinguished Name of the Active Directory Domain. For instance, this might be "DC=Likewise,DC=com".

The user-search-root and group-search-root will be the <root-dn>.

1.1.1 Lookup User by Name

Perform an LDAP sub-tree search starting from the user-search-root and filter with "&(objectClass=user)(sAMAccountName=<user name>)". The sAMAccountName is guaranteed to be unique in the current domain. Retrieve the objectSID for the user account.

The UID is a 32bit mapping of the ObjectSID, combining the high-order 12 bits of the domain SID and the low-order 19 bits of the RID.

1.1.2 Lookup User by Id

 1. Parse the given UID into an objectSID. Use the low-order 19 bits

 as the RID (of the SID). The 12 high-order bits starting from the

 20th bit of the UID must match the Domain SID.

 2. Use the objectSID attribute to find the user account.

1.1.3 Lookup Group by Name

 1. Perform an LDAP sub-tree search starting from the group-search-root

 and filter with "&(objectClass=group)(sAMAccountName=<group name>)".

 The sAMAccountName is guaranteed to be unique in the current domain.

 Retrieve the objectSID for the group.

 2. The GID is a 32bit mapping of the ObjectSID, combining the

 high-order 12 bits of the domain SID and the low-order 19 bits of

 the RID.

1.1.4 Lookup Group by Id

 1. Parse the given GID into an objectSID. Use the low-order 19 bits

 as the RID (of the SID). The 12 high-order bits starting from the

 20th bit of the GID must match the Domain SID.

 2. Use the objectSID attribute to find the group object.

1.1.5 Lookup Alias (User/Group)

 Aliases are not supported in this mode unless provided locally.

1.2 Default (Cell) Schema Mode

This mode is effective when, relative to the location of the computer account in Active Directory object hierarchy, there must be a container named $LikewiseIdentityCell present only at the top/root level.

The Active Directory domain must be configured in Schema Mode (posixAccount and posixGroup object classes are available).

The "description" attribute (which is a multi-valued string) of the $LikewiseIdentityCell container must have a string that has the value "use2307Attrs=TRUE".

The user-search-root and group-search-root for LDAP queries will be the Root Distinguished Name of the Domain. For instance, this might be "DC=Likewise,DC=com".

 In default cell Schema mode, the user’s unix attributes are stored in the actual user we find using RFC2307.

CAVEATS

When a user from a trusted domain is logging into this system, we must look up the user's account in the domain in which the user is defined.

1.2.1 Lookup User by Name (UPN)

 If the loginId is in the form of “user name @ domain.com”, the name type is UPN.

 Perform an LDAP sub-tree search at the user-search-root using the search

 filter "&(objectClass=User)(uid=<user name>)(uidNumber=*)". (need further verification)

1.2.2 Lookup User by Name (NT4)

 If the loginId is in the form of “shortDomainName\\user name”, the name type is NT4.

 Perform an LDAP sub-tree search at the user-search-root using the search

 filter "(&(sAMAccountName=<user name>)(objectClass=User)(uidNumber=*))”.

1.2.3 Lookup User by Name (Alias)

 If the loginId is in the form of “user name”, the name type is alias.

 Perform an LDAP sub-tree search at the user-search-root using the search

 filter "(&(objectClass=user)(uid=<user name>)(uidNumber=*))".

1.2.4 Lookup User by Id

 Perform an LDAP sub-tree search at the user-search-root using the search

 filter "&(objectClass=user)(uidNumber=<UID>)".

1.2.5 Lookup Group by Name (NT4)

 If the loginId is in the form of “shortDomainName\\group name”, the name type is NT4.

 Perform an LDAP sub-tree search at the group-search-root using the search

 filter "&(sAMAccountName=<group name>)(objectClass=group)(gidNumber=*)".

1.2.6 Lookup Group by Name (Alias)

 If the loginId is in the form of “group name”, the name type is alias.

 Perform an LDAP sub-tree search at the group-search-root using the search

 filter "&(objectClass=group)(displayName=<group name>)(gidNumber=*)".

1.2.7 Lookup Group by Id

 Perform an LDAP sub-tree search at the user-search-root using the search

 filter "&(objectClass=group)(gidNumber=<GID>)".

1.2.8 Enumerate Users

 Perform an LDAP sub-tree search at the user-search-root using the search

 filter "(&(objectClass=User)(uidNumber=*))".

1.2.9 Enumerate Groups

 Perform an LDAP sub-tree search at the group-search-root using the search

 filter "(&(objectClass=Group)(gidNumber=*))".

1.3 Default (Cell) Non-Schema Mode

 This mode is effective when, relative to the location of the computer

 account in Active Directory object hierarchy, there must be a container

 named $LikewiseIdentityCell present only at the top/root level.

 The Active Directory domain must not have RFC2307 extensions

 (posixAccount and posixGroup object classes are not available).

 The "description" attribute (which is a multi-valued string) of the

 $LikewiseIdentityCell container must have a string that has the value

 "use2307Attrs=FALSE".

 For the purposes of this document, consider <root-dn> to represent the

 Root Distinguished Name of the current Active Directory Domain.

 For instance, this might be "DC=Likewise,DC=com".

 The user-search-root will be

 "CN=Users,CN=$LikewiseIdentityCell,<root-dn>"

 The group-search-root will be

 "CN=Groups,CN=$LikewiseIdentityCell,<root-dn>"

In default cell non-Schema mode, the user/group’s unix attributes are stored in the ”serverConnectionPoint”objects we find in the cell without RFC2307. To be more specific, the unix attributes are stored in “keywords” attribute.

 CAVEATS

 When a user from a trusted domain is logging into this system, we must

 lookup the user's account in the domain in which the user is defined.

1.3.1 Lookup User by Name (UPN)

 If the loginId is in the form of “user name @ domain.com”, the name type is UPN.

 Perform an LDAP sub-tree search at the user-search-root using the search

 Filter &(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser) (uid=<user name>)". (need further verification)

1.3.2 Lookup User by Name (NT4)

 If the loginId is in the form of “shortDomainName\\user name”, the name type is NT4.

 Lookup contains two steps:

(1) Perform an LDAP sub-tree search at the root distinguishedName, for instance, this might be “DC=Likewise, DC=com” using Global catalog using the search filter
“(sAMAccountName=<user name>” to obtain the user’s object SID.

(2) Perform an LDAP sub-tree search at the user-search-root using the search

 filter "&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser) (keywords=backLink=<objectSID>))" to find the user’s unix attributes in keywords attribute.

1.3.3 Lookup User by Name (Alias)

 If the loginId is in the form of “user name”, the name type is alias.

 Lookup contains two steps:

(1) Perform an LDAP sub-tree search at the user-search-root using the search

 filter "&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser) (keywords=uid=<user name>)".

(2) Verify the existence of the user object by performing an LDAP sub-tree search at the root distingusedName using the search filter “(objectSid=<object sid>”), where ‘object sid’ is retrieved from the entry’s keywords->backLink field.

If the user object cannot be found, this is an ‘orphan’ object, hence, we conclude that such user does not exist.

1.3.4 Lookup User by Id

 Perform an LDAP sub-tree search at the user-search-root using the search

 filter "&(objectClass=serviceConnectionPoint) \

 (keywords=objectClass=centerisLikewiseUser) \

 (keywords=uidNumber=<UID>)".

1.3.5 Lookup Group by Name (NT4)

 If the loginId is in the form of “shortDomainName\\group name”, the name type is NT4.

Lookup contains two steps:

(1) Perform an LDAP sub-tree search at the root distinguishedName, for instance, this might be “DC=Likewise, DC=com” using Global catalog using the search filter
“(sAMAccountName=<group name>” to obtain the group’s object SID.

(2) Perform an LDAP sub-tree search at the group-search-root using the search

 filter "&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseGroup) (keywords=backLink=<objectSID>))" to find the group’s unix attributes in keywords attribute.

1.3.6 Lookup Group by Name (Alias)

If the loginId is in the form of “group name”, the name type is alias.

Lookup contains two steps:

(1) Perform an LDAP sub-tree search at the group-search-root using the search

 filter "&(objectClass=serviceConnectionPoint) \

 (keywords=objectClass=centerisLikewiseGroup) \

 (keywords=displayName=<group name>)".

(2) Verify the existence of the group object by performing an LDAP sub-tree search at the root distingusedName using the search filter “(objectSid=<object sid>”), where ‘object sid’ is retrieved from the entry’s keywords->backLink field.

If the group object cannot be found, this is an ‘orphan’ object; hence, we conclude that such group does not exist.

1.3.7 Lookup Group by Id

Perform an LDAP sub-tree search at the group-search-root using the search filter "&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseGroup) (keywords=gidNumber=<GID>)".

1.3.8 Enumerate Users

 Perform an LDAP one-level search at the user-search-root using the search

 filter "(&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser)(keywords=uidNumber=*))". For each centerisLikewiseUser we find, we need check whether the real user exists in AD or not using its objectSid, which is stored in “backLink” in “keywords” attribute.

1.3.9 Enumerate Groups

 Perform an LDAP one-level search at the group-search-root using the search

 filter "(&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseGroup)(keywords=gidNumber=*))". For each centerisLikewiseGroup we find, we need check whether the real group exists in AD or not using its objectSid, which is stored in “backLink” in “keywords” attribute.

1.4 Cell Schema Mode

This mode is effective when, relative to the location of the computer account in Active Directory object hierarchy, there must be a container named $LikewiseIdentityCell at the current location or at any parent location; however, the $LikewiseIdentityCell must not be present at the top/root level.

The Active Directory domain must be configured in Schema Mode (posixAccount and posixGroup object classes are available).

The "description" attribute (which is a multi-valued string) of the $LikewiseIdentityCell container must have a string that has the value "use2307Attrs=TRUE".

The Authentication Provider would have already determined the distinguished name of the governing cell at startup. For the purposes of this discussion, let us refer to this value as <cell-dn>. For instance, this might be "DC=Engg,DC=Likewise,DC=com".

The user-search-root for this cell would be

CN=users,CN=$LikewiseIdentityCell,<cell-dn>

The group-search-root for this cell would be

CN=groups,CN=$LikewiseIdentityCell,<cell-dn>

In cell Schema mode, the user/group’s unix attributes are stored in the “posixAccount/posixGroup” objects we find in the cell with RFC2307.

 CAVEATS

 A User from another domain may be defined in the cell. In this case, the user object's "uid" attribute will be fully qualified. The "backLink" attribute will contain the value of the SID of the real user object (to which this current object is a reference).

To ensure that the user/group object found in the cell is valid, find the value contained in its "backLink" attribute; this will contain the objectSID of the real user/group object. If the object corresponding to this objectSID does not exist, consider that the user/group does not exist.

 If the display name of the user/group is desired, we should get this from the real user/group object.

1.4.1 Lookup User by Name (UPN)

 If the loginId is in the form of “user name @ domain.com”, the name type is UPN.

 1. Perform an LDAP one-level search at the user-search-root using the

 search filter

 "&(objectClass=posixAccount)(sAMAccountName=< user name>)".

 2. Cells may contain links to other cells. If the user cannot be found

 in the current cell, all linked cells must be searched

 (in the order they are specified). If one of the linked cells happens

 to be a Default Cell, then the search rules must be modified

 accordingly (uses a forest wide search). (need further verification)

1.4.2 Lookup User by Name (NT4)

 If the loginId is in the form of “shortDomainName\\user name”, the name type is NT4.

 Lookup contains three steps:

(1) Perform an LDAP sub-tree search at the root distinguishedName, for instance, this might be “DC=Likewise, DC=com” using Global catalog using the search filter
“(sAMAccountName=<user name>” to obtain the user’s object SID.

(2) Perform an LDAP sub-tree search at the user-search-root using the search

 filter "&(objectClass=posixAccount) (keywords=backLink=<objectSID>))" to find the user’s unix attributes with RFC2307.

(3) Cells may contain links to other cells. If the user cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.4.3 Lookup User by Name (Alias)

 If the loginId is in the form of “user name”, the name type is alias.

 Lookup contains three steps:

(1) Perform an LDAP one-level search at the user-search-root using the

 search filter

 "&(objectClass=posixAccount)(uid=< user name>)"

(2) Verify the existence of the user object by performing an LDAP sub-tree search at the root distingusedName using the search filter “(objectSid=<object sid>”), where ‘object sid’ is retrieved from the entry’s keywords->backLink field. If the user object cannot be found, this is an ‘orphan’ object, hence, we conclude that such user does not exist.

(3) Cells may contain links to other cells. If the user cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.4.4 Lookup User by Id

 1. Perform an LDAP one-level search at the user-search-root using the

 search filter "&(objectClass=posixAccount)(uidNumber=<UID>)".

 2. Cells may contain links to other cells. If the user cannot be found

 in the current cell, all linked cells must be searched

 (in the order they are specified). If one of the linked cells happens

 to be a Default Cell, then the search rules must be modified

 accordingly (uses a forest wide search).

1.4.5 Lookup Group by Name (NT4)

 If the loginId is in the form of “shortDomainName\\group name”, the name type is NT4.

 Lookup contains three steps:

(1) Perform an LDAP sub-tree search at the root distinguishedName, for instance, this might be “DC=Likewise, DC=com” using Global catalog using the search filter
“(sAMAccountName=<group name>” to obtain the group’’s object SID.

(2) Perform an LDAP sub-tree search at the group-search-root using the search

 filter "&(objectClass=posixGroup) (keywords=backLink=<objectSID>))" to find the group’’s unix attributes with RFC2307.

(3) Cells may contain links to other cells. If the group cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.4.6 Lookup Group by Name (Alias)

 If the loginId is in the form of “group name”, the name type is alias.

 Lookup contains three steps:

(1) Perform an LDAP one-level search at the user-search-root using the

 search filter

 "&(objectClass=posixGroup)(displayName=<group name>)"

(2) Verify the existence of the group object by performing an LDAP sub-tree search at the root distingusedName using the search filter “(objectSid=<object sid>”), where ‘object sid’ is retrieved from the entry’s keywords->backLink field. If the user object cannot be found, this is an ‘orphan’ object, hence, we conclude that such group does not exist.

(3) Cells may contain links to other cells. If the group cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.4.7 Lookup Group by Id

 1. Perform an LDAP one-level search at the group-search-root using the

 search filter "&(objectClass= posixGroup)(gidNumber=<GID>)".

 2. Cells can contain links to other cells. If the group cannot be found

 in the current cell, all linked cells must be searched

 (in the order they are specified). If one of the linked cells happens

 to be a Default Cell, then the search rules must be modified

 accordingly (it changes to a forest wide search).

1.4.8 Enumerate Users

 Perform an LDAP one-level search at the user-search-root using the search

 filter "(&(objectClass=posixAccount)(uidNumber=*))". For each posixAccount we find, we need check whether the real user exists in AD or not using its objectSid, which is stored in “backLink” in “keywords” attribute.

1.4.9 Enumerate Groups

 Perform an LDAP one-level search at the group-search-root using the search

 filter "(&(objectClass=posixGroup)(gidNumber=*))". For each centerisLikewiseGroup we find, we need check whether the real group exists in AD or not using its objectSid, which is stored in “backLink” in “keywords” attribute.

1.5 Cell Non-Schema Mode

This mode is effective when, relative to the location of the computer account in Active Directory object hierarchy, there must be a container named $LikewiseIdentityCell at the current location or at any parent location; however, the $LikewiseIdentityCell must not be present at the top/root level.

The Active Directory domain must not have RFC2307 extensions (posixAccount and posixGroup object classes are not available).

The "description" attribute (which is a multi-valued string) of the $LikewiseIdentityCell container must have a string that has the value "use2307Attrs=FALSE".

 In cell non-Schema mode, the user/group’s unix attributes are stored in the

 ”serverConnectionPoint”objects (same as default cell non-Schema mode) we find in the cell without RFC2307. To be more specific, the unix attributes are stored in “keywords” attribute.

CAVEATS

 A User from another domain may be defined in the cell. In this case, the user object's "uid" attribute will be fully qualified. The "backLink" attribute will contain the value of the SID of the real user object (to which this current object is a reference).

To ensure that the user/group object found in the cell is valid, find the value contained in its "backLink" attribute; this will contain the objectSID of the real user/group object. If the object corresponding to this objectSID does not exist, consider that the user/group does not exist.

 If the display name of the user/group is desired, we should get this from the real user/group object.

1.5.1 Lookup User by Name (UPN)

 If the loginId is in the form of “user name @ domain.com”, the name type is UPN.

 1. Perform an LDAP one-level search at the user-search-root using the

 search filter “&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser)(uid=<user name>)".

 2. Cells may contain links to other cells. If the user cannot be found

 in the current cell, all linked cells must be searched

 (in the order they are specified). If one of the linked cells happens

 to be a Default Cell, then the search rules must be modified

 accordingly (uses a forest wide search). (need further verification)

1.5.2 Lookup User by Name (NT4)

 If the loginId is in the form of “shortDomainName\\user name”, the name type is NT4.

 Lookup contains three steps:

(1) Perform an LDAP sub-tree search at the root distinguishedName, for instance, this might be “DC=Likewise, DC=com” using Global catalog using the search filter
“(sAMAccountName=<user name>” to obtain the user’s object SID.

(2) Perform an LDAP sub-tree search at the user-search-root using the search

 filter &(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser) (keywords=backLink=<objectSID>))" to find the user’s unix attributes in keywords attribute.

(3) Cells may contain links to other cells. If the user cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.5.3 Lookup User by Name (Alias)

 If the loginId is in the form of “user name”, the name type is alias.

 Lookup contains three steps:

(1) Perform an LDAP one-level search at the user-search-root using the

 search filter “&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser)(keywors=uid=<user name>)".

(2) Verify the existence of the user object by performing an LDAP sub-tree search at the root distingusedName using the search filter “(objectSid=<object sid>”), where ‘object sid’ is retrieved from the entry’s keywords->backLink field. If the user object cannot be found, this is an ‘orphan’ object, hence, we conclude that such user does not exist.

(3) Cells may contain links to other cells. If the user cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.5.4 Lookup User by Id

 1. Perform an LDAP one-level search at the user-search-root using the

 search filter "&(objectClass=serviceConnectionPoint) \

 (keywords=objectClass=centerisLikewiseUser) \

 (keywords=uidNumber=<UID>)".

 2. Cells may contain links to other cells. If the user cannot be found

 in the current cell, all linked cells must be searched

 (in the order they are specified). If one of the linked cells happens

 to be a Default Cell, then the search rules must be modified

 accordingly (uses a forest wide search).

1.5.5 Lookup Group by Name (NT4)

 If the loginId is in the form of “shortDomainName\\group name”, the name type is NT4.

 Lookup contains three steps:

(1) Perform an LDAP sub-tree search at the root distinguishedName, for instance, this might be “DC=Likewise, DC=com” using Global catalog using the search filter
“(sAMAccountName=<group name>” to obtain the group’’s object SID.

(2) Perform an LDAP sub-tree search at the group-search-root using the search

 filter "&(objectClass=posixGroup) (keywords=backLink=<objectSID>))" to find the group’’s unix attributes stored in “keywors” attribute..

(3) Cells may contain links to other cells. If the group cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.5.6 Lookup Group by Name (Alias)

 If the loginId is in the form of “group name”, the name type is alias.

 Lookup contains three steps:

(1) Perform an LDAP one-level search at the user-search-root using the

 search filter

 "&(objectClass=serviceConnectionPoint) \

 (keywords=objectClass=centerisLikewiseGroup) \

 (keywords=displayName=<group name>)".

(2) Verify the existence of the group object by performing an LDAP sub-tree search at the root distingusedName using the search filter “(objectSid=<object sid>”), where ‘object sid’ is retrieved from the entry’s keywords->backLink field. If the user object cannot be found, this is an ‘orphan’ object, hence, we conclude that such group does not exist.

(3) Cells may contain links to other cells. If the group cannot be found in the current cell, all linked cells must be searched (in the order they are specified). If one of the linked cells happens to be a Default Cell, then the search rules must be modified accordingly (uses a forest wide search).

1.5.7 Lookup Group by Id

 =

 1. Perform an LDAP one-level search at the group-search-root using the

 search filter "&(objectClass=serviceConnectionPoint) \

 (keywords=objectClass=centerisLikewiseGroup) \

 (keywords=gidNumber=<GID>)".

 2. Cells may contain links to other cells. If the user cannot be found

 in the current cell, all linked cells must be searched

 (in the order they are specified). If one of the linked cells happens

 to be a Default Cell, then the search rules must be modified

 accordingly (uses a forest wide search).

1.5.8 Enumerate Users

 Perform an LDAP one-level search at the user-search-root using the search

 filter "(&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser)(keywords=uidNumber=*))". For each centerisLikewiseUser we find, we need check whether the real user exists in AD or not using its objectSid, which is stored in “backLink” in “keywords” attribute.

1.5.9 Enumerate Groups

 Perform an LDAP one-level search at the group-search-root using the search

 filter "(&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseGroup)(keywords=gidNumber=*))". For each centerisLikewiseGroup we find, we need check whether the real group exists in AD or not using its objectSid, which is stored in “backLink” in “keywords” attribute.

LSASS Multi-forest support (MFS)

1.6 Trusts

Diagram 3.1 depicts various trusts that are taken care of in LSASS MFS support. Table 3.1 categorized these trusts into “intra forest” and “inter forest” trusts. All the intra-forest trusts (CHILD, TREEROOT and SHORTCUT trusts) are by default two-way, transitive trusts. The inter-forest trusts (EXTERNAL and ACROSS-FOREST trusts) can be either one-way or two-way trusts.

1.6.1 Trust types

[image: image1.jpg]&) Likewise

:

Intra Forest
Inter Forest

CHILD_TRUST

(two-way, transitive)
EXTERNAL_TRUST

(Domain-Domain, one/two-way)

TREEROOT_TRUST

(two-way, transitive)
FOREST_TRUST

(Forest-Forest, one/two-way)

SHORTCUT_TRUST

(two-way, transitive)

Table 3.1: Summary of Trust types

1.6.2 Gather trust information for the joined domain

1.6.2.1 Three-step trusts retrieval

During loading LSASS Active Directory provider (ad-provider), a list of all trusted domain including both one-way and two-way are retrieved using RPC calls. This process contains three steps:

· Step (1): Own domain: query trusts information against the current local DC where the computer is joined to.

Goal: detecting any immediate trusts including external trusts, if the domain happens to be the forest root, step (1) includes the trusts that is supposed to be detected in Step (2).

· Step (2): Root of my forest: query trusts information against the current forest’s root node DC

Goal: detecting any immediate trusts to the current forest root and all the forest trusts.

· Step (3): Trusted forest roots: query trusts information against all trusted forests’ root node DCs

Goal: detecting any immediate trusts within that forest

1.6.2.2 On-demand trust detection

For trusts that cannot be completed detected during the “three-step trusts retrieval”, on-demand trusts detection (implementation yet to add) can be used. It detects a trust upon a successful user/group lookup. If such trust is not present in the list of trusted domain, then this is a new trust that should be added to the trusted domain list.

1.7 Lookup Users/Groups in MFS with caching

Diagram 3.2 depicts how user/groups lookup is done with caching support. User/group lookup in active directory with multi-forest support will be expanded in the following sections.

Functions “AD_FindUserByName”, “AD_FindUserById”, “AD_FindGroupByName” and “AD_FindGroupById” all follow the above diagram.

1.7.1 AD Lookup Users in MFS

Since the RPC call “AD_NetLookupObjectSidByName” that lookups objectSid by name accepts names in the format of NT4 (e.g. corpqa\\user), UPN (e.g. user@corpqa.centeris.com) and FullDomainName@SamaccountName (e.g. corpqa.centeris.com\\user), when UID and alias are provided as inputs, we need first convert them to NT4 name and then proceed to the major module as shown in Diagram 3.3 to get the user information.

1.7.2 AD Lookup Groups in MFS

Similar to lookup users in MFS, except that inputs can only be NT4 name, alias or group GID (NO UPN group name). When GID and alias are provided as inputs, we first convert them to NT4 name and then proceed to the major module as depicted in Diagram 3.4 to get the group information.

The following two subsections will provide details for “Alias/ID converter” and “Major module” in Diagram 3.3 and Diagram 3.4.

1.7.3 Alias/ID Converter in MFS with linked cell support

Alias/ID converter converts a given alias or ID to a NT4 Name (e.g. corpqa\\user). Alias works for provision mode; and ID works for both provision and un-provision modes.

1.7.3.1 Alias-to-NT4 Converter

The function that find user in current domain in default mode is expanded in Diagram 3.6 and find user in current cell in cell mode is expanded in Diagram 3.7 respectively.

1.7.3.2 ID-to-NT4 Converter

ID-to-NT4 converter works similar to Alias-to-NT4 converter except that ID-to-NT4 works under both provision and un-provisioned modes while alias-to-NT4 works only under provision mode, where default schema, default non-schema, cell schema and cell non-schema are all covered.

1.7.4 User/Group lookup Major Module

1.7.4.1 Two-way trusts

Both provision-mode (default/cell/schema/non-schema) and un-provisioned mode are working modes in two-way trusts scenario.

1.7.4.2 One-way trusts

Only cell schema/non-schema modes work in one-way trust.

Diagram 3.11 shows the implementation of the user/group lookup major module.

Note: “CellModeFindUser/GroupByName” has “linked-cell” support.

1.7.5 Linked Cell support

The principal idea of linked cell support is that searching for user/group in the current joined cell, if the user/group is not found, searching will be extended to linked cells until we either find such user/group or cannot find after all the linked cell have been gone processed. The linked cell information is stored in AD object “CN=$LikewiseIdentityCell, OU=***, ***” “description” attribute’s “linkedCells=” field. A list of linked cell information is gathered while AD-provider is loaded.

For a quick reference, the linked cell support has been added to a list of methods below:

· ADFindUserByNameNonAlias

· ADFindGroupByNameNT4

· ADLdap_CellFindUserNameByAlias

· ADLdap_CellFindGroupNameByAlias

· ADLdap_CellFindUserNameById

· ADLdap_CellFindGroupNameById

 Appendix A: Searching the Global Catalog

It is necessary to perform searches on the Active Directory Global Catalog.

In the Non-Schema mode, we store the data in the keywords field, which is maintained in the Global Catalog.

Use port 3268 to search the Global Catalog.

Appendix B: User Info Attributes (Schema Mode)

User Info Field
Description
Source

pw_uid (NSS)
User identifier (uid_t)
“uidNumber” attribute of the user object.

pw_gid (NSS)
Primary group identifier (gid_t)
“gidNumber” attribute of the user object.

pw_nam (NSS)
Identifier used by the user at login
“name” attribute of the user object. If the lookup was performed using an alias, return the alias in this field. Otherwise, send back the NT4 style name.

pw_passwd
Shadow Password
“unixUserPassword” attribute of the user object. This is typically not used by the client.

Pw_shell
Login Shell
“loginShell” attribute of the user object.

Pw_dir
Path to user’s home directory
“unixHomeDirectory” attribute of the user object.

Pw_gecos
General Electric Comprehensive Operating System
“gecos” attribute of the user object.

Appendix C: User Info Attributes (Non-Schema Mode)

User Info Field
Description
Source

pw_uid (NSS)
User identifier (uid_t)
Look in the "keywords" attribute (of type multi-valued string) of the user object. Parse value with the prefix "uidNumber=".

pw_gid (NSS)
Primary group identifier (gid_t)
Look in the "keywords" attribute (of type multi-valued string) of the user object. Parse value with the prefix "gidNumber=".

pw_nam (NSS)
Identifier used by the user at login
“name” attribute of the user object. If the lookup was performed using an alias, return the alias in this field. Otherwise, send back the NT4 style name.

pw_passwd
Shadow Password
 Likewise does not fill this field.

pw_shell
Login Shell
Look in the "keywords" attribute (of type multi-valued string) of the user object. Parse value with the prefix "loginShell=".

pw_dir
Path to user’s home directory
Look in the "keywords" attribute (of type multi-valued string) of the user object. Parse value with the prefix "unixHomeDirectory=".

pw_gecos
General Electric Comprehensive Operating System
Look in the "keywords" attribute (of type multi-valued string) of the user object. Parse value with the prefix "gecos=".

Appendix C: User Info Attributes (Un-provisioned Mode)

User Info Field
Description
Source

pw_uid (NSS)
User identifier (uid_t)
Use the algorithm specified in Appendix F to calculate this value.

pw_gid (NSS)
Primary group identifier (gid_t)

pw_nam (NSS)
Identifier used by the user at login
“name” attribute of the user object. If the lookup was performed using an alias, return the alias in this field. Otherwise, send back the NT4 style name.

pw_passwd
Shadow Password
 Likewise does not fill this field.

pw_shell
Login Shell
Obtain from configuration

pw_dir
Path to user’s home directory
This is formed from a template string path saved in the configuration.

For instance, the template might be "/home/%s/%s" with a place holder with the first place-holder for the short domain name and the second place-holder for the user's login id.

pw_gecos
General Electric Comprehensive Operating System

Appendix D: Group Info Attributes (Schema Mode)

Group Info Field
Description
Source

gr_gid (NSS)
Group identifier (gid_t)
Value of the "gidNumber" attribute of the group object.

gr_nam (NSS)
Group name (not the display name)
“name” attribute of the group object. If the lookup was performed using an alias, return the alias in this field. Otherwise, send back the NT4 style name.

gr_passwd
Shadow Password
 Likewise does not fill this field.

gr_mem
Group member list
Values from the multi-valued-string attribute "members" of the group object.

Appendix G: Calculating a UID/GID

 This is the Likewise specific 32 bit unsigned integer Hash Value

 of the objectSid attribute from the user object.

 The hash algorithm is non-cryptographic and hence reversible

 under some circumstances.

 Bit 31 (most significant bit) is always set to zero.

 If there are fewer than three sub-authority ID's, then

 bits 19-30 are also set to zero.

 Otherwise, bits 19-30 are produced as a result of the XOR of the

 final three sub-authority IDs:

 // dwAuthorityCount includes the final RID

 dwHash = 0;

 if(dwAuthorityCount > 3)

 {

 dwHash =

 dwAuthorities[dwAuthorityCount - 4] ^

 dwAuthorities[dwAuthorityCount - 3] ^

 dwAuthorities[dwAuthorityCount - 2];

 }

 The XOR'd value is then compressed into

 12 bits by the summation, modulo 0x1000, of bits 0-7, 8-19,

 and 20-31:

 dwHash = (((dwHash & 0xFFF00000) >> 20) +

 ((dwHash & 0x000FFF00) >> 8) +

 ((dwHash & 0x000000FF))) & 0x0000FFF;

 This result is added to bits 0-18 (least significant 19 bits) of

 the RID:

 UID = (dwHash << 19) +

 (dwAuthorities[dwAuthorityCount - 1] & 0x0007FFFF);

Appendix E: Group Info Attributes (Non-Schema Mode)

Group Info Field
Description
Source

gr_gid (NSS)
Group identifier (gid_t)
Look in the "keywords" attribute (of type multi-valued string) of the user object. Parse value with the prefix "gidNumber=".

gr_nam (NSS)
Group name (not the display name)
“name” attribute of the group object. If the lookup was performed using an alias, return the alias in this field. Otherwise, send back the NT4 style name.

gr_passwd
Shadow Password
 Likewise does not fill this field.

gr_mem
Group member list
Values from the multi-valued-string attribute "members" of the group object.

Appendix F: Group Info Attributes (Un-provisioned Mode)

Group Info Field
Description
Source

gr_gid (NSS)
Group identifier (gid_t)
Use the algorithm specified in Appendix F to calculate this value.

gr_nam (NSS)
Group name (not the display name)
“name” attribute of the group object. If the lookup was performed using an alias, return the alias in this field. Otherwise, send back the NT4 style name.

gr_passwd
Shadow Password
 Likewise does not fill this field.

gr_mem
Group member list
Values from the multi-valued-string attribute "members" of the group object.

Appendix G: SID Formats

1.8 Textual format for sids with an Identifier Authority less than 0x100000000:

S-Revision-IdentifierAuthority-FirstSubAuth-SecondSubAuth-...

1.9 Textual format for sids with an Identifier Authority larger than 0xFFFFFFFF:

S-Revision-0xIdentifierAuthority-FirstSubAuth-SecondSubAuth-...

Note: in this form, the identifier authority is stored in hexadecimal as 12 digits, padded with leading zeros if necessary. The identifier authority is also perpended with 0x to indicate it is stored in hexadecimal.

1.10 Binary Format

Sid field
Bytes
Endianess

Revision
0
NA

Sub Authority Count
1
NA

Identifier Authority
2 - 7
Big

Sub Authorities
Each subauth takes 2 bytes.

The first one takes bytes 8 – 9.
Little

No

Lookup User/group in Cache

Yes/no?

User/group Lookup in AD with MFS (details in Ch.3.2.1, 3.2.2)

Cache user/group information with timestamp

Check user/group info expired or not

Yes/no?

Output user/group information at different info level

Yes

Yes

No

 Diagram 3.2: User/group Lookup with Caching

UID

Alias

NT4

UPN

FullDomainName@SamaccountName

UID/Alias to NT4

Alias/ID Converter

User Sid

Major module handles various trusts, provision-mode (default, cell, schema and non-schema) and un-provisioned -mode

 User Info

RPC

RPC

RPC

 Diagram 3.3: Lookup users in AD with MFS

GID

Alias

NT4

FullDomainName@SamaccountName

GID/Alias to NT4

Alias/ID Converter

Group Sid

Major module handles various trusts, provision-mode (default, cell, schema and non-schema) and un-provisioned -mode

Group Info

RPC

RPC

 Diagram 3.4: Lookup groups in AD with MFS

Go through the linked cell list to find user

“ADLdap_CellFindUserNameByAliasInOneCell

Found?

Output NT4 Name

No

Yes

DEFAUL_MODE

“ADLdap_DefaultFindUserNameByAlias”

Default mode find user in current Domain

“ADLdap_DefaultFindUserNameByAliasInDomain”

“ADLdap_FindUserNameByAlias”

Found?

Go through the trusted list to find user

“ADLdap_DefaultFindUserNameByAliasInDomain”

Found?

Cell mode find user in current Cell

“ADLdap_CellFindUserNameByAliasInOneCell”

Found?

CELL_MODE

“ADLdap_CellFindUserNameByAlias”

Yes

Yes

No

Yes

No

No

Diagram 3.5: User Alias-to-NT4 Converter

Schema Mode

“ADLdap_DefaultSchemaFindUserNameByAlias”

Default mode find user in Domain

“ADLdap_DefaultFindUserNameByAliasInDomain”

Non-Schema Mode

“ADLdap_DefaultNonSchemaFindUserNameByAlias”

Algorithm:

Set query filter to “(&(objectClass=User)(uid=alias))

Do a GC query for the user object

If found, output NT4 Name; otherwise, set NT4 name to NULL

Algorithm:

Set query filter to (&(objectClass=serviceConnectionPoint)(keywords=objectClass=centerisLikewiseUser)(keywords=uidNumber=%d))”

Do a GC query for the pseudo user object

Get user Sid by looking at the “backlink” field of attribute “keywords”

Do a GC query for the user Sid.

If found, output NT4 Name; otherwise, set NT4 Name to NULL.

Diagram 3.6: Default Mode Find User Name by Alias in Domain

Schema Mode

Set query filter to: (&(objectClass=posixAccount)(keywords=objectClass=centerisLikewiseUser)(uid=%s))

Non-Schema Mode

Set query filter to:

(&(objectClass=posixAccount)(keywords=objectClass=centerisLikewiseUser)(keywords=uid=%s))

Cell mode find user in current Cell

“ADLdap_CellFindUserNameByAliasInOneCell”

“ADLdap_CellFindUserNameHelper” Algorithm:

Use the query filter to search in the current cell for pseudo user object;

Grab objectSid by looking up “banklink” field of “keywords” attribute;

Do GC Search against the current joined domain for user object with such objectSid;

If not found, do GC search against the trusted domains one by one until such user object is found, set NT4 name;

If not found, set NT4 name to NULL

Diagram 3.7: Cell Mode Find User Name by Alias in Cell

Go through the linked cell list to find group

“ADLdap_CellFindGroupNameByAliasInOneCell

Found?

Output NT4 Name

No

Yes

DEFAUL_MODE

“ADLdap_DefaultFindGroupNameByAlias”

Default mode find user in current Domain

“ADLdap_DefaultFindGroupNameByAliasInDomain”

“ADLdap_FindGroupNameByAliass”

Found?

Go through the trusted list to find group

“ADLdap_DefaultFindGroupNameByAliasInDomain”

Found?

Cell mode find group in current Cell

“ADLdap_CellFindGroupNameByAliasInOneCell”

Found?

CELL_MODE

“ADLdap_CellFindGroupNameByAlias”

Yes

Yes

No

Yes

No

No

Diagram 3.8: Group Alias-to-NT4 Converter

No

Diagram 3.9: User ID-to-NT4 Converter

Output User NT4 Name

“ADLdap_FindUserNameByID”

Go through the linked cell list to find user

“ADLdap_CellFindUserNameByIdInOneCell

Found?

Yes

No

DEFAUL_MODE

“ADLdap_DefaultFindUserNameById”

Default mode find user in current Domain

“ADLdap_DefaultFindUserNameByIdInDomain”

Found?

Go through the trusted list to find user

“ADLdap_DefaultFindUserNameByIdInDomain”

Found?

Cell mode find user in current Cell

“ADLdap_CellFindUserNameByIdInOneCell”

Found?

CELL_MODE

“ADLdap_CellFindUserNameById”

Yes

Yes

No

Yes

No

Provision mode

Un-provision mode

“ADLdap_UnprovisionedFindUserNameById”

Diagram 3.10: Group ID-to-NT4 Converter

Output Group NT4 Name

“ADLdap_FindGroupNameByID”

Go through the linked cell list to find group

“ADLdap_CellFindGroupNameByIdInOneCell

Found?

Yes

No

DEFAUL_MODE

“ADLdap_DefaultFindGroupNameById”

Default mode find groupr in current Domain

“ADLdap_DefaultFindGroupNameByIdInDomain”

Found?

Go through the trusted list to find group

“ADLdap_DefaultFindGroupNameByIdInDomain”

Found?

Cell mode find group in current Cell

“ADLdap_CellFindUserNameByIdInOneCell”

Found?

CELL_MODE

“ADLdap_CellFindGroupNameById”

Yes

Yes

No

Yes

No

Provision mode

Un-provision mode

“ADLdap_UnprovisionedFindGroupNameById”

Domain

Forest Trust

External Trust

Child Trust

Tree-Root Trust

Parent B

(Forest Root)

Child1

Child2

Forest B

Forest A

Parent A

(Forest Root)

Child1

Child2

GrandChild1

Computer

Child Trust Trust

Tree-Root Trust

JOIN

Child Trust

Diagram 3.1: Trust type and related architecture

Shortcut Trust

No

Diagram 3.11: User/group lookup major module

Determine the trust mode

OnewayTrust

TwowayTrust_Inforest

TwowayTrust_Acrossforest

OneSelfTrust

(Single dc)

CellModeFindUser/GroupByName

Determine user/group’s real domain information

DefaultModeFindUser/GroupByName

Determine the execution mode

UnprovisionModeFindUser/GroupByName

Cell_Mode?

Yes

Not Found

No

Output User/Group information

External Trust

40

