
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

7 Deadlock: An Introduction
Deadlock occurs whenever a network of processes gets into a state where none of the processes is able to

continue execution. A similar and related problem is that of livelock, which occurs when part of a

process network operates in such a manner as to exclude some of the processes from execution, while

others are able to continue. A first simple example, based upon the producer – consumer pattern already

discussed demonstrates the ease with which a deadlocked system can be created.

7.1 Deadlocking Producer and Consumer

Listing 7-1 gives the coding for a process BadP. The process has two channels {2, 3}. Its run method

initially prints a starting message {5} after which it enters a loop {6}. A message indicating the process

is about to write to outChannel {7} is printed and then the output takes place {8}. The same action is

then undertaken for a read method on inChannel {9, 10}. A message indicating that the end of the loop

has been reached is printed {11} and the process loops back to {6}.

01 class BadP implements CSProcess {

02 def ChannelInput inChannel
03 def ChannelOutput outChannel

04 def void run() {

05 println "BadP: Starting"

06 while (true) {

07 println "BadP: outputting"
08 outChannel.write(1)

09 println "BadP: inputting"
10 def i = inChannel.read()

11 println "BadP: looping"
12 }
13 }
14 }

Listing 7-1 BadP Process Coding

Listing 7-2 gives the coding for an equivalent process BadC, which has an identical structure to BadP

except that the messages produced are different. When these processes are executed the console displays

the messages shown in Output 7-1.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

15 class BadC implements CSProcess {

16 def ChannelInput inChannel
17 def ChannelOutput outChannel

18 def void run() {

19 println "BadC: Starting"
20 while (true) {

21 println "BadC: outputting"
22 outChannel.write(1)

23 println "BadC: inputting"
24 def i = inChannel.read()

25 println "BadC: looping"
26 }
27 }
28 }

Listing 7-2 BadC Process Coding

BadC: Starting
BadC: outputting
BadP: Starting
BadP: outputting

Output 7-1 Messages Resulting from the Parallel Execution of BadP and BadC

It can be seen that both processes start and attempt to output at lines {8 and 22} respectively but cannot

make further progress. The reason for this can be seen by inspection because both processes are

attempting to output to each other at the same time and neither can undertake the corresponding input

operation. It is shown diagrammatically in Figure 7-1, in which increasing time is represented down the

page.

Figure 7-1 Diagrammatic Representation of Deadlocked Process Interactions

In this simple situation the outcome is obvious and easy to see, both processes are trying to output at the

same time and thus neither can progress any further because neither can undertake the matching channel

read operation. In more complex process networks this is much more difficult to see. Tools are available

such as FDR [ref] and Spin [ref] which can analyse networks of processes for deadlock and livelock but

these are limited in the scale of network that can be processed. A different solution is available which can

avoid deadlock by engineering design but first we shall investigate a more complex example.

7.2 Multiple Network Servers

A common feature of modern networks is the ability to access many servers from the same workstation.

In the background, the network administrator may implement some form of mirror system so that the

servers are backed up on each other. When such systems were installed in early network designs there

BadP BadC Time

BadC: Starting

BadC: outputting

outChannel.write(1)

BadP: Starting

BadP: outputting

outChannel.write(1)

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

often occurred periods when the network ran very slowly or actually came to halt. The only recourse was

to reboot the servers. The problem was this situation was unpredictable.

In this section we shall build a pair of servers that operate in a naïve manner and exhibit this behaviour

simply by the order in which data is accessed. The behaviour only requires two clients, which are able to

access data from each of the servers but which, crucially access the data through only one server. The

system structure is shown in Figure 7-2. Each server has one client and if the client needs to access data

that is not available on its own server an automatic access from its server is made to the other server. In

order to improve performance of the servers we will allow their clients to initiate another request for data

if the previous request has been passed to the other server. Thus requests are interleaved. The

connections are shown as double ended arrows to indicate there is a request phase and the subsequent

return of a data value corresponding to the request.

Figure 7-2 Cross-Coupled Clients and Servers System

The servers are implemented as Maps comprising 10 elements in each server. The keys for the map

entries are distinct. Each client has a list of map entries it wishes to access by key value.

7.2.1 The Client Process

The coding for a Client process is shown in Listing 7-3. The Client process has two channel properties

requestChannel {31}, which is used to send requests to its Server and receiveChannel {30} used to

return results from the Server, to the Client. The property selectList {33} is a List initialised to the

set of entries in the Server’s Map that are to be accessed. The number of elements in the selectList is

found {35} and this is used as the range of a for loop {37-42}. Each key is found in sequence {38} and

this is written to the requestChannel {39}. The Client then reads the response from the Server {40}

and then prints out the key and the value of its associated map entry in the Server {41}. It should be

noted that the Client may have to wait for the response from its Server {40}, if its Server has to access

another Server because it does not contain the required key itself.

Server

Client

Server

Client

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

29 class Client implements CSProcess{

30 def ChannelInput receiveChannel
31 def ChannelOutput requestChannel
32 def clientNumber

33 def selectList = []

34 void run () {
35 def iterations = selectList.size
36 println "Client $clientNumber has $iterations values in $selectList"

37 for (i in 0 ..< iterations) {
38 def key = selectList[i]
39 requestChannel.write(key)
40 def v = receiveChannel.read()
41 println "Client $clientNumber: with $key has value $v"
42 }
43 }
44 }

Listing 7-3 Client Process Structure

7.2.2 The Server Process

The coding for the Server process is shown in Listing 7-4. The Server process has three pairs of

channels {46-51}, as can be observed from Figure 7-2. The channels clientRequest and clientSend

provide the connections to the Client process. The channels thisServerRequest and

thisServerReceive are used by this Server to make a request to the other Server. The channels

otherServerRequest and otherServerRequest are used by the other server to make a request to this

server. Recall that we are only considering a situation in which there are only two servers. The property

dataMap holds a map of the keys and values stored in the Server.

The Server can receive inputs from three different sources; its Client, a request from the other Server

and a result from the other Server in response to a request made by this Server. This is reflected in the

creation of three case constants {54-56} and an alternative over the three input channels {57-59}. The

Server then loops over which ever alternative guard is enabled followed by executing the related code

body in a switch statement.

In the case of a CLIENT request, the requested key value is read {64} and then a test is made to see if that

key is present in the Server {65}. If the key is present then value of the map entry corresponding to the

key value is sent back to the Client {66}; otherwise the request is passed to the other server {69}.

In the case of an OTHER_REQUEST from the other server {72-80}, the CLIENT code body described above

is repeated except that a -1 value is returned {78} if a map entry with the requested key value is not found

(This should not happen!).

Finally, in the case THIS_RECEIVE, which is a response to a request made by this server on the other

server {81-83}, the received value is returned to the Client {82}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

45 class Server implements CSProcess{

46 def ChannelInput clientRequest
47 def ChannelOutput clientSend

48 def ChannelOutput thisServerRequest
49 def ChannelInput thisServerReceive

50 def ChannelInput otherServerRequest
51 def ChannelOutput otherServerSend

52 def dataMap = [:]

53 void run () {
54 def CLIENT = 0
55 def OTHER_REQUEST = 1
56 def THIS_RECEIVE = 2
57 def serverAlt = new ALT ([clientRequest,
58 otherServerRequest,
59 thisServerReceive])

60 while (true) {
61 def index = serverAlt.select()
62 switch (index) {

63 case CLIENT :
64 def key = clientRequest.read()
65 if (dataMap.containsKey(key)) {
66 clientSend.write(dataMap[key])
67 }
68 else {
69 thisServerRequest.write(key)
70 }
71 break

72 case OTHER_REQUEST :
73 def key = otherServerRequest.read()
74 if (dataMap.containsKey(key)) {
75 otherServerSend.write(dataMap[key])
76 }
77 else {
78 otherServerSend.write(-1)
79 }
80 break

81 case THIS_RECEIVE :
82 clientSend.write(thisServerReceive.read())
83 break

84 }
85 }
86 } //end run
87 }

Listing 7-4 The Server Process Coding

7.2.3 Running the Network of Clients and Servers

The script used to test the client and server model is shown in Listing 7-5. The eight channels are defined

{88-95}, where the notation X2Y implies that the writing (.out())end of the channel is in the process

represented by X and the reading (.in()) end of the channel is in the Y process. The maps associated

with each server are then defined {96-98}. The list of key values that each client is to access is then

specified and it should be noted that both clients read values from both servers.

The processes are then defined such that client0 is connected to server0 and client1 is connected to

server1. The process network is then defined {123} and the network run.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

88 def One2OneChannel S02S1request = Channel.createOne2One()
89 def One2OneChannel S12S0send = Channel.createOne2One()

90 def One2OneChannel S12S0request = Channel.createOne2One()
91 def One2OneChannel S02S1send = Channel.createOne2One()

92 def One2OneChannel C02S0request = Channel.createOne2One()
93 def One2OneChannel S02C0send = Channel.createOne2One()

94 def One2OneChannel C12S1request = Channel.createOne2One()
95 def One2OneChannel S12C1send = Channel.createOne2One()

96 def server0Map = [1:10,2:20,3:30,4:40,5:50,6:60,7:70,8:80,9:90,10:100]

97 def server1Map = [11:110,12:120,13:130,14:140,15:150,
98 16:160,17:170,18:180,19:190,20:200]

99 def client0List = [1,2,3,4,5,6,7,18,9,10]

100 def client1List = [11,12,13,4,15,16,17,18,19,20]

101 def client0 = new Client (requestChannel: C02S0request.out(),
102 receiveChannel: S02C0send.in(),
103 selectList: client0List,
104 clientNumber: 0)

105 def client1 = new Client (requestChannel: C12S1request.out(),
106 receiveChannel: S12C1send.in(),
107 selectList: client1List,
108 clientNumber: 1)

109 def server0 = new Server (clientRequest: C02S0request.in(),
110 clientSend: S02C0send.out(),
111 thisServerRequest: S02S1request.out(),
112 thisServerReceive: S12S0send.in(),
113 otherServerRequest: S12S0request.in(),
114 otherServerSend: S02S1send.out(),
115 dataMap: server0Map)

116 def server1 = new Server (clientRequest: C12S1request.in(),
117 clientSend: S12C1send.out(),
118 thisServerRequest: S12S0request.out(),
119 thisServerReceive: S02S1send.in(),
120 otherServerRequest: S02S1request.in(),
121 otherServerSend: S12S0send.out(),
122 dataMap: server1Map)

123 def network = [client0, client1, server0, server1]

124 new PAR (network).run()

Listing 7-5 The Script Used To Create The Client Server Network

The result, see Output 7-2, from the execution of the network, shown in Figure 7-2 and Listing 7-5, can

be seen, by inspection, to have functioned correctly. Each client accesses the server map entries in the

correct order and every value that should have been printed has been. We can also see that each client

accesses entries in both servers.

Client 0 has 10 values in [1, 2, 3, 4, 5, 6, 7, 18, 9, 10]

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

Client 0: with 1 has value 10

Client 1 has 10 values in [11, 12, 13, 4, 15, 16, 17, 18, 19, 20]

Client 1: with 11 has value 110

Client 1: with 12 has value 120

Client 0: with 2 has value 20

Client 0: with 3 has value 30

Client 1: with 13 has value 130

Client 0: with 4 has value 40

Client 1: with 4 has value 40

Client 1: with 15 has value 150

Client 1: with 16 has value 160

Client 0: with 5 has value 50

Client 1: with 17 has value 170

Client 0: with 6 has value 60

Client 1: with 18 has value 180

Client 0: with 7 has value 70

Client 1: with 19 has value 190

Client 0: with 18 has value 180

Client 0: with 9 has value 90

Client 0: with 10 has value 100

Client 0 has finished

Client 1: with 20 has value 200

Client 1 has finished

Output 7-2 Correct Output from the Clients and Servers network

If we replace lines {99, 100} with the following:

def client0List = [1,2,3,14,15,6,7,18,9,10]

def client1List = [11,12,13,4,5,16,17,8,19,20]

then the result shown in Output 7-3 is generated. That is the ordering of client requests is significant for

the correct operation of the network of processes. This is something that should not be allowed to occur.

By inspection we can see that both servers can get into a state where they are trying to access the other

server either by making a request or by both waiting to receive a response so that neither of them can

complete a communication.

The programmer should resist the temptation to insert print statements to determine what has happened

because these can often remove the time critical nature of the interactions and the system appears to work.

Client 1 has 10 values in [11, 12, 13, 4, 5, 16, 17, 8, 19, 20]

Client 1: with 11 has value 110

Client 1: with 12 has value 120

Client 0 has 10 values in [1, 2, 3, 14, 15, 6, 7, 18, 9, 10]

Client 1: with 13 has value 130

Client 0: with 1 has value 10

Client 0: with 2 has value 20

Client 1: with 4 has value 40

Client 0: with 3 has value 30

Output 7-3 Deadlocked Client Server Results

It should be noted also that different executions of the same network, unaltered in any way, will produce

different deadlock situations.

7.3 Summary

In this chapter we have demonstrated how deadlock can occur, first in a very simplistic manner and

secondly, in a more complex set of interactions that are very hard to foresee. In the second case the

programmer attempted to ensure that the servers were undertaking as many interactions as possible with

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

the clients. A more careful programmer might have decided that instead of separating the request and

response made to the other server they would ensure that the response from the other server was received

and returned to the client before embarking upon another interaction. This would work in the case where

both servers were executing on the same processor because the interactions would be interleaved and thus

some distinct ordering might give the impression that the network operated correctly.

However, this would be a fools paradise in the case of servers running on different machines because in

due course the situation would arise where both servers were trying to send a request to each other and the

deadlock would occur, possibly after a long period, which had given the impression that the system

worked correctly and that the fault lay elsewhere.

Thus we have to find a design pattern that permits the safe design of parallel systems and that is the

content of the next chapter.

7.4 Exercises

1. By placing print statements in the coding for the Server and Client processes see if you can determine

the precise nature of the deadlock in the Client Server system. You will probably find it useful to add

a property to the Server process by which you can identify each Server.

2. When you have found this out try the same modification to the working version of the system. What

happens? Why? What are the implications of this discovery?

