

Let’s Do It in Parallel:

Groovy Parallel Programming for Java Developers

Jon Kerridge

School of Computing

Edinburgh Napier University, Scotland

Preface

The aim of this book is to show both students and practitioners that concurrent and parallel

programming does not need to be as hard as it is often portrayed and in fact is often easier that

building the equivalent sequential system. This will be achieved by presenting a set of

example systems that demonstrate the underlying principles of parallel system design based

upon real world examples. Each chapter will discuss the complete implementation of such a

system, rather than presenting fragments of solutions. The approach will therefore be founded

in principled engineering rather than a detailed exploration of the scientific underpinning.

The science has been explored in many books but these have not demonstrated the

engineering aspects of actually designing and building parallel systems.

For the purposes of this book; Concurrent means a system built from a set of processes that

execute on a single processor. Parallel means that more than one processor is used to execute

the processes and these communicate over some form of network. Within a parallel system it

is likely that some of the processors will run some processes concurrently.

The book will use as its underpinning parallel environment a package called JCSP

(Communicating Sequential Processes for Java) that is available under the LGPL software

licence from the University of Kent, Canterbury UK. This package implements the

Communicating Sequential Process concepts developed by Professor Hoare some 25 years

ago in a form that makes them easily accessible to the programmer. The book’s emphasis is

on the engineering of parallel systems using these well-defined concepts without delving into

their detailed theoretical aspects. The JCSP package essentially hides Java’s underlying

thread model from the programmer in a manner that allows easy implementation of

concurrent and parallel systems. It is immaterial whether a process is executed concurrently

or in parallel, the process definition remains the same.

Understanding the principles behind parallel processing is an increasingly important skill with

the advent of multi-core processors. Much effort has been made by processor manufacturers

to hide the underlying parallel design techniques by providing tools that will take an existing

code and extract some parallelism from it. This hides the real need to actually design and

build parallel systems from the outset. Far too many people have been put off parallel

processing because they believe that they have to understand the underlying thread model

supplied as part of the language or operating system environment. The goal of the book is to

dispel all these misconceptions and show that parallel system can be built quite easily with a

very few simple design patterns and that such parallel systems can be easily implemented on a

single processor or a collection of networked processors. Furthermore the advent of multi-

core processors means that we can now start to build genuinely parallel systems for the

commonest desktop workstations in which we can exploit the inherent parallelism more easily

once we have the tools required to place a process on a specific core. The extension to a

network of multi-core processors becomes even easier. Equally important is that the same

design principles can be used to build mobile systems that permit interactions between mobile

devices and fixed services using wireless and Bluetooth technology.

Background

The book results from a module taught during the spring semester to master’s students,

though the approach would be applicable to senior undergraduates and professional

programmers. As part of the module, students were asked to complete a practical portfolio

and are included in the book. The source coding for all the examples and for solutions to the

practical problems is also available. A set of PowerPoint slides is also available for

instructors.

Why Java and Groovy and Eclipse?

Java is widely used and, increasingly in mobile applications, where the ability to build parallel

systems is crucial. Most user interfaces are in fact concurrent in nature but you would not

think so given the contortions a Java programmer has to go to make them appear sequential.

Groovy is a scripting language for the Java platform, currently being developed and

progressed through the Sun Java release programme. The addition of a small number of

helper classes has made the underlying parallel design concepts far more easily accessible as

the amount of code that has to be written to create a working application is dramatically

reduced.

Eclipse is becoming the de facto standard for Integrated Software Development Environments

and as such has the appropriate plug-ins for Java and Groovy which have been extended to

include the Groovy Parallel helper classes.

It is assumed that the reader of this book has some familiarity with Java and Java-like

languages and sufficient understanding of object-oriented principles to cope with data

encapsulation and the concept of get() and set() methods. An awareness of the java.awt

package will be of benefit when user interfaces are discussed.

Parallelism, as such, has been a topic that has been avoided by many educational

establishments, possibly because of the lack of appropriate software environments and

approachable tools. It also suffers from the underlying models being overly complex and

difficult to reason about. This book addresses these issues by providing a model of parallel

programming based in the Object Oriented paradigm that builds upon many year’s of research

into the design and implementation of parallel systems. It attempts to demonstrate that

parallel programming is not hard and perhaps should be considered as a more appropriate first

design environment for the teaching of programming as it is closer to the way in which

humans understand and investigate solutions to problems.

Organisation of the Book

To be done when finally organised

Acknowledgements

Lots but in due course

 Contents

1 Basic Concepts ... 5

2 Producer Consumer: A Fundamental Design Pattern .. 8

3 Process Networks: Build It Like Lego Error! Bookmark not defined.

4 Parallel Processes: Non Deterministic Input Error! Bookmark not defined.

5 Extending the Alternative: A Scaling Device and Queues Error! Bookmark not

defined.
6 Testing Parallel Systems: First Steps Error! Bookmark not defined.

7 Deadlock: An Introduction ... Error! Bookmark not defined.

8 Client-Server: Deadlock Avoidance by Design Error! Bookmark not defined.

9 External Events: Handling Data Multiple Sources Error! Bookmark not defined.

10 Deadlock Revisited: Circular Structures Error! Bookmark not defined.

11 Graphical User Interfaces: Brownian Motion Error! Bookmark not defined.

12 Dining Philosophers: A Classic Problem Error! Bookmark not defined.

13 Accessing Shared Resources: CREW Error! Bookmark not defined.

14 Barriers and Buckets: Hand-Eye Co-ordination Test ... Error! Bookmark not defined.

15 Communication over Networks: Process Parallelism .. Error! Bookmark not defined.

16 Anonymous Network Channels: A Print Server Error! Bookmark not defined.

17 More Testing: Non-terminating Process Networks Error! Bookmark not defined.

18 Mobile Agents: Going for a Trip Error! Bookmark not defined.

19 Mobile Processes: Ubiquitous Wireless Access........... Error! Bookmark not defined.

20 Redirecting Channels: A Self Monitoring Process Ring Error! Bookmark not

defined.
21 Mobile Agents and Processes: Process Discovery Error! Bookmark not defined.

22 Concluding Remarks: Why Use Groovy Parallel and JCSP? Error! Bookmark not

defined.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

1 Basic Concepts
The fundamental concepts that we shall be dealing with are:

1. processes

2. channels,

3. timers

4. alternatives

In comparison to other concurrent and parallel based approaches, the list is very small but that is because

we are dealing with higher-level concepts and abstractions. Therefore it is much easier for the

programmer to both build parallel systems and also to reason about their behaviour. One of the key

aspects of this style of parallel system design is that processes can be composed into larger networks of

processes with a predictable overall behaviour.

1.1 Process

A process, in its simplest form, defines a sequence of instructions that are to be carried out. Typically, a

process will communicate with another process using a channel to transfer data from one to the other. In

this way a network of processes collectively provide a solution to some problem. Processes have only

one method, run(), which is used to invoke the process. A list of process instances is passed to an

instance of a PAR object which, when run, causes the parallel execution of all the processes in the list. A

PAR object only terminates when all the processes in the list have themselves terminated.

A process encapsulates the data upon which it operates. Such data can only be communicated to or from

another process and hence all data is private to a process. Although a process definition is contained

within a Class definition, there are no explicit methods defined by which any property or attribute of the

process can be accessed.

A network of processes can be invoked concurrently on the same processor, in which case the processor

is said to interleave the operations of the processes. The processor can actually only execute one process

at a time and thus the processor resource is shared amongst the concurrent processes.

A network of processes can be created that runs on many processors connected by some form of

communication mechanism, such as a TCP/IP based network. In this case the processes on the different

processors can genuinely execute at the same time and thus are said to run in parallel. In this case some

of the processors may invoke more than one process and so an individual processor may have some

processes running concurrently but the complete system is running in parallel. The definition of a process

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

remains the same regardless of whether it is executed concurrently or in parallel. Furthermore the

designer does not have to be aware, when the process is defined, whether it will execute concurrently or

in parallel.

A network of proceses can be run in parallel on a multi-core processor in such a way that the processes

are executed on different cores. We can thus exploit multi-core processors directly by the use of a

process based programming environment. The exploitation of multi-core processors will result in those

processes running on the same core executing concurrently and thos on different cores in parallel.

Currently, the ability to control the placement of specific processes on specific cores is limited by the

underlying Java environment.

Throughout the rest of this book we shall refer to a network of parallel processes without specifically

stating whether the system is running concurrently or in parallel. Only when absolutely necessary will

this be differentiated.

1.2 Channel

A channel is the means by which a process communicates with another process. A channel is a one-way,

point-to-point connection between two processes. One process writes to the channel and the other reads

from the channel. Channels are unbuffered and are used to transfer data from the outputting (writing)

process to the inputting (reading) process. If we need to pass data between two processes in both

directions then we have to supply two channels, one in each direction. Channels synchronise the

processes to pass data from one to the other. Whichever process attempts to communicate first waits,

idle, using no processor resource until the other process is ready to communicate. The second process

attempting to communicate will discover this situation, undertake the data transfer and then both

processes will continue in parallel, or concurrently if they were both executed on the same processor. It

does not matter whether the inputting or outputting process attempts to communicate first the behaviour is

symmetrical. At no point in a channel communication interaction does one process cycle round a loop

determining whether the other process is ready to communicate. The implementation uses neither polling

nor busy-wait-loops and thus does not incur any overhead.

This describes the fundamental channel communication mechanism; however, within the parallel

environment it is possible to create channels that have many reader and / or writer processes connected to

them. In this case the semantics are a little more complex but in the final analysis the communication

behaves as if it were a one-to-one communication.

When passing data between processes over a channel some care is needed because, in the Groovy

environment, this will be achieved by passing an object reference if both processes are executing

concurrently on the same processor. In order that neither of the processes can interfere with the

behaviour of each other we have to ensure that a process does not modify an object once it has been

communicated. This can be most easily achieved by always defining a new instance of the object which

the receiving process can safely modify.

If the communication is between processes on different processors this requirement is relaxed because the

underlying system has to make a copy of the data object in any case. An object reference has no validity

when sent to another processor. Such a data object has to implement the Serializable interface.

In the processes are running on a multi-core processor then they should be treated as processes running

concurrently on the same processor because such processes can share the same caches and thus processes

will be able to access the same object reference.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

1.3 Timers

A key aspect of the real world is that many systems rely on some aspect of time, either absolute or

relative. Timers are a fundamental component of a parallel programming environment together with a set

of operations. Time is derived from the processor’s system clock and has millisecond accuracy.

Operations permit the time to be read as an absolute value. For example, processes can be made to go

idle for some defined, sleep, period. Alarms can be set, for some future time, and detected so that actions

can be scheduled. A process that calls the sleep() method or is waiting for an alarm is idle and

consumes no processor resource until it resumes execution.

1.4 Alternatives

The real world in which we interact is non-deterministic, which means that the specific ordering of

external events and communications cannot be predefined in all cases. The programming environment

therefore has to reflect this situation and permit the programmer to capture such behaviour. The

alternative captures this behaviour and permits selection between one or more input communications,

timer alarms and other synchronisation capabilities. The events over which the alternative makes its

selection are referred to as guards. If one of the guards is ready then that one is chosen and its associated

process carried out. If none of the guards are ready then the alternative waits, doing nothing, consuming

no processor resource until one is ready. If more than one is ready, it chooses one of the ready guards

according to some selection criterion. The ability to select a ready guard is a crucial requirement of any

parallel programming environment that is going to model the non-deterministic real world.

1.5 Summary

This brief chapter has defined the terms we are going to use during the rest of the book. From these basic

concepts we are going to build many example parallel systems simply by constructing networks of

processes, connected by channels, each contributing, in part, to the solution of a problem. Whether the

network of processes is run in parallel over a network, in a multi-core processor, or concurrently on a

single processor has no bearing upon the design of the system. In some systems the use of multiple

processors may be determined by the nature of the external system and environment to which the

computer system is connected.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

2 Producer Consumer: A Fundamental Design Pattern
For many people, the first program they write in a new language is to print “Hello World”, followed by

the inputting of a person’s name so the program can be extended to print “Hello name”. In the parallel

world this is modified to a program that captures one of the fundamental design patterns of parallel

systems, namely a Producer – Consumer system.

A Producer process is one that outputs a sequence of distinct data values. A Consumer process is one that

inputs a stream of such data values and then processes them in some way. The composition of a Producer

and Consumer together immediately generate some interesting possibilities for things to go wrong. What

happens if?

5. The Producer is ready to output some data before the Consumer is ready

6. The Consumer is ready to input but no data is available from the Producer

In many situations, the programmer would resort to introducing some form of buffer between the

Producer and Consumer to take account of any variation in the execution rate of the processes. This then

introduces further difficulties in our ability to reason about the operation of the combined system; such as

the buffer becomes full so the Producer has to stop outputting, or conversely it becomes empty and the

Consumer cannot input any data. We have just put off the decision. In fact, we have made it much

harder to both program the system and to reason about it. In addition, we now have to consider the

situation when the buffer fails for some reason. Fortunately, the definitions of process and channel given

in Chapter 1 come to our rescue.

If the Producer process is connected to the Consumer process by a channel then we know that the

processes synchronise with each other when they transfer data over the channel. Thus if the Producer

tries to output data before the Consumer is ready to input then the Producer waits until the Consumer is

ready and vice-versa. It is therefore impossible for any data to be lost or spurious values created during

the data communication.

2.1 A Parallel Hello World

2.1.1 Hello World Producer

The producer process for Hello-World is shown in Listing 2-1. Line {1}
1
 specifies the imported package

for JCSP. Line {2-10} defines the class ProduceHW that implements the interface CSProcess, which

1
 The notation { } in the text indicates the line number, or numbers, or range of lines in a Listing. All lines in a chapter are

unique.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

defines a single method run() that is used to invoke the process. The interface CSProcess is contained

in the package org.jcsp.lang.

01 import org.jcsp.lang.*

02 class ProduceHW implements CSProcess {

03 def ChannelOutput outChannel

04 void run() {
05 def hi = "Hello"
06 def thing = "World"
07 outChannel.write (hi)
08 outChannel.write (thing)
09 }
10 }

Listing 2-1 Hello World Producer Process

The only class property, outChannel {3}, of type ChannelOutput, is the channel upon which the process

will output using a write method. Strictly, Groovy does not require the typing of properties, or any other

defined variable, however, for documentation purposes we adopt the convention of giving the type of all

properties. This also has the advantage of allowing the compiler to check type rules and provides

additional safety when processes are formed into process networks.. Each process has only one method,

the run() method as shown starting at line {4}. Two variables are defined {5, 6} that hold the strings

“Hello” and “World” respectively. These are then written in sequence to outChannel {7, 8}.

2.1.2 Hello World Consumer

The ConsumeHW process, Listing 2-2, has a property inChannel {13} of type ChannelInput. Such

channels can only read objects from the channel using a read method. Its run() method firstly, reads in

two variables from its inChannel {15, 16}, which are then printed {17} to the console window with

preceding and following new lines (\n). The notation ${v} indicates that the variable v should be

evaluated to its String representation

11 import org.jcsp.lang.*

12 class ConsumeHW implements CSProcess {

13 def ChannelInput inChannel

14 void run() {
15 def first = inChannel.read()
16 def second = inChannel.read()
17 println "\n${first} ${second}!\n"
18 }
19 }

Listing 2-2 Hello World Consumer Process

2.1.3 Hello World Script

Figure 2-1 shows the process network diagram for this simple system comprising two processes

ProduceHW and ConsumeHW that communicate over a channel names connect.

Figure 2-1 Producer Consumer Process Network

The script for executing the processes ProduceHW and ConsumeHW is shown in Listing 2-3.

ProduceHW ConsumeHW

connect

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

20 import org.jcsp.lang.*
21 import org.jcsp.groovy.PAR

22 One2OneChannel connect = Channel.createOne2One()

23 def processList = [
24 new ProduceHW (outChannel: connect.out()),
25 new ConsumeHW (inChannel: connect.in())
26]

27 new PAR (processList).run()

Listing 2-3 Hello World Script

The package org.jcsp.groovy {21} contains the definitions of the Groovy parallel helper classes. See

Appendix 2 for a more complete specification and description of their use. The PAR class {27} causes the

parallel invocation of a list of processes. This is achieved by calling the run() method of PAR, which in

turn causes the execution of the run() method of each of the processes in the list.

The channel connect is an interface of type One2OneChannel {22}. The channel is created by means of

a static method createOne2One in the class Channel contained within the package org.jcsp.lang. The

processList {23} comprises an instance of ProducerHW with its outChannel property set to the out

end of connect, and the processes ConsumerHW with its inChannel property set to the in end of connect

{24, 25}.

The underlying JCSP
2
 attempts, as far as possible, to ensure networks of processes are connected in a

manner that can be easily checked. The channel connect {22} is defined as a One2OneChannel interface

and therefore it has one output end and one input end. These are defined by the methods out() {24} and

in() {25} respectively. A class that contains a property of type ChannelOutput must be passed an

actual parameter that has been defined with a call to out() and within that process only write() method

calls are permitted on the channel property. The converse is true for input channels. In all process

network diagrams the arrow head associated with a channel will refer to the input end of the channel.

The output from executing this script is shown in Output 2-1.

Hello World!

Output 2-1 Output from Hello World Script

2.2 Hello Name

The Hello Name system is a simple extension of the Hello World program. The only change is that the

ProducerHN {30} process asks the user for their name and then sends this to the Consumer process as the

thing variable {34} in Listing 2-4.

28 import phw.util.*
29 import org.jcsp.lang.*

30 class ProduceHN implements CSProcess {

31 def ChannelOutput outChannel

32 void run() {
33 def hi = "Hello"
34 def thing = Ask.string ("\nName ? ")
35 outChannel.write (hi)
36 outChannel.write (thing)
37 }
38 }

Listing 2-4 The ProduceHN Process

2
 The JCSP or Communicating Sequential Processes for Java comprises a set of packages that implement various aspects of

support for parallelism using CSP concepts for the Java Virtual Machine.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 11

The package phw.util contains some simple console interaction methods that can be used to obtain input

from the user from the console window, see Appendix 3. The Ask.string method outputs the prompt

“Name ?” after a new line and the user response is then placed into the variable thing {34}.

The Consumer process remains unaltered from the version shown in Listing 2-2 except that the name of

the process is changed to ConsumeHN. Similarly, the script to run the processes is the same as Lisitng 2-3

except that the names of the processes have been changed to ProduceHN and ConsumeHN. A typical

output from the execution of the script is shown in Output 2-2, where user typed input is shown in italics.

Name ? Jon

Hello Jon!

Output 2-2 Output from Hello Name Network

2.3 Processing Simple Streams of Data

The final example in this chapter requires the user to type in a stream of integers into a producer process

that writes them to a consumer process, which then prints them. The specification of the Producer

process is given in Listing 2-5.

39 import phw.util.*
40 import org.jcsp.lang.*

41 class Producer implements CSProcess {

42 def ChannelOutput outChannel

43 void run() {
44 def i = 1000
45 while (i > 0) {
46 i = Ask.Int ("next: ", -100, 100)
47 outChannel.write (i)
48 }
49 }
50 }

Listing 2-5 The Producer Process

The run() {43} method is formulated as a while loop {45-48}, which is terminated as soon as the user

inputs zero. The input integer value is obtained using the Ask.Int method that will ensure that any input

lies between -100 to 100 {46}. The while loop has been structured to ensure the final zero is also output

to the Consumer process.

51 import org.jcsp.lang.*

52 class Consumer implements CSProcess {

53 def ChannelInput inChannel

54 void run() {
55 def i = 1000
56 while (i > 0) {
57 i = inChannel.read()
58 println "the input was : ${i}"
59 }
60 println "Finished"
61 }
62 }

Listing 2-6 The Consumer Process

The Consumer process is shown in Listing 2-6. The Consumer {52} process reads data {57} from its

input channel, inChannel {53}, which is then printed {58}. Once a zero is read the while loop {56-59}

terminates resulting in the printing of the “Finished” message {60}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 12

The script that causes the execution of the network of processes is shown in Listing 2-7 which is very

similar to the previous script shown in Listing 2-3, the only change being, the names of the processes that

make up the list of processes {67, 68}.

63 import org.jcsp.lang.*
64 import org.jcsp.groovy.*

65 One2OneChannel connect = Channel.createOne2One()

66 def processList = [
67 new Producer (outChannel: connect.out()),
68 new Consumer (inChannel: connect.in())
69]

70 new PAR (processList).run()

Listing 2-7 The Producer Consumer System Script

Output from a typical execution of the processes is given in Output 2-3.

next: 1
next: the input was : 1
2
the input was : 2
next: 3
the input was : 3
next: 0
the input was : 0
Finished

Output 2-3 Typical Results from Producer Consumer System

The output, especially when executed from within Eclipse, can be seen to be correct but the output is

somewhat confused as we have two processes writing concurrently to a single console at the same time;

both processes use println statements {46 (implicitly), 58, 60}. We therefore have no control of the order

in which outputs appear and these often become interleaved. A process called GConsole is available in

the package org.jcsp.groovy.plugAndPlay that creates a console window with both an input and output

area. This process can be used to provide a specific console facility for a given process. Many such

GConsole processes can be executed in a network of processes as required. Its use will be demonstrated

in later chapters.

2.4 Summary

This chapter has introduced the basic use of many simple JCSP concepts. A set of simple Producer -

Consumer based systems have been implemented and output from these systems has also been given.

These basic building blocks of processes and channels, with their simple semantics are the basis for all

the parallel systems we shall be building throughout the rest of this book.

2.5 Exercises

7. Using Listing 2-7 as a basic design implement and test a new process called Multiply that is inserted

into the network between the Producer and Consumer processes which takes an input value from the

Producer process and multiplies it by some constant factor before outputting it to the Consumer

process. The multiplication factor should be one of the properties of the Multiply process. To

make the output more meaningful you may want to change the output text in the Consumer process.

You should reuse the Producer process from the ChapterExamples project in src package c2.

8. A system inputs data objects that contain three integers. It is required to output the data in objects that

contain eight integers. Write and test a system that undertakes this operation. The process

ChapterExercises/src/c2.GenerateSetsOfThree outputs a sequence of Lists, each of which

contains three positive integers. The sequence is to be terminated by a List comprising [-1, -1, -1].

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 13

What change is required to output objects containing six integers?

How could you parameterise this in the system?

