
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

6 Testing Parallel Systems: First Steps
JUnit [ref] testing has become a widely accepted way of testing Java classes and there is a great deal of

software support for this approach. In the previous chapter examples and exercises were introduced

whereby the user had to ascertain for them self that the systems worked in the expected manner. This was

achieved by looking at printed output. This may be a satisfactory approach for small example systems

but is not appropriate for systems that are to be used in an every day context.

In this chapter the use of JUnit testing is introduced by using examples taken from earlier chapters. This

will demonstrate that it is possible to use this approach and give a general architecture for testing parallel

systems. The key to JUnit testing is that we test one or more assertions concerning the underlying

implementation. In the parallel situation we have to identify a source of inputs that can be compared to

the subsequent outputs for the assertion testing.

6.1 Testing Hello World

The testing of the ProduceHW and ConsumeHW processes (see Chapter 2) demonstrate that from the outset

testing has to be considered at the time processes are designed and cannot be retrospectively added. To

this end, properties are required that can be accessed once a process has terminated. These properties can

then become components in any assertion. In this very simple case the ProduceHW process needs no

alteration.

6.1.1 Revised ConsumeHW Process

The revised version of ConsumeHW, see Listing 6-1 requires the addition of a property message {3}, which

is assigned {7} the values that have been read in from inChannel {5, 6}.

01 class ConsumeHW implements CSProcess {

02 def ChannelInput inChannel
03 def message

04 void run() {
05 def first = inChannel.read()
06 def second = inChannel.read()
07 message = "${first} ${second}!!!"
08 println message
09 }
10 }

Listing 6-1 The Revised Version of ConsumeHW

6.1.2 The HelloWorldTest Script

Listing 6-2 gives the script used to test ProduceHW and ConsumerHW.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

11 import c2.ProduceHW

12 class HelloWorldTest extends GroovyTestCase {

13 void testMessage() {

14 One2OneChannel connect = Channel.createOne2One()

15 def producer = new ProduceHW (outChannel: connect.out())
16 def consumer = new ConsumeHW (inChannel: connect.in())

17 def processList = [producer, consumer]

18 new PAR (processList).run()

19 def expected = "Hello World!!!"
20 def actual = consumer.message

21 assertTrue(expected == actual)
22 }
23 }

Listing 6-2 The HelloWorldTest Script

The ProduceHW process from Chapter 2 is imported {11}. The remainder of the coding is that required to

build an instance of GroovyTestCase. This requires that a void method is defined, the name of which is

prefixed with the word test and that contains the script necessary to run the processes being tested. The

primary requirement is that in order to test the system the processes must terminate.

The crucial elements are that we define each process as an instance {15, 16}. This is required so that we

can access the message property of ConsumeHW when the system terminates. The processes are then run

in parallel {17, 18}. The property expected is set to the String that should be output {19}. The actual

value is obtained from the message property of ConsumeHW {20}. These are then compared {21} using

the assertTrue method which produces an indication of whether the test passed. Typical JUnit style test

output is shown in Output 6-1.

.Hello World!!!

Time: 0.281

OK (1 test)

Output 6-1 Output Generated by the Test of Hello World

6.2 Testing the Queue Process

The Queue Process discussed in Chapter 5.2 can be tested by sending a known number of test values into

the Queue from the QProducer process and then ensuring that the same number of values is received by

the QConsumer process. A more thorough test would be to ensure that the sequence of numbers received

by QConsumer is the same as that sent by the QProducer, but that is left as an exercise for the reader.

Listing 6-3 shows the modified QProducer process. The only modifications required occur on {28},

where a new List property is added called sequence, which holds the sequence of produced values and

on {34} where each produced value is appended (<<) to sequence. The printing of the produced values

also has been removed. The sequence property is required to ensure we have a value that can be tested

once the network of processes being tested has terminated.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

24 class QProducer implements CSProcess {

25 def ChannelOutput put
26 def int iterations = 100
27 def delay = 0
28 def sequence = []

29 void run () {

30 def timer = new CSTimer()
31 for (i in 1 .. iterations) {
32 put.write(i)
33 timer.sleep (delay)

34 sequence = sequence << i

35 }
36 put.write(null)
37 }
38 }

Listing 6-3 The Testable Version of QProducer

Listing 6-4 shows the modified QConsumer process, which as in the QProducer defines a property that

can be externally access, called outSequence {43}. The processing of the terminating null value has

been modified {51-55} so that all the received values are appended to outSequence unless it is the null

value, in which case the value of running is set false, causing the process to terminate.

39 class QConsumer implements CSProcess {

40 def ChannelOutput get
41 def ChannelInput receive
42 def long delay = 0
43 def outSequence = []

44 void run () {

45 def timer = new CSTimer()
46 def running = true

47 while (running) {
48 get.write(1)
49 def v = receive.read()
50 timer.sleep (delay)

51 if (v != null) {
52 outSequence = outSequence << v
53 } else {
54 running = false
55 }

56 }
57 }
58 }

Listing 6-4 The Modified QConsumer Process

6.3 The Queue Test Script

Listing 6-5 gives the class that causes the Queue process testing. It takes the same basic structure as that

used in the test of the Hello World system. It is important to note that the aim is to test the Queue process

given in Chapter 5 {59} and not the QProducer and QConsumer processes. The channels required to

implement the network defined in Figure 5-2 are specified {62-64}. Instances of each of the processes

are then defined {65-68}, so that we can subsequently test the values of the properties sequence and

outSequence of QProducer and QConsumer respectively. The list of processes is then defined and

executed in a PAR {69-70}, which must terminate if we are to be able to test the process properties in an

assertion {73}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

59 import c5.Queue

60 class QueueTest extends GroovyTestCase {

61 void testQueue() {

62 One2OneChannel QP2Q = Channel.createOne2One()
63 One2OneChannel Q2QC = Channel.createOne2One()
64 One2OneChannel QC2Q = Channel.createOne2One()

65 def qProducer = new QProducer (put: QP2Q.out(), iterations: 50)
66 def queue = new Queue (put: QP2Q.in(), get: QC2Q.in(),
67 receive: Q2QC.out(), elements: 5)
68 def qConsumer = new QConsumer (get: QC2Q.out(), receive: Q2QC.in())

69 def testList = [qProducer, queue, qConsumer]
70 new PAR (testList).run()

71 def expected = qProducer.sequence
72 def actual = qConsumer.outSequence

73 assertTrue(expected == actual)
74 }
75 }

Listing 6-5 The QueueTest Script

The values of the expected and actual returned values are obtained from their processes and tested {71-

72}. This will cause the result of the test to be printed on the console as shown in Output 6-2. In more

complex examples the construction of assertions is likely to be more elaborate depending upon the nature

of the data being input and generated.

.Q finished

Time: 0.266

OK (1 test)

Output 6-2 The Output From the Queue Test

6.4 Summary

In this chapter we have introduced the concept of testing parallel systems, using the JUnit testing

framework within a Groovy environment. The key requirement is that the network of processes must

terminate. Further, the processes used to test the operation of the process network under test must contain

properties that can be populated with data that can then be tested in an assertion. In Chapter 10 we reflect

further on the testing of parallel systems and show how we can test systems that are designed not to

terminate.

6.5 Exercises

1. Construct a Test Case for the Three-To-Eight system constructed in the exercise for Chapter 2.

6.

