
The cqueues User Guide

for composing

Socket, Signal, Thread, & File Change
Messaging

on

Linux, OS X, Solaris,
FreeBSD, NetBSD, & OpenBSD

with

Lua

William Ahern

November 8, 2015

Contents

Contents i

1 Dependencies 1
1.1 Operating Systems . 1

1.1.1 ¬ Microsoft Windows . 1
1.2 Libraries . 1

1.2.1 LuaJIT, Lua 5.2, Lua 5.3 . 1
1.2.2 OpenSSL . 1
1.2.3 pthreads . 2

1.3 Compilers . 2
1.4 GNU Make . 2

2 Installation 3
2.1 Building . 3

2.1.1 Targets . 3
2.2 Installing . 3

2.2.1 Targets . 4

3 Usage 5
3.1 Conventions . 5

3.1.1 Polling . 5
object:pollfd . 5
object:events . 5
object:timeout . 6

3.1.2 ¬ Globals . 6
3.1.3 Errors . 6

EAGAIN . 7
ETIMEDOUT . 7
EPIPE . 7
EBADF . 7
The Future . 7

3.2 Modules . 7
3.2.1 cqueues . 7

i

cqueues.VENDOR 7
cqueues.VERSION 8
cqueues.COMMIT 8
cqueues.type 8
cqueues.interpose . . . 8
cqueues.monotime 8
cqueues.cancel 8
cqueues.poll 9
cqueues.sleep 9
cqueues.running 9
cqueues.resume 9

cqueues.wrap 9
cqueues.new 9
cqueues:attach 9
cqueues:wrap 10
cqueues:step 10
cqueues:loop 10
cqueues:errors 10
cqueues:empty 10
cqueues:count 10
cqueues:cancel 10
cqueues:pause 10

3.2.2 cqueues.socket . 11

socket[] 11
socket.type 11
socket.interpose 11
socket.connect 11
socket.connect 11
socket.listen 12
socket.listen 12
socket.pair 12
socket.pair 12
socket.setvbuf 12
socket.setmode 12
socket.setbufsiz 12
socket.setmaxline . . . 13
socket.settimeout . . . 13
socket.setmaxerrs . . . 13
socket.onerror 13
socket:connect 13
socket:listen 13
socket:accept 13
socket:clients 13
socket:starttls 13
socket:checktls 14
socket:setvbuf 14
socket:setmode 14
socket:setbufsiz 14
socket:setmaxline . . . 15
socket:settimeout . . . 15

socket:setmaxerrs . . . 15
socket:onerror 16
socket:error 16
socket:clearerr 16
socket:read 16
socket:xread 17
socket:lines 17
socket:xlines 17
socket:write 17
socket:xwrite 18
socket:flush 18
socket:fill 18
socket:unget 18
socket:pending 18
socket:uncork 18
socket:recv 18
socket:send 18
socket:recvfd 18
socket:sendfd 19
socket:shutdown 19
socket:eof 19
socket:peername 19
socket:peereid 19
socket:peerpid 20
socket:localname 20
socket:stat 20
socket:close 20

3.2.3 cqueues.errno . 20

ii

errno[] 20 errno.strerror 20

3.2.4 cqueues.signal . 20

signal[] 20
signal.strsignal 20
signal.ignore 20
signal.default 21
signal.discard 21
signal.block 21
signal.unblock 21

signal.raise 21
signal.type 21
signal.interpose 21
signal.listen 21
signal:wait 22
signal:settimeout . . . 22

3.2.5 cqueues.thread . 22

thread.type 22
thread.self 22

thread.start 22
thread:join 22

3.2.6 cqueues.notify . 23

notify[] 23
notify.flags 23
notify.type 23
notify.opendir 23

notify:add 23
notify:get 23
notify:changes 23

3.2.7 cqueues.dns . 23

dns.version 24
dns.query 24

dns.setpool 24
dns.getpool 24

3.2.8 cqueues.dns.record . 24

record.type[] 24
record.class[] 24
record.sshfp[] 24
record.type 25
record:section 25

record:name 25
record:type 25
record:class 25
record:ttl 25

3.2.9 cqueues.dns.packet . 25

packet.section[] 25
packet.opcode[] 25
packet.rcode[] 25
packet.type 26
packet.interpose 26

packet.new 26
packet:qid 26
packet:flags 26
packet:count 26
packet:grep 26

3.2.10 cqueues.dns.config . 27

iii

config[] 27
config.type 27
config.interpose 27
config.new 27
config.stub 28

config.root 28
config:loadfile 28
config:loadpath 28
config:get 28
config:set 28

3.2.11 cqueues.dns.hosts . 28

hosts.type 29
hosts.interpose 29
hosts.new 29
hosts.stub 29

hosts.root 29
hosts:loadfile 29
hosts:loadpath 29
hosts:insert 29

3.2.12 cqueues.dns.hints . 29

hints.type 29
hints.interpose 30
hints.new 30

hints.stub 30
hints.root 30
hints:insert 30

3.2.13 cqueues.dns.resolver . 30

resolver.type 30
resolver.interpose . . 30
resolver.new 31
resolver.stub 31
resolver.root 31

resolver:query 31
resolver:submit 31
resolver:fetch 31
resolver:stat 31
resolver:close 32

3.2.14 cqueues.dns.resolvers . 32

resolvers.type 32
resolvers.new 32
resolvers.stub 32
resolvers.root 32

resolvers:query 32
resolvers:get 33
resolvers:put 33

3.2.15 cqueues.condition . 33

condition.type 33
condition.interpose . . 33
condition.new 33

condition:wait 33
condition:signal 34

3.2.16 cqueues.promise . 34

promise.type 34
promise.new 34
promise:status 34
promise:set 34

promise:get 34
promise:wait 34
promise:pollfd 35

iv

3.2.17 cqueues.auxlib . 35

auxlib.assert 35
auxlib.fileresult . . . 35
auxlib.resume 35

auxlib.tostring 36
auxlib.wrap 36

4 Examples 37
4.1 HTTP SSL Request . 37
4.2 Multiplexing Echo Server . 38
4.3 Thread Messaging . 39

v

1 Dependencies

1.1 Operating Systems

cqueues heavily relies on a modern POSIX environment. But the fundamental premise is to
build on the new but non-standard polling facilities provided by contemporary Unix environments.
Specifically, BSD kqueue, Linux epoll, and Solaris Event Ports.

cqueues should work on recent versions of Linux, OS X, Solaris, NetBSD, FreeBSD, OpenBSD,
and derivatives. The only other possible candidate is AIX, if and when support for AIX’s pollset
interface is added to the embedded “kpoll” library.

1.1.1 ¬ Microsoft Windows

Microsoft Windows support is basically out of the question1, for far too many reasons to put here.
Aside from the more technical reasons, Windows I/O and networking programming interfaces have
a fundamentally different character than on Unix. Unix historically relies on readiness polling, while
Windows uses event completion callbacks. There are strengths and weaknesses to each approach.
Trying to paper over the chasm between the two approaches invariably results in a framework with
the strengths of neither and the weaknesses of both. The purpose of cqueues is to leverage the
strengths of polling as well as address the weaknesses.

1.2 Libraries

1.2.1 LuaJIT, Lua 5.2, Lua 5.3

cqueues principally targets Lua 5.2 and above. It’s not fully portable to Lua 5.1 because cqueues

relies on ephemeron tables to prevent coroutine/controller reference cycles, and because Lua 5.1
does not support yielding from metamethods and iterators. LuaJIT removes the latter of these
handicaps, and so cqueues targets LuaJIT secondarily. In lieu of ephemeron tables, application
code must be sure not to hold a reference to a parent controller in an upvalue of the coroutine.
Instead, use cqueues.running.

1.2.2 OpenSSL

The cqueues socket module provides seamless SSL/TLS support using OpenSSL.

1I have been toying with the idea of using an fd set in-place of a pollable descriptor on Windows, and taking the
union of all fd sets when polling.

1

Comprehensive bindings for certificate and key management are provided in the companion openssl

module, luaossl.

1.2.3 pthreads

cqueues provides an optional threading module, using POSIX threads.2 Internally it consistently
uses thread-safe routines when built with either the REENTRANT or THREAD SAFE feature
macros, such as pthread sigmask instead of sigprocmask. Thread support is enabled by default.

Linking Note that on some systems, such as NetBSD and FreeBSD, the loading application must
be linked against pthreads (using -lpthread or -pthread). It is not enough for the cqueues module
to pull in the dependency at load time. In particular, if using the stock Lua interpreter, it must
have been linked against pthreads at build time. Add the appropriate linker flag to MYLIBS in
lua-5.2.x/src/Makefile.

OpenBSD OpenBSD 5.1 threading is completely fubar, especially with regard to signals, because
of OpenBSD’s transition to kernel threading. If using OpenBSD, be sure to compile without the
thread-safe macros predefined, especially if using cqueues.signal.

1.3 Compilers

The source code is mostly ISO C99 compliant, and even more so with regards to ISO C11. But
regardless of standards conformance, it aims to build cleanly with the native compiler for each
targeted platform. It currently builds with recent versions of GCC, clang, and SunPro.

Patches are welcome to silence compiler diagnostics.

1.4 GNU Make

The Makefile requires GNU Make, usually installed as gmake on platforms other than Linux or
OS X. The actual Makefile proxies to GNUmakefile. As long as gmake is installed on non-GNU
systems you can invoke your system’s make.

2Building without threading enabled is not well tested.

2

http://25thandClement.com/~william/projects/luaossl.html
http://25thandClement.com/~william/projects/luaossl.html

2 Installation

All the C modules are built into a single core C library. The core routines are then wrapped and
extended through Lua modules. Because there several extant versions of Lua often used in parallel
on the same system, there are individual targets to build and install for each supported Lua version.
The targets all and install will attempt to build and install both Lua 5.1 and 5.2 modules.

Note that building and installation and can accomplished in a single step by simply invoking one
of the install targets with all the necessary variables defined.

2.1 Building

There is no separate ./configure step. System introspection occurs during compile-time. However,
the “configure” make target can be used to cache the build environment so one needn’t continually
use a long command-line invocation.

All the common GNU-style compiler variables are supported, including CC, CPPFLAGS, CFLAGS,
LDFLAGS, and SOFLAGS. Note that you can specify the path to Lua 5.1, Lua 5.2, and Lua 5.3
include headers at the same time in CPPFLAGS; the build system will work things out to ensure
the correct headers are loaded when compiling each version of the module.

2.1.1 Targets

all

Build modules for Lua 5.1 and 5.2.

all5.1

Build Lua 5.1 module.

all5.2

Build Lua 5.2 module.

all5.3

Build Lua 5.3 module.

2.2 Installing

All the common GNU-style installation path variables are supported, including prefix, bindir,
libdir, datadir, includedir, and DESTDIR. These additional path variables are also allowed:

3

lua51path

Install path for Lua 5.1 modules, e.g. $(prefix)/share/lua/5.1

lua51cpath

Install path for Lua 5.1 C modules, e.g. $(prefix)/lib/lua/5.1

lua52path

Install path for Lua 5.2 modules, e.g. $(prefix)/share/lua/5.2

lua52cpath

Install path for Lua 5.2 C modules, e.g. $(prefix)/lib/lua/5.2

lua53path

Install path for Lua 5.3 modules, e.g. $(prefix)/share/lua/5.3

lua53cpath

Install path for Lua 5.3 C modules, e.g. $(prefix)/lib/lua/5.3

2.2.1 Targets

install

Install modules for Lua 5.1 and 5.2.

install5.1

Install Lua 5.1 module.

install5.2

Install Lua 5.2 module.

install5.3

Install Lua 5.3 module.

4

3 Usage

3.1 Conventions

3.1.1 Polling

cqueues works through a simple protocol. When a coroutine yields to its parent cqueues controller,
it can pass one or more objects. These objects are introspected for three methods: :pollfd,
:events, and :timeout. These methods generate the parameters for installing descriptor and
timeout events. When one of these events fires, cqueues will resume the coroutine, passing the
relevant objects which were interested in the triggered event. It’s analogous to calling Unix poll,
and in fact the routine cqueues.poll is provided as a wrapper for coroutine.yield.1

:pollfd()

The :pollfd method should return a descriptor integer or nil. This descriptor must remain in
existence until the owner object is garbage collected, cqueues.cancel is used, the coroutine exe-
cutes one additional yield/resume cycle (so the old descriptor is expired from the descriptor queue),
or until after the coroutine exits. If the descriptor is closed prematurely, the kernel will remove it
from the internal descriptor queue, bringing it out of sync with the controller, and probably causing
cqueues:step to return EBADF or ENOENT errors.

Alternatively, :pollfd may return a condition variable object, or the member field may itself be
a condition variable instead of a function. Similarly, the .pollfd member field may be an integer
descriptor. This permits user code to create ad hoc pollable objects.

:events()

The :events method should return a string or nil. cqueues searches the string for the flags ‘r’ and
‘w’, which describe the events to associate with the descriptor—respectively, POLLIN and POLLOUT.

The flag ‘p’ may also be specified, describing POLLPRI. However, POLLPRI is not supported for
kqueue-based environments.2

1This wrapper can also detect if the current coroutine was resumed by a controller, and if not chain yield calls—
with the cooperation of a cqueues.resume—until a controller is reached.

2OS X’s EV OOBAND is only useable as an output flag. DragonflyBSD’s EVFILT EXCEPT maps well and will be
supported in a future release.

5

Alternatively, the events may be a literal integer value of the logical-OR of the system event values
POLLIN, POLLOUT, POLLPRI, etc. However, specifying any events beyond the three discussed is not
currently supported and may lead to unexpected behavior.

:timeout()

The :timeout should return a number or nil. This schedules an independent timeout event. To
effect a simple one second timeout, you can do

cqueues . p o l l ({ t imeout = func t i on () return 1 .0 end })

which is equivalent to the shortcut

cqueues . p o l l (1 . 0)

Instantiated cqueues objects implement all three methods.3 In particular, this means that you can
stack cqueues, or poll on a cqueues object using some other event loop library. Each cqueues

object is entirely self-contained, without any global state.

3.1.2 ¬ Globals

Like the core controller module, other cqueues modules adhere to a no global side effects discipline.
In particular, this means

• no global process variables;

• no signal handling gimmicks—like the pipe trick—which could conflict with other components
of your application4;

• consistent use of thread-safe function variants; and

• consistent use of O CLOEXEC and similar flags to eliminate or reduce fork + exec races in
threaded applications.

3.1.3 Errors

The usual behavior is for errors to be returned directly. But see socket.onerror. If a routine is
specified to return an object or string, nil is returned; if a boolean, false is returned. In both cases,
these are usually followed by a numeric error code. Thus, if a routine is specified to return two
values on success, then on error three values are returned, the first two nil or false, and the third
an error code.

cqueues is a relatively low-level component library. In almost all cases errors will be system errors,
returned as numeric error codes for easy and efficient comparison. For example, attempting to
create a UNIX domain socket with socket.listen in a directory without sufficient permissions
might return ‘nil, EACCES’.

3:pollfd returns the internal kqueue, epoll, or Ports descriptor; :events returns “r”; and :timeout returns the
time to the next internal timeout event.

4The cqueues.thread module ensures threads are started with a filled signal mask.

6

EAGAIN

cqueues modules are implemented in both C and Lua. The C routines never yield, and always
return recoverable errors directly. Most C routines are wrapped—and methods interposed—with
Lua functions. These Lua functions usually poll when EAGAIN is encountered and retry the C
routine on resumption. Few methods will return EAGAIN directly.

ETIMEDOUT

This error value is usually seen when a timeout is specified by the caller of a logically synchronous
method. The method will normally yield and poll if the operation cannot be completed immediately,
but if the timeout expires then it will return a failure with ETIMEDOUT.

EPIPE

In Unix EPIPE is only encountered when attempting to write to a closed pipe or socket. In
cqueues EPIPE is used to signal both EOF and a closed output stream.5 The low-level I/O method
socket:recv, for example, returns EPIPE on EOF. In other cases, as with socket:read, EOF is
not an error condition.

EBADF

This error commonly occurs in asynchronous applications, which are especially prone to bugs related
to their complex state management. With Lua code using the cqueues APIs, EBADF should never
be encountered. When it does occur, it’s a sure sign of a bug somewhere in the parent application
or an extension module and—hopefully—not cqueues.

The Future

The idiomatic protocol for returning errors in Lua is a string representation followed by the integer
errno number. This is how Lua’s io and file modules behave. The original concern was that this
would be too wasteful for a networking library, where “errors” like EAGAIN, ETIMEDOUT, and
EPIPE are common and not very exceptional. Copying even small strings into the Lua VM is some-
what costly. However, in the future the API may be configurable to use the Lua-idiomatic protocol
by default, using upvalue memoization to minimize the cost of returning string representations.

In the meantime, the auxiliary routines auxlib.assert and auxlib.fileresult can be used to
explicitly achieve the idiomatic behavior.

3.2 Modules

3.2.1 cqueues

cqueues.VENDOR

String describing the vendor, e.g. william@25thandClement.com. If you fork this project please
change this string so I don’t receive unwarranted scorn or praise.

5In some situations, such as with SSL/TLS, a read attempt might require a write, anyhow. Expanding the scope
of EPIPE simplifies the logic required to handle various I/O failures.

7

cqueues.VERSION

Number describing the running version, formatted as YYYYMMDD. Official releases are tagged in
the git repo as rel-YYYYMMDD.

cqueues.COMMIT

Git commit hash string of HEAD.

cqueues.type(obj)

Return the string “controller” if obj is a controller object, or nil otherwise.

cqueues.interpose(name, function)

Add or interpose a cqueues controller class method. Returns the previous method, if any.

cqueues.monotime()

Return the system’s monotonic clock time, usually clock gettime(CLOCK MONOTONIC).

cqueues.cancel(fd)

Cancels the specified descriptor, fd, for all controllers. If fd is an object, the descriptor is obtained
by calling the :pollfd method. Any coroutine polling on the canceled descriptor is placed on its
controller’s pending queue.

To simplify error and exit paths in application code, canceling a descriptor that isn’t installed is a
no-op. Similarly, fd may be -1. However, if fd was installed with any controller but the descriptor
has already been closed, then this is an error.

Cancellation must be done before closing a descriptor6, otherwise controller state becomes cor-
rupted. Closing a descriptor automatically removes the descriptor from the kernel’s internal polling
data structures, but not the user-land data structures. When the process then attempts to modify
or remove the descriptor, the operation will fail with EBADF. Some event loops silently suppress
such errors because it’s very common for applications to close a descriptor before destroying an
event handle. But such ordering issues aren’t always so benign. If a new socket object was created
between the close and cancel operations which happens to have the same descriptor number, then
the controller erroneously believes the descriptor is already installed, or if not previously installed
than the cancel stalls some other thread. Such bugs can be extremely difficult to track down;
they’re much easier to discover if the library bubbles up EBADF when canceling an already closed
descriptor.

cqueues objects—controller, notify, resolver, signal, socket, etc—automatically call cancel before
closing any descriptor. Normally only extension libraries and modules need to explicitly cancel
descriptors.

6Unless the application knows the descriptor isn’t currently installed. But note that cqueues persists descriptor
events for at least one yield/resume cycle. When cqueues.poll returns, for example, the descriptor is still installed.
It won’t be uninstalled until the coroutine yields again without requesting any events for the descriptor.

8

cqueues.poll(. . .)

Takes a series of objects obeying the polling protocol and yields control to the parent cqueues

controller. On an event the coroutine is resumed and .poll returns the objects which polled ready.
A number value is interpreted as a simple timeout, not a file descriptor.

This routine is intended to be behave much like POSIX poll(2). Think of each object as a struct

pollfd object. Then

1 local ready = { assert(cqueues.poll(socket1 , socket2 , 10)) }

for i=1,# ready do

3 ...

end

looks and behaves like

struct pollfd pollset [2];

2 pollset [0].fd = fd1;

pollset [0]. events = POLLIN;

4 pollset [1].fd = fd2;

pollset [1]. events = POLLIN;

6 int n = poll(pollset , 2, 10 * 1000);

assert(n != -1);

8 for (i = 0; i < n; i++) {

...

10 }

cqueues.sleep(number)

Yields to the parent cqueues controller and schedules a wakeup for ‘number’ seconds in the future.

cqueues.running()

Returns two values: the immediate controller currently executing, if any, or nil; and a boolean—true
if the caller’s coroutine is the same coroutine resumed by the controller.

cqueues.resume(co)

See auxlib.resume.

cqueues.wrap(f)

See auxlib.wrap.

cqueues.new()

Create a new cqueues object.

cqueue:attach(coroutine)

Attach and manage the specified coroutine. Returns the controller.

9

cqueue:wrap(function)

Execute function inside a new coroutine managed by the controller. Returns the controller.

cqueue:step([timeout])

Step once through the event queue. Unless the timeout is explicitly specified as 0, or unless the
current thread of execution is a cqueues managed coroutine, it suspends the process indefinitely or
for the specified timeout until a descriptor event or timeout fires.

Returns true on success. Otherwise returns false, an error message, and additional context: a
numeric error code (possibly nil), a Lua thread object (possibly nil), an object that was polled
(possibly nil), and an integer file descriptor (possibly nil). :step can be called again after errors.

If embedding cqueues within an existing application, the top-level :step invocation should always
specify a 0 timeout. A controller is a pollable object, and the descriptor returned by the :pollfd
method can be used with third-party event libraries, whether written in Lua, C, or some other
language. Don’t forget to also schedule a timeout using the value from :timeout.

cqueue:loop([timeout])

Invoke cqueues:step in a loop, exiting on error, timeout, or if the event queue is empty. Returns
same values as cqueues:step.

cqueue:errors([timeout])

Returns an iterator function over errors returned from cqueues:loop. If cqueues:loop returns
successfully because of an empty event queue, or if the timeout expires, returns nothing, which
terminates any for-loop. ‘timeout’ is cumulative over the entire iteration, not simply passed as-is
to each invocation of cqueues:loop.

cqueue:empty()

Returns true if there are no more descriptor or timeout events queued, false otherwise.

cqueue:count()

Returns a count of managed coroutines.

cqueue:cancel(fd)

Cancel the specified descriptor for that controller. See cqueues.cancel.

cqueue:pause(signal [, signal . . .])

A wrapper around pselect which suspends execution of the process until the controller polls ready
or a signal is delivered. This interface is provided as a very basic least common denominator for sim-
ple slave process controller loops and similar scenarios, where immediate response to signal delivery
is required on platforms like Solaris without a proper signal polling primitive. (signal.listen on
Solaris merely periodically queries the pending set.)

10

Much better alternatives are possible for Solaris, but require global process state or an LWP thread
helper.

3.2.2 cqueues.socket

The socket bindings provide built-in DNS, SSL/TLS, buffering, and line translation. DNS happens
transparently, and SSL/TLS can be initiated with the socket:starttls method.

The default I/O mode is “tl”—text translation and line buffering. This makes sockets work in-
tuitively with the most common protocols on the Internet, like SMTP and HTTP, which require
CRLF and use line delimited framing.

socket[]

A table mapping socket related system identifier names to number codes, including AF UNSPEC,
AF INET, AF INET6, AF UNIX, SOCK STREAM, and SOCK DGRAM.

socket.type(obj)

Return the string “socket” if obj is a socket object, or nil otherwise.

socket.interpose(name, function)

Add or interpose a socket class method. Returns the previous method, if any.

socket.connect(host, port [, family] [, type])

Return a new socket immediately ready for reading or writing. DNS lookup and TCP connection
handling are handled transparently.

socket.connect{ . . . }

Like socket.connect with list arguments, but takes a table of named arguments:

field type:default description

.host string:nil IP address or host domain name

.port string:nil host port

.path string:nil UNIX domain socket path

.family number protocol family—AF INET (default), AF INET6, AF UNIX (default
if .path specified)

.type number protocol type—SOCK STREAM (default) or SOCK DGRAM

.mode string:nil fchmod or chmod socket after creating UNIX domain socket

.mask string:nil set and restore umask when binding UNIX domain sockets

.unlink boolean:false unlink socket path before binding

.reuseaddr boolean:true SO REUSEADDR socket option

.reuseport boolean:false SO REUSEPORT socket option

11

.nodelay boolean:false TCP NODELAY IP option

.nopush boolean:false TCP NOPUSH, TCP CORK, or equivalent IP option

.v6only boolean:nil enables or disables IPV6 V6ONLY IPv6 option, otherwise the system
default is left as-is

.oobinline boolean:false SO OOBLINE socket option

.nonblock boolean:true O NONBLOCK descriptor flag

.cloexec boolean:true O CLOEXEC descriptor flag

.nosigpipe boolean:true O NOSIGPIPE, SO NOSIGPIPE, MSG NOSIGNAL, or equivalent
descriptor flag

.verify boolean:false require SSL certificate verification

.sendname boolean:true send connect host as TLS SNI host name

string:nil send specified string as TLS SNI host name

.time boolean:true track elapsed time for statistics

socket.listen(host, port)

Return a new socket immediately ready for accepting connections.

socket.listen{ . . . }

Like socket.listen with list arguments, but takes a table of named arguments. See also socket.connect{}.

socket.pair([type])

Returns two bound sockets. Type should be the system type number, e.g. socket.SOCK STREAM

or socket.SOCK DGRAM.

socket.pair{ . . . }

Like single argument form of socket.listen, but takes a table of named arguments. See also
socket.connect{}.

socket.setvbuf(mode [, size])

Set the default output buffering mode for all new sockets. See socket:setvbuf.

socket.setmode([input] [, output])

Set the default I/O modes for all new sockets. See socket:setmode.

socket.setbufsiz([input] [, output])

Set the default I/O buffer sizes for all new sockets. See socket:setbufsiz.

12

socket.setmaxline([input] [, output])

Set the default I/O line-buffering limits for all new sockets. See socket:setmaxline.

socket.settimeout([timeout])

Set the default timeout for all new sockets. See socket:settimeout.

socket.setmaxerrs([which,][limit])

Set the default error limit for all new sockets. See socket:setmaxerrs.

socket.onerror([function])

Set the default error handler for all new sockets. See socket:onerror.

socket:connect([timeout])

Wait for connection establishment to succeed. You do not need to wait before proceeding to perform
read or write calls, but waiting may ease diagnosing connection problems in your code and allows
you to separate connect phase from I/O phase timeouts.

socket:listen([timeout])

Wait for socket binding to succeed. You do not need to wait before proceeding to call :accept,
but waiting may ease diagnosing binding problems in your code and allows you to separate listen
phase from accept phase timeouts.

Socket binding may not occur immediately if you provided a host address that required DNS
resolution over the network. This is uncommon for listening sockets but supported nonetheless;
the symmetry simplifies internal code. Also, socket object instantiation with socket.listen and
socket.connect only return errors regarding user data object construction; address lookup and
binding errors are detected later, when initiated by subsequent method calls.

socket:accept([options] [, timeout])

Wait for and return an incoming client socket on a listening object.

Optionally takes a table of named arguments. See also socket.connect{}.

socket:clients([options] [, timeout])

Iterator over socket:accept: for con in srv:clients() do ... end.

socket:starttls([context][, timeout])

Place socket into TLS mode, optionally using the openssl.ssl.context object as the configuration
prototype, and wait for the handshake to complete.7 Returns true on success, false and an error
code on failure.

7Prior to 2014-04-30, if no timeout was specified then the routine returned immediately.

13

socket:checktls()

If in TLS mode, returns an openssl.ssl object, otherwise nil. If the openssl module cannot be
loaded, returns nil and an error string.

socket:setvbuf(mode [, size])

Same as Lua file:setvbuf. Analogous to “n”, “l”, and “f” mode flags. Returns the previous
output mode and output buffer size.

socket:setmode([input] [, output])

Sets the the input and output buffering and translation modes, which mirror C’s stdio semantics.
Either mode can be nil or none, in which case the mode is left unchanged.

A mode is specified as a string containing one or more of the following flags

flag default description

t default text mode—input or output undergoes LF/CRLF translation

b binary mode—no LF/CRLF translation

n no output buffering—output buffer is always flushed completely after every
write operation

l default line buffered output—output buffer is flushed up to and including the last
LF after every write operation

f fully buffered output—all buffer-sized blocks are flushed after every write
operation (see socket:setbufsiz and socket:setvbuf)

a default enable autoflush—every read operation attempts to flush the output buffer
as-if an explicit unbuffered flush were performed with a 0-second timeout;
when initiating SSL/TLS, all pending data is fully flushed before proceeding
with negotiation

A disable autoflush

p default enable pushback—when initiating SSL/TLS, any data in the input buffer is
virtually pushed back to the socket so that it will be processed as part of
the SSL/TLS handshake

P disable pushback

Returns the previous input and output modes as fixed-sized strings. At present the first character
is one of “t” or “b”, and the second character one of “n”, “l”, “f”, or “-” (for in the input mode).

socket:setbufsiz([input] [, output])

Sets the input and output buffer size. Either size can be nil or none, in which case the size is left
unchanged.

These are not hard limits for SOCK STREAM sockets. The input buffer argument simply sets
a minimum for input buffering, to reduce syscalls. The output buffer argument is the same as

14

provided to :setvbuf, and effectively changes when flushing occurs for full- or line-buffered output
modes.

For SOCK DGRAM sockets, the input buffer sets a hard limit on the size of datagram messages.
Any message over this size will be truncated, unless a previous block- or line-buffered read operation
forced the buffer to be reallocated to a larger size.

Returns the previous input and output buffer sizes, or throws an error if the buffers could not be
reallocated.

socket:setmaxline([input] [, output])

Sets the maximum input and output length for line-buffered operations. Either size can be nil or
none, in which case the size is left unchanged.

These are hard limits. For line-buffered input operations, if a \n character is not found within this
limit then the data is processed as-if EOF was reached at this boundary. For line-buffered output,
a chunk is always flushed at this boundary.

Returns the previous input and output sizes.

socket:settimeout([timeout])

Sets the default timeout period for I/O. If nil or none, then clears any default timeout. If a timeout
is cleared, any operation which polls will wait indefinitely until completion or an error occurs.

Sockets are instantiated without a default timeout.

socket:setmaxerrs([which,] limit)

Set the maximum number of times an error will be returned to a caller before throwing an error,
instead. which specifies which I/O channel limit to set—“r” for the input channel, “w” for the
output channel, or “rw” for both. which defaults to “rw”. limit is an integer limit. The initial
limit is 100.

Returns the previous channel limits in the order specified.

Note that socket:clearerr will clear the error counters as well as any errors.

Unchecked error loops The default error handler will throw on most errors. However, EPIPE
and ETIMEDOUT are returned directly as they’re common errors that normally need to be handled
explicitly in correct applications. Furthermore, errors will be repeated until cleared. If errors were
not repeated then unchecked transient errors could lead to difficult to detect loss of data bugs by
giving the illusion of successful forward progress.8 Code which loops and fails to check the success
of I/O calls could enter an infinite loop which never yields to the controller and stalls the process.
This is a fail-safe mechanism to catch such code.

8This is especially true of Lua’s for-loop iterator pattern.

15

socket:onerror([function])

Set the error handler. The error handler is passed four arguments: socket object, method name,
error number, and stack level of caller. The handler is expected to either throw an error or return
an error code—to be returned to the caller as part of the documented return interface.

The default error handler returns EPIPE and ETIMEDOUT directly, and throws everything else.
EAGAIN is handled internally for logically synchronous calls.

Returns the previous error handler, if any.

socket:error([which])

Returns the saved error conditions for the input and output channels. which is a string contain-
ing one or more of the characters ‘r’ and ‘w’, which return the input and output channel errors
respectively and in the order specified. which defaults to the string “rw”.

socket:clearerr([which])

Clears the error conditions and counters for the specified I/O channels and returns any previous
errors. which is a string containing one or more of the characters “r” and “w”, which clears the
input and output channel errors respectively, and returns the previous error numbers (or nil) in
the order specified. which defaults to the string “rw”.

socket:read(...)

Similar to Lua’s file:read, with additional formats.

format description

*n unsupported

*a read until EOF

*l read the next line, trimming the EOL marker

*L read the next line, keeping the EOL marker

*h read and unfold MIME compliant header

*H read MIME compliant header, keeping EOL markers

--marker read multipart MIME entity chunk delineated by MIME boundary marker

number read number bytes or until EOF

−number read 1 to number bytes, immediately returning if possible

For SOCK DGRAM sockets, each message is treated as-if EOF was reached. The slurp operation
returns a single datagram, and line-buffered operations will return the remaining text in a message
even without a terminating \n. Datagrams will be truncated if the message is larger than the input
buffer size.

The MIME entity reader allows efficient reading of large MIME-encoded bodies, such as with
HTTP POST file uploads. The format will return chunks until the boundary is reached. The last
chunk will have any trailing EOL marker removed, regardless of input mode, as this is part of the
boundary token. In binary mode chunks are sized according to the current input channel buffer

16

size, except that the last chunk will probably be short. In text mode chunks will not exceed the
maximum of the current input channel buffer size or maximum line size; and in addition to EOL
translation, chunks are broken along line boundaries with multiple lines aggregated into a single
chunk.

Both the MIME header and MIME entity reader require a proper terminating condition. In par-
ticular, EOF is not a terminating condition. Applications must be careful to handle truncation if
the stream was prematurely closed. When looping over one of these input formats, the application
should read the next line of input after the loop terminates. If the next next line does not match
the terminating condition, then the stream is invalid and the application should abort processing
the stream.

For MIME headers the next line should be non-nil and should not appear to be a prefix of a header.

local function isbreak(ln) -- requires *L, not *l

2 return find(ln , "\n", #ln , true) and not match(ln , "[%w%-_]+%s*:")

end

For MIME entities the next line should begin with the boundary text.

1 local function isboundary(marker , ln)

local p, pe = find(ln, marker , 1, true)

3

if p == 1 then

5 if find(ln , "^\r?\n?$", pe + 1) then

return "begin"

7 elseif find(ln , "^--\r?\n?$", pe + 1) then

return "end"

9 end

end

11

return false

13 end

socket:xread(format[, mode][, timeout])

Like socket:read, but only takes a single format instead of a list of formats, and permits specifying
an input mode and timeout. mode should be in the format described at socket:setmode. mode
and timeout are used only for the current read operation; they do not change the default mode
and timeout for the socket.

socket:lines(...)

Returns an iterator function over socket:read.

socket:xlines([format][, mode][, timeout])

Returns an iterator function over socket:xread.

socket:write(...)

Same as Lua file:write.

17

socket:xwrite(string[, mode][, timeout])

Like socket:write, but only takes a single string, and permits specifying an output mode and
timeout. mode should be in the format described at socket:setmode. mode and timeout are used
only for the current write operation; they do not change the default mode and timeout for the
socket.

socket:flush([mode][, timeout])

Flushes the output buffer. Mode is one of the “nlf” flags described in socket:setmode. A nil
mode implies “n”, i.e. no buffering and effecting a full flush. An empty string mode resolves to the
configured output buffering mode.

socket:fill(size[, timeout])

Fills the input buffer with ‘size’ bytes. Returns true on success, false and an error code on failure.

socket:unget(string)

Writes ‘string’ to the head of the socket input buffer.

socket:pending()

Returns two numbers—the counts of buffered bytes in the input and output streams. This does
not include the bytes in the kernel’s buffer.

socket:uncork()

Disables TCP NOPUSH, TCP CORK, or equivalent socket option.

socket:recv(format [, mode])

Similar to socket:read, except takes only a single format and returns immediately without polling.
On success returns the string or number. On failure returns nil and a numeric error code–usually
EAGAIN or EPIPE. Does not use error handler.

‘mode’ is as described in socket.connect, and defaults to the configured input mode.

socket:send(string, i, j [, mode])

Write out the slice ‘string’[i,j]. Similar to passing string:sub(i, j), but without instantiating
a new string object. Immediately returns two values: count of bytes written (0 to j-i+1), and
numerical error code, if any (usually EAGAIN or EPIPE).

socket:recvfd([prepbufsiz][, timeout])

Receive an ancillary socket message with accompanying descriptor. ‘prepbufsiz’ specifies the max-
imum message size to expect.

This routine bypasses I/O buffering.

18

Returns message-string, socket-object on success; nil, nil, error-integer on failure. On success
socket-object may still be nil. Message truncation is treated as an error condition.

socket:sendfd(msg, socket[, timeout])

Send an ancillary socket message with accompanying descriptor. ‘msg’ should be a non-zero-length
string, which some platforms require. ‘socket’ should be a Lua file handle, cqueues socket, integer
descriptor, or nil.

This routine bypasses I/O buffering.

Returns true on success; false and an error code on failure.

socket:shutdown(how)

Simple binding to shutdown(2). ‘how’ is a string containing one or both of the flags “r” or “w”.

flag description

r analagous to shutdown(SHUT RD)

w analagous to shutdown(SHUT WR)

socket:eof([which])

Returns boolean values representing whether EOF has been received on the input channel, and
whether the output channel has signaled closure (e.g. EPIPE). which is a string containing one
or more of the characters “r” and “w”, which return the state of the input or output channel,
respectively, in the order specified. which defaults to “rw”.

Note that socket:shutdown does not change the state of these values. They are set only upon
receiving the condition after I/O is attempted.

socket:peername()

Returns one, two, or three values. On success, returns three values for AF INET and AF INET6
sockets—the address family number, IP address string, and IP port. For AF UNIX sockets, returns
the address family and either the file path or nil (e.g. for an unnamed socket). If the socket is not
yet connected, returns the address family AF UNSPEC, usually numeric 0.

On failure returns nil and a numeric error code.

socket:peereid()

Queries the effective UID and effective GID of an AF UNIX, SOCK STREAM peer as cached by
the kernel when the stream initially connected.

Returns two numbers representing the UID and GID, respectively, on success, otherwise nil and a
numeric error code.

19

socket:peerpid()

Queries the PID of a AF UNIX, SOCK STREAM peer as cached by the kernel when the stream
initially connected. This capability is unsupported on OS X and FreeBSD; they only provide
getpeereid, which cannot provide the PID.

Returns a number representing the PID on success, otherwise nil and a numeric error code.

socket:localname()

Identical to socket:peername, but returns the local address of the socket.

socket:stat()

Returns a table containing two subtables, ‘sent’ and ‘rcvd’, which each have three fields—.count
for the number of bytes sent or received, a boolean .eof signaling whether input or output has been
shutdown, and .time logging the last send or receive operation.

socket:close()

Explicitly and immediately close all internal descriptors. This routine ensures all descriptors are
properly cancelled.

3.2.3 cqueues.errno

errno[]

A table mapping all system error string macros to numerical error codes, and all numerical error
codes to system error string macros. Thus, errno.EAGAIN evaluates to a numeric error code, and
errno[errno.EAGAIN] evaluates to the string “EAGAIN”.

errno.strerror(code)

Returns string returned by strerror(3).

3.2.4 cqueues.signal

signal[]

A table mapping signal string macros to numerical signal codes. In all likelihood, signal.SIGKILL
evaluates to the number 9.

signal.strsignal(code)

Returns string returned by strsignal(3).

signal.ignore(signal [, signal . . .])

Set the signal handler to SIG IGN for the specified signals.

20

signal.default(signal [, signal . . .])

Set the signal handler to SIG DFL for the specified signals.

signal.discard(signal [, signal . . .])

Set the signal handler to a builtin “noop” handler for the specified signals. Use this is you want
signals to interrupt syscalls.

signal.block(signal [, signal . . .])

Block the specified signals.

signal.unblock(signal [, signal . . .])

Unblock the specified signals.

signal.raise(signal [, signal . . .])

raise(3) the specified signals.

signal.type(obj)

Return the string “signal listener” if obj is a signal listener object, or nil otherwise.

signal.interpose(name, function)

Add or interpose a signal listener class method. Returns the previous method, if any.

signal.listen(signal [, signal . . .])

Returns a signal listener object for the specified signals. Semantics differ between platforms:

kqueue BSD kqueue provides the most intuitive behavior. All listeners will detect a signal
sent to the process irrespective of whether the signal is ignored, blocked, or delivered. However,
EVFILT SIGNAL is edge-triggered, which means no notification of delivery of a pending signal
upon being unblocked.

signalfd Linux signalfd will not detect ignored or delivered signals, and only one signalfd object
will poll ready per signal.

sigtimedwait Solaris provides no signal polling kernel primitive. Instead, the pending set is
periodically queried using sigtimedwait. See signal:settimeout. Like Linux, only one listener
can notify per interrupt.

To be portable the application must block the relevant signals. See signal.block. Otherwise,
neither Linux nor Solaris will be able to detect the interrupt. Any signal should be assigned to one
listener only, although any listener may query multiple signals.

21

Alternatively, applications may start a dedicated thread to field incoming signals, and send notifi-
cations over a socket. In the future this may be provided as an optional listener implementation.

See also cqueue:pause for another, if crude, alternative.

signal:wait([timeout])

Polls for the signal set passed to the constructor. Returns the signal number, or nil on timeout.

signal:settimeout(timeout)

Set the polling interval for implementations such as Solaris which lack a signal polling kernel
primitive. On such systems signal:wait merely queries the pending set every ‘timeout’ seconds.

3.2.5 cqueues.thread

thread.type(obj)

Return the string “thread” if obj is a thread object, or nil otherwise.

thread.self()

Returns the LWP thread object for the running Lua instances. Threads not started via thread.start
return nil.

thread.start(function [, string [, string . . .]])

Generates a socket pair, starts a POSIX LWP thread, initializes a new Lua VM instance, preloads
the cqueues library, and loads and executes the specified function from the new LWP thread and
Lua instance. The function receives as the first parameter one end of the socket pair—instantiated
as a cqueues.socket object—followed by the string parameters passed to thread.start.

The new LWP thread starts with all signals blocked.

Returns a thread object and a socket object—the other end of the socket pair. The thread object
is pollable, and readiness signals that the LWP thread has exited, or is imminently about to exit.

On error returns two nils and an error code.

thread.join([timeout])

Wait for the thread to terminate. Calling the equivalent of thread.self():join() is disallowed.

Returns a boolean and error value. If false, error value is an error code describing a local error,
usually EAGAIN or ETIMEDOUT. If true, error value is 1) an error code describing a system error
which the thread encountered, 2) an error message string returned by the new Lua instance, or 3)
nil if completed successfully.

22

3.2.6 cqueues.notify

notify[]

A table mapping bitwise flags to names, and vice-versa.

name description

CREATE file creation event

ATTRIB metadata change event

MODIFY modification to file contents or directory entries

REVOKE permission revoked

DELETE file deletion event

ALL bitwise-or of CREATE, DELETE, ATTRIB, MODIFY, and REVOKE

notify.flags(bitset[, bitset . . .])

Returns an iterator over the flags in the specified bitwise change sets. Thus, notify.flags(bit32.xor(notify.CREATE,
notify.DELETE), notify.MODIFY) returns an iterator returning all three flags.

notify.type(obj)

Return the string “file notifier” if obj is a notification object, or nil otherwise.

notify.opendir(path[, changes])

Returns a notification object associated with the specified directory. Directory change events are
limited to the set, ‘changes’, or to notify.ALL if nil.

notify:add(name[, changes])

Track the specified file name within the notification directory. ‘changes’ defaults to notify.ALL if
nil.

notify:get([timeout])

Returns a bitwise change set and a filename on success.

notify:changes([timeout])

Returns an iterator over the notify:get method.

3.2.7 cqueues.dns

As the internal DNS implementation has no global state, cqueues.dns is mostly a convenience
wrapper around other facilities.

23

dns.version()

Returns the release, ABI, and API version numbers of the internal DNS implementation as three
numbers.

dns.query(name[, type][, class][, timeout])

Proxies the resolvers:query method of the internal resolver pool. If no resolver pool has been
set with dns:setpool, creates a new stub resolver pool.

dns.setpool(pool)

Sets the internal resolver pool for use by subsequent calls to dns.query to pool.

dns.getpool()

Returns the internal resolver pool. This routine should never return nil, as it will automatically
create a new resolver pool if none has been set yet.

3.2.8 cqueues.dns.record

DNS resource record objects are implemented within cqueues.dns.record. The global tables and
shared methods are documented below. The type-specific accessory methods are quite numerous.
Until documented please confer with cqueues/src/dns.c. Also, the accessory method names are
usually equivalent to the structure member names in cqueues/src/lib/dns.h, which in return usually
reflect the member names in the relevant RFC.

The tostring metamethod returns a representation of the record data only, excluding the name,
type, ttl, etc. For an A record, it’s equivalent to string.format(“%s”, rr:addr()). For MX—which
has multiple members—it’s string.format(“%d %s”, rr:preference(), rr:host()).

record.type[]

A table mapping DNS record type string identifiers to number values, and vice-versa. So, record.type.A
evaluates to 1, the IANA numeric record type. String identifiers are only provided for record types
which are directly parseable and composable by the library. Currently supported types include A,
NS, CNAME, SOA, PTR, MX, TXT, AAAA, SRV, OPT, SSHFP, and SPF. Other record types
can be instantiated, but the numeric type must be used and the only methods available operate on
the raw rdata.

record.class[]

A table mapping DNS record class string identifiers to number values, and vice-versa. At present
the only class included is IN.

record.sshfp[]

A table mapping DNS SSHFP record string identifiers to the number values—RSA, DSA, and
SHA1.

24

record.type(obj)

Return the string “dns record” if obj is a record object, or nil otherwise.

record:section()

Returns the section identifier from whence the record came, if derived from a packet. Specifically,
QUESTION, ANSWER, AUTHORITY, or ADDITIONAL. See cqueues.dns.packet.section[].

record:name()

Returns the uncompressed record domain name as a string.

record:type()

Returns the numeric record type. If ‘rr’ holds an AAAA record, then the return value of rr:type()
will compare equal to record.type.AAAA.

record:class()

Returns the numeric record class. See record.class[].

record:ttl()

Returns the record TTL.

3.2.9 cqueues.dns.packet

DNS packets are stored in a simple structure encapsulating the raw packet data. One consequence
is that packets are append only. Because a packet is composed of four adjacent sections, when
building a packet all the information necessary should be at-hand so that records can be appended
in order.

The tostring metamethod composes a string similar to the output of the venerable dig utility.

packet.section[]

A table mapping packet section string identifiers to number values, and vice-versa. A packet is
composed of only four sections: QUESTION, ANSWER, AUTHORITY, and ADDITIONAL.

packet.opcode[]

A table mapping packet opcode string identifiers to number values, and vice-versa. The currently
mapped opcodes are QUERY, IQUERY, STATUS, NOTIFY, and UPDATE.

packet.rcode[]

A table mapping packet rcode string identifiers to number values, and vice-versa. The currently
mapped rcodes are NOERROR, FORMERR, SERVFAIL, NXDOMAIN, NOTIMP, REFUSED,
YXDOMAIN, YXRRSET, NXRRSET, NOTAUTH, and NOTZONE.

25

packet.type(obj)

Return the string “dns packet” if obj is a packet object, or nil otherwise.

packet.interpose

Add or interpose a packet class method. Returns the previous method, if any.

packet.new([prepbufsiz])

Instantiate a new packet object. ‘prepbufsiz’ is the maximum space available for appending com-
pressed records. For constructing a packet with a single question, the most space possibly necessary
is 260—256 bytes for the name, and 2 bytes each for the type and class (a QUESTION record has
no TTL or rdata section).

packet:qid()

Returns the 16-bit QID value.

packet:flags()

Returns a table of packet header flags.

field type description

.qr integer specifies whether the packet is a query (0) or response (1)

.opcode number specifies the query type

.aa boolean signals an authoritative answer

.tc boolean signals packet truncation

.rd boolean signals “recursion desired”

.ra boolean signals “recursion available”

.z boolean reserved by RFC 1035 and used by other RFCs

.rcode integer specifies the response disposition

packet:count([sections])

Returns a count of records in the sections specified by the bitwise parameter ‘sections’. Defaults
to packet.section.ALL, which is the XOR of all four sections.

packet:grep{ . . . }

Returns a record iterator over the packet according to all the criteria specified by the optional table
parameter.

26

field description

.section select records by bitwise AND with the specified sections

.type select records of this type (not bitwise)

.class selects records of this class (not bitwise)

.name select records with this name

3.2.10 cqueues.dns.config

The traditional BSD /etc/resolv.conf file is the prototype for this module, although it’s also capa-
ble of parsing /etc/nsswitch.conf. cqueues.dns.config objects are used when instantiating new
resolver objects, and provide the general options controlling a resolver.

The tostring metamethod composes a string adhering to /etc/resolv.conf syntax, with /etc/nss-
witch.conf alternatives as comments.

config[]

A table mapping flag identifiers to number values.

field description

TCP ENABLE fall back to TCP when truncation detected (default)

TCP ONLY only use TCP when querying

TCP DISABLE do not fall back to TCP

RESOLV CONF specifies BSD /etc/resolv.conf input syntax

NSSWITCH CONF specifies Solaris /etc/nsswitch.conf input syntax

config.type(obj)

Return the string “dns config” if obj is a config object, or nil otherwise.

config.interpose(name, function)

Add or interpose a config class method. Returns the previous method, if any.

config.new{ . . . }

Returns a new config object, optionally initialized according to the specified table values.

field type description

.nameserver table list of IP address strings to use for stub resolvers

.search table list of domain suffixes to append to query names

.lookup table order of lookup methods—“file” and “bind”

.options table canonical location for .edns0, .ndots, .timeout, .attempts, .rotate, .recurse,
.smart, and .tcp options

..edns0 boolean enable EDNS0 support

..ndots number if query name has fewer labels than this, reverse suffix search order

27

..timeout number timeout between query retries

..attempts number maximum number of attempts per nameserver

..rotate boolean randomize nameserver selection

..recurse boolean query recursively instead of as a simple stub resolver

..smart boolean for NS, MX, SRV and similar record queries, resolve the A record if not
included as glue in the initial answer

..tcp number see TCP ENABLE, TCP ONLY, TCP DISABLE in config[]

.interface string IP address to bind to when querying (e.g. [192.168.1.1]:1234)

config.stub{ . . . }

Returns a config object initialized for a stub resolver by loading the relevant system files; e.g.
/etc/resolv.conf and /etc/nsswitch.conf. Takes optional initialization values like config.new.

config.root{ . . . }

Returns a config object initialized for a recursive resolver. Takes optional initialization values like
config.new.

config:loadfile(file[, syntax])

Parse the Lua file object ‘file’. ‘syntax’ describes the format, which should be RESOLV CONF
(default), or NSSWITCH CONF.

config:loadpath(path[, syntax])

Like :loadfile, but takes a file path.

config:get()

Returns the configuration as a Lua table structure. See config.new for a description of the values.

config:set{ . . . }

Apply the defined configuration values. The table should have the same structure as described for
config.new.

3.2.11 cqueues.dns.hosts

The traditional BSD /etc/hosts file is the prototype for this module, and provides resolvers the
data source for the “file” lookup method.

The tostring metamethod composes a string adhering to /etc/hosts syntax.

28

hosts.type(obj)

Return the string “dns hosts” if obj is a hosts object, or nil otherwise.

hosts.interpose(name, function)

Add or interpose a hosts class method. Returns the previous method, if any.

hosts.new()

Returns a new hosts object.

hosts.stub()

Returns a host object initialized for a stub resolver by loading the relevant system files; e.g.
/etc/hosts.

hosts.root()

Returns a hosts object initialized for a recursive resolver.

hosts:loadfile(file)

Parse the Lua file object ‘file’ for host entries.

hosts:loadpath(path)

Like :loadfile, but takes a file path.

hosts:insert(address, name[, alias])

Inserts a new hosts entry. ‘address’ should be an IPv4 or IPv6 address string, ‘name’ the domain
name, and ‘alias’ a boolean—true if ‘name’ is canonical and a valid response for a reverse address
lookup.

3.2.12 cqueues.dns.hints

The internal DNS library is implemented as a recursive resolver. No matter whether configured as
a stub or recursive resolver, when a query is submitted it consults a “hints” database for the initial
name servers to contact. In stub mode these would usually be the local recursive, caching name
servers, derived from the cqueues.dns.config object; in recursive mode, the root IANA name
servers.

The tostring metamethod composes a multi-line string indexing SOA zone names and addresses.

hints.type(obj)

Return the string “dns hints” if obj is a hints object, or nil otherwise.

29

hints.interpose(name, function)

Add or interpose a hints class method. Returns the previous method, if any.

hints.new([resconf])

Returns a new hints object. ‘resconf’ is an optional cqueues.dns.config object which in the
future may be used to initialize database behavior. Currently it’s unused, and does not pre-load
the name server list.

hints.stub([resconf])

Returns a hints object initialized for a stub resolver. If provided, the initial hints are taken from the
cqueues.dns.config object, ‘resconf’. Otherwise, the hints are derived from a temporary “stub”
config object internally.

hints.root([resconf])

Returns a hints object initialized for a recursive resolver. The root name servers are initialized from
an internal database compiled into the module. See hints.new for the function of the optional
‘resconf’.

hints:insert(zone, address|resconf[, priority])

Inserts a new hints entry. ‘zone’ is the domain name which anchors the SOA (e.g. “.”, or “com.”),
and ‘address’ the IPv4 or IPv6 of the nameserver. Alternatively, in lieu of a string address a
cqueues.dns.config object can be specified, and the addresses taken from the nameserver list
property. ‘priority’ is used for ordering nameservers in each zone.

IPv4 and IPv6 addresses can optionally contain a port component, e.g. “[2001:503:ba3e::2:30]:123”
or “[198.41.0.4]:53”.

3.2.13 cqueues.dns.resolver

This module implements a comprehensive DNS resolution algorithm, capable of working in both
stub and recursive modes, and automatically querying for missing glue records.

The resolver implementation only supports one outstanding query per resolver, with a 1:1 mapping
between resolvers and sockets. This is intended to promote both simplicity and security—it maxi-
mizes port number and QID entropy to mitigate spoofing. An additional module, cqueues.dns.resolvers,
implements a resolver pool to assist with bulk querying.

resolver.type(obj)

Return the string “dns resolver” if obj is a resolver object, or nil otherwise.

resolver.interpose(name, function)

Add or interpose a resolver class method. Returns the previous method, if any.

30

resolver.new([resconf][,hosts][,hints])

Returns a new resolver object, configured according to the specified config, hosts, and hints objects.
‘resconf’ can be either an object, or a table suitable for passing to config.new. ‘hosts’ and ‘hints’,
if nil, are instantiated according to the mode—recursive or stub—of the config object.

resolver.stub{ . . . }

Returns a stub resolver, optionally initialized to the defined config parameters, which should have
a structure suitable for passing to cqueues.dns.config.new.

resolver.root{ . . . }

Returns a recursive resolver, optionally initialized to the defined config parameters, which should
have a structure suitable for passing to cqueues.dns.config.new.

resolver:query(name[, type][, class][, timeout])

Query for the DNS resource record with the specified type and class. name is the fully-qualified
or prefix domain name string. type and class corresponding to the IANA-assigned numeric or
string identifier for the type of answer desired, and default to A (0x01) and IN (0x01), respec-
tively. timeout is the total elapsed time for resolution, irrespective of the .attempts and .timeout
configuration values.9

Returns a cqueues.dns.packet answer packet on success, or nil and a numeric error code on
failure. The answer may not actually have anything in the ANSWERS section; e.g. if the RCODE
is NXDOMAIN.

This routine is a simple wrapper around resolver:submit and resolver:fetch.

resolver:submit(name[, type][, class])

Resets the query state and submits a new query. Returns true on success, or false and an error
number on failure. This routine does not poll.

resolver:fetch()

Process a previously submitted query. Returns a dns.packet object on success, or nil and an error
number on failure—usually EAGAIN. This routine does not poll.

resolver:stat()

Returns a table of statistics for the resolver instance.

field description

.queries number of queries submitted

9The resolv.conf .timeout controls the time to wait on each query to a nameserver, while .attempts controls
how many times to query each nameserver in the nameserver list. Thus in the absence of an overall timeout, the
effective timeout is .timeout x .attempts x number of nameservers.

31

.udp.sent.count number of UDP packets sent

.udp.sent.bytes number of UDP bytes sent

.udp.rcvd.count number of UDP packets received

.udp.rcvd.bytes number of UDP bytes received

.tcp.sent.count number of TCP packets sent

.tcp.sent.bytes number of TCP bytes sent

.tcp.rcvd.count number of TCP packets received

.tcp.rcvd.bytes number of TCP bytes received

resolver:close()

Explicitly destroy the resolver object, immediately closing all internal descriptors. This routine
ensures all descriptors are properly cancelled.

3.2.14 cqueues.dns.resolvers

A resolver pool is both a factory and container for resolver objects. When a resolver is requested it
attempts to pull one from the internal queue. If none is available and the .hiwat mark has not been
reached, a new resolver is created, otherwise the calling coroutine waits on a conditional variable
until a resolver becomes available, or the request times-out. When a resolver is placed back into
the queue it is cached if the number of cached resolvers is below .lowat, otherwise it is closed and
discarded.

resolvers.type(obj)

Return the string “dns resolver pool” if obj is a resolver pool object, or nil otherwise.

resolvers.new([resconf][,hosts][,hints])

Behaves similar to resolver:new. Returns a new resolver pool object.

resolvers.stub{ . . . }

Returns a stub resolver pool, with each resolver optionally initialized to the defined config param-
eters, which should have a structure suitable for passing to cqueues.dns.config.new.

resolvers.root{ . . . }

Returns a recursive resolver pool, with each resolver optionally initialized to the defined config
parameters, which should have a structure suitable for passing to cqueues.dns.config.new.

resolvers:query(name[, type][, class][, timeout])

Behaves similar to resolver:query, except that timeout is inclusive of the time spent waiting for
a resolver to become available in the pool.

32

resolvers:get([timeout])

Return a resolver from the pool. If timeout is expires, returns nil and ETIMEDOUT.

resolvers:put(resolver)

Returns resolver back to the pool. Any waiting coroutines are woken.

3.2.15 cqueues.condition

This module implements a condition variable. A condition variable can be used to queue multiple
Lua threads to await a user-defined event. Unlike some condition variable implementations, this
one does not implement the monitor pattern directly. A monitor uses both a mutex and a condition
variable. However, a full monitor will usually be unnecessary as coroutines do not run in parallel.
Monitors are more a necessity in pre-emptive threading environments.

The condition variable primitive can be used to implement mutexes, semaphores, and monitors.

condition.type(obj)

Returns the string “condition” if obj is a condition variable, or nil otherwise.

condition.interpose(name, function)

Add or interpose a condition class method. Returns the previous method, if any.

condition.new([lifo])

Returns a new condition variable object. If ‘lifo’ is true, waiting threads are woken in LIFO order,
otherwise in FIFO order.

Note that the cqueues scheduler might schedule execution of multiple woken threads in a different
order. The LIFO/FIFO behavior is most useful when implementing a mutex and for whatever
reason you wish to select the thread which has waited either the longest or shortest amount of
time.

condition:wait([. . .])

Wait on the condition variable. Additional arguments are yielded to the cqueues controller for
polling. Passing an integer, for example, allows you to effect a timeout. Passing a socket allows
you to wait on both the condition variable and the socket.

Returns true if the thread was woken by the condition variable, and false otherwise. Additional
values are returned if they polled as ready. It’s possible that both the condition variable and, e.g., a
socket object poll ready simultaneously, in which case two values are returned—true and the socket
object.

You can also directly yield a condition variable, along with other condition variables, timeouts, or
pollable objects, to the cqueues controller with cqueues.poll.

33

condition:signal([n])

Signal a condition, wakening one or more waiting threads. If specified, a maximum of ‘n’ threads
are woken, otherwise all threads are woken.

3.2.16 cqueues.promise

This module implements the promise/future pattern. It most closely resembles the C++11 std::promise
and std::future APIs rather than the JavaScript Promise API. JavaScript lacks coroutines, so
JavaScript Promises are overloaded with complex functionality intended to mitigate the problems
with lacking such a primitive. The typical usage of promises/futures with C++11’s threading model
mirrors how they would be typically used in cqueues’ thread–like model.

The promise object uses a condition variable to wakeup any coroutines waiting inside promise:wait
or promise:get.

promise.type(obj)

Returns the string “promise” if obj is a promise, or nil otherwise.

promise.new([f[, . . .]])

Returns a new promise object. f is an optional function to run asynchronously, to which any
subsequent arguments are passed. f is called using pcall, and the return values of pcall are
passed directly to promise:set.

promise:status()

Returns “pending” if the promise is yet unresolved, “fulfilled” if the promise has been resolved
(promise:get will return the values), or “rejected” if the promise failed (promise:get will throw
an error).

promise:set(ok[, . . .])

Resolves the state of the promise object. If ok is true then any subsequent arguments will be
returned to promise:get callers. If ok is false then an error will be thrown to promise:get

callers, with the error value taken from the first subsequent argument, if any.

promise:set can only be called once. Subsequent invocations will throw an error.

promise:get([timeout])

Wait for resolution of the promise object (if unresolved) and either return the resolved values
directly or, if the promise was “rejected”, throw an error. If timeout is specified, returns nothing
if the promise is not resolved within the timeout.

promise:wait([timeout])

Wait for resolution of the promise object or until timeout expires. Returns promise object if the
status is no longer pending (i.e. “fulfilled” or “rejected”), otherwise nil.

34

promise:pollfd()

Returns a condition variable suitable for polling which is used to signal resolution of the promise
to any waiting threads.10

3.2.17 cqueues.auxlib

The auxiliary module exposes some convenience interfaces, including some interfaces to help with
application integration or for dealing with quirky behavior that hasn’t yet been changed because
of API stability concerns.

auxlib.assert(v [. . .])

Similar to Lua’s built-in assert, except that when v is false searches the argument list for the first
non-nil, non-false value to use as the message. If the message is an integer, applies errno.strerror
to derive a human readable string.

This routine can be explicitly monkey patched to be the global assert.

Most cqueues interfaces return a single integer error rather than the Lua-idiomatic string followed
by an integer error. The original concern was that most “errors” would be EAGAIN, ETIMEDOUT,
or EPIPE, which occur very often and would be costly to continually copy onto the stack as strings,
especially given that they’d normally be discarded. In the future the plan is to revert to the
idiomatic return protocol used by Lua’s file API, but memoize the more common errno string
representations using upvalues so they can be efficiently returned.

auxlib.fileresult(v [. . .])

Serves a similar purpose as auxlib.assert, except on error returns v (nil or false) followed by
the string message and any integer error. For example, in

1 local v, why , syserr = fileresult(false , nil , EPERM)

v is false, why is “Operation not permitted”, and syserr is EPERM. Whereas with

1 local v, why , syserr = fileresult(nil , ‘‘No such file or directory ’’)

v is nil, why is “No such file or directory”, and syserr is nil.

auxlib.resume(co [. . .])

Similar to Lua’s built-in coroutine.resume, except that when coroutines yield using cqueues.poll

recursively yields up the stack until the controller is reached, and then silently restart the coroutine
when the poll operation completes. This permits creating iterators which can transparently yield.
The application must be careful to ensure that this wrapper is used at every point in a yield/resume
chain to get the automatic behavior.

This routine can be explicitly monkey patched to be coroutine.resume.

10To improve performance of the scheduler the pollfd member is itself the condition variable, but it can be called
as a function because condition variables support the call metamethod.

35

auxlib.tostring(v)

Similar to Lua’s built-in tostring, except supports yielding of tostring metamethods.

This routine can be explicitly monkey patched to be the global tostring.

auxlib.wrap(f)

Similar to Lua’s built-in coroutine.wrap, except uses auxlib.resume when resuming coroutines.

This routine can be explicitly monkey patched to be coroutine.wrap.

Note that unlike cqueues:wrap, the created coroutine is not attached to a controller.

36

4 Examples

4.1 HTTP SSL Request

1 local cqueues = require"cqueues"

local socket = require"cqueues.socket"

3

local http = socket.connect("google.com", 443)

5

local cq = cqueues.new()

7

cq:wrap(function ()

9 http:starttls ()

11 http:write("GET / HTTP /1.0\n")

http:write("Host: google.com :443\n\n")

13

local status = http:read()

15 print("!", status)

17 for ln in http:lines"*h" do

print("|", ln)

19 end

21 local empty = http:read"*L"

print"~"

23

for ln in http:lines"*L" do

25 io.stdout:write(ln)

end

27

http:close ()

29 end)

31 assert(cq:loop ())

37

4.2 Multiplexing Echo Server

1 local cqueues = require"cqueues"

local socket = require"cqueues.socket"

3 local bind , port , wait = ...

5 local srv = socket.listen(bind or "127.0.0.1", tonumber(port or 8000))

7 local cq = cqueues.new()

9 cq:wrap(function ()

for con in srv:clients(wait) do

11 cq:wrap(function ()

for ln in con:lines("*L") do

13 cq:write(ln)

end

15

cq:shutdown("w")

17 end)

end

19 end)

21 assert(cq:loop ())

38

4.3 Thread Messaging

1 local cqueues = require"cqueues"

local thread = require"cqueues.thread"

3

-- we start a thread and pass two parameters --‘0’ and ’9’

5 local thr , con = thread.start(function(con , i, j)

-- the ‘cqueues ’ upvalue defined above is gone

7 local cqueues = require"cqueues"

local cq = cqueues.new()

9

cq:wrap(function ()

11 for n = tonumber(i), tonumber(j) do

io.stdout:write("sent ", n, "\n")

13 con:write(n, "\n")

-- sleep so our stdout writes don ’t mix

15 cqueues.sleep (0.1)

end

17 end)

19 assert(cq:loop ())

end , 0, 9)

21

23 local cq = cqueues.new()

25 cq:wrap(function ()

for ln in con:lines() do

27 io.stdout:write(ln , " rcvd", "\n")

end

29

local ok , why = thr:join()

31

if ok then

33 print(why or "OK")

else

35 error(require"cqueues.errno".strerror(why))

end

37 end)

39 assert(cq:loop ())

39

	Contents
	Dependencies
	Operating Systems
	 Microsoft Windows

	Libraries
	LuaJIT, Lua 5.2, Lua 5.3
	OpenSSL
	pthreads

	Compilers
	GNU Make

	Installation
	Building
	Targets

	Installing
	Targets

	Usage
	Conventions
	Polling
	object:pollfd
	object:events
	object:timeout

	 Globals
	Errors
	EAGAIN
	ETIMEDOUT
	EPIPE
	EBADF
	The Future

	Modules
	cqueues
	cqueues.VENDOR
	cqueues.VERSION
	cqueues.COMMIT
	cqueues.type
	cqueues.interpose
	cqueues.monotime
	cqueues.cancel
	cqueues.poll
	cqueues.sleep
	cqueues.running
	cqueues.resume
	cqueues.wrap
	cqueues.new
	cqueues:attach
	cqueues:wrap
	cqueues:step
	cqueues:loop
	cqueues:errors
	cqueues:empty
	cqueues:count
	cqueues:cancel
	cqueues:pause

	cqueues.socket
	socket[]
	socket.type
	socket.interpose
	socket.connect
	socket.connect
	socket.listen
	socket.listen
	socket.pair
	socket.pair
	socket.setvbuf
	socket.setmode
	socket.setbufsiz
	socket.setmaxline
	socket.settimeout
	socket.setmaxerrs
	socket.onerror
	socket:connect
	socket:listen
	socket:accept
	socket:clients
	socket:starttls
	socket:checktls
	socket:setvbuf
	socket:setmode
	socket:setbufsiz
	socket:setmaxline
	socket:settimeout
	socket:setmaxerrs
	socket:onerror
	socket:error
	socket:clearerr
	socket:read
	socket:xread
	socket:lines
	socket:xlines
	socket:write
	socket:xwrite
	socket:flush
	socket:fill
	socket:unget
	socket:pending
	socket:uncork
	socket:recv
	socket:send
	socket:recvfd
	socket:sendfd
	socket:shutdown
	socket:eof
	socket:peername
	socket:peereid
	socket:peerpid
	socket:localname
	socket:stat
	socket:close

	cqueues.errno
	errno[]
	errno.strerror

	cqueues.signal
	signal[]
	signal.strsignal
	signal.ignore
	signal.default
	signal.discard
	signal.block
	signal.unblock
	signal.raise
	signal.type
	signal.interpose
	signal.listen
	signal:wait
	signal:settimeout

	cqueues.thread
	thread.type
	thread.self
	thread.start
	thread:join

	cqueues.notify
	notify[]
	notify.flags
	notify.type
	notify.opendir
	notify:add
	notify:get
	notify:changes

	cqueues.dns
	dns.version
	dns.query
	dns.setpool
	dns.getpool

	cqueues.dns.record
	record.type[]
	record.class[]
	record.sshfp[]
	record.type
	record:section
	record:name
	record:type
	record:class
	record:ttl

	cqueues.dns.packet
	packet.section[]
	packet.opcode[]
	packet.rcode[]
	packet.type
	packet.interpose
	packet.new
	packet:qid
	packet:flags
	packet:count
	packet:grep

	cqueues.dns.config
	config[]
	config.type
	config.interpose
	config.new
	config.stub
	config.root
	config:loadfile
	config:loadpath
	config:get
	config:set

	cqueues.dns.hosts
	hosts.type
	hosts.interpose
	hosts.new
	hosts.stub
	hosts.root
	hosts:loadfile
	hosts:loadpath
	hosts:insert

	cqueues.dns.hints
	hints.type
	hints.interpose
	hints.new
	hints.stub
	hints.root
	hints:insert

	cqueues.dns.resolver
	resolver.type
	resolver.interpose
	resolver.new
	resolver.stub
	resolver.root
	resolver:query
	resolver:submit
	resolver:fetch
	resolver:stat
	resolver:close

	cqueues.dns.resolvers
	resolvers.type
	resolvers.new
	resolvers.stub
	resolvers.root
	resolvers:query
	resolvers:get
	resolvers:put

	cqueues.condition
	condition.type
	condition.interpose
	condition.new
	condition:wait
	condition:signal

	cqueues.promise
	promise.type
	promise.new
	promise:status
	promise:set
	promise:get
	promise:wait
	promise:pollfd

	cqueues.auxlib
	auxlib.assert
	auxlib.fileresult
	auxlib.resume
	auxlib.tostring
	auxlib.wrap

	Examples
	HTTP SSL Request
	Multiplexing Echo Server
	Thread Messaging

