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Abstract

A linear mixed model to be fit by lmer is specified by a formula.
The fixed-effects terms in this formula are interpreted as they would
be in the lm or glm functions. In this vignette we describe the inter-
pretation of the random effects terms in these formulas and provide
several examples of fitted models and their formulas.

1 Introduction

We begin with examples of data sets to which we will fit some linear mixed
models. Once we have some examples to bear in mind we will describe the
mathematical formulation of the model and how the formula describing the
model in lmer is interpreted.

2 Examples of data sets and models

? is a classic reference on the use of statistics in the chemical industry. The
first edition was published in 1947. Although we refer to the chapters and
pages in the fourth edition, published in 1972, the discussion of these data
sets and models to be fit to them does go back to 1947 and earlier.

2.1 The Dyestuff example

The Dyestuff data in the lme4 package, shown in Figure 1, are described in
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Figure 1: Dotplot of the data from the dyestuff example described in Davies,
1972. The six batches of the intermediate product determine the row. Within
each row the yields for the five preparations from that batch are shown. The
points have been jittered slightly on the vertical axis to prevent overplotting.
Because there is no indication of a preferred ordering for the batches (such as
a time ordering) we reorder the batches according to increasing mean yield.
The line joins the mean yields of the batches.

Example 6.1 of (?, p. 130) as coming from

an investigation to find out how much the variation from batch
to batch in the quality of an intermediate product (H-acid) con-
tributes to the variation of the yield of a dyestuff (Napthalene
Black 12B) made from it. In the experiment six samples of the in-
termediate, representing different batches of works manufacture,
were obtained, and five preparations of dyestuff were made in the
laboratory from each sample. The equivalent yield of each prepa-
ration as grams of standard color was determined by dye-trial,
. . .

Note that the purpose of the experiment is to characterize the variation
in the quality of the product that can be attributed to the batch to batch
variation of the intermediate product. The yield is the response and the
batch is the covariate. Batch is a categorical covariate, in the sense that the
information about the batch is simply whether the sample was created from
the first batch or the second batch or so on. We can take any of the 30
observed yields and categorize it as having been prepared from one of the six
batches of intermediate.
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The factor data type in R provides a representation for such categorical
covariates. In contrast, the yield is a numerical response measured on a
physically meaningful scale (grams) and we represent that as a numerical
value.
> str(Dyestuff)

'data.frame': 30 obs. of 2 variables:
$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...
$ Yield: num 1545 1440 1440 1520 1580 ...

We say that there are six levels of the Batch covariate. When incorporat-
ing categorical covariates like Batch in a linear statistical model we obtain
numerical values for the effects of the different levels. We can see from Fig-
ure 1 that batch F had the lowest mean yield and batch E had the highest
mean yield so in our model we expect to see a low effect for batch F and a
high effect for batch F.

We distinguish between the effects of factors with a fixed and reproducible
set of levels, such as the sex of a participant in a experiment on human or
animal subjects, and those of factors for which the observed set of levels
can change throughout the experiment or study. These are, not surprisingly,
called fixed effects and random effects, respectively. In a way these terms
are misleading because it is the set of levels of the factor associated with
the effects that we determine to be fixed or random, not the effects per se.
Nevertheless, these terms are widely used and hence we adopt them.

We employ fixed effects and random effects terms in a statistical model
for different purposes. Because a fixed-effects term is associated with a fixed
set of levels for a factor, we want to estimate the effect of those particular
levels. Often we also want to contrast the effects of particular levels of the
factor. In a clinical trial, for example, some patients may receive Drug A,
some may receive Drug B and some may receive a placebo. Typically the
purpose of the trial is to contrast the effects of specific drugs or to compare
the effects on patients a particular drug versus a placebo.

In a random-effects term the effects of particular levels of the factor are
not of as much interest to us as is the amount of variation in the response
that can be attributed to the different levels of the factor. This is exactly the
situation in this dyestuff experiment. The batches that were examined are
but a sample of the batches that could be or have been produced. For the
purposes of predicting future yields we are not interested in the effects of past
batches, which may already have been used up, as we are in the effects of
future, as yet unobserved, batches. We can’t know exactly what their levels
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may be but we can characterize the batch to batch variability that we have
seen and base our predictions on that.

A mixed-effects model is a statistical model that incorporates fixed-effects
parameters and random effects. As we shall see in §3.1, the mathematical
formulation of random effects that we use requires that there always be at
least one fixed effect in the model. That is, in our formulation any model
that incorporates random effects is a mixed-effects model.

We can fit a linear mixed-effects model to the response Yield in the
Dyestuff data incorporating random effects for the Batch factor, save the
fitted model as Dm1 then summarize it with
> summary(Dm1 <- lmer(Yield ~ 1 + (1 | Batch), Dyestuff))

Linear mixed model fit by REML
Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff
AIC BIC logLik deviance REMLdev
326 330 -160 327 320

Random effects:
Groups Name Variance Std.Dev.
Batch (Intercept) 1764 42.0
Residual 2451 49.5

Number of obs: 30, groups: Batch, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 1527.5 19.4 78.8

2.2 The Dyestuff model formula

The lmer function (the name, pronounced like “Elmer”, is an acronym for
Linear Mixed-Effects in R) follows the convention of most model fitting func-
tions in R that the first two arguments are formula, a formula describing the
model, and data, the optional name of a data frame in which the formula
can be evaluated.

The formula for model Dm1
Yield ~ 1 + (1 | Batch)

can be read as “Yield is modeled by a constant plus a constant given Batch”.
This formula consists of two terms, 1 and (1|Batch). In general, terms in
the model are separated by plus signs (+). A term incorporating the vertical
bar character (|) is a random-effects term. A term without the vertical bar
is a fixed-effects term.

There is a single fixed-effects term, 1, in this formula. A model matrix,
which we will write as X, is created by evaluating all the fixed-effects terms
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in the formula using the data frame and stored in the slot named X in the
fitted model. In this case X is a trivial model matrix with 30 rows and one
column. All of the elements of X are unity. The first three rows of this
matrix are
> head(Dm1@X, n = 3)

[,1]
[1,] 1
[2,] 1
[3,] 1

The single random-effects term in this formula is (1|Batch). In a random-
effects term the expression on the right hand side of the vertical bar must
evaluate to a factor. Typically it is simply the name of a factor, like Batch

here, but more general expressions are possible. The expression on the left
hand side in the data frame as a linear model formula, producing a model
matrix. In this case the model matrix from the left hand side is the same as
X. It has one column and 30 rows.

3 Mathematical formulation of the model

A linear mixed-effects model (LMM) is statistical model similar to the con-
ventional linear model (also called a linear regression model). In both types
of models we consider a set of observed responses, which we shall write as
the n-dimensional vector y, and associated values of other variables, which
we shall call covariates. These models are linear in the sense that we express
the effect of the covariates in terms of model matrices.

For example, a linear model is frequently written

y = Xβ + ε, ε ∼ N (0, σ2I) (1)

where β is a p-dimensional parameter vector, X is an n × p model matrix
derived from the model formula and the observed values of the covariates,
and ε is the random noise, or unexplained variation, in the observations. As
indicated in (1) we typically begin with the assumption that ε ∼ N (0, σ2I).
That is, the noise is assumed to have a multivariate normal (or “Gaussian”)
distribution with mean 0 and variance-covariance matrix σ2In where In is
the identity matrix of size n.

Writing a linear model as (1) blurs the distinction between the random
variable Y and its observed value y. Because this distinction is important in
describing LMMs we will rewrite the linear model (1) as

Y ∼ N
(
Xβ, σ2In

)
(2)
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3.1 Probability distribution formulation of LMMs

A linear mixed-effects model incorporates fixed-effects parameters and ran-
dom effects. Technically, the random effects are unobserved random vari-
ables, which we will write as the random vector B, while the fixed-effects
parameters are indeed parameters. We will write them as β. The random
variable representing the response is Y with observed value y. For a linear
mixed model, the conditional distribution of Y , given B = b, is a multivariate
normal (or “Gaussian”) distribution with (conditional) mean Xβ + Zb and
variance-covariance matrix σ2In where n is the number of observations (the
dimension of y) and the notation In indicates the n × n identity matrix of
size n. The fixed-effects parameter vector β is of dimension p and its model
matrix X is n × p. The random effects are of dimension q and their model
matrix Z is n× q.

(Y |B = b) ∼ N
(
Xβ + Zb, σ2In

)
(3)

The distribution of B is also assumed to be multivariate normal, this
time with mean 0 and a q× q symmetric variance-covariance matrix that we
will write as σ2Σ(θ) where σ2 is the same parameter used in the variance-
covariance of Y |B = b and Σ is a q × q relative variance matrix for the
random effects. The notation Σ(θ) indicates that Σ depends on a parameter
vector θ. Typically the dimension of θ is much, much smaller than q, the
size of Σ.

The model matrices X and Z, the form of Σ and how Σ depends on θ
are all specified by the formula which is the first argument to lmer.
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