
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

21 Mobile Agents and Processes: Process Discovery
In this chapter we consider the difference between mobile agents and mobile processes by offering a

defining example because this area is currently very confused as to their precise meaning. Previously, we

have used these terms in a manner that reflects these definitions but up till now there has been no need to

be specific about their differences because there has been no conflict.

In this example we are going to dynamically add nodes to a network. Nodes that are added may not have

all the processes they require; even the initial nodes may not contain a full repertoire of processes.

However, we shall assume that all the initial nodes do contain all the required data manipulation

processes. When a node receives a data input for which it does not have the required process it will send

an agent around the currently connected nodes. The goal of the agent is to locate a node with the required

process, acquire the process, return to its original node and transfer the process into its home node. Upon

receipt of such a process the home node will dynamically connect it into its internal channel structure and

thereby cause the process to execute. Thus the node will now be able to process any further data of the

same type.

It can be seen from the above description that the mobile agent has a specific goal, or possibly goals that

it seeks to achieve. This may require the agent to visit many nodes in order to find the solution to its goal.

Once the goal has been achieved, including any return to its home node it then ceases to exist. Other

agents with similar goals may be created but each will have a predetermined life expectancy. By contrast

a mobile process is one that can be moved from one node to another, plugged into the channel structure at

the receiving node and then continues to run as part of the node until such time as the node itself is no

longer required. In some cases the mobile process may retain the ability to communicate with its original

node, as was the case of the Meeting Organiser system described in Chapter 19.

The system architecture is shown in Figure 21-1. The DataGenerator process provides a named network

input channel that can be connected to by any node, shown as a dotted arrow, thereby creating a

networked Any2One channel. Similarly, the Gatherer process provides a named network input channel

that can also be connected to by any node as indicated by the dotted arrow.

On creation, a NodeProcess simply needs to be told the names of these channels in order to be connected

to both the DataGenerator and Gatherer processes. Once these connections have been made, the

NodeProcess creates a number of net input channels as follows. The From Data Generator channel

provides a means by which data can be received from the DataGenerator by the NodeProcess. The

Agent Visit Channel is the channel upon which agents from other nodes will be input so they can interact

with this node. The Agent Return Channel is the channel used by an agent to return to its originating

node.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

Figure 21-1 Architecture of the Mobile Processes and Agents System

Once theses channels have been created the NodeProcess outputs the location of the From Data

Generator and the Agent Visit Channel to the DataGenerator using the Nodes to Data Generator

channel. On receiving these locations the DataGenerator creates a One2One channel from it to the node

using the From Data Generator channel location. The DataGenerator maintains a list of all the Agent

Visit Channel locations, which it outputs to all of the connected NodeProcesses whenever the list

changes. The NodeProcess uses this information to update its Agent with the locations of the Agent

Visit Channels that it can use when it searches for a data processing process. In addition, the Node also

ensures that the Agent holds the location of the Agent Return Channel so that a returning Agent knows its

home location.

Once the system has been invoked, the DataGenerator randomly sends data object instances of any type

to any of the nodes. If a NodeProcess already has an instance of the required data processing process the

data is sent to that process where it is manipulated and subsequently output to the Gatherer process. If

the node does not have an instance of the required process then it informs the Agent of the process it

requires and causes the Agent to be sent to the first location on its list of Agent Visit Channel locations.

In due course the Agent will return, the new process will be transferred to the Node and it will be

connected into the Node as described previously. As soon as a Node sends an Agent to find a required

process it creates another instance of its Agent so that should another data object arrive for which it does

not have the data processing process then an Agent can be sent to find it immediately.

The operation of a Node matches the interactions described above. On receipt of an input it determines if

it is a list of Agent Visit Channel locations and if so updates the Agent appropriately. If it is an instance

of a data object, it determines its type and if it already has an instance of the required process sends the

data object to the required process. Otherwise, it sends the Agent the required process type information,

which the Agent can use when visiting the other nodes. Each of the processes in a NodeProcess is

invoked using the ProcessManager class. When a process is received by a NodeProcess it creates a

channel by which the NodeProcess can send data objects to it. All such processes are connected to the

Nodes To Gatherer channel. Once a NodeProcess has received three such processes, its internal

architecture would be as shown in Figure 21-2, ignoring its Agent.

From Data Generator

Agent Return Channel

Agent Visit Channel

Nodes To Gatherer

Nodes To Data Generator

Data Generator

Gatherer

NodeProcess

Agent

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

Figure 21-2 The Node Architecture

21.1 The Adaptive Agent

The agent implements the interface described in Chapter 19 and thus it needs to define channels by which

it can connect to processing nodes and also methods called connect and disconnect need to be defined.

These are shown in Listing 21-1. The channel fromInitialNode {2} provides the input to the agent

from the node where it is created and initialised with the task it is to undertake. The channel

fromVisitedNode {3} provides an input from any node the agent visits and similarly toVisitedNode

{4} provides an output connection a visited node. Finally, toReturnedNode {5} provides a connection to

the initial node once the agent has returned from its trip.

An agent can be in one of three states as represented by the value of the variables initial, visiting or

returning {6-8}. When they are created agents are in the initial state {6}, which means they have yet

to be sent on a trip by the node which created them and they are connected to the node by the channel

fromInitialNode. In the visiting state {7} an agent has left the creating node and is attached to

another node by the fromVisitedNode and toVisitedNode channels. Finally, in the returned state {8}

the agent has returned to the creating node and is connected to it by the toReturnedNode channel.

Node

Process Type 1 Process Type 2 Process Type 3

Nodes To Gatherer

From Data Generator

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

01 class AdaptiveAgent implements MobileAgent, Serializable {

02 def ChannelInput fromInitialNode
03 def ChannelInput fromVisitedNode
04 def ChannelOutput toVisitedNode
05 def ChannelOutput toReturnedNode
06 def initial = true
07 def visiting = false
08 def returned = false
09 def availableNodes = []
10 def requiredProcess = null
11 def returnLocation
12 def processDefinition = null
13 def homeNode

14 def connect (List c) {
15 if (initial) {
16 fromInitialNode = c[0]
17 returnLocation = c[1]
18 homeNode = c[2]
19 }
20 if (visiting) {
21 fromVisitedNode = c[0]
22 toVisitedNode = c[1]
23 }
24 if (returned) {
25 toReturnedNode = c[0]
26 }
27 }

28 def disconnect() {
29 fromInitialNode = null
30 fromVisitedNode = null
31 toVisitedNode = null
32 toReturnedNode = null
33 }

Listing 21-1 The Adaptive Agent Properties and connect Method

The list availableNodes {9} is used to hold the net channel locations of the nodes’

agentVisitChannels known to the system and is the set of nodes it can visit. The property

requiredProcess {10} will be initialised to the name of the process for which the agent will search.

When the agent is initialised the value of returnLocation {11} will be set to the net channel location of

the node’s agentReturnChannel. The property processDefinition {12} will hold the required

process’ definition once it has been located in a visited node. The value of homeNode {13} will be set to

the identity of the node from which the agent originates.

The behaviour of the connect method {14-27} varies depending upon its state. In all cases it is passed a

List containing one or more elements. These elements will be the value of some of the properties

described above as required by the current state of the agent. The disconnect method {28-33} is always

the same and ensures that any channel properties of the agent are set to null.

The run method of the agent is shown in Listing 21-2 and its behaviour depends upon the state of the

agent. It should be noted that in any state the agent always terminates. If the agent is in the returned

state it writes a list comprising the processDefinition and the name of the requiredProcess to its

toReturnedNode channel {35-37}. It is presumed that the agent will always find the requiredProcess.

Once this communication has been completed the agent will terminate completely and do no further

processing whatsoever and will thus in due course be garbage collected.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

34 void run() {

35 if (returned) {
36 toReturnedNode.write([processDefinition, requiredProcess])
37 }

38 if (visiting) {
39 toVisitedNode.write(requiredProcess)
40 processDefinition = fromVisitedNode.read()
41 if (processDefinition != null) {
42 toVisitedNode.write(homeNode)
43 visiting = false
44 returned = true
45 def nextNodeLocation = returnLocation
46 def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
47 disconnect()
48 nextNodeChannel.write(this)
49 }
50 else {
51 disconnect()
52 def nextNodeLocation = availableNodes.pop()
53 def nextNodeChannel = NetChannelEnd.createOne2Net(nextNodeLocation)
54 nextNodeChannel.write(this)
55 }
56 }
57 if (initial) {
58 def awaitingTypeName = true
59 while (awaitingTypeName) {
60 def d = fromInitialNode.read()
61 if (d instanceof List) {
62 for (i in 0 ..< d.size) { availableNodes << d[i] }
63 }
64 if (d instanceof String) {
65 requiredProcess = d
66 awaitingTypeName = false
67 initial = false
68 visiting = true
69 disconnect()
70 def nextNodeLocation = availableNodes.pop()
71 def nextNodeChannel =NetChannelEnd.createOne2Net(nextNodeLocation)
72 nextNodeChannel.write(this)
73 }
74 }
75 }
76 }
77 }

Listing 21-2 The Adaptive Agent's run Method

If the agent is visiting another node {38-56}; it first writes the name of the requiredProcess to the

visited node {39} and always reads a reply on the fromVisitedNode channel {40} into its

processDefinition property. Its subsequent behaviour depends on whether or not the visited node had

the required process definition. If the processDefinition is not null the agent writes the identity of the

agent’s homeNode to the visited node {42} so that it can keep a record of the nodes to which it has sent

the process definition. The value of the state variables visiting and returned are updated as required

{43, 44}. The value of nextNodeLocation is set to the agent’s returnLocation {45} and this is then

used to create a NetChannelOutput {46}. The agent disconnects from the visited node {47} and then

writes itself back to its original node {48}. The behaviour of the agent when it has not received a process

definition is very similar except that it pops the next visiting node location from its list of

availableNodes {52} and uses that to create a net channel {53} on which it writes itself to the next node

on its trip {54}.

When the agent is in the initial state then it has to wait until such time as it receives the name of a

process which it is to find. During that time it may also receive notification of the registration of a new

node in the network, which it has to add to its list of availableNodes. This behaviour is captured {57-

75} by first defining a Boolean awaitingTypeName to true, which can then be used to control a

terminating while loop {59-74}. An object is read in from the fromInitialNode channel, and its type is

determined {61, 64}. If it is a list then the agent has received an update to the list of available nodes

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

{62}. If it is a String then the agent has received the name of a process for which it should search. The

agent makes the necessary preparation before writing itself to the first node in the list of availableNodes

it can visit. The name of the requiredProcess is stored {65} and then the values of awaitingName

{66}, initial {67} and visiting {68} are updated. The agent disconnects {69} itself and then

causes itself to be written to another node {70-72}.

21.2 The Node Process

The NodeProcess, unusually, has no channel properties, instead the names of the globally available

network channels are passed as the parameters, toGathererName {79} and toDataGenName {80}. These

names are then used to connect to the respective network channels. The processList {81} is used to

hold any initial data processing processes with which the node may be initialised; as further processes are

obtained these will be appended to this list. The vanillaList {82} contains a possibly empty list of data

processing processes; initially it is identical to the processList. Once processes have been initialised

within the processList they cannot then be used as the basis for sending a data processing process to

another node because they will contain internal connections within the node that cannot be disconnected

and which also render it not serializable. The process definitions in the vanillaList are never directly

executed and are thus serializable; they are used to send to other nodes when requested by a visiting

agent. The property nodeId {83} is used to uniquely identify a particular node.

The first part of the NodeProcess’s run method deals with its connection to the outside network

environment and the internal structures needed to invoke the data processing processes. The fist

requirement is to connect to the DataGenerator process. The CNS can be used directly to make the

network output channel connection, using the network channel name, toDataGenName {85}. The

network input channel, fromDataGen, connecting the DataGenerator process to the node is created as an

anonymous channel {86}. The input channels by which agents visit and return to a node are now created

as a set of anonymous network channels. The agentVisitChannel and its associated location are defined

{87-88}, followed by the agentReturnChannel {89-90}. The agentReturnChannelLocation is used

subsequently in the initialisation of this Node’s agent. The location of the agentVisitChannel together

with the location of the fromDataGen channel and nodeId are written to the DataGenerator using an

object that has a single list property, dgl, using the channel toDataGen {91-93}.

The list connectChannels {94} is used to create a set of internal channels that are used subsequently

within the node to connect to the data processing processes as they are initialised. The order in which

data processing processes arrive and are initialised is not determined and thus we need to record the order

in which they appear, both in the processList and the vanillaList; this is the use of typeOrder {95}

and vanillaOrder {96} respectively. The list currentSearches {97} is used to record the names of the

data processing processes for which an agent has already been sent. A node can initiate multiple parallel

searches for different data processing processes and thus needs to ensure that it does not create an agent to

undertake a search that has already been started. The variable cp {98} is used to count the number of

processes in processList.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

78 class NodeProcess implements CSProcess {
79 def String toGathererName
80 def String toDataGenName
81 def processList = null
82 def vanillaList = null
83 def int nodeId

84 void run() {
85 def toDataGen = CNS.createAny2Net(toDataGenName)
86 def fromDataGen = NetChannelEnd.createNet2One()

87 def agentVisitChannel= NetChannelEnd.createNet2One()
88 def agentVisitChannelLocation = agentVisitChannel.getChannelLocation()
89 def agentReturnChannel= NetChannelEnd.createNet2One()
90 def agentReturnChannelLocation = agentReturnChannel.getChannelLocation()

91 toDataGen.write(new DataGenList (dgl:[fromDataGen.getChannelLocation(),
92 agentVisitChannelLocation,
93 nodeId]))

94 def connectChannels = []
95 def typeOrder = []
96 def vanillaOrder = []
97 def currentSearches = []
98 def cp = 0

99 if (processList != null) {
100 for (i in 0 ..< processList.size) {
101 def processType = processList[cp].getClass().getName()
102 def typeName = processType.substring(0,
103 processType.indexOf("Process"))
104 typeOrder << typeName
105 vanillaOrder << typeName
106 connectChannels[cp] = Channel.createOne2One()
107 def pList = [connectChannels[cp].in(), nodeId, toGathererName]
108 processList[cp].connect(pList)
109 def pm = new ProcessManager(processList[cp])
110 pm.start()
111 cp = cp + 1
112 }
113 }

114 def NodeToInitialAgent = Channel.createOne2One()
115 def NodeToVisitingAgent = Channel.createOne2One()
116 def NodeFromVisitingAgent = Channel.createOne2One()
117 def NodeFromReturningAgent = Channel.createOne2One()

118 def NodeToInitialAgentInEnd = NodeToInitialAgent.in()
119 def NodeToVisitingAgentInEnd = NodeToVisitingAgent.in()
120 def NodeFromVisitingAgentOutEnd = NodeFromVisitingAgent.out()
121 def NodeFromReturningAgentOutEnd = NodeFromReturningAgent.out()

122 def myAgent = new AdaptiveAgent()
123 myAgent.connect([NodeToInitialAgentInEnd,
124 agentReturnChannelLocation, nodeId])
125 def initialPM = new ProcessManager(myAgent)
126 initialPM.start()

127 def nodeAlt = new ALT([fromDataGen,
128 agentVisitChannel,
129 agentReturnChannel])
130 def currentVisitList = []

Listing 21-3 The Node Process Definitions

The next section {99-113} deals with the instantiation of any data processing processes in the

processList that can be ignored if processList is null {99}. In this exemplar the names of the data

types and associated data processing process have been restricted so that the name of a data type is

specified as Type1 and its associated data process as Type1Process, for example. This has been utilised

in the coding of this section where the names of data types have been extracted from the associated data

process. The coding is undertaken for each data process in processList {100-112}. The name of a data

process is extracted into processType {101} using the getClass and getName methods. The name of

the data type is then obtained and placed in typeName {102-103} using the substring method and

knowledge of the structure of the names as described previously. The typeName is then appended to both

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

typeOrder {104} and vanillaOrder {105}. The channel which connects the NodeProcess to the

specific data processing process now needs to be created and stored in the list connectChannels {106},

in the same relative position as typeName appears in typeOrder. A list pList is now created {107}

comprising the in() end of this newly created channel, the nodeId and the name of the network channel

that connects the data processing process to the Gatherer process. This list is then used as a parameter of

the connect method call on the current element of processList {108}, which will cause the building of

all the required channel connections. An instance of ProcessManager is now created {109} with the

current element of processList as its process and it is then started {110}.

The channels used internally to connect an agent to the NodeProcess are now defined {114-117} and

then the channel ends that will be required to be sent to the agent so that it can communicate with the

NodeProcess are created {118-121}. An instance of the AdaptiveAgent is now created as myAgent

{122} and a call to it’s connect method {123-124} ensures that myAgent can; communicate with the

NodeProcess, knows its agentReturnChannelLocation and also its home node identity. The agent is

now started using another instance of ProcessManager {125-126}.

Once a NodeProcess is running it can receive inputs from the channels known as fromDataGen, the

agentVisitChannel and the agentReturnChannel and thus these are all incorporated into an alternative

nodeAlt {127-129}. Finally, an empty list currentVisitList is defined that will be used subsequently

to maintain the list of agentVisitChannels that an agent, sent from this NodeProcess, can visit.

Processing within a NodeProcess is dependent on which channel is selected in nodeAlt {132}. Each

case is dealt with in a separate Listing. Listing 21-4 shows the processing when an input from the

DataGenerator process is received. The data is read into the variable d {134} and subsequent

processing depends upon the data type. If the input is an instance of AvailableNodeList {135} then it is

necessary to remove this node’s agentVisitChannelLocation from the anl property of the input

because there is no point sending an agent to its home node if we already know the node does not contain

the required data processing process. The members of d.anl are then appended to currentVisitList

{138} and written to the local agent using the NodeToInitialAgent {139} channel. Note that it is

necessary to explicitly refer to the out() end of the channel when writing to it because the channel was

created within the process and not passed in as a ChannelOutput property of the process.

If the input data is one of the data types recognised by the system then the specific data type is obtained

{142} and subsequent processing depends on the availability of that data type’s process in the

processList. If the data type is known to the node because it is a member of typeOrder {143} then its

position in that list can be determined {144-153}. The data can then be sent to the required data

processing process by writing to the corresponding member of the connectChannels list {154}.

If the input data is not recognised then a search has to be started to obtain the required data processing

process, only if a search has not already been started {157}. In this case the type for which the search is

being started is appended to currentSearches {158} and also written to the agent using the

NodeToInitialAgent channel {159}. The join method is then called {160} on the ProcessManager,

initialPM, running the agent, which causes the NodeProcess to wait until the agent has stopped

execution. Another instance of the AdaptiveAgent is then created {161} and connected {162-163} to

the node. It is then passed to a new ProcessManager instance {164} and started {165}. The

currentVisitList is then written to the newly created agent {166}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

131 while (true) {
132 switch (nodeAlt.select()) {
133 case 0:
134 def d = fromDataGen.read()
135 if (d instanceof AvailableNodeList) {
136 d.anl.remove(agentVisitChannelLocation)
137 currentVisitList = []
138 for (i in 0 ..< d.anl.size) { currentVisitList << d.anl[i] }
139 NodeToInitialAgent.out().write(currentVisitList)
140 }
141 else {
142 def dType = d.getClass().getName()
143 if (typeOrder.contains(dType)) {
144 def i = 0
145 def notFound = true
146 while (notFound) {
147 if (typeOrder[i] == dType) {
148 notFound = false
149 }
150 else {
151 i = i + 1
152 }
153 }
154 connectChannels[i].out().write(d)
155 }
156 else { // do not have process for this data type
157 if (! currentSearches.contains(dType)) {
158 currentSearches << dType
159 NodeToInitialAgent.out().write(dType)
160 initialPM.join()
161 myAgent = new AdaptiveAgent()
162 myAgent.connect([NodeToInitialAgentInEnd,
163 agentReturnChannelLocation, nodeId])
164 initialPM = new ProcessManager(myAgent)
165 initialPM.start()
166 NodeToInitialAgent.out().write(currentVisitList)
167 }
168 else {
169 }
170 }
171 }
172 break

Listing 21-4 Node Process: Data Input Processing

Listing 21-5 shows the processing that occurs when an agent visits another node. The agent is read from

the agentVisitChannel {174} and then appropriately connected to the node {175-176} by means of

the required channel ends. An instance of ProcessManager is created {177} to run the visiting agent

{178}. The node then reads the type of the data processing process required from the visiting agent into

typeRequired {179}. If the node contains in the vanillaOrder list the typeRequired {180} then a

search of the vanillaOrder is undertaken to find the position of the process {181-190}. The required

process can then be obtained from the vanillaList of processes and written to the agent using the

NodeToVisitingAgent.out() channel {191}. The visiting agent then writes its home node identity to

the node using the NodeFromVisitingAgent.in() channel into agentHome {192}. If the node does not

have the typeRequired in its vanillaOrder then a null is written to the visiting agent {195}. The

interaction with the visiting agent is now complete so the node process can join the agent, waiting for it

to terminate {197}, thereby completing the processing of a visiting agent.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

173 case 1:
174 def visitingAgent = agentVisitChannel.read()
175 visitingAgent.connect([NodeToVisitingAgentInEnd,
176 NodeFromVisitingAgentOutEnd])
177 def visitPM = new ProcessManager(visitingAgent)
178 visitPM.start()
179 def typeRequired = NodeFromVisitingAgent.in().read()
180 if (vanillaOrder.contains(typeRequired)) {
181 def i = 0
182 def notFound = true
183 while (notFound) {
184 if (vanillaOrder[i] == typeRequired) {
185 notFound = false
186 }
187 else {
188 i = i + 1
189 }
190 }
191 NodeToVisitingAgent.out().write(vanillaList[i])
192 def agentHome = NodeFromVisitingAgent.in().read()
193 }
194 else { // do not have process for this data type
195 NodeToVisitingAgent.out().write(null)
196 }
197 visitPM.join()
198 break

Listing 21-5 Node Process: Visiting Agent Processing

The processing associated with a returned agent is shown in Listing 21-6. The returnAgent is read from

the agentReturnChannel {200} and then connected to the node {201}. An instance of

ProcessManager is created for the returnAgent {202} in which it is started {203}. The returnList is

obtained from the returnAgent using the NodeFromReturningAgent.in() channel{204}. This

completes the interaction with the return agent and thus the node process can join the returnPM awaiting

its termination {205}. The data elements from the returnList can now be processed updating the node

data as required. Specifically, the returnedType can be removed from the list of currentSearches

{207} and appended to the typeOrder list {208}. A channel is created that is used to connect the node

to the newly acquired data processing process {209} in the connectChannels list. The body of the data

processing process, returned as returnList[0] is appended to the processList {210}. A list of

properties required for connection is then created as pList {211} and connected {212}. An instance of

the ProcessManager is created {213} and used to start the process {214}. The value of cp, which

keeps a record of the first empty element in processList, is then incremented {215}.

199 case 2:
200 def returnAgent = agentReturnChannel.read()
201 returnAgent.connect([NodeFromReturningAgentOutEnd])
202 def returnPM = new ProcessManager (returnAgent)
203 returnPM.start()
204 def returnList = NodeFromReturningAgent.in().read()
205 returnPM.join()
206 def returnedType = returnList[1]
207 currentSearches.remove([returnedType])
208 typeOrder << returnedType
209 connectChannels[cp] = Channel.createOne2One()
210 processList << returnList[0]
211 def pList = [connectChannels[cp].in(), nodeId, toGathererName]
212 processList[cp].connect(pList)
213 def pm = new ProcessManager(processList[cp])
214 pm.start()
215 cp = cp + 1
216 break
217 }
218 }
219 }
220 }

Listing 21-6 Node Process: Return Agent Processing

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 11

21.3 The Data Generator Process

The version of the DataGenerator processes presented here assumes there are only three different types

of data that can be processed called Type1, Type2 and Type3. It also presumes that at least three nodes

will be initialised before the system starts to run. It is also assumed that all the required data processing

processes will be available, in some combination, in the first three nodes that are run.

The ChannelInput fromNodes {222} is the channel used by all the NodeProcesses to communicate with

the DataGenerator process. The interval {223} is used as a timer alarm in an alternative that is

selected every cycle to determine whether any new nodes have been registered.

The ChannelOutputList toNodes {225} contains the list of net channel output ends used to

communicate data to each of the registered NodeProcesses. Similarly, the agentVisitChannelList

{226} maintains a list of all the agentVisitChannelLocations sent to the DataGenerator. The

allocationList {227} holds the identity of each registered NodeProcess. The variable rng {228} is an

instance of Random and timer is an instance of CSTimer {229}. The DataGenerator process alternates

over the fromNodes channel and a timer alarm as indicated in the ALT dgAlt {230}. Each data type has

its own associated type instance value {231-233} initialised as shown and there is also a global

instanceValue {234} initialised to zero. These instance values will be used to differentiate instances of

generated data type objects. A count of the number of registered nodes is kept in nodesRegistered

{235}.

The never ending loop {236-278} of the process now starts; by defining and initialising two Boolean

variables, checkingForNewNodes {237} and nodeAppended {238}; and by setting the timer alarm

{239}. A while loop is now entered {240-254} that is always executed at the start of every cycle; and

during initialisation of the process will ensure that at least three nodes are registered {240}. The loop

commences with the selection of a ready alternative from dgAlt {241}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 12

221 class DataGenerator implements CSProcess {

222 def ChannelInput fromNodes
223 def interval = 1000

224 void run() {
225 def ChannelOutputList toNodes = new ChannelOutputList()
226 def agentVisitChannelList = []
227 def allocationList = []
228 def rng = new Random()
229 def timer = new CSTimer()
230 def dgAlt = new ALT ([fromNodes, timer])
231 def type1Instance = 1000
232 def type2Instance = 2000
233 def type3Instance = 3000
234 def instanceValue = 0
235 def nodesRegistered = 0

236 while (true) {
237 def checkingForNewNodes = true
238 def nodeAppended = false
239 timer.setAlarm (timer.read() + interval)
240 while (checkingForNewNodes || (nodesRegistered < 3)){
241 switch (dgAlt.select()) {
242 case 0:
243 def nodeData = fromNodes.read()
244 toNodes.append (NetChannelEnd.createOne2Net (nodeData.dgl[0]))
245 agentVisitChannelList << nodeData.dgl[1]
246 allocationList << nodeData.dgl[2]
247 nodesRegistered = nodesRegistered + 1
248 nodeAppended = true
249 break
250 case 1:
251 checkingForNewNodes = false
252 break
253 }
254 }
255 if (nodeAppended) {
256 toNodes.write(new AvailableNodeList (anl: agentVisitChannelList))
257 }

258 def nNodes = toNodes.size()
259 def nodeId = rng.nextInt(nNodes)
260 switch (rng.nextInt(3) + 1) {
261 case 1:
262 toNodes[nodeId].write (new Type1 (typeInstance: type1Instance,
263 instanceValue: instanceValue))
264 type1Instance = type1Instance + 1
265 break
266 case 2:
267 toNodes[nodeId].write (new Type2 (typeInstance: type2Instance,
268 instanceValue: instanceValue))
269 type2Instance = type2Instance + 1
270 break
271 case 3:
272 toNodes[nodeId].write (new Type3 (typeInstance: type3Instance,
273 instanceValue: instanceValue))
274 type3Instance = type3Instance + 1
275 break
276 }
277 instanceValue = instanceValue + 1
278 }
279 }
280 }

Listing 21-7The Data Generator Process

If a new node is registering itself then data from that node is read from the channel fromNodes into

nodeData {243}. The nodeData is of type DataGenList that has a single list property dgl from which

various data items can be extracted. Thus dgl[0] contains the location of the node’s fromDataGen net

channel location, which can be used to create a net channel end that can be appended to the list toNodes

{244}. The content of dgl[1] is the registering node’s agentVisitChannelLocation that can be

appended to the agentVisitChannelList {245}. Finally, dgl[2] contains the identity of the registering

node and is appended to the allocationList {246}. The values of nodesRegistered and

nodeAppended are updated appropriately {247, 248}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 13

If the alternative selected from dgAlt is that corresponding to the timer alarm then the value of

checkingForNewNodes is set false {251}. In all but the initialisation phase of the system this will cause

the loop to terminate so that DataGenerator can progress to the next phase. If a node has been registered

(or three nodes during the initialisation phase) then the updated agentVisitChannelList is written as

the property anl of a new AvailableNodeList object to all the registered nodes in parallel using the

ChannelOutputList toNodes {255-257}.

The last part {258-278} of the DataGenerator process creates a random data object of one of the defined

types and sends it to a randomly chosen node on the network. The variable nNodes {258} is set to the

number of nodes in the network. It is then used to choose the nodeId {259} to which the data object will

be written. The switch {260} determines the type identifier of the data type to be generated. It is

encoded that one of three types will be created. In each case only the Type of the created data varies; the

content of each Type is identical. The Type instance variable for example type2Instance is incremented

{269} as is the global instanceValue {277}. The instanceValue is used to uniquely identify each data

object that is created.

21.4 The Gatherer Process

The Gatherer process, shown in Listing 21-8, simply reads all inputs it receives on its net Any2One input

channel, fromNodes {285} and then prints out the received data d {286}. It should be noted that all data

objects that are generated by DataGenerator will not be processed by the Gatherer process. If a

NodeProcess receives a data object for which it does not have the required data type processing process

then an agent is created and sent to find the required data processing process from another node. At this

point the NodeProcess throws away the incoming data object because it does not know how to process it.

The effect of this is that there is a discontinuity in the sequence of the global instanceValues read by the

Gatherer process that reflects the amount of time that it takes the agent to find the required data

processing process and return to the originating node.

281 class Gatherer implements CSProcess{
282 def ChannelInput fromNodes
283 void run() {
284 while (true) {
285 def d = fromNodes.read()
286 println "Gathered ${d.toString()}"
287 }
288 }
289 }

Listing 21-8 The Gatherer Process

21.5 Definition of the Data Processing Processes

The basic structure of a data Type process is shown in Listing 21-9, which shows the Type1 class

definition. The only difference between them is the class name and the value in typeName {291}. The

modify {294-296} method is called in the associated data type processing process. Obviously, this effect

could be achieved polymorphically using a single data type processing process but that would have meant

that the need to go and retrieve the required processes over the next would have been removed and that

was the purpose of the example.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 14

290 class Type1 implements Serializable {
291 def typeName = "Type1"
292 def int typeInstance
293 def int instanceValue

294 def modify (value) {
295 typeInstance = typeInstance + value
296 }

297 def String toString(){
298 return "Instance of $typeName instance
 $typeInstance value $instanceValue"
299 }
300 }

Listing 21-9 The Type1 Class Definition

The data processing processes implement the abstract class GroovyMobileProcess shown in Listing 21-

10. This itself extends the MobileProcess defined within JCSP by adding two further abstract methods

connect and disconnect that allow the integration of a mobile process into an existing channel structure

and, if required, its removal.

301 abstract class GroovyMobileProcess extends MobileProcess
302 implements Serializable {
303 abstract connect(x)
304 abstract disconnect()
305 }

Listing 21-10 Groovy Mobile Process Abstract Class Definition

Listing 21-11 shows an implementation of GroovyMobileProcess for the Type1 data processing process

called Type1Process. The String property toGatherName {307} is the name of the network channel by

which this process can connect itself to the net input channel of the Gatherer process. The property

inChannel {308} is used to connect this process to the NodeProcess. The property nodeId {309}

uniquely identifies the node in which this process is executing.

The connect {310-314} method is called by the NodeProcess {212} once the process definition has

been transferred from a returned agent. The parameter of the method is a list comprising elements

containing the values of the properties inChannel, nodeId and toGatherName. The disconnect method

is defined, but never called; it does however implement the only required functionality, which is to make

any channel reference known to the GroovyMobileProcess null {316}.

The run method {318-325} initially creates the connection to the network channel identified by

toGatherName {319} as toGatherer. Thereafter the process reads in data from inChannel into a

variable of defined type {321}, in this case Type1 thereby ensuring that only data of the required type is

processed. The modify method is then called on the input data {322}, after which the data is written to

the Gatherer process {323}. By judicious choice of nodeId and typeInstance {295} values it is

possible to determine the NodeProcess to which a particular instance of a data type was sent and

processed.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 15

306 class Type1Process extends GroovyMobileProcess implements Serializable {

307 def String toGathererName
308 def ChannelInput inChannel
309 def int nodeId

310 def connect (l) {
311 inChannel = l[0]
312 nodeId = l[1]
313 toGathererName = l[2]
314 }

315 def disconnect () {
316 inChannel = null
317 }

318 void run() {
319 def toGatherer = CNS.createAny2Net(toGathererName)
320 while (true) {
321 def Type1 d = inChannel.read()
322 d.modify(nodeId)
323 toGatherer.write(d)
324 }
325 }
326 }

Listing 21-11 The Type1 Process Definition

21.6 Running The System

Three scripts are required to run the system over a network, the first of which shown in Listing 21-12 will

be modified to run each individual NodeProcess as required. The method call Node.info.setDevice (

null) {327} has the effect of turning off all the output generated by the CNS in the console window,

which makes it much easier to read and interpret. A Node in the network is then created {328}. The

names associated with the network channels that connect a NodeProcess to the DataGenerator and

Gatherer processes are then defined {329, 330}. In this case a process is to be defined that contains all

the data type processing processes and thus pList and vList are created with instances of these

processes {331, 332}. An instance of a NodeProcess is now defined with all the required property

definitions {333-338} and run {339}.

327 Node.info.setDevice (null)
328 Node.getInstance().init(new TCPIPNodeFactory())

329 def toDataGenName = "NodesToDataGen"
330 def toGathererName = "NodesToGatherer"

331 def pList = [new Type1Process(), new Type2Process(), new Type3Process()]
332 def vList = [new Type1Process(), new Type2Process(), new Type3Process()]

333 def processList = new NodeProcess (nodeId: 100000,
334 toGathererName: toGathererName,
335 toDataGenName: toDataGenName,
336 processList: pList,
337 vanillaList: vList
338)

339 new PAR ([processList]).run()

Listing 21-12 The Script to Run a Node

Listing 21-13 shows the script that runs an instance of the DataGenerator process. The effect of having

an interval of 500 milliseconds {344} is that once the system is running normally, that is, after all

NodeProcesses have acquired all the data type processing processes a data value will be generated every

half-second. Reducing this value and running the system on a real network gives some indication of how

long it takes for an agent to travel around the network to find an instance of a particular data type

processing process. This can be determined by the number of data objects that are missed by a particular

node as it waits for the return of the required process.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 16

340 Node.info.setDevice (null)
341 Node.getInstance().init(new TCPIPNodeFactory())

342 def toDataGen = "NodesToDataGen"
343 def fromNodes = CNS.createNet2One(toDataGen)

344 def processList = new DataGenerator (fromNodes: fromNodes, interval: 500)

345 new PAR ([processList]).run()

Listing 21-13 The Script to Run the Data Generator Process

The Gather process script is shown in Listing 21-14.

346 Node.info.setDevice (null)
347 Node.getInstance().init(new TCPIPNodeFactory())

348 def toGatherer = "NodesToGatherer"
349 def fromNodes = CNS.createNet2One(toGatherer)

350 def processList = new Gatherer (fromNodes: fromNodes)

351 new PAR ([processList]).run()

Listing 21-14 The Script to Run The Gatherer Process

21.7 Typical Output From the Gatherer Process

Output 21-1 shows the output when three nodes with nodeId 10000, 80000 and 90000 have been started

where the first of these nodes contains all the data type processes as in Listing 21-12 and the others none.

It can be observed immediately that the data objects with the instanceValues 0, 1 and 2 have been lost.

We can deduce that the first instance of Type3 data {352} was sent to node 10000 because the

typeInstance ends in 000. Recall that the modify method adds the nodeId to the typeInstance value.

We also observe that data with instance values 6 and 9 have also been lost implying they contained data

that was sent to a node that did not have the required data processing process. The versions of the

processes on the accompanying web page allow printing of created objects which makes it easier to

determine exactly what is happening.

352 Gathered Instance of Type3 instance 103000 and value 3
353 Gathered Instance of Type2 instance 802002 and value 4
354 Gathered Instance of Type2 instance 102003 and value 5
355 Gathered Instance of Type1 instance 801001 and value 7
356 Gathered Instance of Type2 instance 902004 and value 8
357 Gathered Instance of Type1 instance 101002 and value 10
358 Gathered Instance of Type3 instance 903003 and value 11
359 Gathered Instance of Type3 instance 103004 and value 12

360 Gathered Instance of Type3 instance 103024 and value 64
361 Gathered Instance of Type3 instance 103025 and value 66
362 Gathered Instance of Type2 instance 102022 and value 67
363 Gathered Instance of Type3 instance 903026 and value 68
364 Gathered Instance of Type2 instance 802023 and value 70
365 Gathered Instance of Type2 instance 802024 and value 71
366 Gathered Instance of Type3 instance 803028 and value 72
367 Gathered Instance of Type3 instance 403029 and value 73
368 Gathered Instance of Type3 instance 403030 and value 74

Output 21-1Typical Output From the Gatherer Process

Subsequently a node with the identity 40000 was started {360 onwards} and we observe that data objects

with instance values 65 and 69 were lost. When the dynamics of the system are observed in real-time we

see the interactions with the CNS as net channels are created dynamically to permit the movement of the

agent around the system. Furthermore the system can cope with the initiation of a node that also has

instances of data type processing processes in its vanillaList that are already available and provided all

instances are identical there is no problem. The system does not deal with the termination of a

NodeProcess.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 17

21.8 Summary

The primary goal of this chapter was to demonstrate that a system could be built in which nodes were

initiated dynamically and that if they did not have all the required data processing processes then they

could initiate an agent to go and find the required process. Further, that such returned processes could be

integrated into an existing network of channels and operate as if they had been there from the outset.

Fundamentally, the system implements a GET operation on a network resource. The CNS implements the

same functionality as an internet-based DNS, in that given a string representation of a net resource it

returns an IP address and port number. Thus the nodes and any associated net input channel can all be

resolved to an IP address. The location of any data processing process can then be referenced relative to

that IP address via the normal folder structure. Provided the folder and all its precedents are publicly

available then the process is publicly available. The DataGenerator process in this example acts as a

repository of the IP addresses and resource location of the other nodes that are known, because it records

the location of the agent visit channels of all the registered nodes. In this manner the DataGenerator

acts as a repository of resources that can be interrogated if a registered node needs to acquire some data or

process from another node without each node having to know all possible nodes that are connected. In

this example we have distributed this information but it was not strictly necessary.

21.9 Challenge

Modify the example so that when a node discovers that the required data processing process is not

available the agent is first sent to the DataGenerator process to discover all the nodes to which it can go

in order to find the resource it requires. In this manner the system does not have to distribute the location

of all the nodes to every node as currently happens.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 18

22 Concluding Remarks: Why Use Groovy Parallel and JCSP?
At the end of this journey we are able to reflect on the capabilities that have been described and

considered. We started with four very simple concepts; process, channel, alternative and timer and from

these we have been able to construct a wide variety of systems with very different operational

requirements and functionality. In general, this has been achieved with one fundamental design pattern,

the client-server, together with a small number of programming idioms that facilitate its use; such as the

prompted buffer. The intellectual challenge is realised by understanding how to use this pattern and

idioms in an effective manner.

In this book I have purposely avoided the use of any formal representation of the process and how

networks of such processes can be analysed using formal tools. I believe that the engineering approach

based upon the reuse of a single design pattern, which has its basis in the underlying formalism, is the

best way of making software engineers appreciate what can be achieved provided the capability we are

using has a formal basis. The real world is not populated with sufficient software engineers who have the

mathematical skill to be able to undertake the formal analysis of their systems, even with the tools

currently available [FDR, Spin].

The increasing availability of multi-core processor based systems is inevitable and the desire to make

more effective use of this technology will be an increasing challenge. If the engineers use currently

available models and methods then this technology will be increasingly difficult to use. Software

engineers therefore require a better model with which they can program such systems. But why leave it

to just multi-core systems? Why not better and more effective use of network based workstation systems?

We might then be able to move to processing systems that make more effective use of grid-computing

because we have a viable model that allows us to interact over any size of network.

The content of this book started at a basic undergraduate level and ended with examples of mobile

systems that are still the subject of intense research activity [occam-pi, mobile]. All the examples

presented are demonstrable and where necessary operate over a network and employ aspects of mobility.

Yet this is achieved in manner that does not require a detailed understanding of the operation of

networked systems and in which the definition of a process is not reliant upon whether it is to execute as

one among many on a single processor or over a network.

The underlying support is provided by JCSP [] and it has been made easier to assimilate by use of Groovy

because it helps to reduce the amount of code that needs writing. These are of relatively little importance

of themselves but it is important that they both utilise the underlying JVM. What is really crucial is the

JCSP provides an implementation of CSP []. CSP provides the formal framework upon which JCSP is

implemented and thereby the engineering support for programmers. The programmers are not concerned

with the inner workings of the underlying JCSP package because they can reason about their systems at a

much higher level. The programmer is no longer concerned with the detailed workings of a poorly

implemented underlying thread model, in effect writing machine code. They can now concentrate on

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 19

high-level design of the processes at the application layer; confident, that if they use the building blocks

correctly and apply one pattern effectively then the resulting system will operate as expected.

This does not remove the need for testing, which exposes the frailties of a system when exposed to a real

operating environment. In this book we have shown how systems can be tested, albeit in a cumbersome

manner but which with further research and the development of support tools will make it easier to

achieve.

The final chapters have shown how we can exploit the process concept in a more up-to-date setting and

how it may address the problems that the software industry is starting to deal with in terms of how to

exploit mobility, network connectivity and parallelism effectively. Previously, parallelism has been

thought of as providing a solution to the needs of high performance computing, where ultimate speed was

the only driving force. Hopefully, with some of the later examples, in particular, the reader will have

been convinced that approaching a solution to a problem from the parallel point of view actually makes it

easier to achieve a working and effective solution.

The book ends at the point where the examples have to become real problems and which of course tend to

be too large to explain within the confines of such a book. Hopefully, however, the book contains

sufficient ideas, concepts and capabilities that the solution to larger problems can be broken down into

sufficiently small processes that it becomes manageable.

As a final design consideration I offer the advice that if you are having problems with a design and cannot

get the design right then the solution is usually to add one or more processes. If a designer tries to restrict

the number of processes then that is usually followed by problems. In the future perhaps we will get to

the situation where team leaders will ask why a serial solution has been adopted rather than one that relies

on parallel design methods!

