
JGraph User Manual

JGraph and JGraph
Layout Pro
User Manual

For JGraph Version 5.10.0.1 and JGraph Layout Pro 1.4.0.2 – 07th May 2007

Page 1

JGraph User Manual

We are always interested in feedback on JGraph products, if you have any questions please feel
free to contact us using any of the following methods:

Post : JGraph Ltd.
35 Parracombe Way,
Northampton
NN3 3ND
U.K.

Telephone: +44 (0)20 7871 2332

Fax: +44 (0)870 762 4282

Internet: http://www.jgraph.com/contact.html for private contact or
http://www.jgraph.com/forum for community discussion

Email: info_nospam@jgraph.com , remove the _nospan suffix.

Copyright (c) David Benson 2004-2007

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the author.

The programs in this book have been included for their instructional value. They have been tested with care but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations nor does it accept any liabilities with respect to the
programs.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from JGraph
Ltd.

Neither JGraph Ltd. nor its employees are responsible for any errors that may appear in this publication. The information in this
publication is subject to change without notice.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Page 2

http://www.jgraph.com/contact.html
mailto:info_nospam@jgraph.com
http://www.jgraph.com/contact.html
http://www.jgraph.com/forum
http://www.jgraph.com/contact.html

JGraph User Manual

Table of Contents

1 Introduction... 7
1.1 What does JGraph do? .. 7
1.2 What is a Graph?... 7

1.2.1 Graph Visualization .. 8
1.2.2 Graph Interaction ...8
1.2.3 Graph Layouts ... 9
1.2.4 Graph Analysis ..10

1.3 About this Manual... 12
1.3.1 Pre-requisites for this Manual.. 12
1.3.2 Getting Additional help..12

1.4 About JGraph...13
1.4.1 JGraph Swing Compatibility..13
1.4.2 The JGraph Packages... 13

1.4.2.1 JGraphpad Pro.. 14
1.4.3 MxGraph.. 16
1.4.4 JGraph licensing...16

1.5 Getting Started... 17
1.5.1 The JGraph Web Site .. 17
1.5.2 Downloading JGraph... 17
1.5.3 Installing JGraph.. 18
1.5.4 Project structure and build options...18

1.6 The Design of JGraph.. 19
1.6.1 The Use of Object Types..20

2 JGraph and the Graph Model...21
2.1 Understanding the HelloWorld application... 21

2.1.1 Creating the JGraph..22
2.1.2 Inserting Cells.. 24

2.1.2.1 Configuring Cells' Attributes before Insertion... 26
2.1.3 Editing Graph Cells..28

2.1.3.1 Removing Cell Attributes...30
2.1.4 Removing Cells..30
2.1.5 Attribute Maps... 31

2.1.5.1 Attribute Map changes after edit calls..32
2.1.6 Summary.. 33

2.2 Creating and Configuring the JGraph class... 35
2.2.1 Configuring JGraph...36

2.3 The Graph Model...39
2.3.1.1 Introduction.. 39
2.3.1.2 The 3 editing methods.. 39
2.3.1.3 Accessing the Graph Model Data...39
2.3.1.4 Cloning the Graph Model...41
2.3.1.5 Navigating Connections Using the GraphModel interface.......................................41

2.3.1.5.1 Obtaining a collection of edges connected to a vertex..................................... 43
2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges.................................... 43

3 Cells...44
3.1 Types of Cells.. 44

Page 3

JGraph User Manual

3.2 Cell Interfaces and Default Implementations...44
3.2.1 GraphCell Interface.. 44
3.2.2 The Edge and Port Interfaces... 45
3.2.3 The DefaultGraphCell..46

3.2.3.1 The Default Graph Cells Constructors and Methods... 47
3.2.4 Cloning Cells..48

3.3 User Objects...48
3.3.1 Obtaining and Changing the User Object.. 49

3.4 Cell Views..49
3.4.1 Cell Handles... 50
3.4.2 The Cell View hierarchy.. 52

3.4.2.1 getPerimeterPoint... 53
3.4.2.2 getRenderer...53

3.4.2.2.1 How to Create your Own Cell View and Renderer.. 54
3.4.3 Creating Cell Views and Associating them with Cells.. 55
3.4.4 default cell view and Renderer implementations... 56

3.4.4.1 The Cell Views...56
3.4.4.2 The Cell Renderers... 57

3.4.4.2.1 PortRenderer... 57
3.4.4.2.2 VertexRenderer...58
3.4.4.2.3 EdgeRenderer... 58

3.5 Using Cells..59
3.5.1 Using Vertices..59

3.5.1.1 Bounds..59
3.5.1.2 Constraining Vertex Bounds.. 60
3.5.1.3 Resizing and Autosizing...60
3.5.1.4 Icon... 61
3.5.1.5 Label Text...62
3.5.1.6 Borders... 63
3.5.1.7 Colors... 63
3.5.1.8 Inset.. 64

3.5.2 Using Edges... 64
3.5.2.1 Bounds..64
3.5.2.2 Control Points and Routing.. 64
3.5.2.3 Positioning edge labels... 65
3.5.2.4 Edge Styles... 68
3.5.2.5 Edge end decorations..69
3.5.2.6 Connections restraining.. 70

3.5.3 Attributes for Both Vertices and Edges..71
3.5.3.1 Constraining Basic Editing Functions.. 71
3.5.3.2 Opaqueness...71
3.5.3.3 Selection... 72

3.5.4 Using Ports... 73
3.5.4.1 Port Positioning.. 73

3.6 Summary.. 75
4 Advanced Editing.. 77

4.1 Grouping.. 77
4.1.1 Graph Model Representation of Grouping...78

Page 4

JGraph User Manual

4.1.2 ParentMap.. 79
4.1.3 Group Insets... 80
4.1.4 Move into/out of groups...80
4.1.5 Removing Child Cells..81

4.2 ConnectionSet..82
4.3 The GraphLayoutCache... 83

4.3.1 View-Local independence..83
4.3.2 Visibility...84

4.3.2.1 Configuring Visibility after Editing Operations...84
4.3.3 View-local attributes.. 85
4.3.4 Expanding and Collapsing Groups...86
4.3.5 Other GraphLayoutCache options..87

4.4 Advanced Model Functions... 88
4.4.1 Model ordering...88
4.4.2 Edits... 89

4.4.2.1 Undo/Redo..89
4.4.2.1.1 Undo-support Relay..89
4.4.2.1.2 GraphUndoManager... 90

4.5 Drag and Drop..91
4.6 Zooming...93
4.7 Summary.. 93

5 Events.. 95
5.1 Graph Change Events and Listeners.. 95
5.2 The GraphUI and handling mouse input..96

5.2.1 Mouse Tolerance..96
5.2.2 Zooming... 97
5.2.3 MarqueeHandler...97
5.2.4 Handles...97

6 Input and Output..99
6.1 XML Persistence..99
6.2 Image Exporting...101
6.3 SVG Export... 102
6.4 Exporting in a Headless Environment... 103
6.5 Working without the Swing component.. 104
6.6 Printing...104

7 Layouts.. 107
7.1 Introduction ...107
7.2 Installation and compilation ..107

7.2.1 Requirements... 107
7.2.2 Installation..107

7.2.2.1 Project structure and build options...107
7.3 The Design of JGraph Layout Pro... 110

7.3.1 What does JGraph Layout Pro do?...110
7.4 Running a layout.. 110

7.4.1 Writing Your Own Layout... 112
7.4.2 Edge Control Points... 112
7.4.3 Examples..113

7.5 Using the layouts..114

Page 5

JGraph User Manual

7.5.1 The Tree Layouts..114
7.5.1.1 Tree Layout...114

7.5.1.1.1 Alignment... 115
7.5.1.1.2 Orientation.. 116
7.5.1.1.3 levelDistance and nodeDistance... 118
7.5.1.1.4 combineLevelNodes... 119
7.5.1.1.5 positionMultipleTrees and treeDistance... 121

7.5.1.2 Compact Tree Layout... 122
7.5.1.3 Radial Tree Layout... 122

7.5.2 Organic Layouts... 124
7.5.2.1 Spring Embedded... 124
7.5.2.2 Fast Organic Layout... 125
7.5.2.3 Inverted Self Organising Map.. 126
7.5.2.4 Organic Layout... 127

7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor...................... 128
7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor....................................... 129
7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor................................. 130
7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and
fineTuningRadius.. 133
7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea...........136
7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor......................... 138
7.5.2.4.7 maxIterations.. 140
7.5.2.4.8 unchangedEnergyRoundTermination... 140
7.5.2.4.9 isDeterministic..140

7.5.2.5 Hierarchical Layout.. 141
7.5.2.5.1 Orientation... 142
7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing.. 142
7.5.2.5.3 isDeterministic..142

7.5.3 Edge Routing..144
7.5.3.1 Orthogonal Edge Routing...144

7.5.4 Simple Layouts...145
7.5.4.1 Circle Layout.. 145

7.6 Using the Example Source Code... 146
7.6.1 The progress meter... 146

Appendix A – Definitions.. 147

Page 6

JGraph User Manual

1 Introduction

JGraph is a mature, feature-rich open source graph visualization library written in Java. JGraph
is written to be a fully Swing compatible component, both visually and in its design architecture.
JGraph can be run on any system supporting Java version 1.4 or later.

1.1 What does JGraph do?
JGraph provides a range of graph drawing functionality for client-side or server-side

applications. JGraph has a simple, yet powerful API enabling you to visualize, interact with,
automatically layout and perform analysis of graphs. The following sections define these terms in
more detail.

Example applications for a graph visualization library include; process diagrams, workflow and
BPM visualization, flowcharts, traffic or water flow, database and WWW visualization, networks
and telecoms displays, mapping applications and GIS, UML diagrams, electronic circuits, VLSI,
CAD, financial and social networks, data mining, biochemistry, ecological cycles, entity and cause-
effect relationships and organisational charts.

JGraph, through it's programming API, provides the means to configure how the graph or
network is displayed and the means to associate a context or metadata with those displayed
elements.

1.2 What is a Graph?
JGraph visualization is based on the mathematical theory of networks, graph theory. If you're

seeking Java bar charts , pie charts , Gantt charts , have a look at the JFreeChart project instead.
A graph consists of vertices, also called nodes, and of edges (the connecting lines between the

nodes). Exactly how a graph appears visually is not defined in graph theory. The term cell will be
used throughout this manual to describe an element of a graph, either edges or vertices.

Page 7

Illustration 1 : A simple Graph

http://www.jfree.org/
http://java.sun.com/products/jfc/index.jsp
http://java.sun.com/
http://www.opensource.org/
http://www.jgraph.com/

JGraph User Manual

There are additional definitions in graph theory that provide useful background when dealing
with graphs, they are listed in Appendix A if of interest to you.

1.2.1 GRAPH VISUALIZATION

Visualization is the process of creating a useful visual representation of a graph. The scope of
visualization functionality is one of JGraphs' main strength. JGraph supports a wide range of
features to enable the display of cells to only be limited by the skill of the developer. Vertices may be
shapes, images, other Swing components (including other JGraphs), animations, virtually any
graphical operations available in Swing.

1.2.2 GRAPH INTERACTION

Interaction is the way in which an application using JGraph can alter the graph model through
the application GUI. JGraph supports dragging and cloning cells, re-sizing and re-shaping,
connecting and disconnecting, drag and dropping from external sources, editing cell labels in-place

Page 8

Illustration 3 : Graph Visualization of a transfer system

Illustration 2 : Graph Visualization of a transport system. (c) Tourizm Maps 2003, http://www.world-
maps.co.uk

JGraph User Manual

and more. One of the key benefits of JGraph is the flexibility of how interaction can be
programmed.

1.2.3 GRAPH LAYOUTS

Graph cells can be drawn anywhere in a simple application, including on top of one another.
Certain applications need to present their information in a generally ordered, or specifically
ordered structure. This might involve ensuring cells do not overlap and stay at least a certain
distance from one another, or that cells appear in specific positions relative to other cells, usually
the cells they are connected to by edges. This activity, called the layout application, can be used in a
number of ways to assist users set out their graph. For non-editable graphs, layout application is the
process of applying a layout algorithm to the cells. For interactive graphs, these that can be edited,
layout application might involve only allowing users to make changes to certain cells in certain
positions, to re-apply the layout algorithm after each change to the graph, or to apply the layout
when editing is complete.

Page 9

Illustration 4 : Live-Preview of a graph resize drag

JGraph User Manual

JGraph Layout Pro is the supported layout package within the JGraph suite, designed for speed,
API stability, functional flexibility and consistency. Layout Pro supports a range of tree, force-
directed and hierarchical layouts which will fit most layout needs. Supplied with full source code,
JGraph Layout Pro gives you quality layouts at great value.

This User Manual covers the use of the layout functionality, see the later Chapters for details.

1.2.4 GRAPH ANALYSIS

Page 10

Illustration 5 : Layout of a workflow using the hierarchical layout in JGraph Layout Pro

http://www.jgraph.com/layout.html

JGraph User Manual

Analysis of graphs involves the application of algorithms determining certain details about the
graph structure, for example, determining all routes or the shortest path between two cells. There
are more complex graph analysis algorithms, these being often applied in domain specific tasks.
Techniques such as clustering, decomposition, and optimization tend to be targeted at certain
fields of science and currently have not been implemented in the core JGraph packages. However, a
number of generic performance optimized analysis algorithms can be found in the JGraph Layout
Pro package.

Page 11

Illustration 6 : Shortest Path Analysis

JGraph User Manual

1.3 About this Manual

1.3.1 PRE-REQUISITES FOR THIS MANUAL

To benefit fully from this manual you will need to have a reasonable understanding of Java and
at least a high-level overview of Swing. Not all aspects of Swing are required, but knowledge of the
Swing MVC pattern is important, in particular how the renderer components are used. It would
also be useful to study one of the major Swing components in more detail, in particular the JTree
class, since JGraph is similar to JTree in a number of ways at a design level.

If you lack experience with programming the Java language, there are many good books on the
subject available. A useful free introduction is the Sun Java Tutorial.

1.3.2 GETTING ADDITIONAL HELP

There are many mechanisms for receiving help for working with the JGraph software. The
community help forum provides free assistance to JGraph users. The forums combine the
advantages of many users helping to answer questions along with the guidance of active JGraph
developers ensuring the quality and correctness of responses and that as many questions as possible
are answered. However, there is no assurance of getting free assistance, either the answer being
correct, or getting an answer at all.

When posting at the forums please read these posting guidelines, following these will help you
get a better answer and encourage more people to help you. Please remember people helping you on
the forums are giving up their free time to do so, but note that the JGraph team cannot guarantee
that answers provided on the forums are correct as they cannot always monitor all discussion
threads. If you require guaranteed response time support please contact sales_nospam@jgraph.com
for support contract information. Purchased JGraph products all come with 30 days technical
support, you also have the option of a 12 months support package.

Please do not privately contact JGraph developers asking for free support. It is unfair to expect
special treatment and puts them in the awkward position of asking you to re-post your question on
the forums. Answering the question on the forums means other people can read the thread and
solve their problem without having to take more developers' time.

Page 12

mailto:sales@jgraph.com
http://www.jgraph.com/forum/viewtopic.php?t=357
http://www.jgraph.com/forum
http://java.sun.com/docs/books/tutorial/

JGraph User Manual

1.4 About JGraph

1.4.1 JGRAPH SWING COMPATIBILITY

JGraph complies with all of Swings standards, such as pluggable look and feel, data-transfer,
accessibility, internationalization and serialization. For more advanced features such as undo/redo,
printing and XML support, the standard Swing designs were also used. The design of JGraph has
much in common with that of JTree and the view concepts comes from Swings text components.
JGraph itself is an extension of JComponent, which is Swings base class for all components. JGraph
also complies with the Java conventions for method and variable naming, source code layout and
javadocs comments.

1.4.2 THE JGRAPH PACKAGES

There are three separate packages available from JGraph.com.
The main package is JGraph itself which comprises the basic JGraph swing component:

Java Package Name Functionality
org.jgraph Basic JGraph class

org.jgraph.event Graph Event Models

org.jgraph.graph Graph Structure and nodes

org.jgraph.plaf Graph UI delegate component

org.jgraph.util General purpose utilities

Table 1 : JGraph Packages

JGraph Layout Pro is a set of functionality that builds on top of JGraph, providing utilities, a
number of layouts and various graph analysis functionality. It comes with it's own application note
and support in the JGraph forum.

Page 13

JGraph User Manual

Java Package Name Functionality
com.jgraph.algebra Graph Analysis Routines

com.jgraph.layout JGraph Facade and utilities

com.jgraph.layout.organic Force directed layouts

com.jgraph.layout.tree Tree layouts

com.jgraph.layout.routing Edge routing algorithms

com.jgraph.layout.hierarchical Hierarchical layouts

Table 2 : JGraph Layout Pro Packages

Also available from JGraph is JGraphpad Pro.

1.4.2.1 JGraphpad Pro

JGraphpad Pro is a professional implementation of a complete JGraph application framework.

Page 14

Illustration 7 : The German version of JGraphpad Pro

JGraph User Manual

JGraphpad Pro has an XML-based configuration with programmable user interface factory,
defining how you want the application to appear in the configuration files. It also uses a plug-in
architecture so your application specific functionality can be developed as a single module, simply
dropped into JGraphpad Pro and you have a ready-made graph application. JGraphpad Pro comes
with all the extra features of JGraph Pro already integrated, as well as the option to incorporate the
layouts from JGraph Layout Pro. If you need a complete, stand-alone graphing application, with
JGraphpad Pro, you are nearly finished when you start using it.

JGraphpad Pro is a purchase-only product of JGraph that includes its own complete user
manual, 30 days or 12 months technical support and a range of additional features not found in the
free JGraph version. These include standard XML I/O support, rich-text editors for vertex labels,
an overview panel (birds-eye view), a library panel (repository or palette), edge routing to avoid
nodes, SVG export and more.

Page 15

JGraph User Manual

1.4.3 MXGRAPH

mxGraph is a browser based graph library for all major platforms. mxGraph uses the native
vector graphics drawing language available to provide rich diagramming functionality in a thin
client architecture. mxGraph also includes back-end functionality for .NET, PHP and Java that
provide access to the graph model and persistence across the majority of server technologies. The
software is only available under the terms of the mxGraph License, a standard commercial license.
Evaluations are available on request.

1.4.4 JGRAPH LICENSING

The core JGraph library is open source software. This means the source code is freely
available. The licensing of the various components at the time of writing is:

• JGraph - Library General Public License (LGPL) version 2.1 and JGraph License
version 1.1.

• JGraph Layout Pro - JGraph License version 1.1. JGraph Layout Pro is also free for
non-commercial use under the terms of an academic-style license.

• JGraphpad Pro – JGraph License version 1.1.

The core JGraph library is available freely under the LGPL. The LGPL states that you must
provide access to the source code to JGraph (and only JGraph) if you distribute an application that
uses JGraph as a library. If you make changes to JGraph or extend it, you must also provide those
changes. The non-JGraph parts of your application do not count as an extension, you may still
keep that code private. Please note that adding a comment in your user documentation stating that
the source code to JGraph may be found at the JGraph web site does not constitute adherence to
the LGPL.

For detailed licensing question you are always advised to consult a legal professional.

Page 16

http://www.mxgraph.com/

JGraph User Manual

1.5 Getting Started

1.5.1 THE JGRAPH WEB SITE

To start with navigate to the JGraph web site. The most useful areas to you when starting
JGraph are listed below. Use the navigation bar on the left hand side to locate the appropriate
section:

• Documentation - All freely available documents relating to JGraph. If you are reading this
as part of the JGraph user manual, this is the most up-to-date documentation at the time of
writing. Additional examples to JGraph are available at a small cost that demonstrate
specific features within JGraph.

• Forum - Here you can ask the JGraph community your questions. A timely and correct
answer cannot be guaranteed, however the JGraph developers tend to keep a close eye on
questions posted. Try to break your problem down into single smaller questions. If you post
asking to have someone write your project for you, you are unlikely to receive a reply. If you
require commercial-level support please contact support@jgraph.com. Before posting to
the forum please search the documentation, the FAQs and search the forum using the
search facility provided. The JGraph team have spent a great deal of effort putting those
resources in place, please try to save them having to point you at them because you have not
searched yourself.

NOTE: The majority of forum users ask plenty of questions, but answer none.
JGraph is set up to be a community project, it is reasonable that you will have
some questions initially and that you might ask 4 or 5 questions without giving
anything in return. But continuing to ask more than 10-15 questions without
contributing anything in return will be noticed by the JGraph developers, you
will find they will stop helping you in this case. If you don't know where to help,
look through the unanswered questions on the forum for a start.

• FAQ – The FAQ contains a number of the question received most often in a summary
format.

• Tracker - The tracker contains current bugs within JGraph. If you think you have a bug,
check it has not already been reported and also check in the forum if you are unsure if it is a
real bug. If you are sure, please do report the bug.

1.5.2 DOWNLOADING JGRAPH

The complete JGraph suite consists of all the components available to download. These are
JGraph, the main library, JGraph Layout Pro, an additional library comprising layouts and analysis
functionality that builds straight on top of JGraph. Finally, there is JGraphpad, the free example
application built on top of JGraph.

On the downloads page on JGraph web site you will find the latest free packages available, both
the source and binary distributions. Older versions of JGraph are available from the sourceforge

Page 17

http://www.jgraph.com/downloads.html
http://www.jgraph.com/jgraphpad.html
http://www.jgraph.com/tracker/
http://www.jgraph.com/faq.html
http://www.jgraph.com/forum/search.php?search_id=unanswered
http://www.jgraph.com/forum
http://www.jgraph.com/docs.html
http://www.jgraph.com/

JGraph User Manual

download site, a link to this is displayed on the download page:

The topmost group in a package list will contain the most up to date version from that package.
The two files offered provide the source (with -src suffix) and binary-only versions. Note that the
binary version is built for Java 1.4 and greater.

Note that the downloads for the latest JGraph versions provided on the JGraph.com web site
are located on a dedicated JGraph download server with far greater bandwidth and uptime than
the sourceforge.net servers. JGraph should be your preferred download location for this reason.

JGraphpad can be obtained from the same download page. It is tested to work with a specific
version of JGraph, this version number is stated in the README file. As a general rule, the free
community version of JGraphpad is tested with the last released version of JGraph at the date of
release and should have the same release number as JGraph.

1.5.3 INSTALLING JGRAPH

Having downloaded the three JGraph packages select a folder that will be the root development
folder somewhere on your hard disk. JGraph is delivered in a self-extracting .jar file. Double-
clicking the file in Windows will usually start the installation process. To start the installation from
the command line type:

>java -jar jgraph-5_10_0_0-src.jar

replacing the .jar filename as appropriate. A dialog will first appear asking you to agree to the
license under which you will use JGraph, you are advised to read the license. Next, the installation
process will prompted you to select the directory to install JGraph into.

1.5.4 PROJECT STRUCTURE AND BUILD OPTIONS

Once Java and Ant are installed launch the command prompt on windows, or shell terminal on

Page 18

Illustration 8: : The JGraph files packages at sourceforge.net

JGraph User Manual

*nix or Mac, navigate to the root folder where you installed JGraph Layout. Typing ant
command, where command is one of the targets in the ant build file, will perform the function of
that command, as described below. Missing out the command will build the default target, all.

doc/ Documentation root

src/ Source root

examples/ Examples root

build/ Build environment
Table 1. Project Directory Structure

all Clean up and produce all distributions (*the default target)

apidoc Generate the API specification (javadoc)

build Run all tasks to completely populate the build directory

clean Delete all generated files and directories

compile Compile the build tree

compile-example Compile the main example

dist Produce fresh distributions

distclean Clean up the distribution files only

doc Generate all documentation

example Run the main example

init Initialize the build

jar Build all Java archives (JARs)

generate Generate the build tree
Table 2. Ant command options

For example, to compile and run the example UI type the following:

ant example

1.6 The Design of JGraph

The core JGraph library is design to be as small as possible, to use familiar Swing design
principles, to leave demonstration of application-specific ideas to examples outside of the core
package and for the provision of new features through class extension from the core library.

Page 19

JGraph User Manual

1.6.1 THE USE OF OBJECT TYPES

A reasonably frequent question is why are so many parameters and return values Object types
rather than Vertices or Edges or Ports. To quote Gaudenz:

1. Any object can be used as a cell in a GraphModel. It is not required that cells implement an
interface. (This was a requirement since one of the models was a JINI-LUS on a remote machine.)

2. The Edge and Port interfaces are only used in the DefaultGraphModel. They are a contract
between the default model and its cells. (They are not used anywhere else in JGraph.)

3. The Graph structure should only be accessed through the GraphModel interface, not through
the Edge or Port interfaces. It is even not required that a GraphModel uses ports (it is however
required that every edge is represented by an object in the model).

4. Neither the JGraph component nor one of the algorithms for graph traversal uses the Edge or
Port interface, they all use the GraphModel interface which in turn uses the Edge and Port
interface to retrieve the Graph structure from the cells. This way, the storage structure can be
hidden from the GraphModel client.

Page 20

JGraph User Manual

2 JGraph and the Graph Model

2.1 Understanding the HelloWorld application
In this chapter we will walk through each line of a simple Hello World application and explain

the main classes being used and the primary API used to create and manipulate a simple graph. The
package statement and imports are omitted, it is assumed you are familiar with the basics of Java:

public class HelloWorld {
public static void main(String[] args) {

GraphModel model = new DefaultGraphModel();
GraphLayoutCache view = new GraphLayoutCache(model,

new
DefaultCellViewFactory());

JGraph graph = new JGraph(model, view);

DefaultGraphCell[] cells = new DefaultGraphCell[3];

cells[0] = new DefaultGraphCell(new String("Hello"));

GraphConstants.setBounds(cells[0].getAttributes(), new
Rectangle2D.Double(20,20,40,20));

GraphConstants.setGradientColor(
cells[0].getAttributes(),

Color.orange);
GraphConstants.setOpaque(cells[0].getAttributes(), true);

DefaultPort port0 = new DefaultPort();
cells[0].add(port0);

cells[1] = new DefaultGraphCell(new String("World"));

GraphConstants.setBounds(cells[1].getAttributes(), new
Rectangle2D.Double(140,140,40,20));

GraphConstants.setGradientColor(
cells[1].getAttributes(),

Color.red);
GraphConstants.setOpaque(cells[1].getAttributes(), true);

DefaultPort port1 = new DefaultPort();
cells[1].add(port1);

DefaultEdge edge = new DefaultEdge();
edge.setSource(cells[0].getChildAt(0));
edge.setTarget(cells[1].getChildAt(0));
cells[2] = edge;

int arrow = GraphConstants.ARROW_CLASSIC;
GraphConstants.setLineEnd(edge.getAttributes(), arrow);
GraphConstants.setEndFill(edge.getAttributes(), true);

Page 21

JGraph User Manual

graph.getGraphLayoutCache().insert(cells);

JFrame frame = new JFrame();
frame.getContentPane().add(new JScrollPane(graph));
frame.pack();
frame.setVisible(true);

}
}

Swing Refresher – Swing uses a containment hierarchy to provide a simple way to put any
number of its standard components into an application. The main window of many applications is
referred to as a frame (the Swing JFrame). It is termed a top-level container and this set includes
Dialogs (JDialog) and applets (JApplet).

Panels (JPanel), sometimes called panes, are a typical intermediate container. These assist in
positioning a number of basic Swing components as well as offering common features such as
scrolling (JScrollPane) and tabbed elements (JTabbedPane). Top-level containers
contain an intermediate container called a content pane, to which visible content is added. In the
HelloWorld example above, a scrollable pane is added to this content pane.

At the lowest level lies the atomic components. Labels (JLabel), tables (JTable) and trees
(JTree) are a few of the many components available in this category. These components provide
specific display and/or input functionality and are not necessarily designed to embed further
components. JGraph is an atomic component, designed to be used in a manner and provide an
API that is consistent, as far as possible, with other Swing atomic components. Adding
components to containers is either done during the construction of the container, or by calling the
add() method on the container.

In the HelloWorld example, specifically the last 4 lines, a JGraph instance is passed to the
JScrollPane at construction and the whole thing made visible in the content pane of the main
frame.

2.1.1 CREATING THE JGRAPH

At the very core of the JGraph library is the org.jgraph.JGraph class. The JGraph class
extends JComponent and you create one JGraph instance per graph component in your
application, the same way as you would one JLabel for one label. Instances of this class bind the
graph model, any graph view(s) and the user interface control handling all together in one place.
Creating a JGraph instance without any parameters creates an example graph showing a very basic
UML diagram of the JGraph architecture:

public class Example {
public static void main(String[] args) {

JGraph graph = new JGraph();

Page 22

JGraph User Manual

JFrame frame = new JFrame();
frame.getContentPane().add(new JScrollPane(graph));
frame.pack();
frame.setVisible(true);

}
}

However, this is not very informative for our purposes. Instead, in our example we create a
model of the graph, using the default implementation provided, DefaultGraphModel. We
then pass the JGraph constructor this model which represented the data model we wish to use to
describe the graph. We also create a default implementation of a view of the graph, the
GraphLayoutCache and inform the JGraph this is the view that will be used (don't worry
about the cell view factory for now):

GraphModel model = new DefaultGraphModel();
GraphLayoutCache view = new GraphLayoutCache(model,

new DefaultCellViewFactory());
JGraph graph = new JGraph(model, view);

Information - The GraphLayoutCache is often thought of as the graph view, and in
previous versions of JGraph was named GraphView. The reason for the term layout cache is
that JTree has a class named AbstractLayoutCache that holds information about the
geometry of the tree nodes. The GraphLayoutCache is different to a standard view in Swing,
since it contains information that is solely stored in the view, i.e. it is stateful. It is the term
GraphLayoutCache we will use from now on when referring to what might be thought of as
the graph view.

If the terms model and view are not familiar to you, it is worth getting a basic overview from a
text such as [REF]. In simple terms, the model holds the data about the graph and provides various
methods to access that data. The view(s) are one or more layers logically above the model that
perform the task of visually presenting the graph and these are updated automatically when the
model data changes. By default, views will show the same graph, but a variety of functionality is
available to display the graph differently in each view, if required. It is possible for the model to

Page 23

Illustration 9 : Sample data presented on the creation of an empty JGraph

JGraph User Manual

contain all the information needed to represent the graphs logical structure, its geometric layout
and its visual representation. Some of these aspects would be expected to only be considered in the
graph views, but a graph Swing component is somewhat more complex than any of the standard
Swing components due to the virtually unlimited flexibility of cell positioning available. JGraph 1.0
did place more weight on storing visual attributes in the views over the model, JGraph 2.0 reversed
this, shifting common visual attributes into the model and was found to be the better solution
architecturally.

Information - For simple applications it is tempting to avoid the GraphLayoutCache
completely and work directly on the GraphModel, as the GraphModel provides all the
necessary methods to manipulate the graph. You are recommended, unless you have a solid
technical understanding and a good reason otherwise, to start by always working on the
GraphLayoutCache. People often find, as their application grows, that view-specific
features are required and all the calls to the GraphModel have to be changed to calls the
GraphLayoutCache. One important exception to this principle is that if you edit() an
invisible cell in the GraphLayoutCache, it becomes visible. In this case editing the model
directly is preferable. The GraphLayoutCache is discussed further in Chapter 4.

In between the first 3 lines of main() that set up our JGraph and the last 4 lines that display the
JGraph in the application, lies the codes that creates the graph cells, configures them and inserts
them into the graph. We'll look at them in order.

2.1.2 INSERTING CELLS

The three graph cells we are going to create in the HelloWorld application are two vertices
and one edge connecting the vertices:

Page 24

Illustration 10 : Multiple views can share the same model

JGraph User Manual

cells[0] = new DefaultGraphCell(new String("Hello"));
...
DefaultPort port0 = new DefaultPort();
cells[0].add(port0);
port0.setParent(cells[0]);
...
DefaultEdge edge = new DefaultEdge();

We can create new simple vertices by constructing DefaultGraphCells and edges with
DefaultEdge. These classes can be instantiated with no parameters, or with an object. By
default, whatever that object returns in its toString() method will appear as the text for that
vertex or edge. Obviously, String objects return themselves in toString() and this is
sometimes the only object used in this parameter. In the HelloWorld example we use this
mechanism to assign one vertex the label “Hello” and other vertex the label “World”.

The other object, a DefaultPort, might be confusing if you are familiar with graph theory.
Ports are an artificial addition in JGraph used to indicate places on a vertex where an edge may
connected to that vertex. The ends of edges connect to vertices by these ports and ports are
represented, at least in the default model provided with JGraph, as being children of one vertex.
The add() and setParent() calls are the mechanism used in JGraph in indicate the
parent/child relationship between the vertex and its port(s).

Setting up the vertices and edge to display how we would like them is done by modifying their
attributes. All cells, including ports, have what is called an attribute map. This is a
java.util.Map, the JGraph default implementation of an attribute map, AttributeMap, is
a subclass of Map. Ensure you understand how Java maps operate and their basic API before using
attribute maps. Attributes are stored in key/value pairs where the keys are attributes like color,
position and text font. It is worth, at this point, you having a look at the
org.jgraph.GraphConstants class.

Page 25

Illustration 11 : The basic
Helloworld example shows two
vertices connected by one edge

JGraph User Manual

GraphConstants is a utility class designed to allow you to access attribute maps in a type-safe
way, i.e. ensure you are using the correct types of objects for the available attributes. It also provides
a useful guide to what attributes can be set for the various cell types. In GraphConstants, after
some initial enumeration variables, you will find a list of Strings that represent the possible keys
in attribute maps. The bottom half of the source file, roughly, contains all the accessor methods
(getXXX() and setXXX() methods) that you should use in your application to read and change
the attributes. The Javadocs of these methods and key strings are the most up to date and complete
description available, repeating them in documents such as this one is avoided as such references
quickly become outdated.

2.1.2.1 Configuring Cells' Attributes before Insertion

All graph cells have a storage map that you can obtain using getAttributes(). When
inserting cells you can obtain the attribute map that belongs to that cell and manipulate it before
inserting the cell into the graph. This practice is only generally advised for inserting cells, when
editing cell the process of using transport maps, not the actual cell's map (the storage map) should
be used (see Editing the Graph). Below is the call, as an example, of setting the gradient color on
the first cell to orange. The attribute map from the cell is obtained with getAttributes(), the
construction of DefaultGraphCell ensures you receive a non-null map. Then the
appropriate setter method in GraphConstants is called passing in the map and the new value to
set:

GraphConstants.setGradientColor(cells[0].getAttributes(),
Color.orange);

Another example is:

GraphConstants.setBounds(cells[0].getAttributes(), new
Rectangle2D.Double(20,20,40,20));

Page 26

Illustration 12 : Key/Value pairs of a cell attribute map describing the cells
visual attributes

JGraph User Manual

Cell bounds is something you will come across many times using JGraph, in particular the
setBounds() method when moving any cells in the graph. The bounds of a cell is the minimum
rectangle that encloses the cell completely. In the above example a new double precision rectangle
is created and applied to the cell using the setBounds() method. The x,y co-ordinates are set to
(20,20), the width of the cell to 40 and the height to 20.

The process of applying attributes to edges is the same, as shown in this example:
int arrow = GraphConstants.ARROW_CLASSIC;
GraphConstants.setLineEnd(edge.getAttributes(), arrow);
GraphConstants.setEndFill(edge.getAttributes(), true);

Here the line end is set to be a standard arrow and the creation of the end shape for the edge
enabled. Note that edges all have a direction internally within JGraph, it is up to you whether you
want to reveal this directed behaviour on the visible graph. It is also worth noting that the accessor
methods frequently only apply to one or a limited number of types of cells. Setting the line end of a
vertex is meaningless and nothing will happen because of it, no error is caused by doing such a thing
for performance reasons, since no harm will come of it. The Javadocs of the methods state when
they only apply to particular cell type(s).

In terms of indicating how the edge is connected, in our example, these are the lines that
perform this function;

edge.setSource(cells[0].getChildAt(0));
edge.setTarget(cells[1].getChildAt(0));

As mentioned, edges have a direction, internally, and connect to vertices by the ports assigned to
those vertices. Edges can be viewed as going from a source to a target. The methods
setSource() and setTarget() on the Edge interface specify which ports each end of the
edge connects to. In the example, the ports have been obtained from the vertices by asking for their
first child. getChildAt(int) returns the child at the index specified in the single parameter.
We know there is one child attached to each vertex since we created the ports and assigned them as
children previously. Note that this method of determining ports is enough for our example, but
sometimes isn't good programming practice when we get to non-trivial applications involving
multiple ports.

Having created our cells, configured them and connected the edge to the vertices, we can now
insert this all into the graph:

graph.getGraphLayoutCache().insert(cells);

We will always work on the GraphLayoutCache in our examples of inserting, editing and
removing cells. You will find there a number of variants of the insert method and the one shown is
the simplest. It takes an array of vertices and edges and inserts them into the graph. Try running
the HelloWorld example provided with the JGraph package. Details of how to do this are in
the Introduction chapter. The code is slightly different, but the functionality is the same.

Try playing with HelloWorld for a few moments to see what simple functionality the

Page 27

JGraph User Manual

JGraph library provides to you. Select a vertex and what are called handles appear around the
vertex. You can drag the handles to resize the vertex, or click and drag the main part of a vertex to
move it. Double-click a vertex to bring up a simple editor that allows you to alter the labels, you can
do the same for the edge too. Click and hold the mouse down near the top-left of the graph area
and drag the mouse towards the bottom-right of the graph and release. The rectangle that is
formed during the drag is termed a marquee, releasing the mouse causes all three cells to be selected
if the marquee completely overlaps the cells. Dragging any part of the selection causes the whole
selection to move at once. Functionality related to this marquee is handled by the
BasicMarqueeHandler.

2.1.3 EDITING GRAPH CELLS

When changing a graph, collect your changes together in one nested map and pass it to
GraphLayoutCache.edit(). That will sort out the change on your view, pass it to the model,
create an undoable edit on your undo command history and refresh everything that needs
refreshing. For example:

Map nested = new Hashtable();
Map attributeMap1 = new Hashtable();

The nested map is the map passed into edit() as the first parameter. attributeMap1
contains details of the attributes on a particular cell that we want to edit. Let's say we want to
change the lineColor of a cell:

GraphConstants.setLineColor(attributeMap1 , Color.orange);

Again, GraphConstants is used to indicate the attribute setting. But there's a difference to
the new HelloWorld example here. Instead of fetching the attribute map belonging to any one
map, a new Hashtable has been constructed. Why this is different to manipulating an attribute
map during an insert will be explained shortly.

You can create attribute maps describing the attribute changes for any number of cells. Each
attribute map describes all the changes for one cell. It you split the changes for one cell across many
maps, this would still work but be inefficient. The next step for our attribute map, assuming we
only want to set its color, is to put() the attribute map into the nested map. When doing this you
provide the cell you want to alter as the key to the attribute map, i.e. this cell is getting these
attribute changes.

nested.put(cell1, attributeMap1);

You don't have to call edit() with the nested map just yet, in fact it might be a bad idea to do
so. Calling edit() adds that edit to the undo history, so if you want a number of things to be

Page 28

JGraph User Manual

grouped into one undo, make sure they are performed as part of one edit(). So, maybe you want
to make the label on another edge to lie flat along the edge and this to be part of the same atomic
change;

Map attributeMap2 = new Hashtable();
GraphConstants.setLabelAlongEdge(attributeMap2 , true);
nested.put(cell2, attributeMap2);

And so on. Finally we pass the nested map into edit() and you should find the resulting graph
is changed accordingly.

graph.getgraphLayoutCache().edit(nested, null, null, null);

When editing you should not edit the attributes of a cell directly, you should store the changes
in a new map and ask JGraph to apply them for you. This mechanism was not necessary when
inserting because the cell(s) have no existing attribute map to be altered. When an insert, edit or
remove call is made, the graph model creates an object that describes the changes that are to be
made, this object is called an edit. This edit is executed on the current state of the graph to

Page 29

Illustration 13 : Representation of a nested attribute map passed into an edit call. The entries into the nested
map are key/value pairs representing the cell to be changed and a map of attributes to change in that cell.
Within that second attribute map are a set of key/value pairs representing keys from the GraphConstants class
and the new values that those visual attributes are to be assigned by this edit call.

JGraph User Manual

determine the resulting graph. The reasons for abstracting the change into an actual object is two-
fold: 1) to provide listeners of the event that executing the edit fires a means to obtain information
as to what happened in the edit, 2) to provide undo support within JGraph by storing the edit on
the undo history.
edit() checks the requested graph state changes requested against the current graph state. If

there is found to be no change requested then no action is taken. If you edit the attributes in-place
on the cells attribute map before an edit, the attribute maps passed in will be checked against those
currently held by the cells and found to be the same. This is because they will be the same object
and so edit() does not change the graph since it sees nothing different in the change request.
The reason this process of creating new map to pass into edit() calls isn't necessary for
insert() calls is that for inserts the cell doesn't exist in the graph and so there is no attribute
map comparison to be done. If you dislike having two different methods (the simple insert and
nested map) of configuring attributes, the use of nested hashtables is possible with both methods.
However, editing in-place on inserts provides better performance. The corresponding call to insert
would be:

graph.getGraphLayoutCache().insert(nested, null, null, null);

There are a couple of items of terminology used for attribute maps. The permanent map
associated with a cell is called a storage map and requires the use of a specialized attribute map
class. A temporary map used only to indicate an edit change and then discarded is called a
transport map, most generic Map implementations can be used for this.

2.1.3.1 Removing Cell Attributes

A common mistake in JGraph is to resort to using a cells attribute map directly because the
mechanism to completely remove an attribute from an attribute map is not so obvious. As a result,
users get the map directly, remove the appropriate key and call edit(). The correct way to do this
is to call setRemoveAttribute():

Object[] keys = new Object[] { GraphConstants.ICON };
GraphConstants.setRemoveAttributes(map, keys);

This example removes the icon key from a cells attribute map. The possible set of keys you can
pass in with the array are at the top of the GraphConstants class. Remember to set all the
removed attributes at once, as any new array will overwrite previous entries. Alternatively, fetch the
array using getRemoveAttributes(), copy the previous values into a new array whilst also
adding the new values and pass the new array to the setRemoveAttributes() method.

2.1.4 REMOVING CELLS

The remaining basic graph editing operation is that of removing cells. The simplest remove()

Page 30

JGraph User Manual

method takes an array of cells to be removed. Like insert() and remove(), this method is
available at both the model and layout cache levels. Special consideration needs to be given when
removing grouped cells, see Chapter 4 for more details.

2.1.5 ATTRIBUTE MAPS

The map of attributes that each cell holds is termed an attribute map. The default class within
JGraph for defining attribute maps is named AttributeMap, but always try to access attribute
maps using the Map interface for the usual reasons of encapsulation and de-coupling of the
interface from the implementation. Attributes are held within the values of the key/value pairs in
the map and the keys are well-known constants that the drawing functionality understands and
interprets the values to produce graphics configured as the attributes dictate.

Previously mentioned was the use of the GraphConstants class to provide definitions of the
map keys that the default JGraph implementation understands and to provide a way to access the
values in a typesafe manner. For example, the implementations of setFont() and getFont()
in GraphConstants look like:

public static void setFont(Map map, Font font) {
map.put(FONT, font);

}

public static Font getFont(Map map) {
Font font = (Font) map.get(FONT);
if (font == null)

font = DEFAULTFONT;
return font;

}

Note that the methods are static, you specify the Map they are to act upon in the parameter list.
These methods ensure that the type of the value object stored under the key
GraphConstants.FONT is a Font. In the case of getFont() the method also ensures that a
default font is used if any particular cell does not have a font set. In another part of the JGraph
library, the part that deals with drawing labels on vertices and edges, the value of getFont() will
be obtained by passing in the attribute map of corresponding cell and used to render the label
correctly.

It should be noted that keys of attribute maps defined in GraphConstants relate almost
entirely to visual properties of cells. In general in JGraph, if the user would like to add new
attributes then only visual attributes (color for example) and visual control attributes (selectable
for example) should be added to a custom class that provides the appropriate key constant, as well
as the static setXXX() and getXXX() methods. One thing to remember is that attributes are
undoable, this might affect whether you might it an attribute or associate it with your cell in
another way. There is no requirement for this custom class to be a sub-class of
GraphConstants, since virtually everything in that class is statically defined. The subject of

Page 31

JGraph User Manual

associating custom non-visual data with a cell is covered in chapter 3 in the discussion on cell user
objects.

2.1.5.1 Attribute Map changes after edit calls

The standard way to alter the contents of cells' attribute maps is to pass a new map of attributes
with the cell in a Map entry as part of a nested map to the edit() methods. Since the attribute
map of a cell already exists there are four state changes that might happen to individual attributes
within the attribute map:
1. The attribute remains unchanged,
2. The attribute is changed,
3. The attribute is removed from the map
4. A new attribute is added to the map.

Page 32

JGraph User Manual

Illustration 16 pictorially shows the four possible attribute entry state changes during an
edit() call. The yellow box represents the state of the cell attribute map before the edit call and
the green box the attribute map passed in the edit() call within a nested map.
1. The BOUNDS attribute is not in the transport map and so remains unchanged in the post-edit

storage map.
2. The AUTOSIZE attribute is in both the pre-edit storage map and the transport map. In this

case the post-edit storage map holds the value passed in through the transport map.
3. The transport map holds an Object array value with the REMOVEATTRIBUTES key. This

array has one element, GraphConstants.SELECTABLE which is actually a String of value
“selectable”. The edit call checks to see the referenced key is present in the pre-edit storage map.
It is in our example and so the map entry is deleted from the post-edit storage map.

4. The OPAQUE attribute is present in the transport map, but not the pre-edit storage map. The
key and value pair are copied into the post-edit storage map.

2.1.6 SUMMARY

In this section we looked at inserting cells into the graph model and manipulating them. Each
cell has an attribute map used to describe its appearance and behaviors. Using the insert(),
edit() and remove() methods on the GraphLayoutCache we can change cells in a way
that the graph model is updated, the screen is repainted properly, an undo of the change is added to
the undo history and all listeners to the model are informed of it changing. These methods are

Page 33

Illustration 14 : How transport maps passed through edit calls affect cell storage maps.

JGraph User Manual

commonly referred to as the 3 editing methods and it is worth remembering that they form one of
the key parts of the JGraph API. There currently exists no method in the GraphModel interface
that perform a compound of 3 editing methods to enable insertion, attribute editing and removal
in one atomic, undoable operation.

Page 34

JGraph User Manual

2.2 Creating and Configuring the JGraph class

The JGraph class itself ties together the main components of the graph , provides top-level
configuration of the graph and a number of general utility methods. The model-view-controller
pattern for JGraph is shown below:

JGraph is a JComponent and holds references to its model, view and UI. The basic structure
of the component, namely the Swing MVC architecture, is inherited from JTree. However,
JGraph has an additional reference to a graph layout cache, which is not typically used in Swing
MVC. The graph layout cache is analogous to the root view in Swing's text components, but it is
not referenced by the UI-delegate. Instead, it is referenced by the JGraph object such that it
preserves the state when the look-and-feel is changed.

When creating your JGraph instance and associated objects, it is important to get the order of
object creation correct and to ensure that the objects correctly reference each other where
appropriate. The JGraph holds references to the current GraphModel and
GraphLayoutCache and the GraphLayoutCache needs to have a reference to the
GraphModel. The simplest method of instantiating a JGraph is:

JGraph graph = new JGraph();

This will create a DefaultGraphModel and GraphLayoutCache for you and set up the
reference in the GraphLayoutCache to point at the new model. Say, for example, you have
your own graph model, use:

GraphModel model = new MyGraphModel();
JGraph graph = new JGraph(model);

The GraphLayoutCache will be set up correctly for you in the same way as before. Next,

Page 35

Illustration 15 : JGraph MVC

JGraph User Manual

your own GraphLayoutCache:
GraphModel model = new DefaultGraphModel();
GraphLayoutCache view = new MyGraphLayoutCache(model,

new
DefaultCellViewFactory());

JGraph graph = new JGraph(model, view);
You could pass null as the first parameter to the MyGraphLayoutCache (note that we're

assuming your custom cache object constructors have the same signatures as
GraphLayoutCache) and a DefaultGraphModel would be created and all the references set
up for you. However, explicitly creating the model and passing it in makes the code much clearer.
Of course, the last permutation is a custom model and layout cache. Simply use your own model in
place of the DefaultGraphModel in the last example above to achieve this.

Another area where references need to be kept correct is when either the model or the layout
cache are changed after the JGraph has been constructed. To do this use the setModel() and
setGraphLayoutCache() methods on the JGraph class passing the new model and layout
cache instances respectively. Upon setting the model any layout cache currently associated with the
JGraph instance will be updated to use the new model instead. When setting a new layout cache,
the model associated with that layout cache will be passed to jgraph.setModel()
automatically. If you wanted to keep the current model associated with the JGraph instance you
should create the new layout cache and pass the current model to its constructor before passing the
layout cache to jgraph.setGraphLayoutCache().

2.2.1 CONFIGURING JGRAPH

Many of the main features in JGraph can be enabled or disabled through the JGraph class.
Below is a list of configuring methods worth learning, note that some are inherited from
superclasses. Not all the configuration methods in JGraph are listed below. Some others will be
introduced in later sections. Keep in mind these are accessor methods, for each set method there
is a corresponding is, or get method. If you would like to try out the effects of any of the set
methods mentioned, try applying them to the JGraph instance in HelloWorld, just after you
create it.

• setEnabled(boolean) is the highest level configuration in JGraph (the
method is actually in JComponent). This determines whether or not mouse events are
handled. When set to false this disables selection, moving cells, editing labels, resizing,
anything that requires mouse interaction. The underlying variable is true by default.

• SetEditable(boolean) determines whether or not vertices and edges may be
edited. Editing should not be confusing with enabling, editing refers solely to the process of
clicking on a graph a set number of times (see setEditClickCount()) to bring up an
editor in-place (over or around the vertex) that allows the string content of the cells label to

Page 36

JGraph User Manual

be altered. The underlying variable is true by default.

• setEditClickCount(int) determines the number of time you have to click on a
editable cell (by default those allowed string labels) before the editor for that label is
invoked. The underlying variable defaults to 2, i.e. double-click to edit.

• SetMovable(boolean) determines whether or not vertices and edges may be
moved. Note that ports cannot be moved in the default implementation at any time. The
underlying variable is true by default.

• SetConnectable(boolean) determines whether or not new connections are
allowed to be established. Note that this only applies the connecting operations performed in
the GUI, attempts to programmatically connect an edge will still work even if this method is
set disabled. If you try this in the HelloWorld example, the graph appears with the edge
connected. You can still disconnect the edge by selecting the edge, then clicking and dragging
one end of the edge away from the attached vertex. However, if you try to drag the edge back
onto the vertex there is no way to reconnect it if you have called
setConnectable(false). The underlying variable is true by default.

• SetDisconnectable(boolean) determines whether or not connected edges
may be disconnected from their attached vertices. Specifically, can you grab the end of the
edge attached to the vertex and move it from its attachment point. JGraph based
applications like workflow editors often do not allow disconnected edges and so use this
method to enforce that behaviour. The underlying variable is true by default, i.e. edges may
be disconnected.

• SetDisconnectOnMove(boolean) determines whether or not connected
edges should be disconnected when moved. This is different to setDisconnectable in
that it relates to moving the edge as a whole, rather than one end of the edge. The underlying
variable is false by default.

• SetGridEnabled(boolean) determines whether or not cells are 'snapped' into
particular positions in the graph to form a more regular structure. The concept of a grid is
that a number of points are laid out throughout the graph co-ordinate space as a grid and
cells are positioned on their closest grid point, a process naming snapping. The grid can be
configured by the distance between each point. The underlying variable is false by default,

Page 37

JGraph User Manual

i.e. cells are inserted or moved to double precision co-ordinates and not moved onto the grid
positions.

• setGridVisible(boolean) determines whether or not the grid is visible. If
setGridEnabled is set to true you get 'snapping' to grid points, otherwise no 'snapping'
will occur.

• SetMoveBelowZero(boolean) determines whether or not cells are allowed to
have the position of their top-left corner anywhere in negative co-ordinate space. It is
generally recommended not to allow this unless there is a good reason. The underlying
variable is false by default, i.e. all top-left corners of cells are always in positive co-ordinate
space.

• SetAntiAliased(boolean) determines whether or not to enable anti-aliasing
for the JGraph component. Anti-aliasing is a technique for blurring sharp, jagged lines using
color gradients. The underlying variable is false by default.

• SetSelectionEnabled(boolean) determines whether or not any cells may be
selected. The underlying variable is true by default.

Page 38

JGraph User Manual

2.3 The Graph Model
2.3.1.1 Introduction

The graph model stores the logical structure of the graph and this fits in with the MVC idea of
the data of an object being stored within the model. GraphModel defines the interface for
objects that may serve as a data source for the graph. This interface dictates, to an extent, how the
underlying data that describes the graph model must be stored within classes implementing this
interface. The default implementation of GraphModel, DefaultGraphModel, not only is
useful as an instructive tool for explaining graph models, but also is suitable for the majority of
simple applications that use JGraph. If you want custom graph model behaviour, your first
approach should be to extend DefaultGraphModel, even very simple models are reasonably
complex to implement from scratch.

Design Background - Some people are slightly confused by the presence of visual information
being indirectly stored by the model, specifically, the graph cell's attributes. These attributes
comprise information such as positioning, renderering details and control behaviours such as
whether the cell can be dragged. Many graph libraries architect their graph model in such a way
that it only graph cells (vertices and edges) and the relationships between the cells are stored.
JGraph is targeted at graph visualization over general graph analysis and the decision was taken
during its design to make the model represent that of a visualized graph, not just a graph structure.
This makes the API better suited to graph visualization at the slight expense of performance when
performing graph analysis.

2.3.1.2 The 3 editing methods

The insert(), edit() and remove() methods on GraphModel perform the
corresponding function that their GraphLayoutCache methods perform, though their
parameters look rather more complex. The use of these methods, and their corresponding
signatures methods in GraphLayoutCache will be covered in the section on Advanced
Editing. As previously mentioned, inserting, editing and removing directly into the model means
that all views based on that model will receive the same changes. Using only this approach means
that multiple independent views are not possible, a decision that needs to be considered at the
specification stage of an application.

2.3.1.3 Accessing the Graph Model Data

The next methods to be considered in GraphModel are getRootCount(),
getRootAt(), getIndexOfRoot() and contains(). Why the data structure of
JGraph models is how it is and why these methods of access to the data structure are used requires

Page 39

JGraph User Manual

knowledge of how the model of JTree has been extended to JGraph, as well as the terminology used
to describe the relationship of nodes within a JTree. Background on this topic in available in
Appendix A.

By default each vertex or edge inserted into a JGraph forms the root node of a tree in the graph
data model. Ports, since they logically belong to vertices and edges, are children of the cells they are
attached to. Therefore, adding the two vertices and single edge as in the Helloworld example would
result in the roots structure looking like this:

The convention is to call the structure that stores the top-level vertices and edges of the graph
roots. This name will be used throughout this manual to refer to that structure, being the graph
data model structure. The roots structure is technically a forest of connected trees. The trees can
become more complex when dealing with grouped cells, but this will be covered in a later chapter.

It should be clear now, from the above diagram, what function the four methods mentioned
perform:

• getRootCount() returns the number of elements in the roots structure, this would
return 3 in the above example.

• getRootAt(int) takes a integer parameter and returns the element referring to that
index in the roots structure. Note that this implies that roots is an ordered collection
and this is vital for a number of pieces of functionality that JGraph provides. Of the
methods that require navigation of the roots structure, getRootAt() is by far the most
used and so also the most performance sensitive method usually. It is for this reason that
roots in DefaultGraphModel is an ArrayList, by default, enabling this method to
complete in constant time. Calling getRootAt(1) would return the vertex represented by
Vertex2 in the diagram above. The convention is for the first entry in roots to have an index
of zero.

• getIndexOfRoot(Object) return the index of the cell in the roots structure. Passing
in the object corresponding to Edge1 in the above diagram would return 2. If roots does
not contain the object the method returns -1.

• contains(Object) return a boolean indicating whether or not the specified object can

Page 40

Illustration 16 : Representation of the roots structure after the Helloworld application has run.
The vertices and edges inserted into roots and the ports are children of the cells that they are
logically part of.

JGraph User Manual

be found within roots.

Information - Changing roots to be something other than an ArrayList could be done
with a custom graph model, but there are a number of important reasons for this choice. As
mentioned, getRootAt() is usually the bottleneck method of the four and choosing
another List type or even a Map or Set would result in the method performance degrading
from constant time, O(1), to being proportional the number of entries in roots, O(|V|+|E|).
Also, getIndexOfRoot() naturally lends itself to using the indexOf() method of
List, the semantics of the return values match up. If a Set or a Map were used, keep in
mind that roots must be ordered, so a LinkedHashMap and LinkedHashSet would be
appropriate. They were only introduced in JDK 1.4, anyone using earlier version of Java has
little option but to use an ArrayList.

These four methods form the basic means to navigate and interrogate the roots structure. There
are additional methods that deal with the parent/child relationship that will be covered in the
section on Groups. It should be remembered that the GraphModel interface should always be
used to access the graph data model structure. The interface provides the means to obtain the
necessary information about roots and the type checking is purposefully weak, cells are always
passed as Objects, to allow complete flexibility in the way cells are designed. Also, accessing
roots through the GraphModel interface provides independence from the actual model
implementation. If the model needs to be exchanged for one that provides improved performance
or database synchronization, for example, this can be done without changes to the calling code.

2.3.1.4 Cloning the Graph Model

2.3.1.5 Navigating Connections Using the GraphModel interface

Object getSource(Object edge) and Object getTarget(Object
edge) methods in GraphModel provide the means to obtain the cells, if any, that any
particular edge connects to. Note that edges implicitly have a direction in JGraph. This does not
preclude the visualization of undirected graphs, however. Avoiding the use of arrowheads on edges
is all that is required to visually make any graph look undirected.

To obtain an Iterator of edges connected to a particular cell, edges(Object port)
is available. Although, the parameter is named 'port' the GraphModel interface does not enforce
that only Ports may be connected to edges. However, DefaultGraphModel, for example,
does enforce this rule. The arrangement of vertices have children ports that form connection with
edges is the best design for the majority of graph models. There are occasions when this isn't so
efficient, for example, graphs with very large numbers of vertices each that only have one port can
be speed up and have a reduced memory by combining the vertex and port into one object. This
model arrangement is explained in the later chapter on performance issues. Also, if the same cells

Page 41

JGraph User Manual

are to be used in multiple models, with different connection relationships in each model, the
DefaultGraphModel is not suitable. This is because connection relationships are stored in
the cells, making it impossible to define connections separately in different models. For this reason
it is advised not to share cells between graph models, this is a trait shared with JTreeModels.
boolean isEdge(Object edge) and boolean isPort(Object port) are

implementation dependent methods that must adhere to the idea that edges can only connect to
ports and that ports are allowed to have edges connected to them.

The final methods that allow navigation between elements in the graph model data structure are
those that navigate parent/child relationships. These methods will also be discussed in the context
of grouping in a later chapter.

• Object getParent(Object child) returns the parent, if any, of the
specified cell in the graph model data structure. As in trees, all children may only have one
parent.

• int getIndexOfChild(Object parent, Object child) returns the
index of the specified child in the collection the parent holds of its children. Note that this
collection must be ordered to be deterministic.

• Object getChild(Object parent, int index) returns the child at
the specified index in the collection that each parent holds of its children. Again, for this
method to be deterministic the collection must be ordered.

• int getChildCount(Object parent) returns the number of elements in
the specified cells collection of children.

For those familiar with JTreeModel you will recognize that navigating up and down any tree
starting at an element of roots is almost the same as the mechanism used in JTrees. From
these methods presented we are able to navigate between all elements of a graph model data
structure, parents and children and between connections. We will now walk through example code
showing how to navigate between the various elements using only the GraphModel interface.
For this we have to assume some implementation of the graph model since the relationship
between vertices and ports is not defined explicitly or implicitly in the GraphModel interface.
For this we will use the DefaultGraphModel, where ports are separate objects to vertices and
ports are always direct children of the vertices they are part of. Note that utility methods to carry
out the functions described below are already available in JGraph, the examples to follow are for
those wishing to understand the architecture of JGraph more thoroughly. A representation of the
relationship between two vertices connected by one edge is shown in the diagram below.

Page 42

JGraph User Manual

2.3.1.5.1 Obtaining a collection of edges connected to a vertex

To obtain a collection of edges using only the GraphModel interface given a vertex you must
cycle through each port belonging to that vertex and then within each port iterate through each
edge connected to that port:

List listEdges = new ArrayList();
int numChildren = model.getChildCount(cell);
for (int i = 0; i < numChildren; i++) {

Object port = model.getChild(cell, i);
if (model.isPort(port)) {

Iterator iter = model.edges(port);
while (iter.hasNext()) {

listEdges.add(iter.next());
}

}
}

Note the requirement to check if a child of a vertex is a port, vertices can also be children of
vertices, the basis of JGraph grouping functionality.

2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges

To obtain the source and target vertices that an edge connects to through the ports on the
vertex, only using the GraphModel, you obtain the ports at either end of the edges using
getSource() and getTarget() and then obtain the parents of those ports:

Object sourceVertex = model.getParent(model.getSource(edge));
Object targetVertex = model.getParent(model.getTarget(edge));

Page 43

Illustration 17 : Representation of the associations between graph model data elements
with 2 vertices connected by 1 edges inserted into a DefaultGraphModel

JGraph User Manual

3 Cells

3.1 Types of Cells
As previously mentioned, there are three types of graph cells in JGraph, vertices, edges and

ports. Vertices form the main objects that the user can see about the graph, the squares, the circles,
the icons and even more complex objects such as other JComponents. Edges are usually lines
that represent graph structure connections between vertices. You can have multiple edges between
the same pair of vertices, termed parallel edges, or even edges that start (source) and finish
(target) at the same vertex, termed self-loops.

The above diagram shows some vertices and their connecting edges. Also visible are small
squares, these are ports attached to the vertices and edges. Ports visually represent points at which
the ends of edges may be connected to vertices or other edges. The reason for having a logically-
separate entity for ports is that multiple ports can be fixed (offset) to specified positions on
vertices, so the graph model data structure needs to distinguish between connections to different
points within its boundary.

3.2 Cell Interfaces and Default Implementations

3.2.1 GRAPHCELL INTERFACE

GraphCell is the interface to which graph cells should adhere. Note the use of the word
should . If desired another interface could be used and the correct use of the GraphModel
interface would mean this change is transparent to the user of the model. However, many of the
application and extensions to JGraph as well as default interface implementations,
DefaultGraphModel for example, assume the use of the GraphCell interface. Unless you
have a very good reason otherwise, have your cells inherit from GraphCell hierarchy.

Page 44

Illustration 18 : A variety of vertices, some connecting edges and
available ports visible as small squares

JGraph User Manual

The vertex is considered the default case and so uses the GraphCell interface itself. Edges
and Ports are considered to be specializations of vertices and so have their own interfaces.
GraphCell itself only offers two methods, getAttributes() and
setAttributes(). Attributes were mentioned in Chapter 2 and, as the GraphCell
interface suggests, are key to defining how cell appear visually. It is unlikely that you should ever
need to call setAttributes() on a graph cell, the 3 editing methods are the default route for
changing attributes and setting an attribute map directly would retain no undo history and not
refresh the cell and display accordingly.
getAttributes() is more commonly used, you saw it being used instead of creating a

nested map for cell insertion in the HelloWorld example in Chapter 2. Again, this method of
accessing and altering in-place the cells storage map directly should only generally be used for cell
insertion. However, there is another exception to this rule, when you wish to change the attributes
of a cell or cells without adding the change to the undo history and you require high performance
for the operation. A common example of this is a mouse rollover. Calling edit() is excessive, for
example, to highlight a cell when the mouse is over it. In this case you should obtain the attributes
of the cell, make the changes to the storage map in-place, refresh the cell and repaint the
appropriate area. This operation is usually best performed on the view of the cell, see the section
later in this chapter on cell views.

3.2.2 THE EDGE AND PORT INTERFACES

The Edge interface defines the methods required to set and determine the connections for a
particular edge. These are getSource(), getTarget(), setSource() and
setTarget(). Their functions will be reasonably obvious from the names, remember all edges
have a direction in the model traveling from the source end to the target end. Again, the types
involved in these methods are all Objects to provide complete flexibility. In combination with
the GraphModel interface it is possible to obtain the cell(s) connecting to edges, determine their
type and navigate consistently, without referring to implementation specifics.

Page 45

Illustration 19 : The GraphCell interface hierarchy

JGraph User Manual

The Port interface defines the necessary methods to add, remove and obtain the edges
connected to it. Remember that ports are conceptually a entity associated with a vertex to which
any number of edges may connect. Edges may connect either their source or target end to a port,
making that port the source or target port, respectively. An edge may also connect both its source
and target ends to the same port, making the edge a self-loop. Note that self-loops are created when
an edge has the same vertex as its source and target, not just if the source and targets port is the
same. When testing for self-loops you should ensure that you obtain the source and target vertices,
generally the parents of the source and target port, and see if they are the same vertex.

The Edge interface also defines the static Routing interface. This interface defines the route
method which deal with drawing the edge given a number of points through which the edge passes.
This will be expanded upon later in this Chapter on the section on using edges.

Port defines the methods edges(), addEdge() and removeEdge(). The add and
remove methods take an Object as per-standard in the JGraph design. Edges() returns an
Iterator to the Collection of Edges connected to this Port, as set up by the add and
remove methods.

Note that Port does not store any information about whether or not it is the source or target
port of edges that connect to it. This information is only in Edges to avoid redundancy and the
danger of the information getting out of synchronization.

The two lesser known methods in Port are getAnchor() and setAnchor(). The idea
of anchoring also requires an explanation of how ports are positioned, be they relative or absolute
and where the origin of their offset is or if they have no offset at all. This is described in the later
section in this chapter on Using Ports.

3.2.3 THE DEFAULTGRAPHCELL

DefaultGraphCell is the standard implementation of a graph cell provided in JGraph
and as with most of the default implementations is suitable either as-is, or as the superclass of your
cells for the majority of applications. Like the corresponding interface, vertices use the
DefaultGraphCell class and edges and ports use default classes subclassed from
DefaultGraphCell:

Page 46

JGraph User Manual

The design extension of JGraph from JTree is again apparent here from
DefaultMutableTreeNode being the super class of the default graph cells
implementations. Two important principles are inherited from the tree nodes, that of the
parent/child relationship that cells may have with one another and the user object. The
TreeNodes interface provides basic methods to determine a cell's parents and children. Where
possible, you should use the graph model methods for traversing the parent/child relationships in
preference to that supplied by DefaultGraphCell, since GraphModel is the interface and
the design contract.

3.2.3.1 The Default Graph Cells Constructors and Methods

This leads us onto the four constructors of DefaultGraphCell, each taking an additional
parameter. If you look at the source code to the class you will see each constructor passes a null
value for missing parameters until they all end up calling this constructor:

public DefaultGraphCell(Object userObject, AttributeMap storageMap,
MutableTreeNode[] children)

The first two parameters you should be reasonably familiar with. The userObject
parameter becomes the user object of the cell, obviously. The storageMap parameter, if non-
null, is intended to be the AttributeMap used by that cell, generally for its lifetime. This
parameter is most used when your application requires a custom attribute map for storage. Note
that cell cloning does not make use of this mechanism for transferring attribute maps. The last
parameter, children, is an array of the cells you wish to make children of the current cell in the

Page 47

Illustration 20 : The class hierarchy for the default graph cells

JGraph User Manual

tree node relationship. In the HelloWorld example we could have created the DefaultPort
earlier and inserted it using this parameter instead of adding it explicitly later using the add()
method of DefaultMutableTreeNode.

The other methods in DefaultGraphCell are just simple implementations of those in
GraphModel, other than the additional clone() method. setAttributes() ensures
that an attribute map is created if null is passed in and only the 3-parameter version of the
constructor calls setAttributes() within JGraph. If you have your own attribute map
sub-class, if possible, you should create sub-classes of each of the default cell types with a new
instance of your custom attribute map within setAttributes(), in case you forget to create
an instance every time in the DefaultGraphModel constructor.

The clone() method returns a deep copy by using the super-class clone methods and the
clone method of the attribute map.

The DefaultPort implementation is trivial, comprised mainly of getters and setters and the
additional clone method. Of note, the collection of edges is implemented as a HashSet, this
means that the order in which the Iterator returned from edges() presents the edges is not
assured. When Java 1.3 becomes end of life in December 2006 it is intended to change this to a
LinkedHashSet to retain ordering. You may wish to make the change yourself until then if
you are using Java 1.4 or higher and require this feature.

The DefaultEdge implementation, again, is generally obvious. In the clone() method,
however, it might not be so clear why the source and target objects are not copied. This is because
an edge may be cloned into a different model where the original ports do not exist.
DefaultEdge also contains the default routing algorithm, DefaultRouting, which alters
the list of points passed into the route() method to route the edge in a more aesthetically
pleasing manner.

3.2.4 CLONING CELLS

The clone() method of DefaultGraphCell calls the superclass clone and adds a
cloned version of the attribute map of that cell to the new cell. It should be noted that this cloning
mechanism does not add clones of children of the original cell, or even references to the original
children to the clone. Nor does this mechanism clone the user object (see section shortly on User
Objects), it only adds a reference to the original user object. To obtain a “deeply” cloned version of
a cell, one with cloned children and cloned user object, there is a static utility method on
DefaultGraphModel to perform this action:

Object clone = DefaultGraphModel.cloneCell(graph.getModel(), vertex);

3.3 User Objects
The userObject of DefaultMutableTreeNodes, and so also of

DefaultGraphCell, is an Object that can play an important part in the way you construct
more complex JGraph-based applications. User objects store any data that is associated with the

Page 48

JGraph User Manual

graph cell that does not belong as part of the graph cell or it attributes. An example of this is a
workflow editor designed to export to a particular workflow format. The editor would have cells
representing a start, a branch, a join an activity, and so on. The userObject would be used to
store information specific to that type of cell, so this information could be fed into the export stage.
For an activity cell this might include a String of the name of the person assigned the activity
and a URL containing information about it. The application would provide some means to modify
the userObject and so the userObject needs to be accessed by a specialization of a graph
cell, usually of the DefaultGraphCell, so that it is aware of the real object type of the
userObject.

The only method that must be implemented in a userObject to be usable in JGraph is the
toString() method. By default the String returned is what is displayed as the label for that
cell. In simple applications with no data storage requirements for the userObject, use a
String itself as the userObject, as shown in the HelloWorld example:

cells[0] = new DefaultGraphCell(new String("Hello"));

The parameter to the DefaultGraphCell is actually the cells userObject. Since the
toString method as a String returns this, Strings fits the minimum requirements for
user objects.

Note that the value to be displayed in the cell's label has an indirection through
JGraph.convertValueToString(Object). This method allows the cell label to
display alternative text for the same cells in different instances of JGraphs.

3.3.1 OBTAINING AND CHANGING THE USER OBJECT

The user object of a cell is only stored as an object associated with a cell, it is not stored in the a
cell's storage attribute map. However, to provide consistency with changes to user objects through
editing calls you can obtain the user object using:

GraphModel.getValue(Object)

and set the user object using

GraphConstants.setValue(Object)

The attribute map will ensure the user object does not end up in the eventual storage map, but
setting the object in this way and calling edit() will ensure that the change to the user object is
correctly added to the undo history.

3.4 Cell Views
The MVC pattern applies to graph cells within JGraph, as well as the overall design itself. All

graph cells have at least one associated cell view that deals with various visual functionality and the
process of updating the visualization of that cell. Cell views associate a renderer, and editor and a
cell handle.

Page 49

JGraph User Manual

Design Background - Readers familiar with JTable and JTrees might be wondering why
there is a cell view at all, you might expect just a cell object and a renderer for that object. A graph
component has considerable more visual complexity and geometric pattern flexibility than any of
the current standard Swing components. At the design level the GraphModel and
GraphCells basically implement a graph structure, without any implicit assumption of any
visualization capability. Moving all of the functionality of the cell view into the graph cells would
unnecessarily bloat the pure graph model aspects of JGraph for those only wishing to perform
graph analysis. In the JTree design, the AbstractLayoutCache holds boolean values indicating
whether or not each node is expanded or not. Graph cells have considerably more visual state than
a boolean, there has to be a class to abstract this state rather than the GraphLayoutCache hold
collections of each cell state for, say, each of 10 elements of functionality, this class is the cell view.
Also in a JTree there is not the option of associating different cell renderers with cells. The JTree
instance directly references the cell renderer, because of JGraph's renderering flexibility this would
require the GraphCell to reference the renderer without a cell view. This breaks the design rule of
the GraphCell only dealing with the graph structure. Finally, without cell views, it is not possible
to have view-local attributes, that is, cells in different views being displayed differently.

Renderers are part of the Swing design, they abstract the drawing functionality of a component
into a single static class instance, a pattern also known as the flyweight design. The idea is for all
component views that may draw the same thing, just with different visual attributes, to share this
common instance. This avoids excessive memory requirements for large numbers of the same
component. When a graph cell is rendered the attributes of the cell view are fetched and inserted
into the renderer instance, a process known as configuring the renderer. The cell is then painted by
the renderer and this process continues for each cell. This method can save a great deal of memory
against the worst-case one instance per cell mechanism. However, the process of installing
attributes causes a small performance hit, but this is usually negligible compared to the
computational requirements of painting components. Renderers are described in more detail later
in this chapter.

The editor associated with a cell view is the same principle as cell editors for JTables or
JTree elements. If you double-click on a vertex or edge in the HelloWorld example it brings
up what is called an in-place editor, that is a component where you can edit text associated with a
cell at the location where the cell being edited is positioned. The default editor provided is a simple,
single-line editor called DefaultGraphCellEditor, that extends CellEditor. It is
possible to implement multi-line, rich text, or even a word processor style editor if required.

3.4.1 CELL HANDLES

Cell handles do not have a parallel concept in Swing, in other Swing components cell editing is
only performed by means of in-place editing. JGraph introduces the concepts of changing the
boundary size of cells, as well as moving cells to arbitrary locations. Cell handles perform the task of

Page 50

JGraph User Manual

displaying a visual representation indicating that the cell affords resizing and moving, as well as the
task of processing interactive manipulation on a cell or group of cells. The name handle implies
that they possess the properties that allow you to handle the cell, using the mouse or other input
device. Handles appear around cells that are currently selected, indicating the cell may have moving
and resizing operations applied. Handles are a common paradigm in many graphical applications,
for example in a word processor if you select an image handles will appear on the perimeter of the
image to indicate that it affords moving and resizing.

Handles are based on the Composite pattern in JGraph. A root object provides access to children
based on a common interface, the CellHandle interface. The UI-delegate creates a handle,
usually called RootHandle, and the root handle, in turn, uses the CellView's
getHandle method to create its child handles.

The CellHandle interface defines the basic functionality a handle must provide, note that
the CellHandle interface is very similar to that of MouseMotionListener and
MouseListener. For visualization there is paint(Graphics g) and
overlay(Graphics g). The paint method draws handle for each selected cell for when
the cells are static and the overlay method deals with drawing during live-preview, usually
implemented as fast XOR'ed-painting for speed whilst cells are being dynamically moved. We will
come back to handles in the chapter on Events.

The default implementations of handles in JGraph are the SizeHandle, the
EdgeHandle and the RootHandle. The root handle is responsible for moving cells, the size
handle is used to resize cells and the edge handle allows the connection and disconnection of edges,
as well as the interactive addition, modification and removal of individual points to/from edges.

Page 51

Illustration 21 : The static handle around a
selected cell and edge drawn by the paint
method of the cell handle

Illustration 22 : A dynamic handle drawn by
overlay when a cell is resized

JGraph User Manual

3.4.2 THE CELL VIEW HIERARCHY

The CellView interface defines a number of methods associated with on-screen updating,
accessing and modifying visual attributes and accessing associated visual components. The
getRendererComponent(), getHandle(), getEditor () methods return the
renderer, the handle and the editor associated with the cell view, as described earlier in this section.

The refresh() method is called whenever the model cell that the cell view is associated with
changes. This performs the necessary updating to the cell view attributes, but does not cause the
cell views to repaint. Note that the 3 editing methods automatically call refresh and repaint for all
views affected by the change. It was mentioned earlier that if you wish to affect a high-performance
change to a cell, without the need for an undo history of the change, you should change the cells
attribute, call refresh and then repaint. The refresh is only called when the
corresponding cell has changed, not when a dependent cell of the graph cell changes

The update() method is the method that refresh uses to synchronize its own attributes
with that of the associated graph cell. This method is called when the associated model cell changes,
but also when a dependent cell changes, or when just a view update is required, which occurs
during live previews.

The update method is good place to implement automatic attribute modification, such as
edge routing or other functionality that is based on other attributes of the cell, or the graph
geometry.

The cell view hierarchy stores parent/child relationships separately to the graph model

Page 52

Illustration 23 : The CellView interface, default implementations and static relations

JGraph User Manual

structure. Although this may seem confusing, it provides for a great deal of flexibility and much of
the use of this functionality is hidden from the developer. Without this information you would
need to go from the cell view to its model cell, obtain its parent and navigate back to the according
parent cell view. A dependency from model to view is highly undesirable. An example of the use of
this structure is the way edges connected to cell within a collapsed group visually attach to the
perimeter of the first visible parent of the cell. This is performed entirely in the view, without the
need to reference the model. The methods for accessing the cell view relationships are
getParentView(), getChildViews(), removeFromParent() and isLeaf(),
all perform the function obvious from their naming.

3.4.2.1 getPerimeterPoint

getPerimeterPoint() is the first method in CellView you are in any danger of
actually having to implement for a simple application. getPerimeterPoint returns the
point on the perimeter of the view where the edge specified in the parameter list intersects. This is
important to get right, since the basic type of port, the floating port, uses this method to determine
where an edge should terminate on the boundary of a vertex. The use of ports and floating ports are
described in more detail towards the end of this chapter.

AbstractCellView, the abstract superclass of all default cell views will return the center point of
the cell if you do not provide an implementation of getPerimeterPoint further down the
class hierarchy.

3.4.2.2 getRenderer

The other method you are likely to have to concern yourself with if you create a cell type is
getRenderer(). getRenderer is not actually in the CellView interface, only
getRendererComponent is. The implementation of getRendererComponent in
AbstractCellView, the class that you will subclass from directly or indirectly for 99.9% of
custom cell views, looks like this:

public Component getRendererComponent(JGraph graph, boolean selected,
boolean focus, boolean preview) {

CellViewRenderer cvr = getRenderer();
if (cvr != null)

return cvr.getRendererComponent(graph, this, selected, focus,
preview);

return null;
}

As previously mentioned, each cell type consists of the cell, the cell view and the cell renderer. If
a new cell type you create is visually distinct from the ones you already have, for example, you want
to add a circle cell, you need to create a renderer class that paints a circle and ensure the view of that
cell returns that renderer.

Page 53

JGraph User Manual

3.4.2.2.1 How to Create your Own Cell View and Renderer

Below is a template of what you might start with when creating your own view:

public class MyView extends AbstractCellView {

protected static MyRenderer renderer = new MyRenderer();

public MyView() {
super();

}

public MyView(Object arg0) {
super(arg0);

}

public CellViewRenderer getRenderer() {
return renderer;

}

public Point2D getPerimeterPoint(EdgeView edge, Point2D source,
Point2D p) {

if (getRenderer() instanceof MyRenderer)
return ((MyRenderer)

getRenderer()).getPerimeterPoint(this,
source, p);

return super.getPerimeterPoint(edge, source, p);
}

public static class MyRenderer extends JLabel implements
CellViewRenderer, Serializable {

public void paint(Graphics g) {
}

public Component getRendererComponent(JGraph graph, CellView
view, boolean sel, boolean focus, boolean preview) {

}

public Point2D getPerimeterPoint(VertexView view, Point2D
source, Point2D p) {

}
}

}

Keep in mind it is advised to stick to the flyweight pattern and hold a single static renderer
instance for each type of cell view to reduce the memory footprint.

Page 54

JGraph User Manual

3.4.3 CREATING CELL VIEWS AND ASSOCIATING THEM WITH CELLS

The process of creating a cell view for each graph cell created would be somewhat tedious to
perform manually and so it is done behind the scenes using a cell view factory. The interface
CellViewFactory defines one method, createView(). This takes an instance of a graph
model and the graph cell for which the view is to be created, creates the appropriate cell view and
associates the cell and the view accordingly. The cell view factory is associated with the
GraphLayoutCache and some constructors of GraphLayoutCache take the
CellViewFactory as a parameter. You can change and access the cell view factory during the
life of the cache using setFactory and getFactory.

The default implementation of CellViewFactory is DefaultCellViewFactory, if
you do not specify a CellViewFactory when creating a GraphLayoutCache, you will
get the default factory instantiated for you. DefaultCellViewFactory, with the
deprecated methods removed, looks like this:

public CellView createView(GraphModel model, Object cell) {
CellView view = null;
if (model.isPort(cell))

view = createPortView(cell);
else if (model.isEdge(cell))

view = createEdgeView(cell);
else

view = createVertexView(cell);
return view;

}

protected VertexView createVertexView(Object cell) {
return new VertexView(cell);

}

protected EdgeView createEdgeView(Object cell) {
return new EdgeView(cell);

}

protected PortView createPortView(Object cell) {
return new PortView(cell);

}

To associate your new cells and cell views extend the DefaultCellViewFactory class,
add checks for your cell types and return a new instance of the associated cell view appropriately.
For example, if you add MyVertex and MyVertexView:

protected VertexView createVertexView(Object cell) {
if (cell instanceof MyVertex) {

return new MyVertexView(cell);
}
return new VertexView(cell);

}

Page 55

JGraph User Manual

Or if you just want to make the default vertex use the circle view you have created, without
creating your own cell type:

protected VertexView createVertexView(Object cell) {
return new MyCircleView(cell);

}
Remember, like all factories, the cell view returned must be a new instance. Your application will

not function correctly if they are not.

3.4.4 DEFAULT CELL VIEW AND RENDERER IMPLEMENTATIONS

3.4.4.1 The Cell Views

The default cell view implementations for the 3 basic cell types are VertexView,
EdgeView and PortView. VertexView is probably the simplest implementation of the
three, other than the SizeHandle (see Chapter 5 on Events). Its update method ensures
that the vertex view has a bounds and the getRenderer and getPerimeterPoint just
defer to the vertex renderer.
PortView has a size hard-coded into the final variable SIZE and returned in the

getBounds() method. Ports tend to be visually rather simple and the default implementation
has no handles, meaning no resizing. If you would like variable sized ports you might subclass
PortView and implement getBounds to return the bounds attribute of the port's attribute
map instead.
PortView also has some additional functionality relating to the port location.

getLocation() and shouldInvokePortMagic() provide functionality that make it
possible to have interactively movable ports as well as the local optimization of adjusting a ports
position on a vertex in order to straighten an edge or edges connecting to it.

EdgeView is by far the most complex of the default views, since it needs to implement most of

Page 56

Illustration 24 : A standard floating port edge (left) and an edge connected to port using
'port magic' (right)

JGraph User Manual

its functionality from scratch, as opposed to the vertex which gets a lot of inherited functionality in
its renderer from JLabel. Without going in undue detail just yet, there are some general design
principles in the edge view worth mentioning.

Edges have a label like vertices, but also have the concept of extra labels. The main label behaves
like a vertex label with the usual in-place editing and the extra labels do not have in-place editing.
The primary reason for adding the extra labels was to support multiplicity in UML diagrams. They
are separated from the main label to simplify usage for those only requiring one label and because
they do not behave in the same manner for in-place editing.

The actual path the edge takes is held in a GeneralPath object, a Graphics2D utility
object that consists of a sequence of java.awt.Shapes and inherits from Shape itself. The
start and end drawings on edges, which often consist of some type of arrowhead, are also Shape
objects. The positions through which the edge passes are called points and a default edge has two,
the start point and the end point. A point may, in fact, be a real point or a port object. Any
additional points to these two are called control points and the line shape of the edge is drawn as a
sequence of individual line shapes between each sequential pair of points in the points list. Note
that for this reason, the collection that stores the list of points must be ordered.

As the comments at the top of EdgeView suggest, there are some class type assumptions made
about the renderer in about 5 of the methods. If you subclass EdgeView and provide your own
renderer, you must re-implement these methods referencing your own renderer type instead.

3.4.4.2 The Cell Renderers

3.4.4.2.1 PortRenderer

The PortRenderer is a simple JComponent. Have a look at the
getRendererComponent method, here is where you need to install the attributes of the
current cell view being painted. Remember that there is only one PortRenderer instance for

Page 57

Illustration 25 : An edge with its main label and
two extra labels. The edge has two control points
and the line style is set to GraphConstants.
STYLE_SPLINE. Since the edge is selected all
points on the edge are indicated by the edge
handle

JGraph User Manual

all PortViews and so when we paint each one we have to setup the renderer for the current port
view. This principle extends to all graph cell renderers using the flyweight pattern, the port
renderer is just a simple example of this. This is why the cell view and the three cell states,
selected, preview and focus are passed into getRendererComponent() and
stored in the renderer's own variables. In the paint method the renderer uses these stored
variables to draw the cell in the appropriate manner. selected indicates whether or the cell is
selected, preview is whether or not the cell is being drawn in live-preview (the XOR'ed preview
you get of the graph whilst dragging before you release the mouse) and focus is whether or not
the cell is currently the focus (this can be a different state to selected).

3.4.4.2.2 VertexRenderer

The VertexRenderer inherits from JLabel. This provides a lot of functionality for free,
although seemingly simple tasks can be constrained by the use of a JLabel. Again,
getRendererComponent() sets the renderer up for a specific view and the cell view states.
In addition to storing these states local, VertexRenderer adds an internal method called
installAttributes(). This performs the task of obtaining the attribute map of the vertex
and storing all the visual attributes that are taken into account during in the paint method locally
in the class. Note that most of the attributes belong to JLabel rather than VertexRenderer
and this gives some idea of the usefulness of using JLabel as the parent class.

Most of the painting functionality lies in the parent class, apart from the painting of the
selection border and of gradient color fills. As you would think, the selected flag passed into
getRendererComponent is used is trigger the painting of the selection border.
getPerimeterPoint() is where the actual calculation of where an incoming edge meets the
boundary of the vertex is performed. Note that for a rectangular vertex the calculation isn't trivial,
the simplest getPerimeterPoint implementation is actually for a circular vertex.

3.4.4.2.3 EdgeRenderer

EdgeRenderer follows the same pattern of installing the view, its state and its attributes,
though it requires somewhat more code since it inherits from JComponent and must perform
its own label painting. The extra functionality also presents another issue with synchronizing the
renderer and the cell view when one of the public methods is called without the use of
getRendererComponent. For example, if you call getLabelPosition(EdgeView
view) to determine the position of the main label, the attributes necessary to determine the label
position must be installed. There is a method setView() to perform this function, and you will
see it used near the top of many of the public get methods to set the cell view and install the
attributes. This can mean that for repeated work on the same edge there can be redundant
attribute installation which can cause a performance hit, usually small in total percentage terms,
however.

If you extend EdgeRenderer or attempt to implement your own version, bear in mind the

Page 58

JGraph User Manual

requirements to ensure attribute installation always occurs. If you find that edges are being drawn
in the wrong place or with the label of another edge, you have probably missed out a call to
setView or the equivalent method in your own class.

Unique to the EdgeRenderer class are the createShape and createLineEnd
methods. There are three Shape objects in the EdgeView that are created as necessary in
createShape, these are beginShape, endShape and lineShape. lineShape is the
sequence of Shapes between sequential pairs of points in the edge, each one drawn depending on
the line style, the dash pattern applied and so on. beginShape and endShape are the
decoration, usually arrowheads, that may be placed are either end of lineShape and their
creation is dealt with in createLineEnd. If you are looking to create new line styles or end
decorations, these are the methods you need to adapt.

In the mechanism of installing cell view attributes in a renderer prior to painting, there is an
issue when this functionality can be called from within more than one thread. If you do need to
perform graph structure operations in one thread and painting in another thread you should split
the event firing/catching mechanism that links these areas so that all attribute installation and
painting occurs within one thread only.

3.5 Using Cells

3.5.1 USING VERTICES

In this section we will look at the various built-in features available for displaying vertices. As
mentioned, the default vertex renderer inherits from JLabel. JLabel can display text and/or
an icon.

3.5.1.1 Bounds

One of the basic concepts of all cells is its bounds. The bounds of a cell is the minimum rectangle
that completely encloses that cell. JGraph uses double co-ordinates throughout and so the type of
any cell's bounds is Rectangle2D.Double. The bounds of all cells are available through the
GraphConstants.BOUNDS key in their storage attribute map. Since the position and the
dimension of vertices are particularly useful data, VertexView stores a cached value of the
bounds in the member variable named bounds. This may be accessed through the
getBounds() method on that class.

It was mentioned previously that the update() method in cell views is a good place to put
code that performs updating functions that need processing, not only during graph cell changes,
but also during live-preview changes. It is VertexView.update() that updates the cached
bounds value in VertexView, it also ensures that the value for bounds is non-null:

Page 59

JGraph User Manual

bounds = GraphConstants.getBounds(allAttributes);
if (bounds == null) {

bounds = allAttributes.createRect(defaultBounds);
GraphConstants.setBounds(allAttributes, bounds);

}

You generally won't need to perform any setBounds calls for interactive manipulation of the
graph, JGraph takes care of this for you. If you wish to programmatically position or resize nodes,
create a nested map of cell/transport map pairs, as described in Chapter 2, and pass the new
bounds values into the edit() call.

Whenever obtaining the bounds of a cell, you should do so from the cell view. If you have the
cell view object, getBounds() provides a convenient method to do so. If you do not, there is a
utility method in the JGraph class called getCellBounds(Object cell) which will
return you the bounds value of the cell view for the cell passed in as the parameter. Another useful
utility in the JGraph class is getCellBounds(Object[] cells). This takes an array
of cells and returns the total bounds of the according cell views, i.e. the minimum bounding
rectangle of all of the cells.

3.5.1.2 Constraining Vertex Bounds

There are occasions when you want to force the dimensions of a vertex to be equal horizontally
and vertically. Obvious examples are when the shape of a vertex must be a square, not just a
rectangle, or a circle instead of a general ellipse.

GraphConstants.setConstrained(map, true);

will cause JGraph to enforce this condition where the map is a transport map applied to the cell
during an edit call or the storage map of the cell before the cell is inserted.

3.5.1.3 Resizing and Autosizing

When you insert a cell you may want to ensure that the label in the cell (whatever the
userObject of the cell returns in its toString call) is entirely visible. Getting the font
metrics, calculating the width for the given font and String value would be tedious and so
calling:

GraphConstants.setResize(map, true);

will cause the cell to be resized upon insertion so that the label is fully visible. This is a one-off
effect, however. JGraph will remove the GraphConstants.RESIZE key from the storage
map of the cell once the action is performed. If you wish one more resize to occur, set the attribute
to true again and call edit(). Note that altering the cell's storage attribute map in-place and
calling refresh and repaint will not work, resizing depends on a graph model or graph layout cache
change event being fired, which requires an edit call.

Of course, setting the cell to resize on every edit is not practical if you want the cell to always be

Page 60

JGraph User Manual

set to its preferred size. Instead, you should use the AUTOSIZE key:

GraphConstants.setAutoSize(map, true);

This will set the cell to its preferred size after model and layout cache changes. One difference
you will notice with cells that have autosize enabled is that they do not have a handle when
selected. After all, it is fairly pointless to allow the user to resize a cell if the application will simply
revert the change immediately.

The underlying mechanism to determine the size of a cell upon a resize or autosize event is
actually getPreferredSize() in the cell renderer. By default a vertex will return a rectangle
slightly larger than the minimum bounding rectangle of the icon and text of the JLabel, if either
exist.

3.5.1.4 Icon

JLabels are capable of displaying text and an Icon, the icon is set using:

GraphConstants.setIcon(Map, Icon)

The specified icon will be displayed within the cell, if AUTOSIZE is enabled this will ensure
that the bounds of the cell are at least large enough to accommodate the icon. Without autosize
enabled the bounds of the cell might clip the icon or be somewhat larger than the icon requires.
You might wish to adapt the paint method of the renderer if you want to scale the icon, this could
be performed within a subclass of VertexRenderer as follows:

public static class ScaledVertexRenderer extends VertexRenderer {
public void paint(Graphics g) {

Icon icon = getIcon();
setIcon(null);
Dimension d = getSize();
Image img = null;
if (icon instanceof ImageIcon)

img = ((ImageIcon) icon).getImage();
if (img != null)

g.drawImage(img, 0, 0, d.width - 1, d.height - 1,
graph);

super.paint(g);
}

Page 61

Illustration 26 : The right-hand vertex is autosized, note
both vertices are selected but the autosized one has no
handles

JGraph User Manual

}

The methods available in JLabel are repeated in GraphConstants enabling you to align
the contents of the label along the Y-axis:

GraphConstants.setVerticalAlignment(Map, int);

where the int parameter may be one of the following constants defined in
SwingConstants: TOP, CENTER (the default), or BOTTOM. Also for alignment of the label's
contents with the X-axis

GraphConstants.setHorizontalAlignment(Map, int);

where the int parameter may be one of the following constants defined in
SwingConstants: LEFT, CENTER (the default for image-only labels), RIGHT, LEADING
(the default for text-only labels) or TRAILING.

3.5.1.5 Label Text

The text component of the JLabel may also be aligned relative to the icon. Vertical relative
alignment is performed using:

GraphConstants.setVerticalTextPosition (Map, int);

where the int parameter may be one of the following constants defined in
SwingConstants: TOP, CENTER (the default), or BOTTOM. Horizontal relative alignment
is achieved using:

GraphConstants.setHorizontalTextPosition(Map, int);

where the int parameter maybe one of the following constants defined in SwingConstants:
LEFT, CENTER, RIGHT, LEADING, or TRAILING (the default).

GraphConstants also provides the setFont() method to enable you to configure the
font of the text displayed and GraphConstants.setForeground() to set the color of
the text. Full details of how to use fonts are beyond the scope of this manual, see any good reference
on Java graphics for more information.

Page 62

Illustration 27 : An Icon aligned using various horizontal and/or
vertical alignment settings

JGraph User Manual

3.5.1.6 Borders

Borders are a Swing function that enables you to paint aesthetically pleasing borders around the
edges of your Swing components. Since the standard vertex is rendered as a JLabel, you can set a
border to your vertices using standard borders with:

GraphConstants.setBorder(Map, Border);

More information on the types of Borders available can be found at the Border API
package summary:

 http://java.sun.com/j2se/1.5.0/docs/ api / javax /swing/border/package- summary.html .
Also at http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/ BorderFactory.html you will find

useful factory methods simplifying the process of creating those borders. For example:

GraphConstants.setBorder(map, BorderFactory.createRaisedBevelBorder());

creates a raised border of the type of effect you would see typically on a button.

GraphConstants.setBorder(map,
BorderFactory.createLineBorder(graph.getBackground(), 6));

will create a blank border around the vertex using the background color of the graph to paint
out. This is useful is you wish to have edges terminate a short distances from vertices rather than
directly on the perimeter. The color may be also changed using
GraphConstants.setBorderColor().

3.5.1.7 Colors

GraphConstants.setBackground(map, Color)

set the fill color of vertices to a constant color, whereas:

GraphConstants.setGradientColor(map, Color)

sets a gradient fill across vertex, starting white and progressively darkening across the vertex to

Page 63

Illustration 28 : On the left a line Border of the
color of the graph background. On the right a
raised bevel Border

http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/BorderFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/swing/border/package-summary.html

JGraph User Manual

the specified color.

3.5.1.8 Inset

GraphConstants.setInset() provides a means to place a buffered area around a
label, so getPreferredSize() returns a Dimension large enough for the label plus the
inset. This Dimension is used by the one-shot resize and autosizing functionality.

3.5.2 USING EDGES

3.5.2.1 Bounds

Bounds work slightly differently in edges. The values of BOUNDS for an edge is still the
minimum rectangle that enclosed the edge, but its use is rather more limited than for a vertex. The
bounds of an edge gives no indication where it starts or finishes, or what path it takes between
those two points. The use of edge bounds should be limited to determining the clip bounds if you
need to manually force a repaint.

3.5.2.2 Control Points and Routing

As mentioned previously, the DefaultEdge holds a collection of ordered points which
describe the path the edge follows. At its simplest the edge will be drawn as a sequence of straight
lines between these points. You can set these points using an ordered List:

GraphConstants.setPoints(Map, List)

However, JGraph also supports orthogonal, bezier and spline style drawings and the line style
property of an edge is set using:

GraphConstants.setLineStyle(map, int)

on the attribute map of the edge passing in GraphConstants.STYLE_ORTHOGONAL,
GraphConstants.STYLE_BEZIER or GraphConstants.STYLE_SPLINE as
appropriate. Remember that these styles require control points, otherwise they will simply appear
as straight lines.

Control points may either be added manually or using a routing method. We briefly mentioned

Page 64

Illustration 29 : On the left two vertices filled using setColor, and on the right filled using
setGradient. The (Red, Green, Blue) values of the colors used are indicated

JGraph User Manual

earlier in this chapter the Routing interface defined inside the Edge class. A routing algorithm
is generally a static class instance shared by all the edges being routed in that manner. You set
routing for an edge using:

GraphConstants.setRouting(map, GraphConstants.ROUTING_SIMPLE);

to use DefaultEdge.DefaultRouting, the basic routing algorithm supplied with
JGraph. DefaultRouting sets appropriate control points for the various line styles, saving you
having to define the points yourself. DefaultRouting also sets the routing for self-loops, so
that they visually leave the vertex and return to it.

The Routing interface itself defines one method, route(), which takes the Edge to be
routed and the list of points to be altered as parameters. Two implementations of parallel edge
routers are available in the JGraphpad Community Edition, if you require a different custom
implementation it is worth checking with the JGraph team to see if someone has already done it.

If you wish to restrict the interactive (using a mouse) addition or removal of control points to
and from an edge, setBendable(Map, false) will forbid these actions for the specified
edge even if an application supports such functionality.

3.5.2.3 Positioning edge labels

The configuring of label positioning is somewhat more flexible than that for vertices and any
number of labels are supported. The main label displays, like for vertices, whatever the
toString() method of the user object attached to the edge returns. Setting of the label
position is performed using:

GraphConstants.setLabelPosition(Map, Point2D);

The point parameter defines the relative distance across the edge that the label lies in the X
coordinate and the distance orthogonal to the edge that the label lies in the Y coordinate. The
relative distance across the edge is measured from 0, at the start of the edge, to

Page 65

Illustration 30 : Three edges with the indicated line styles routed using the
DefaultRouting algorithm

JGraph User Manual

GraphConstants.PERMILLE, at the end of the edge. So, passing in:

Point2D point = new Point2D.Double(GraphConstants.PERMILLE/2, 0);

will result in the label being centered mid-way between the start and end points.

Point2D point = new Point2D.Double(GraphConstants.PERMILLE/2, 100);

will result in the label being positioned mid-way between the x-axis positions on the start and
end point and 100 pixels below the mid-point of the start and end points' y-axis positions. Note,
when we write “below” we are talking about beneath the plane the edge makes when the start point
is the left of the end point.

You can also go beyond the bounds of the 0 to GraphConstants.PERMILLE range.

Page 66

Illustration 31 :
(GraphConstants.PERMILLE/2, 0)

Illustration 32 : (GraphConstants.PERMILLE/2,
100)

Illustration 33 : (GraphConstants.PERMILLE*2, -50)

JGraph User Manual

The extra labels on edges are stored as Objects, whatever they return in their toString()
method is what is displayed. It is unlikely you will use anything other than Strings as these
objects. The positioning system is the same as for the main label. The method you use to set and
position these extra labels are:

GraphConstants.setExtraLabels(Map, Object[])
GraphConstants.setExtraLabelPositions(Map, Point2D)

So using this code:

Object[] labels = {new String("0...*"),new String("1")};
Point2D[] labelPositions = {new Point2D.Double

(GraphConstants.PERMILLE*7/8, -20), new Point2D.Double
(GraphConstants.PERMILLE/8, -20)};

GraphConstants.setExtraLabelPositions(edge.getAttributes(),
labelPositions);

GraphConstants.setExtraLabels(edge.getAttributes(), labels);

we can place a label at either end of the edge and slightly offset from the plane of the edge so that
the labels are not overlapped by the edge. Again, note the y-offset is relative to the plane of the edge,
so rotating the edge you still have the labels appearing in the correct relative positions.

Another effect that is useful with regards to label drawing is the ability to force the label to be
parallel with the edge:

setLabelAlongEdge(map, true);

Page 67

Illustration 34 : Extra labels on an edge keeping their relative positioning after rotation, no
comments about the odd state of my galaxy please

JGraph User Manual

The other consideration for edge labels is the color of the text is set using:

GraphConstants.setForeground(Map, Color)

3.5.2.4 Edge Styles

There exist a number of configuration options to change the appearance of the main line part of
an edge (we will discuss end decorations next). The two simple options are:

GraphConstants.setLineWidth(map, 5); //sets the edge line width to 5
GraphConstants.setLineColor(map, Color.blue); // sets the edge line
color to blue

The other two edge style configuration methods (other than the line shape previously
mentioned) are:

setDashPattern(Map, float[])
setDashOffset(Map, float)

These two values correspond to the last two parameters passed into the BasicStroke
constructor:

BasicStroke(float, int, int, float, float[], float)

but the Javadocs for these parameters is less than helpful.
The dash pattern is a sequence of solid and clear lengths of edge that repeats throughout the

edge. So, creating an array equal to {10, 10} would mean to edge is drawn as solid for 10 units, then
clear for 10 units and this repeats along the edge. {10, 2, 2, 2} would mean solid for 10 units, clear
for 2, solid for 2 units and clear for another 2, and repeat. Obviously, it only really makes sense to
have an even number of entries to this array. This pattern is applied consistently, regardless of the

Page 68

Illustration 35 : Labels being drawn parallel to their edges

JGraph User Manual

shape or number of points in the edge. A static variable GraphConstants.dash representing
a dash pattern of {5,5} is defined in case you wish to save memory by using this single instance,
instead of creating an instance for every cell attribute map.

The dash offset, also known as the dash phase, determines how far into the dash pattern the
drawing should be started. By default the dash offset is 0, setting it to 5 for the {10,10} dash pattern
would result in the start of the edge drawing 5 units of solid line, then 10 units of clear line, then
back to the 10 solid / 10 clear repeating pattern. Setting the value to 12 would result in the line
starting with 8 units of clear line and then back to the 10 solid / 10 clear repeating pattern.

The most common application for the dash offset is for animating edges. JGraph purposefully
never assumes any multi-threading, so it can't directly offer such animation. However, a timer
thread triggering a method in the event dispatch thread to alter the dash offset and update the edge
is simple to implement. For each update you would need to get a collection of the edges' cell views
to be updated, change the dash offset value in-place, then call refresh on the edge and finally repaint
the entire affected area. This would require a static variable holding the current value of the dash
offset, which would be decremented after each timer tick. The dash offset call itself would need to
use the modulus of the current dash offset value so it repeats between the limits of the dash pattern
range. For example, say the dash pattern is {10,10}, the complete range of the modulus result used
for the dash offset needs to be 0 to 19:

GraphConstants.setDashOffset(map, 20 - Math.abs(dashOffset % 20));

should be used in this case. Note that the dash offset needs to be decremented in order to get
animation from the start of the edge to the end, and vice versa. To speed up the animation,
decrease the timer interval or decrement the dash offset value by more than one on each tick.

3.5.2.5 Edge end decorations

At either end of the edge you can configure end decorations to be drawn, this usually consists of
arrowheads. JGraph provides a number of commonly used end decorations that may be enabled
using:

GraphConstants.setLineBegin(Map, int)
GraphConstants.setLineEnd(Map, int)

Page 69

Illustration 36 : Dash patterned edges with their pattern displayed

Illustration 37 : A {10,10} dash pattern using the indicated offset values

JGraph User Manual

where the int parameter is one of the options available in GraphConstants. To remove a
decoration use the method above for the appropriate end of the edge and pass in
GraphConstants.ARROW_NONE. You may also remove the attribute entirely from the
attribute map using GraphConstants.setRemoveAttribute(), as discussed in
Chapter 2.

Each of these end style may be filled or not using:

GraphConstants.setBeginFill(Map, boolean)
GraphConstants.setEndFill(Map, boolean)

If you wish to change the size of the end decorations, this is done using:

GraphConstants.setBeginSize(Map, int)
GraphConstants.setEndSize(Map, int)

3.5.2.6 Connections restraining

It is possible, on a per-edge basis, to set whether or not the edges may be connected or
disconnected interactively using the mouse. The methods are self-explanatory:

setConnectable(Map, boolean)
setDisconnectable(Map, boolean)

Page 70

Illustration 38 : The available line end decorations, with fill set to true
on the left-hand side

JGraph User Manual

3.5.3 ATTRIBUTES FOR BOTH VERTICES AND EDGES

3.5.3.1 Constraining Basic Editing Functions

The next three attributes require little explanation.
GraphConstants.setSizeable() controls whether or not cells may be resized using the
mouse. If set to false, the user is not presented with any handles to resize with.
GraphConstants.setMoveable determines whether or not the cell may be moved
(repositioned, not resized) interactively. GraphConstants.setEditable(false)
disables in-place editing for labels. You could set this value to false if you want double-clicking
on a cell to perform a different function to label editing. However, you might also like to change
the number of mouse clicks required to start editing using
JGraph.setEditClickCount().

Whether or not cells can be moved on a per-axis basis can be configured using

GraphConstants.setMoveableAxis(Map, int)

where the int parameter is either GraphConstants.X_AXIS or
GraphConstants.Y_AXIS. Obviously, to forbid moving entirely use setMoveable.
Setting the moveable axis to being X_AXIS causes the vertex to only be movable horizontally and
Y_AXIS causes the vertex to only be movable vertically.

3.5.3.2 Opaqueness

GraphConstants.setOpaque(Map, boolean)

will pass the boolean value up to the JComponent.setOpaque() method of the
renderer of the cell. As the Javadocs for that method say “If true the component paints every pixel
within its bounds. Otherwise, the component may not paint some or all of its pixels, allowing the
underlying pixels to show through. ”. In the case of vertices constant background fill and gradient fill
colors are not painted if opaque is set to false. Text, icon images and borders are still painted
regardless of the setting of this attribute. In the case of edges, the default implementation of an
edge is not affected by this attribute, but you should take it into account it you were to produce
your own, more complex, implementation of an edge.

Page 71

JGraph User Manual

The figure above shows a set of cells, first with opaque set to true and then to false. It also
shows both sets of cells overlapping each other to various degrees. The opaque versions completely
obscure those they are in front on, whereas, in the case of the non-opaque cells overlapping, just the
borders, icon and labels obscure cells painted beneath them.

3.5.3.3 Selection

GraphConstants.setSelectable(map, boolean)

determines whether or not the cell may be selected. Setting this value to false basically causes
the cell to stop reacting to any interactive function. The cell may not be resized, moved (unless it is
a connected edge that moves along with a connected vertex that is being moved) or have in-place

Page 72

Illustration 39 : The cells on the first and third sets of cell (from the top) are opaque, the second
and bottom sets of cells have opaque set to false

JGraph User Manual

editing performed.

3.5.4 USING PORTS

3.5.4.1 Port Positioning

When a port is attached as a child of a vertex, by default it is what is know as a floating port.
This means it has no fixed position, any edge connecting the vertex will be seen to terminate at the
boundary of the vertex. Note that the edge isn't just hidden by the vertex, floating ports terminate
edges exactly on the boundary, otherwise known as the perimeter point, of cells and so arrowheads
are visible and correctly placed. This default implementation works for the majority of applications
since it resolves the issues associated with edges traveling across vertices to a fixed point on the
vertex boundary. Note, this relies on the getPerimeterPoint() method on the renderer of
the vertex being implemented correctly.

A second type of positioning for ports involves offsets. Invoking:

GraphConstants.setOffset(Map, Point2D)

on a port cell fixes the port position relative to the cell. A value of (0,0) corresponds to the top
left corner of the cell and (GraphConstants.PERMILLE,
GraphConstants.PERMILLE) corresponds to the bottom right-hand corner of the cell.
Since the value are a proportion of the cells dimensions, the ports are always placed in the same
relative positions regardless of the size of the vertex.

Page 73

Illustration 40 : Two vertices connected by an edge using their floating ports. Note the edge
terminates correctly on either vertex regardless of the edge direction

JGraph User Manual

Page 74

Illustration 41 : The HelloWorld example with offset ports added at (0,
GraphConstants.PERMILLE/2) , (GraphConstants.PERMILLE/2, 0) ,
(GraphConstants.PERMILLE/2, GraphConstants.PERMILLE) , (GraphConstants.PERMILLE,
GraphConstants.PERMILLE/2). Connecting edges between offset ports means it is possible that the
edge or vertex might overlap each other. This doesn't happen with floating ports.

Illustration 42 : A vertex containing a number of visible ports with their offset values shown (the entire rectangle is the
vertex, the labels belong to the ports in this example)

JGraph User Manual

A third method of setting the port position is to do so in absolute coordinates relative to the
origin of the vertex. With absolute ports their positions relative to the dimensions of the vertex will
not remain the same through resizing, but their position relative to the vertex origin will. Which
axis are absolute is configurable independently:

GraphConstants.setAbsoluteX(Map, boolean)
GraphConstants.setAbsoluteY(Map, boolean)

or both together:

GraphConstants.setAbsolute(Map, boolean)

After setting this flag, you position the ports using the GraphConstants.setOffset()
method again, this time the Point2D parameter is the absolute offset from the vertex origin.

The fourth method is using port anchors, which involves defining another port that this port
will be offset relative to. This anchor is the anchor referred to in the Port interface in
getAnchor and setAnchor. Setting another port as anchor makes that port the origin for
this port, instead of the vertex origin. You can still define the offset as a proportion of the vertex
dimensions using just setOffset, or you can define the offset as an absolute value using
setAbsolute(map, true) and setOffset(). The anchoring mechanism is useful if
you wish to define a chain of ports that have fixed positions relative to each other. Note: Port
anchors are disabled in JGraph 5.6.2.1.x pending a bug resolution.

3.6 Summary
• A range of configuration options for visual attributes of the default cells is available through the

Page 75

Illustration 43 : Absolute offset ports often do not appear correctly when the parent vertex is scaled

JGraph User Manual

accessor methods of GraphConstants.
• To add a new cell type, define the new cell class, its view class and its renderer class. Automate

the creation of the view using the cell view factory and ensure the view returns the renderer in
the appropriate method(s).

• If you wish to add new functionality to a cell you might do so by 1) subclassing attribute map
and adding new attribute type to support the new functionality, 2) by providing the
functionality through methods and variables on the cell class, or 3) by storing the data in the
user object of the cell.

• One important note about cells is that you can only pass cells into edit, insert and
remove calls, never cell views.

Page 76

JGraph User Manual

4 Advanced Editing

4.1 Grouping
Grouping, within JGraph, is the concept of logically associating cells with one another. This is

commonly referred to as the concept of sub-graphs in many graph toolkits. Grouping involves one
or more vertices or edges (ports are generally not discussed with grouping functions, even though
they are children of other cells) becoming children of a parent vertex or edge (usually a vertex) in
the graph model data structure. This causes the parent cell, also known as the group cell, to take the
bounds of the minimum bounding rectangle that encloses all of the children cells. Once grouped,
the group cell may be moved and resized like a stand-alone cell, but the operation affects all of the
children cells as well.

Moving a group cell causes an equal translation on the children cell(s), scaling a group cell causes
the children cells to be scaled by the same proportions.

Page 77

Illustration 44 : Moving a group and resizing it

JGraph User Manual

4.1.1 GRAPH MODEL REPRESENTATION OF GROUPING

As mentioned, cells that lie within a group are child cells of the group cell. This relationship can
be nested any number of times, so a group can contain another group, and so on.

The simplest method to group cells programmatically is to set up the parent/child relationship
prior to all the group cell(s) being inserted. Note only the topmost group cell needs to be specified
in the insert call if the child relationships are correctly formed prior to the insert. This
could be done using the add() method available in DefaultGraphCell:

vertex1.add(vertex2);

in the same way we added ports to vertices in the HelloWorld example. You may also use the
constructor of DefaultGraphCell that accepts an array of children:

Object[] children = {vertex2, vertex3, vertex4, edge1, edge2, edge3};
DefaultGraphCell vertex1 = new DefaultGraphCell(new String”Vertex1”,

null, children);

JGraph.getDescendants(Object[]) provides a method to obtain all of the
descendant cells (children) of those specified in the single parameter. Along with the getRoots
method, these two methods combine to make the primary command you should use to obtain all
cells in the graph:

graph.getDescendants(graph.getRoots());

Just obtaining the roots will only work as long as there are no group structures.
Note that you must explicitly create the group cell in the normal way you might create any cell.

Grouping together any number of cells will not automatically create a parent cell. There is a helper
method in the GraphLayoutCache:

insertGroup(Object group, Object[] children)

that groups the cells in the array parameter under the group cell and performs the insert

Page 78

Illustration 45 : How the Graph Model will look after 3 vertices and 3 edges are
grouped (additional ports not shown for clarity)

JGraph User Manual

command.
These methods mentioned, however, do not allow for the changing of the parent/child

relationship during edit and calls, nor are they capable of adding the grouping operation to the
undo history as part of an insert() call. For this, you must use a ParentMap.

4.1.2 PARENTMAP

The ParentMap class defines the parent/child relationships of cells. It can be used in the
appropriate edit() and insert() calls in GraphModel and GraphLayoutCache that
have a ParentMap as one of their attributes. ParentMaps are stored as part of the graph model
edit, or graph layout cache edit, so any changes to the parent/child relationship(s) are undoable.
The idea with ParentMaps is to describe the parent/child relationship you would like to alter
the graph model to represent and pass the parent map to the edit or insert method.
ParentMaps may be created in one of three ways. The first is to pass the children and parent

to the ParentMap constructor:

ParentMap parentMap = new ParentMap(children, parent);

this causes the array of children to have the specified parent in the parent map. To invoke this
change call:

graph.getGraphLayoutCache.edit(null, null, parentMap, null);

note that you can also make changes to cell attributes using the first parameter at the same time
as changing the group structure using the ParentMap. Within the edit call the change made
to the group structure will be stored as well as the grouping structure prior to the edit call. This
enables undo/redo to be able to restore the current and previous states.

The second method of creating a parent map is to construct the class either using the default
constructor, or the constructor just mentioned, and then to add further entries using the
addEntry() or addEntries() methods. addEntries allows you to assign multiple
children to a single parent and addEntry add a single child and associated single parent to the
parent map. These methods add one or more Entry objects to the ParentMap, each Entry
object representing one parent/child relationship.

When we describe the ParentMap and how it is composed of some number of Entry pairs,
remember that the parent of any Entry pair may be null. This is how you represent a parentless
cell, i.e. a cell you want to add to the model roots. Generalizing the whole concept of a parent map,
there are three operations you can use it to describe. Below we show those three operations:

1. You currently have a cell with no parent, you want to assign it a parent. Add an entry to the
ParentMap with the cell as the child and the new parent.

ParentMap pm = new ParentMap();

Page 79

JGraph User Manual

pm.addEntry(childCell, groupCell);

2. You currently have a cell with a parent, you want it to have no parent. Add an entry to the
ParentMap with the cell as the child and set the parent to null.

Object[] children = {childCell};
ParentMap pm = new ParentMap(childCell, null);

3. You currently have a cell with a parent, you want to assign it a different parent. Add an entry to
ParentMap with the cell as the child and the new parent.

ParentMap pm = new ParentMap();
pm.addEntry(childCell, newGroupCell);

Other examples you might find useful are the operation to group selected cells:

DefaultGraphCell group = new DefaultGraphCell();
graph.getGraphLayoutCache().edit(null, null, new ParentMap

(graph.getSelectionCells(), group), null);

and the operation to ungroup selected cells:

graph.getGraphLayoutCache().edit(null, null, new ParentMap
(graph.getSelectionCells(), null), null);

4.1.3 GROUP INSETS

GraphConstants.setInset() can also be used on group cells to provide a boundary
between the minimum bounding rectangle of the child cells and the group cell itself.

4.1.4 MOVE INTO/OUT OF GROUPS

In the JGraph class there exist two methods, setMoveIntoGroups(boolean) and

Page 80

Illustration 46 : A group cell with an inset of 10

JGraph User Manual

setMoveOutOfGroups(boolean). These determine whether or not to make a cell part of
a group cell when you drag the cell into or completely out of a group cell. So, with
setMoveIntoGroups set to true, moving cells so that the mouse position is inside the
bounds of an existing visible group cell will cause the cells to become direct child of that group.
With setMoveOutOfGroups set to true, dragging a child within a group cell completely
out of the group cell will cause the cell to become a root cell, i.e. have no parent.

4.1.5 REMOVING CHILD CELLS

Using the remove() call on cells that are part of a group structure is slightly different to the
pattern for other editing calls. If you call remove on the vertices numbered 3 and 4 in the figure
below:

those cells will be removed from the group structure and leaving:

Page 81

Illustration 47 : A group
structure before cells 3 and 4
are removed

JGraph User Manual

A call to remove() only passing in vertex1 would be, essentially, an ungroup command and
the same applies to any cell which acts as a group. If you wish the remove the entire group structure
you need to call JGraph.getDescendants(Object) (or use the method of the same
name in the DefaultGraphModel) on the topmost parent cell to obtain a collection containing the
cell and all its children and then pass all these cells to the remove() method.

4.2 ConnectionSet
ConnectionSet is the final of the three main parameters to insert and edit calls, the

other two being the nested map of attributes and the parent map. A ConnectionSet describes
the connection state of any number of edges and so is also stored as part of any edit change object
to enable correct undo/redos.

The design of ConnectionSet is similar to that of the ParentMap, there is the overall
class that holds one or more entries, or connections in this case, and they may be set up through the
constructor, individually or as a collection.

ConnectionSet(Object edge, Object port, boolean source)

creates a simple ConnectionSet associating the specified port and edge and also indicating
whether or not the port is at the source or target end of the edge. This creates a Connection
object, which is an inner class of ConnectionSet, and adds it to the set of connections held.
You can also create the set of connections yourself and pass it in using:

ConnectionSet(Set)

Individual connections can be created using:

connect(Object edge, Object source, Object target)

which sets the edge within the ConnectionSet to have the specified source and targets,

connect(Object edge, Object port, boolean source)

which sets the edge to be connected to the port within the ConnectionSet and whether or
not it is the source or target port is indicated by the boolean parameter. Also:

Page 82

Illustration 48 : The group structure
after the remove() call

JGraph User Manual

disconnect(Object edge)

sets the edge as being disconnected at both ends within the ConnectionSet and

disconnect(Object edge, boolean source)

disconnects just the source or target end, as specified, within the ConnectionSet.
Also available is the static utility method, ConnectionSet.create():

ConnectionSet create(GraphModel m, Object[] cells, boolean disconnect)

This returns a new ConnectionSet instance based on the array of cells passed in which
contains edges and/ or ports. If disconnect is true the ConnectionSet returned
describes those specified cells in a disconnected state. If true, it describes the edges connected
accordingly to model.getSource(cell) and model.getTarget(cell) and ports
according to the return value of port.edges().

4.3 The GraphLayoutCache
The GraphLayoutCache holds the cell views, one for each cell in the model. It holds a list

of cell view roots and another cached list of port views for performance reasons.
GraphLayoutCache also holds a mapping from the cells to cell views, the only place in JGraph
where you can translate in the model-to-view direction. GraphLayoutCache actually
implements the CellMapper interface which defines methods to add and get mappings between
cells and cell views. The CellMapper interface is not such an obvious design contract as the
GraphModel is, but when obtaining the cell view for a cell, you must always use getMapping:

cellView = graph.getGraphLayoutCache().getMapping(cell);

The reverse mapping from graph view to graph model is not required since CellViews have
references to their corresponding graph cells. Seeing the role the GraphLayoutCache plays in the
mapping between the model and view domain, it may make more sense now why the
GraphLayoutCache holds the reference to the CellViewFactory, the factory class that creates cell
views depending on the cell type.

4.3.1 VIEW-LOCAL INDEPENDENCE

The GraphLayoutCache object provides the means to override information held in the
graph model so that you may have multiple independent views of the same model. This enables
features such as cell visibility, view-local attributes and expanding and collapsing. To set up a
GraphLayoutCache in this way you need to set its partial attribute to true, this must
be done in the GraphLayoutCache constructor:

GraphLayoutCache(GraphModel model, CellViewFactory factory, boolean
partial)

Page 83

JGraph User Manual

To change the partial status of a GraphLayoutCache during its lifetime would cause
serious synchronization issues and so a setPartial() method is not made available.

Once a GraphLayoutCache has been made partial there is a difference in functionality
between performing the 3 editing methods on the GraphLayoutCache and on the graph
model. Performing them on the GraphLayoutCache will always update the view you are
working in. Performing them on the graph model will make the changes to the model, but not
reflect those changes in any partial GraphLayoutCache. So if you insert cells directly into
the model, they will not appear in views where the GraphLayoutCache is partial. This is
the recommend technique for inserting invisible cells.

The reason for the naming of the partial attribute is to indicate that the
GraphLayoutCache is a partial representation of what lies in the model, although the
boundary case is that the contents are the same and it is the whole representation.

4.3.2 VISIBILITY

With a partial GraphLayoutCache, you are able to set any individual cell to being invisible
using:

graph.getGraphLayoutCache().setVisible(cell, false);

which will perform the edit and appropriate updates for you. You can also define a set of cells
to be made visible and another set of cells to be made invisible in one call using:

setVisible(Object[] visible, Object[] invisible)

A cell being set to be invisible simply means it is not drawn in that view, the model remains
unchanged, only the GraphLayoutCache holds additional visibility information when partial.

4.3.2.1 Configuring Visibility after Editing Operations

There are a number of configuration options for editing operations that automatically deal with
visibility issues for cells that have some relationship in the graph model. For example, if a vertex is
made invisible it usually does not make sense to leave edges connected to that vertex visible. The
hidesExistingConnections variable set to true ensures this happens and true is its
default value.

For the reverse operation, showsExistingConnections determines whether or not
edges that have both vertices connected to it made visible are made visible themselves. The default
is, again, true.
showsChangedConnections determines whether or not edges should be made visible

when they are reconnected to different vertices which are both visible, the default is true.
showsInsertedConnections determines whether or not inserted edges should me

made visible if either their source or target are already visible, the default value is true.
Finally, hidesDanglingConnections determines whether or not edges should be made

Page 84

JGraph User Manual

invisible when either connected vertex is removed from the model. The default for this value is
false

4.3.3 VIEW-LOCAL ATTRIBUTES

Visibility is one of the important view-independent features in JGraph. Another is view-local
attributes. View-local attributes enable you to have any of the attribute types available (in
GraphConstants, or any extra attributes you might define) store a local value in the cell view
storage attribute map and have that value override the value stored in the storage attribute map of
the corresponding graph model cell. There are two variables in the GraphLayoutCache that
support this functionality, allAttributesLocal and localAttributes.
allAttributesLocal is a boolean flag that determines whether or not to make all

attributes view-local, so the all attributes set in the GraphLayoutCache are stored locally in
the cell views and those are the attributes used for the visualization. localAttributes is a
Set of attribute keys (e.g. GraphConstants.BOUNDS, GraphConstants.FONT, etc.)
that use the value in the cell view attribute map over that in the graph model cell. You can set all
attributes to view-local using:

setAllAttributesLocal(true);

and set the value of localAttributes using:

setLocalAttributes(attributeSet);

Note the setting of the local attribute set overwrite the current set, it does not add to it.
Therefore, if you wish to add to it, call getLocalAttributes() and add to the set obtained
in-place.

Note, if you wish to remove a view-local attribute this requires more than simply removing the
key from the local attributes set. The attribute value should also be removed from all cell view that
have that attribute set. Depending on application requirements, you will either leave the attributes
deleted or re-add them to the equivalent graph model cells' attribute maps. From JGraph 5.6.3
onwards the method removeLocalAttribute(Object attribute, boolean
addToModel) is available in the GraphLayoutCache to assist this process. The
attribute is the key to be removed and the flag indicates whether or not to re-add the deleted
attribute to the model cells.

As previously mentioned, if you perform an insert call to the model with a partial layout cache,
the cell is invisible to start with in the layout cache. If you perform an edit on the model and you
change an attribute which is view-local in a graph layout cache, the value does not get passed to the
cell views' attribute maps. Similarly, if you perform an edit directly on a graph layout cache any
view-local attributes are not passed onto the model cells. This means you can have colors, cell
positions and size, text font, any of the attributes in GraphConstants display differently in
one view to another by using partial layout caches, setting the appropriate attributes to be view-
local and editing those attributes using the edit call on the partial layout cache.

Page 85

JGraph User Manual

In the examples directory of the package you received with this user manual you will find the file
org.jgraph.example.GraphEdMV.java. This is an example implementation of a
simple multi-view application. The following code in the constructor of GraphEdMV sets the
view-local attributes:

Set localAttributes = new HashSet();
localAttributes.add(GraphConstants.BOUNDS);
localAttributes.add(GraphConstants.POINTS);
localAttributes.add(GraphConstants.LABELPOSITION);
localAttributes.add(GraphConstants.ROUTING);
graph.getGraphLayoutCache().setLocalAttributes(localAttributes);

setting the cell positions and sizes, the edge points and routing and the label positions to be view
independent.

4.3.4 EXPANDING AND COLLAPSING GROUPS

JGraph supports the expansion and collapsing of grouped cells. Obviously, in your own
application you don't want to ask users to perform the grouping operation, so you will generally
have some means of determining which cells the user is referring to in a collapse operation and
perform the grouping and collapsing in one operation.

The GraphEdX example demonstrates the manual grouping and expanding and collapsing of
cells. The figure below shows a selection of cells being grouped, collapsed and expanded again. The
GraphEdX source code can be found in the examples directory of your User Manual or JGraph
installation. The demo renderers a small “-” or “+” in the top left corner of the group cell to
indicate that the group affords being collapsed and expanded. Mouse press events on that corner
need to be captured (see chapter 5, Events) to trigger the calls to expand and collapse.

The actual call that causes cells to collapse is:

graph.getGraphLayoutCache().collapse(graph.getSelectionCells());

and to expand:

graph.getGraphLayoutCache().expand(graph.getSelectionCells());

The cell(s) passed in as the single parameter is the group cell. You might notice that the edge
from cell 11 into the group terminates on the perimeter on the group when it is collapsed. This
behavior is standard for visual collapsing and expanding. When cells are invisible it is checked to see
if they have a visible parent, direct or indirect. If so, any edges connected to the invisible cell are
promoted, in the view only , to terminate at the perimeter point of the first visible parent cell. There
are no model changes involved in this process.

Page 86

JGraph User Manual

For example, in the case of a user application involving a tree structure that can expand and
collapse, you might prefer to render the “-” on the base of all cells. The user clicking on that symbol
would cause the application to find all cells below that tree node, group them and the node itself,
then collapse the group, all in one operation.

4.3.5 OTHER GRAPHLAYOUTCACHE OPTIONS

The GraphLayoutCache has a few more visual configuration options:
• autoSizeOnValueChange – when set to true all vertices are resized to their preferred

size plus any inset value in the cell view attribute map every time their label text changes. This
function might be seen as a global override of the per-cell autosize function. The important
difference between this function and the per-cell autosize attribute is
autoSizeOnValueChange still allows you to resize cells manually.

• selectsAllInsertedCells – determines whether or not inserted cells are selected.
The default value is true.

• selectsLocalInsertedCells – determines whether or not local inserted cells, that is,

Page 87

Illustration 49 : A selection of cells being grouped (2), collapsed (3) and expanded again (4)

JGraph User Manual

cells inserted to a partial graph layout cache, are selected. The default value is true.

4.4 Advanced Model Functions

4.4.1 MODEL ORDERING

The graph model has an order to its cells defined by the order of the roots collection. Child cells
are also deterministically ordered when accessing them from the parent and so the entire model has
an order. This is important when performing analysis on the graph model, or layouts, since this
ordering means the results can be relied upon to be deterministic. The ordering in the model also is
used for layering the cells.

Layering relates to the way in which any cell can overlap any other and there needs to be some
method to determine which cells lie in front of which. The rule is that the cell at the start of
roots lies upon the back-most layer and each sequential root cell lies upon the next layer up until
you reach the last entry in roots which lies on the topmost layer. If you perform an insert
operation adding two cells the order the cells are inserted in is the same as the ordering in the cell
array passed into insert(). The first cell will be the first entry into roots and lie behind the
second in the layering structure.

Regardless of how you drag the cells, the cell inserted second will remain over the first when they
overlap. Since child cells of groups lie entirely within the bounds of the group cell, the whole group
has the layer position of the root cell. Within the group each level of child cells are ordered and,
again, the first entry of any level lies on the back-most layer within that group. This pattern
continues to an arbitrary level of nesting.

Rather than provide ultra-fine grained positioning of cell layers it is more effective to simply be
able to move a specified set of cells to the back-most layer:

toBack(Object[] cells)

or to the foremost layer:

toFront(Object[] cells)

Page 88

Illustration 50 : The layering resulting
from the insertion of two cells

JGraph User Manual

these methods exist in both the GraphLayoutCache class and the GraphModel
interface. Note that a number of cells may be affected and cells cannot share the same layer.
Therefore, the operations move the specified cells to start or end of the level of the graph structure
they exist upon but retain the same relative order between those cells.

4.4.2 EDITS

When you perform an insert, edit or remove call, an object called an edit is created. In the case of
calls to the GraphModel a GraphModelEdit object is created and for calls to the
GraphLayoutCache a GraphLayoutCacheEdit is created in addition to the
GraphModelEdit. These edit objects encapsulate the change made, holding information about
the attribute map changes made using the nested attribute parameter, changes to the group
structure made using the parent map parameter and changes to the connection states using the
connection set parameter.

Some of the simplified edit calls in GraphLayoutCache do not offer all of these
parameters, but values for them are created internally and held in the edit object as necessary. The
edit object completely describes the change from the current state of the graph to the next state and
in reverse and so is used to perform undo and redo functions. In fact, editing methods are
performed by creating the edit object and executing it, exactly the same as a redo command
functions.

4.4.2.1 Undo/Redo

Undo-support, that is, the storage of the changes that were executed so far, is typically
implemented on the application level. This means, JGraph itself does not provide a running
history, it only provides the classes and methods to support it on the application level. This is
because the history requires memory space, depending on how many steps it stores (which is an
application parameter). Also, history is not always implemented as some applications do not
require it.

The GraphChange object is sent to the UndoableEditListeners that have been
registered with the model. The object therefore implements the GraphChange interface and the
UndoableEdit interface. The latter is used to implement undo-support, as it provides an undo
and a redo method. (The code to execute, undo and redo the change is stored within the object,
and travels along to the listeners.)

4.4.2.1.1 Undo-support Relay

Aside from the model, the graph view also uses the code that the model provides to notify its
undo listeners of an undoable change. This can be done because each view typically has a reference
to the model, whereas the model does not have references to its views. (The GraphModel
interface allows relaying UndoableEdits by use of the fourth argument to the edit method.)

The GraphLayoutCache class uses the model's undo-support to pass the
UndoableEdits that it creates to the UndoableEditListeners that have been

Page 89

JGraph User Manual

registered with the model. Again, the objects that travel to the listeners contain the code to execute
the change on the view, and also the code to undo and redo the given change.

This has the advantage that the GraphUndoManager must only be attached to the model,
instead of the model and each view.

4.4.2.1.2 GraphUndoManager

Separate geometries, which are stored independently of the model, lead to changes that are
possibly only visible in one view (view-only), not affecting the other views, or the model. The other
views are unaware of the change, and if one of them calls undo, this has to be taken into account.

An extension of Swing's UndoManager in the form of GraphUndoManager is available
to undo or redo such changes in the context of multiple views. GraphUndoManager adds the
undo and redo methods with an additional argument, which allows specifying the calling view as
a context for the undo/redo operation. The basic code to create and setup a graph undo manager is:

undoManager = new GraphUndoManager();
// Register UndoManager with the Model
graph.getModel().addUndoableEditListener(undoManager);

The parameter that is passed to the GraphUndoManager's undo and redo method is
used to determine the last or next relevant transaction with respect to the calling view. Relevant in
this context means visible, that is, all transactions that are not visible in the calling view are undone
or redone implicitly, until the next or last visible transaction is found for the specified parameter.

As an example consider the following situation: Two views share the same model and both have
at least one view-local attribute. This means, each view can change independently, and if the model
changes, both views are updated. The model notifies its views if cells are added or removed, or if the
group structure or connectivity of the graph is modified, meaning that either the source or target
port of one or more edges have changed.

If the view-local attributes are only the points or bounds and if cells are moved, resized, or if
points are added, modified or removed for an edge, then these changes are view-only transactions.
All views but the source view are unaware of such view-only transactions, because such transactions
are only visible in the source view.

Page 90

JGraph User Manual

In the above figure, the state of the command history is shown after a cell insertion into the
model, move by the second view, and subsequent move by the first view. After insertion of the cell
into the model, the cell's position is the same in all views, namely the position that was passed to
the insert call. The arrows illustrate the edits to be undone by the GraphUndoManager for
the respective views. In the case of view 3, which only sees the insert, all edits are undone.

As mentioned above, even if there are possibly many sources which notify the
GraphUndoManager, the implementation of this undo-support exists only once, namely in the
graph's model. Thus, the GraphUndoManager must only be added to one global entry point,
which is the GraphModel object.

4.5 Drag and Drop
Drag and drop refers to the action of a user in a GUI of selection a visual object, usually by

clicking on the object and moving the mouse while holding the mouse button down. The
“dropping” part is where the mouse button is released. In AWT and Swing this means selecting a
visual element in one component and dropping it in another. It you have not used DnD before, it
is worth reading about the standard Swing mechanism at
http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html as JGraph is mostly compliant
with the standard mechanisms.

JGraph supports drag and drop in the same way most Swing and AWT components do,
dragging and dropping between JGraph instances in supported in the core library. The methods
setDropEnabled() and setDragEnabled() on the JGraph object control whether
these functionalities are available. As with most components, by default, drop is enabled and drag
disabled after creating a JGraph.

Information - From Java 1.4 onwards a high-level event listener called TransferHandler
was introduced to simply drag and drop. This is the only Java 1.4 specific feature in JGraph and
the feature the build system swaps out when building for Java 1.3. The Java 1.3 drag and drop
framework was somewhat more complex to use and will not be described in this manual.

Page 91

Illustration 51 : Undos across multiple views

http://java.sun.com/docs/books/tutorial/uiswing/misc/dnd.html

JGraph User Manual

There are two important interfaces defined in Swing relating to drag and drop, Transferable
and TransferHandler. Transferable implementations describe the actual object(s)
being transferred. Within a Transferable implementation (it is an interface) are referenced a
number of DataFlavor instances which describe the format that a Transferable's data
might take. Example flavors are stringFlavor, imageFlavor and
javaFileListFlavor.

In the case of JGraph org.jgraph.graph.GraphTransferable defines a
description of a graph transfer. It holds the cells being transferred, a ConnectionSet of
connections between the cells and a ParentMap describing the group structure. In addition
there is a nested AttributeMap with the cells' attributes and the bounds of the collective cells
as a rectangle. This information is enough to recreate the graph when dropped (usually in a
JGraph component).

The other important element in drag and drop is the TransferHandler class. This class
handles the creation of Transferables, via the createTransferable() method, and
deals with their interpretation when dropped. When a TransferHandler receives a
Transferable object it uses its canImport() method to determine whether or not it is
capable of accepting the DataFlavor being offered. The importData() method deals with
the actual process of accepting the drop and, in case of a JGraph component, editing the graph
appropriately. If you wish the change the default drop behaviour it is an overridden
importData() method where you would do this.

JGraph has to subclass TransferHandler because of a non-Swing standard feature it
possesses. org.jgraph.graph.GraphTransferHandler is the default handler for
exporting and importing a graph. The reason this is necessary is that standard
TransferHandler transfers bean properties and the graph's selection cannot be implemented
as a bean property. GraphTransferHandler understands drop from other JGraphs, but
not from other Swing components by default. A common question is how to accept a drop in a
JGraph from a component other than a JGraph. There are two possible ways of doing this.

The first is to make your graph understand other imported data flavors. To do this you need to
create a sub class of GraphTransferHandler and override canImport() and
importData() to confirm that the object can be imported and then to properly handle the
import. importData() in the core GraphTransferHandler will give you a reasonable
idea how to perform JGraph operations given a particular import.

The second method to adapt the TransferHandler of the exporting component,
specifically the createTransferable() method, so that it creates a
GraphTransferable that JGraph understands by default. This mechanism is only useful if
the only thing its data will be exported to is a JGraph, since no other component understand how
to import a graph.

To set a new TransferHandler on a graph call:

graph.setTransferHandler (new MyGraphTransferHandler());

The Clipboard in Java needs a small mention, when you perform cut, copy or paste

Page 92

JGraph User Manual

operations drag and drop is performed via a clipboard. In Java there is the system (operating
system) clipboard and any other instances of clipboard you create within your application. These
store Transferable objects during a data transfer. If you use the shared system clipboard your
data will be transferred to the native operating system clipboard, so you could transfer data to it
and still have it available in another JVM session. If this is not the behaviour you require then
create a Clipboard instance only for your application.

One issue at occasionally causes confusion is when developers try to write functionality that
accepts drops onto heavyweight cells on the graph. The problem is to do with the use of the
flyweight pattern for renderering (i.e. there is only one renderer component shared between all
similar cell types). When you drop onto a heavyweight component, it doesn't really have a
component instance (except when editing because an editor component instance is active at the
time), i.e. you're dropping onto something painted on the JGraph component. So your transfer
handler on the JGraph needs to handle this drop, there is no cell component there to handle it.
You can use the getNextViewAt() method on JGraph to determine where the drop has
occurred. A sensible next step would be to pass the drop event to the component by calling
getRendererComponent() on that view to install the actual component for that
heavyweight and hand it the drop event to handle.

4.6 Zooming
Within the JGraph class the current scale of the graph is stored and may be altered through

the setScale() method. The scale is stored as a double type and a value of 1.0 is the default,
unscaled condition. Values above 1.0 refer to a scaling up of the graph (zooming in) and values
below 1.0 indicate the graph is zoomed out. Setting the scale to 2.0 corresponds to x2
magnification, 4.0 to x4 magnification, 0.5 to x0.5 magnification (x2 reduction), and so on.

The setScale(double) method zooms leaving the center point on the screen unchanged.
If the point around which the scaling is to take place is not the center point, use the
setScale(double, Point2D) method where the point is the new center of the graph.
This is useful, for example, when zooming to a particular mouse click point or specified marquee
area.

4.7 Summary
• Grouping is part of the graph model structure and is represented through the parent/child

relationships between cells.
• The editing methods can use parent maps and connection sets to describe a new state of

grouping structure and connection states.
• The GraphLayoutCache can be made partial, meaning that some or any of the cell views in it

can be made invisible. This technique is used for expanding and collapsing cells.

Page 93

JGraph User Manual

• Cell views may have view-local attributes, which override those in the corresponding graph
model cell. Which attributes are view-local is defined in the GraphLayoutCache.

• Undo and redo is built into the editing methods and follows the Swing standard. Some extra
functionality is required when dealing with undos/redos in multiple, independent views.

• When a model or layout cache change occurs, it is possible to have a listener detect this change
and obtain a change object to examine the details of that change.

• Mouse events passed into MouseHandler by default and from there are passed onto a specific
handler or handlers for context-specific processing.

Page 94

JGraph User Manual

5 Events

5.1 Graph Change Events and Listeners
The GraphModel defines methods for the handling and registration of two types of listeners,

UndoableEditListeners and GraphModelListeners. Every notification of the
undo listener is accompanied by a notification of the model listener, since the view needs to be
updated and the display repainted. However, model events do not trigger undo events for obvious
reasons.

If you wish to have certain functionality triggered upon the firing on a model event, you must
implement the GraphModelListener interface which specifies one method,
graphChanged(GraphModelEvent e). The listener needs to be registered with the
model in order to receive those events:

graph.getModel().addGraphModelListener(graphModelListener)

Once a change occurs you will be able to determine the details of the change by interrogating
the event.

Both the graph model and the graph layout cache support this event model. The graph layout
cache event only contains information specific to that view, i.e. changes to view-local attribute and
local visibility changes. If the graph layout cache is not partial or no view-local attributes or states
change during an edit, the graph layout cache event will be empty and only the graph model event
contain any information. In this way graph layout cache events can be used to determine what
happened only in a view. The complete picture of what changed during an edit can, therefore, be
determined by examining both the graph model event and the graph layout cache event. If your
graph layout cache is not partial and has no view-local attributes then only examining the graph
model event will suffice.
GraphModelEvent and GraphLayoutCacheEvent are both found in the

org.jgraph.event package. Within these classes are defined the GraphModelChange
and GraphLayoutCacheChange respectively and these inner change object can be obtained
using the getChange() method on the event interfaces. These changes are constructed for
insertion, removal or modifications of cells in the model. Note that these objects contain both the
description and execution of the change in one place.

The necessary getter methods to extract information out of the GraphModelChange are
getConnectionSet, getPreviousConnectionSet, getParentMap and
getPreviousParentMap. The GraphLayoutCacheChange interface defines
getChanged, getInserted, getRemoved, getAttributes and
getPreviousAttributes. GraphModelChange extends
GraphLayoutCacheChange and so also defines the methods in the second list.

From the naming of the methods you will fairly easily be able to deduce how to access the pre-
edit and post-edit versions of the object that store edit state, the parent map, the connection set
and the nested attribute map. getInserted returns those cells that were inserted in the edit,

Page 95

JGraph User Manual

getRemoved those that were removed in the edit and getChanged returns those cells that
existed both before and after the edit, but whose attributes changed in that edit.

Keep in mind that after you a perform an undo, the previous and current attribute in the edit
are swopped around. This is so that the redo function works correctly.

5.2 The GraphUI and handling mouse input
The org.jgraph.plaf.GraphUI interface provides the UI-delegate interface for

JGraph and inherits from ComponentUI. The default implementation, BasicGraphUI,
provides all the usual methods you expect to paint, update and return component sizes.

However, the most common area of difficultly users get into with JGraph is working out where
mouse event enter JGraph and how they are passed between the various mouse handling functions.
BasicGraphUI defines the method createMouseListener() which installs a

mouse handler into the graph UI. If you subclass BasicGraphUI and create your own mouse
handler, remember to override createMouseListener() to create your mouse handler.
The same idea applies to any other custom functionality you add to your subclass, to call the
createXXX() methods available in BasicGraphUI.

Have a look at the MouseHandler inner class in BasicGraphUI. This is where all mouse
input events come into JGraph by default. It provides mousePressed, mouseDragged,
mouseMoved, mouseReleased, as you might expect.

In mousePressed the first thing that happens is handler is set to null. This is the handler that is
going to deal with the mouse event. MouseHandler goes through a series of checks to work out
what was under the mouse when it was pressed.

Slightly lower down you will find this line:

int s = graph.getTolerance();

5.2.1 MOUSE TOLERANCE

When a user tries to select a cell, JGraph provides some assistance using the tolerance
variable in JGraph. When a mouse press occurs the default mouse handler creates a rectangle
around the point where the mouse event happened. The distance from the center of this rectangle
to any side is the value returned from getTolerance(). It is within this rectangle that JGraph
will process available cells. If you find that you have overlapping cells and the wrong cell is being
processed due to the tolerance value, simply set it to 0.

The line after the getTolerance call reads:

Rectangle2D r = graph.fromScreen(new Rectangle2D.Double(e.getX()- s,
e.getY() - s, 2 * s, 2 * s));

Page 96

JGraph User Manual

5.2.2 ZOOMING

JGraph uses the Graphics2D class to implement its zoom. The framework is feature-aware,
which means that it relies on the methods to scale a point or rectangle to screen or to model
coordinates, which in turn are provided by the JGraph object. This way, the client code is
independent of the actual zoom factor.

Because JGraph's zoom is implemented on top of the Graphics2D class, the painting on the
graphics object uses non-scaled coordinates (the actual scaling is done by the graphics object itself).
For this reason, JGraph always returns and expects non-scaled coordinates.

For example, when implementing a MouseListener to respond to mouse clicks, the event's
point will have to be downscaled to model coordinates using the fromScreen method in order
to find the correct cell through the getFirstCellForLocation method.

On the other hand, the original point is typically used in the component's context, for example
to pop-up a menu under the mouse pointer. Make sure to clone the point that will be changed,
because fromScreen modifies the argument in-place, i.e. without creating a clone of the object.
To scale from the model to screen, for example to find the position of a vertex on the component,
the toScreen method is used.

Continuing further in the source code to BasicGraphUI.mousePressed there is a call
to isForceMarqueeEvent.

5.2.3 MARQUEEHANDLER

The marquee in JGraph is the rectangular selection (sometime called “rubber-band” selection)
you get when you click an empty area of the JGraph and drag. The BasicMarqueeHandler
class is used to implement this type of selection. From an architectural point of view, the marquee
handler is a "high-level" listener that is called by low-level listeners, such as the mouse listener,
which is installed in the UI-delegate.

With regard to its methods, the marquee handler is more similar to the cell handle, because the
marquee handler deals with mouse events, and allows additional painting and overlaying of the
marquee . (The marquee is a rectangle that constitutes the to-be selected region.)
isForceMarqueeEvent checks to see if whatever mechanism there is in the current

marquee handler is enabled to force handling of the mouse event to be passed onto the marquee
handler. In the case of BasicMarqueeHandler this is caused by pressing and holding the 'alt'
key during the mouse operation.

5.2.4 HANDLES

We mentioned handles in Chapter 3, it is within the BasicGraphUI we actually direct
mouse events to the handles. The BasicGraphUI stores the current CellHandle in the

Page 97

JGraph User Manual

handle variable. This is updated in the updateHandle() method which creates cell
handles depending on the current selection state of the graph.
For moving operations the mouse event will be passed to RootHandle, which is another
inner class of BasicGraphUI. For resizing operations on vertices the mouse event will be
passed to SizeHandle, which is an inner class of VertexView. And for edge moving and
resizing functions the mouse event will be passed to EdgeHandle, which is an inner class of
EdgeView.

Page 98

JGraph User Manual

6 Input and Output

6.1 XML Persistence
Java 1.4 and later provides the XMLEncoder and XMLDecoder mechanisms to serialize the

objects of your application in a standard manner. An example of what your encoding phase might
look like is shown below:

XMLEncoder enc = new XMLEncoder(out);
enc.setExceptionListener(new ExceptionListener() {

public void exceptionThrown(Exception e) {
// Dealt with exception

}
});
// Configure persistence delegates here
enc.writeObject(object);
enc.close();

Java uses the mechanism of persistence delegates to identify what data from certain classes
needs to be serialized. Note that it is not necessary to persist the JGraph object using the
writeObject method, most application need only persist their GraphLayoutCache.
This contains all the graph model and view geometry information:

enc.writeObject(graphLayoutCache);

If you are not familiar with the use of XML encoding and how to use persistence delegates, it is
worth reading the Sun article on Using XMLEncoder. Obviously, to write the correct persistence
delegates for a custom application you need to understand the mechanism. The basic idea is that
you create persistence delegates corresponding to class constructors that you wish to be called when
the XML is decoded later on. The classes described by the delegates must not be private, nor must
the constructors be. The class itself must not be an inner class, it needs to be static or exist in its
own file. Also, the class member variables must follow the Bean properties design where
setXXX() and getXXX() methods exist for each variable XXX that is to be persisted.

As a general guide below are shown the typical delegates that will enable you to persist a simple
JGraph base application:

XMLEncoder encoder;
try {

encoder = new XMLEncoder(outputStream);

// Better debugging output, in case you need it
encoder.setExceptionListener(new ExceptionListener() {

public void exceptionThrown(Exception e) {
e.printStackTrace();

}
});

Page 99

http://java.sun.com/products/jfc/tsc/articles/persistence4/

JGraph User Manual

encoder.setPersistenceDelegate(DefaultGraphModel.class,
new DefaultPersistenceDelegate(new String[] { "roots",

"attributes" }));
encoder.setPersistenceDelegate(GraphLayoutCache.class,

new DefaultPersistenceDelegate(new String[] { "model",
"factory", "cellViews", "hiddenCellViews",
"partial" }));

encoder.setPersistenceDelegate(DefaultGraphCell.class,
new DefaultPersistenceDelegate(

new String[] { "userObject" }));
encoder.setPersistenceDelegate(DefaultEdge.class,

new DefaultPersistenceDelegate(
new String[] { "userObject" }));

encoder.setPersistenceDelegate(DefaultPort.class,
new DefaultPersistenceDelegate(

new String[] { "userObject" }));
encoder.setPersistenceDelegate(AbstractCellView.class,

new DefaultPersistenceDelegate(new String[] { "cell",
"attributes" }));

encoder.setPersistenceDelegate(
DefaultEdge.DefaultRouting.class,
new PersistenceDelegate() {

protected Expression instantiate(
Object oldInstance, Encoder out) {

return new Expression(oldInstance,
GraphConstants.class,
"getROUTING_SIMPLE", null);

}
});

encoder.setPersistenceDelegate(DefaultEdge.LoopRouting.class,
new PersistenceDelegate() {

protected Expression instantiate(
Object oldInstance, Encoder out) {

return new Expression(oldInstance,
GraphConstants.class,
"getROUTING_DEFAULT", null);

}
});

encoder.setPersistenceDelegate(ArrayList.class, encoder
.getPersistenceDelegate(List.class));

encoder.writeObject(graph.getGraphLayoutCache());
encoder.close();

} catch (Exception e) {
JOptionPane.showMessageDialog(graph, e.getMessage(), "Error",

JOptionPane.ERROR_MESSAGE);
}

It should be noted that an output created in this way can be somewhat verbose for even a small
graph. An technique to reduce the file size is the use of the getConnectionSet method of the
DefaultGraphModel. By using this method, the redundancy between the port's edge set and
the edge's source and target field can be removed from files. To do this, the model's persistence
delegate must be changed to fetch the connection set from the respective method and pass it to the

Page 100

JGraph User Manual

constructor at construction time:

model.addPersistenceDelegate(JGraphpadGraphModel.class,
 new DefaultPersistenceDelegate(new String[] { "roots",
 "attributes", "connectionSet" }));

To avoid storing the respective properties of the cells, they must be made transient (which is
done in the static initializer in the preceding step):

JGraphEditorModel.makeTransient(DefaultPort.class, "edges");
JGraphEditorModel.makeTransient(DefaultEdge.class, "source");
JGraphEditorModel.makeTransient(DefaultEdge.class, "target");

The makeTransient method looks like this:

public static void makeTransient(Class clazz, String field) {
try {

BeanInfo info = Introspector.getBeanInfo(clazz);
PropertyDescriptor[] propertyDescriptors = info

 .getPropertyDescriptors();
for (int i = 0; i < propertyDescriptors.length; ++i) {

PropertyDescriptor pd = propertyDescriptors[i];
if (pd.getName().equals(field)) {
pd.setValue("transient", Boolean.TRUE);
}

}
} catch (IntrospectionException e) {

// Dealt with exception
}

}

To read the XML back into your application you will need code similar to that below.
Remember that you object will be of the type that you wrote out in the encoding phase.

XMLDecoder dec = new XMLDecoder(in);
if (dec != null) {

Object obj = dec.readObject();
dec.close();
return obj;

}
return null;

Note that the GraphEdX example that comes with all User Manual distributions demonstrates
the functionality to load and save a graph using XML encoding.

6.2 Image Exporting
Using the various image processing functionality available in Java, it is relatively simple to

Page 101

JGraph User Manual

produce an image of your graph in JPEG, bitmap (.bmp) or Portable Network Graphics (.png)
format. A utility method, getImage() is provided in the JGraph class to make exporting a
simple task. getImage() takes two parameters, the first is the background color of the output
image and the second is any inset to be use around every side of image produced.

The background color, you may wish to simply be the background color of the graph, but for the
PNG output format there is the option of a transparent background. In the example below you
need to use your own graph, your own output stream and select an appropriate background, but
otherwise this code should work for all cases:

JGraph graph = getGraph(); // Replace with your own graph instance
OutputStream out = getOutputStream(); // Replace with your output stream
Color bg = null; // Use this to make the background transparent
bg = graph.getBackground(); // Use this to use the graph background
color
BufferedImage img = graph.getImage(bg, inset);
ImageIO.write(img, ext, out);
out.flush();
out.close();

6.3 SVG Export
There are two methods that may be used to export a JGraph to SVG format. The first is to use

the Apache Batik library to perform the export, the second is to natively produce the SVG mark-up
within your application. The second method is employed in SVG example you can find in the
examples package of the JGraph Layout Pro product. Natively writing the SVG output provides
large performance improvements over the Batik library. The Batik library produces output that
only uses very primitive graphics elements and so post-processing of the SVG output is not possible
since the graph context is not discernible from the output. The Batik library, at the time of writing,
also is missing certain useful features, such as the association of a Hyperlink with a cell or text
element.

The first method is the one currently most often used and the one that will be described here.
The Batik library may be downloaded from its home page, which also provides a number of useful
tutorials regarding the use of the library. The basic principle is to create a SVGGraphics2D
object and paint the graph to that, the best explanation of how to do this is the code itself, shown
below:

public static void writeSVG(JGraph graph, OutputStream out, int inset)
throws UnsupportedEncodingException, SVGGraphics2DIOException

{
Object[] cells = graph.getRoots();
Rectangle2D bounds = graph.toScreen(graph.getCellBounds(cells));
if (bounds != null) {

// Constructs the svg generator used for painting the graph to

Page 102

http://xml.apache.org/batik

JGraph User Manual

DOMImplementation domImpl = GenericDOMImplementation
.getDOMImplementation();

Document document = domImpl.createDocument(null, "svg", null);
SVGGraphics2D svgGenerator = new SVGGraphics2D(document);
svgGenerator.translate(-bounds.getX() + inset, -bounds.getY()

+ inset);

// Paints the graph to the svg generator with no double
// buffering enabled to make sure we get a vector image.
RepaintManager currentManager = RepaintManager

.currentManager(graph);
currentManager.setDoubleBufferingEnabled(false);
graph.paint(svgGenerator);

// Writes the graph to the specified file as an SVG stream
Writer writer = new OutputStreamWriter(out, "UTF-8");
svgGenerator.stream(writer, false);

currentManager.setDoubleBufferingEnabled(true);
}

}

Viewing the output may be performed using the Squiggle browser produced by Apache,
Internet Explorer with the Adobe SVG plug-in or Firefox 1.5 or greater. In the author's experience
Internet Explorer with the Adobe plug-in produces the best quality output at the time of writing.

6.4 Exporting in a Headless Environment
On *nix systems the architecture of the X Windows system means that Swing requires some

kind of graphics buffer to write to. When using a 1.3 version of the Java Virtual Machine (JVM) in
order to produce exported images on such systems a framebuffer is required, the absence of a buffer
to write to would cause a headless exception to be fired. Note that Windows systems do not have
have this issue since they do not have the same client/server separation. With the popularity of *nix
on the server-side, the common requirement of producing graph images on a server and then
streaming those images to a client side browser could be non-trivial.

Previously, on *nix systems you would generally either set-up a VNC server or run a virtual
framebuffer if there was no X Windows server available. Having to change the server environment
was often not acceptable and so from JVM 1.4 the concept of a headless mode was introduced to
work around this issue. By setting the -Djava.awt.headless=true option in the JVM
arguments it is possible to create instances of lightweight components. Sun provide a useful tutorial
explaining the use of headless mode in Java. Both the core JGraph library and JGraph Layout Pro
are designed to work correctly in headless mode.

To display lightweight components it is necessary to add them to a heavyweight component
such as a Window or a Frame, which cannot be used in a headless environment. Instead of
creating a Frame and calling pack() there is a workaround where you may create a JPanel
and call addNotify() to achieve the same effect. Although, addNotify() is not strictly

Page 103

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/
http://java.sun.com/developer/technicalArticles/J2SE/Desktop/headless/

JGraph User Manual

meant to be called by developers, this is a widely accepted workaround:

 JGraph graph = getGraph(); // Replace with your graph instance
 JPanel panel = new JPanel();
 panel.setDoubleBuffered(false); // Always turn double buffering
off when exporting
 panel.add(graph);
 panel.setVisible(true);
 panel.setEnabled(true);
 panel.addNotify(); // workaround to pack() on a JFrame
 panel.validate();
 Color bg = null; // Use this to make the background transparent
 bg = graph.getBackground(); // Use this to use the graph
background color
 BufferedImage img = graph.getImage (bg, 0);

Using the above workaround means that you can use JGraph the same way you would in a
desktop Swing application. There is another method to use JGraph in that does not require the
creation of the JGraph Swing component, this is described in the section below entitled “Working
without the Swing component”.

6.5 Working without the Swing component
The creation of the Swing component is not always required, for example when an application

only creates a graph, applies a layout and finally extracts the position results through the API. In
JGraph the GraphLayoutCache object must be created in order to obtain most of the
available functionality, as well as an implementation of the GraphModel interface. The
JGraph instance performs the task of adding the GraphLayoutCache as a listener to the
GraphModel. Without a JGraph instance being created, it is recommended this is done by
creating a subclass of GraphLayoutCache and making that subclass implement
GraphModelListener. This subclass should add itself as a listener to the model and deal
with graph changes appropriately.

In the examples folder of the JGraph Layout Pro produce there is an example named
com.jgraph.layout.JGraphHeadlessLayoutExample which demonstrates a
graph simple graph being laid out without a JGraph instance being created. The
GraphLayoutCache subclass described above is implemented in the
com.jgraph.layout.DataGraphLayoutCache class.

6.6 Printing
Printing in built into Swing and with JDK 1.4 the javax.print package provides detailed

control over the printing process. This package contains the PrinterJob class which is the
main printing control class. The basic mechanism to print is implemented using the following

Page 104

JGraph User Manual

code:

PrinterJob printJob = PrinterJob.getPrinterJob();
printJob.setPrintable(graphPane); // where graphPane is a JScrollPane
with a graph in it, for example
if (printJob.printDialog()) {
 printJob.print();
}

You require a Swing container that implements the Printable interface. This container
needs to implement a print() method that is called when a print job is invoked. This is the only
method the interface defines and it takes three parameters: graphics – the graphics context to
paint the page on, pageFormat – a description of the size and orientation of the page and
pageIndex – the index of the page to be drawn (starts from zero).

You use the standard Swing printing functionality to set which Printable element is to be
printed and to start the print:

public int print(Graphics g, PageFormat printFormat, int page) {
 Dimension pSize = graph.getPreferredSize(); // graph is a JGraph
 int w = (int) (printFormat.getWidth() * pageScale);
 int h = (int) (printFormat.getHeight() * pageScale);
 int cols = (int) Math.max(Math.ceil((double) (pSize.width - 5)
 / (double) w), 1);
 int rows = (int) Math.max(Math.ceil((double) (pSize.height - 5)
 / (double) h), 1);
 if (page < cols * rows) {

 // Configures graph for printing
 RepaintManager currentManager =
RepaintManager.currentManager(this);
 currentManager.setDoubleBufferingEnabled(false);
 double oldScale = getGraph().getScale();
 getGraph().setScale(1 / pageScale);
 int dx = (int) ((page % cols) * printFormat.getWidth());
 int dy = (int) ((page % rows) * printFormat.getHeight());
 g.translate(-dx, -dy);
 g.setClip(dx, dy, (int) (dx + printFormat.getWidth()),
 (int) (dy + printFormat.getHeight()));

 // Prints the graph on the graphics.
 getGraph().paint(g);

 // Restores graph
 g.translate(dx, dy);
 graph.setScale(oldScale);

 currentManager.setDoubleBufferingEnabled(true);
 return PAGE_EXISTS;
 } else {
 return NO_SUCH_PAGE;
 }

Page 105

JGraph User Manual

}

Page 106

JGraph User Manual

7 Layouts

7.1 Introduction
JGraph Layout Pro can be run on any system supporting a Java Runtime Environment version

1.4 or later. Since version 1.2.1 of JGraph Layout Pro this software has included a license to JGraph
and a complete JGraph distribution with source code and documentation at the appropriate
revision. Please note that JGraph Layout Pro is not stand alone software and that an understanding
of the use of JGraph is required in order to use JGraph Layout Pro.

7.2 Installation and compilation
This version of JGraph Layout Pro is designed for use with version JGraph version 5.8.3.2, this

version is supplied with JGraph Layout Pro. Use with later versions of JGraph should always be
possible. If you would like more information about compatibility for a specific combination of
product versions, please email JGraph support.

7.2.1 REQUIREMENTS

• Java 1.4 or later compatible virtual machine for your operating system. (Java 1.4.2 is
recommended.) Java 1.5.x is known to work correctly.

• Compiling JGraph Layout Pro requires Apache Ant, a platform independent build tool that
uses Java for its command implementation.

7.2.2 INSTALLATION

JGraph Layout Pro comes as a self-extracting java file. If the .jar file association for .jar files is
setup correctly, opening the file in a window manager should start the installation. Otherwise, on
the command line type:

java -jar jgraphlayout-1.3.0.9-src.jar

and the installation process will begin. You will be required to agree to the license under which
the software is provided and to then select where to install the package.

7.2.2.1 Project structure and build options

Once Java and Ant are installed launch the command prompt on windows, or shell terminal on
*nix or Mac, navigate to the root folder where you installed JGraph Layout Pro. Typing ant
command, where command is one of the targets in the ant build file, will perform the function of

Page 107

JGraph User Manual

that command, as described below. Missing out the command will build the default target, all.

Page 108

JGraph User Manual

src/ Source root

examples/ Examples root

build/ Build environment
Table 1. Project Directory Structure

all Clean up and produce all distributions (*the default target)

apidoc Generate the API specification (javadoc)

build Run all tasks to completely populate the build directory

clean Delete all generated files and directories

compile Compile the build tree

dist Produce fresh distributions

distclean Clean up the distribution files only

doc Generate all documentation

init Initialize the build

jar Build all Java archives (JARs)

compile-example Compile the main example

generate Generate the build tree

example Run the main example
Table 2. Ant command options

For example, to compile and run the example UI type the following:

ant example

Page 109

JGraph User Manual

7.3 The Design of JGraph Layout Pro

7.3.1 WHAT DOES JGRAPH LAYOUT PRO DO?

JGraph Layout Pro takes graph structures defined using the JGraph library and performs either
or both of two specific functions on that graph structure:

1. Position the vertices of that graph using an algorithm(s) that attempts to fulfil certain
aesthetic requirements,

2. Add and remove control points of edges in the graph using an algorithm(s) that attempts to
fulfil certain aesthetic requirements.

Exact what these aesthetic criteria are depend upon individual application or layouts
requirements. Generally, these might involve spreading out vertices evenly without them
overlapping each other, avoiding edges overlapping vertices and crossing other edges, clustering
connected vertex neighbours and ordering vertices to reflect overall graph direction.

The standard facade in JGraph Layout Pro requires a JGraph instance in order to operate. The
facade in JGraph Layout Pro extracts information from the GraphLayoutCache and graph model
attached to this graph instances and stores it for processing by the layouts. The facade can then be
passed to one or more layouts and store the compound result within forcing the result to be applied
back to the graph.

From JGraph Layout Pro 1.3 a new version of the facade, JGraphModelFacade, was introduced.
This facade does not have any dependency on a JGraph object, instead the constructors take a
GraphModel as a parameter. This means you are able to create a graph and apply a layout to it
without having to instantiate a JGraph, ideal for server-side layouting.

Some confusion can arise as to whether a layout acts upon the GraphLayoutCache object (i.e.
the view of the graph as the application displays it) or upon the filtered view produced by the
JGraphFacade. The layout acts the graph as the facade describes it and this may be different to the
view provided by the cache.

For example, the GraphLayoutCache may be set to not display edges when their connected
vertices are not visible. However, the facade, through the edgePromotion flag, may promote those
edges to the first visible parent. This means the layouts will act as though the edge is there, even
though it is not drawn.

7.4 Running a layout
There are two important classes required for configuring and running a layout,

JGraphLayout and JGraphFacade. Classes inheriting from JGraphLayout perform
the mathematical operations of producing the layout, whereas, JGraphFacade performs
filtering on the graph and provides various utility methods for the layout to extract information

Page 110

JGraph User Manual

about the graph. The advantage of this mechanism is that the exact data transferred to the layout is
de-coupled from the layout algorithm itself, providing a more stable API during the lifetime of the
package as new layouts are introduced. It also means that layout algorithm is able to use the output
of any other layout as its input, i.e. the facade is manipulated by one by layout and then passed to
another.

The first thing to be done when running a layout is to create the facade object that stores
information about the graph to be acted upon and its configuration. The constructors require an
instance of JGraph so the facade knows which graph is being referenced in the layout. If a tree
layout is being used, the constructor must also be passed the root node(s) of the trees.
JGraphFacade has a number of switches also that enable the layout to act upon the correct
cells in the graph. By setting these switches, the facade configures what it returns from certain
utility methods, again encapsulating the configuration of the layout in the facade. For example, by
default the getNeighbours() method on the facade returns neighbour cells regardless of
their visibility, whereas with the ignoresHiddenCells flag set to true, only cells visible in
the current graph view will be returned. The layouts are designed to access information through
such methods in the facade, performing stateful filtering. The switches on the facade are:

• ignoresHiddenCells - Stores whether or not the layout is to act on only visible cells
i.e. true means only act on visible cells, false act on cells regardless of their visibility. The
default value is true.

• ignoresUnconnectedCells - Stores whether or not the layout is to act on only cells
that have at least one connected edge. true means only act on connected cells, false act
on cells regardless of their connections. The default value is true.

• ignoresCellsInGroups - Stores whether or not the layout is to only act on root cells
in the model. true means only act on root cells, false means act upon roots and their
children. The default value is false.

• directed - Stores whether or not the graph is to be treated as a directed graph. true
means follow edges in target to source direction, false means treat edges as directionless.
The default value is true.

The facade object not only stores the input to the layout, but also the output. The result of a
layout is not automatically applied to a graph in case the developer wishes to check the result or
perform another algorithm. To enable this the result of the layout is stored as a nested map of the
attributes where the graph cell is the key to each pair, and an attribute map, detailing the changes
made to that cell by the layout, is the value. This map may be obtained by a call to
getNestedMap() on the facade and is suitable for sending directly to the edit() method on
the GraphLayoutCache or GraphModel. Below is a simple example showing the steps of
setting the objects up, executing the layout and applying the layout back to the graph:

 JGraphFacade facade = new JGraphFacade(graph); // Pass the facade
the JGraph instance

Page 111

JGraph User Manual

 JGraphLayout layout = new JGraphFastOrganicLayout(); // Create an
instance of the appropriate layout
 layout.run(facade); // Run the layout on the facade. Note that
layouts do not implement the Runnable interface, to avoid confusion
 Map nested = facade.createNestedMap(true, true); // Obtain a map
of the resulting attribute changes from the facade
 graph.getGraphLayoutCache().edit(nested); // Apply the results to
the actual graph

The method to obtain a nested map of the results of the layout, createNestedMap, takes
two parameters:

• ignoreGrid - whether or not the map returned is snapped to the current grid

• flushOrigin - whether or not the bounds of the resulting graph should be moved to
(0,0)

7.4.1 WRITING YOUR OWN LAYOUT

Any new layout created should conform to the JGraphLayout interface. A new layout is
complex to write, but mostly due to the algorithm of the layout, the process of interfacing with
JGraph is simple.

The run() method of any layout must determine the required information from the facade as it
currently exists, perform the layout and finally apply the results of the layout back to facade.
Remember, the facade is a stateful filter of the graph. The reason for always using the facade and
not the graph model or graph layout cache, is that many layouts might be applied in sequence and
the output of the last layout should be the input of the next. Also, the facade flags are taken into
account in the graph model or view.

One of the first things all layouts do is obtain the position and size of the vertices to be laid out.
This is done using the getBounds() method on the facade. Layouts normally store a copy of the
bounds values locally within the layout class. An array of vertices is passed into the getBounds()
method, this is obtained using facade.getVertices().toArray().

As well as the positioning of vertices, the connections between those vertices will usually be
required. getNeighbours() is often used to determine this, also getEdgesBetween(),
getOutgoingEdges() and getIncomingEdges() are useful in this regard.

Finally, having applied the layout alogrithm, the position of the vertices after the layout must be
available. These are then set back on the facade using setLocation(). If the layout does this
correctly, calling in the manner described above will result in the layout being applied to the graph.

Page 112

JGraph User Manual

7.4.2 EDGE CONTROL POINTS

Some of the layout algorithms are designed specifically to manipulate and insert/remove edge
control points in order to provide better edge routing in the end result. Because routing algorithms
may be defined on a per edge basis, the layout algorithms only alters the control points of edges is
required by that algorithm. Therefore, if one algorithm changes an edge's control points and
another layout is immediately applied then the control points will probably look incorrect in the
new layout. Rather than try to second-guess whether or not inserted control point were added
purposefully or accidentally it is left to the developer to deal with the state of control points prior
to a layout being applied. The utility method resetControlPoints() on
JGraphFacade is available to clear all control points should you require this to be done before
any layout is run.

7.4.3 EXAMPLES

In the examples package of the JGraph Layout Pro product you will find a series of examples
that demonstrates the layout features, as well as some additional features such as using an overview
panel, exporting to SVG and implementing rich text label editiors. Note that the
JGraphLayoutExample requires the use of the external L2FProd common library to run. This
library is available under the Apache Software License. The JGraph team have used it for several
years and found both the software to be of high quality and the lead developer to be very responsive
to bug reports.

Page 113

http://common.l2fprod.com/

JGraph User Manual

7.5 Using the layouts

7.5.1 THE TREE LAYOUTS

The tree layout classes currently available in the JGraph Layout Pro package are:

• com.jgraph.layout.tree.JGraphTreeLayout
• com.jgraph.layout.tree.JGraphCompact TreeLayout
• com.jgraph.tree.JGraphRadialTreeLayout.

Note that at least one root must be specified for all tree layouts using the roots parameter of
the facade constructors. Note that these are the roots of the tree, not the roots of the graph model.
Tree layouts will follow edges from the root node(s) to determine the structure of the tree(s),
taking into account the settings of the facade.

Layout Pro also supports the concept of laying out sub-trees as show in the example application.
Selection of any node and the execution of a tree layout will result in only the child tree nodes
being laid out as a tree with the selected node as root. Note that the facade needs to be set to
directed (the default value), otherwise the algorithm determining the tree structure will process
the parents of the sub-node. However, this technique can be used to change the root node of an
entire tree.

Here is how you might set up the facade to process a tree layout:

 Object roots = getRoots(); // replace getRoots with your own
Object array of the cell tree roots. NOTE: these are the root cell(s) of
the tree(s), not the roots of the graph model.
 JGraphFacade facade = new JGraphFacade(graph, roots); // Pass the
facade the JGraph instance
 JGraphLayout layout = new JGraphTreeLayout(); // Create an
instance of the appropriate layout
 layout.run(facade); // Run the layout on the facade.
 Map nested = facade.createNestedMap(true, true); // Obtain a map
of the resulting attribute changes from the facade
 graph.getGraphLayoutCache().edit(nested); // Apply the results to
the actual graph

7.5.1.1 Tree Layout

The tree layout arranges the nodes, starting from a specified node(s), into a tree-like structure.
The tree may by oriented in the four cardinal compass points options on the layout include
alignment of same-level nodes selection, setting the minimum distance between nodes on adjacent
levels of the tree and setting the minimum distance between nodes on the same levels. The
performance of the tree layout is O(|V|), i.e. proportional to number of nodes in the layout.

Page 114

JGraph User Manual

7.5.1.1.1 Alignment

Alignment refers to which part of vertices will be aligned for all vertices on a given level. Using
the setAlignment() method you can set the alignment of the graph to
SwingConstants.TOP, SwingConstants.CENTER or
SwingConstants.BOTTOM. The literal values of these constants are 1, 0 and 3 respectively at
the time of writing, but the variable names should always be used.

Page 115

Illustration 52 : SwingConstants.TOP

Illustration 53 : SwingConstants.CENTER

JGraph User Manual

7.5.1.1.2 Orientation

Orientation refers to the compass direction in which the root node(s) of the tree will be located
relative to the rest of the tree. Using the setOrientation() method you can set the
orientation to SwingConstants.NORTH, SwingConstants.EAST,
SwingConstants.SOUTH or SwingConstants.WEST. The literal values of these
constants are 1, 3, 5 and 7 at the time of writing, but the variable names should always be used.

Page 116

Illustration 54 : SwingConstants.BOTTOM

Illustration 55 :
SwingConstants.NORTH

JGraph User Manual

Page 117

Illustration 56 : SwingConstants.EAST

Illustration 57 :
SwingConstants.SOUTH

JGraph User Manual

7.5.1.1.3 levelDistance and nodeDistance

levelDistance is the distance between the lowest point of any vertex on one level to the
highest point of any vertex on the next level down. nodeDistance is the minimum distance
between any two vertices on the same level. Note that levels closer to the root tend to be spaced a
further apart than this, assuming the density of nodes is lower towards the start of the tree.

.

Page 118

Illustration 58 :
SwingConstants.WEST

Illustration 59 : levelDistance and nodeDistance
definitions

JGraph User Manual

7.5.1.1.4 combineLevelNodes

The combineLevelNodes flag specifies whether or not to ensure that nodes on the same
tree level are aligned across the entire tree. When nodes vary in size it is possible to save space on
sub-trees with smaller nodes by setting this flag to false. However, this can make it difficult to
determine visually which nodes occupy the same level on the tree. If this flag is set to true, the
alignment variable determines exactly which part of nodes of the same level are aligned.

Page 119

JGraph User Manual

Page 120

Illustration 60 : combineLevelNodes = false

Illustration 61 : combineLevelNodes = true

JGraph User Manual

7.5.1.1.5 positionMultipleTrees and treeDistance

positionMultipleTrees determines whether or not to separate distinct trees so there is
no overlap between the trees. Each of the distinct trees to be separated would have to be specified
in the roots parameter of JGraphFacade. The distance between each of the trees is defined
by the treeDistance variable.

Page 121

Illustration 62 :
positionMultipleTrees =
false

JGraph User Manual

7.5.1.2 Compact Tree Layout

The Compact Tree Layout (formerly called the Moen) is another layout in the tree-family, it
makes some improvements over standard tree layouts. The Compact Tree takes cell shapes into
account and concentrates on producing as compact a result as possible. The Compact Tree also
describes mechanisms to compute deltas of the layout, so the entire computation does not have to
be performed on every layout. The exact mechanism for how to do this depends upon the
application. If you require this performance advantage, contact JGraph support for information on
how to apply it in your application. The Compact Tree manages to compact more tightly than the
standard tree by storing sub-trees as polygons. In terms of performance the time to lay out using
the layout is O(|V|), i.e. proportion to the number of vertices.

7.5.1.3 Radial Tree Layout

Page 122

Illustration 63 : positionMultipleTrees =
true , treeDistance = 30

JGraph User Manual

The Radial Tree Layout draws the root node of the tree in the centre of the layout and lays out
the other nodes in concentric rings around the focus node. Each node lies on the ring
corresponding to its shortest network distance from the root node. Immediate neighbours of the
root node lie on the smallest inner ring, their neighbours lie on the second smallest ring until the
most distance nodes form the outermost rings. The angular position of a node on its ring is
determined by the sector of the ring allocated to it. Each node is allocated a sector within the sector
assigned to its parent, with size proportional to the angular width of that node's subtree. The
performance of the radial tree is O(|V|), i.e. proportion to the number of vertices.

Page 123

Illustration 64 : A Radial Tree Layout

JGraph User Manual

7.5.2 ORGANIC LAYOUTS

7.5.2.1 Spring Embedded

The Spring Layout is a force-directed layout algorithm designed to simulate a system of particles
each with some mass. The vertices simulate mass points repelling each other and the edges simulate
springs with attracting forces. The algorithm moves through a number of iteration trying to
minimize the energy of this physical system. This means a certain number of iterations are required
to bring the system close to equilibrium, however, further iterations will perform very small
changes and simply waste CPU time.

The performance of the Spring layout is O(|V|2), i.e. proportional to the number of vertices
squared. This time also needs to be multiplied by the number of iterations in the layout to get the
full time worst-case. Generally, the spring is best applied to smaller graphs with a more regular
structure.

The springs have a natural length, if compressed to less than this length they repulse the
attached nodes, if extended to more than this length they attract the attached nodes. The force
with which they act upon the attached nodes is proportional to the difference between the current

Page 124

Illustration 65 : A tree laid out by the Spring Layout

JGraph User Manual

spring length and its natural spring length. The force with which each pair of nodes repulse each
other is proportional to the inverse of the distance between the nodes squared.

The key values in the spring layout are the spring length, the spring force and the repulsive force.
The default values of the layout are set to behave well for a general graph. Increasing or decreasing
the repulsive force only tends to affect local clusters shapes. Higher values for the spring force tends
to lead to instability and oscillation of clusters and even the whole graph. Spring length tends to
only affect the density of the graph, not the actual layout formed.

The Spring layout acts fairly slowly and so many iterations are required before an equilibrium
between the nodes is found, the number of iterations tends to increase with the number of nodes in
the layout. The spring layout constructor takes the number of iterations to be performed as a
parameter.

The speed with which the spring layout produces a pleasing result can depend upon the input
graph. Sometimes it is worth placing the nodes in random positions before applying the spring
layout, or possibly applying the circle layout first. The tilt() method on JGraphFacade
provide random placements of specified nodes. The example that ships with Layout Pro applies
snap to grid to the cells. If the spring layout has short spring lengths and high spring forces, this can
result in cells being overlaid. The spring layout might be used without snap to grid in this case.

7.5.2.2 Fast Organic Layout

The two aesthetic aims of the Fast Organic (FO) layout are that vertices connected by edges
should be drawn close to one another and that vertices should not be drawn to close to one
another. The attractive and repulsive forces are simply variations on those used in the spring
embedded layout. Their formulae are intended to be easier to compute and better at overcoming
local minima positions. The FO layout adds the concept of temperature, whereby the maximum
distance that nodes can move decreases over between each iteration. This is intended to reduce
instability in the layout and force the layout to settle in its later stages.

The performance of the FO layout is O(|V|2 +|E|) per iteration, i.e. proportional to the number
of vertices squared. This time also needs to be multiplied by the number of iterations in the layout
to get the full time worst-case. Generally, the FO is best applied to smaller graphs with a more
regular structure.

The FO layout is much like the Spring Embedded in that it is a force directed layout with the
same top level algorithm. Each iteration consists of taking each vertex in turn and calculating a
force upon it based on connected edge and their distance to all other vertices. The FO layout also
introduced the idea of temperature, whereby the maximum move of any vertex decreasing with
each iteration, assisting the layout to 'settle'.

The force repulsing vertices in the FO is proportional to inverse of the distance between the
nodes and the attractive forces between connected nodes are proportionals to the square of the
distance between them. The constant, k, also used in both equations is the distance at which
connected vertices are at equilibrium. The lack of a logarithmic calculation, as required in the

Page 125

JGraph User Manual

Spring Embedded algorithm, make the FO one of the faster force directed layouts. The number of
iterations required to produce a pleasing result cannot be determined in advance, but the number
of nodes in the graph will affect this number.

7.5.2.3 Inverted Self Organising Map

Although not strictly a force-directed layout, the ISOM layout uses the idea of filling the space
evenly with vertices and of causing connected vertices to attract each other. Rather actually
calculating forces to be applied to vertices, the ISOM layout uses an heuristic to achieve its aim.
The algorithm involves selecting a random point in the graph area and picking the vertex closest to
that point. This vertex is moved towards that points as well as all vertices connected to that initial
vertex by up to a set number of edge steps. The amount by which the vertices are moved decreases
the greater the number of edges in the shortest path between the current and initial vertex. The
initial number of edge steps is decreased during the layout so that the later steps form local clusters
of connected vertices.

The computational effort per iteration is linear, O(|N|). This comes from the effort of finding
the closest node to the random point. When JGraph implements a spatial index structure this will
improve to O(log|N|). Only a selection of nodes are moved per iteration and so a greater number
of iterations are required for larger graphs. Generally, the number of iterations required is
proportional to the number of vertices and so the computational effort, including the number of
iterations, will always be O(|V|). The paper describes 500 iterations as being enough for 25 nodes,
thus maxIterationsMultiple, which defines the vertices to number of iterations factor, defaults to
20. The ISOM is the fastest of the force-directed family of layouts in this package.

The two important data to setup in an ISOM layout are the radius and the bounds of graph.
The bounds determines within which area the random positions will be located and so the area
within which the nodes will be distributed. If you prefer to just specify an average density of nodes,
use densityFactor to do this. The moveRadius field determines the number of neighbour
nodes, in addition to the closest node to the random position, that are moved towards that point.
It defines the actual number of edges limit that will be traversed to find node to move. Changing
this value affects the clustering behaviour of the layout.

Page 126

JGraph User Manual

7.5.2.4 Organic Layout

This layout is an implementation of a simulated annealing layout, which describes the following
criteria as being favourable in a graph layout: (1) distributing nodes evenly, (2) making edge-
lengths uniform, (3) minimizing cross-crossings, and (4) keeping nodes from coming too close to
edges. These criteria are translated into energy cost functions in the layout. Nodes or edges
breaking these criteria create a larger cost function, the total cost they contribute is related to the
extent that they break it. The idea of the algorithm is to minimise the total system energy. Factors
are assigned to each of the criteria describing how important that criteria is. Higher factors mean
that those criteria are deemed to be relatively preferable in the final layout. Most of the criteria
conflict with each other to some extent, the default values selected are a broad balance between the
criteria, though note that the factors are not normalized and so their values vary somewhat.

In addition to the four aesthetic criteria the concept of a border line which induces an energy
cost to nodes in proximity to the graph bounds is introduced to attempt to restrain the graph. All
of the 5 factors can be switched on or off within the layout.

Simulated Annealing is the most expensive layout in this package computationally (when all
criteria switched on), but it can produce good results over a range of graphs. Layouts like the spring
layout only factor in edge length and inter-node distance being the factors that provide the most
aesthetic gain relative to their computational intensity. The additional factors are relatively more
expensive but can have very attractive results. The performance of the Simulated Annealing layout
is O(|V|2|E|) per iteration in the worst case.

In the configuration details that follow, there are examples of the different results produced by
the annealing layout using the different settings. Note that the same input graph was used for each
example and that the isDeterministic flag was set to true, i.e. there were no random
elements in the layout process.

Since the annealing layout is the most costly computationally, a good approach, where improved
performance is required, is to perform an ISOM layout followed by the annealing just in the fine
tuning stage.

Page 127

JGraph User Manual

7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor

isOptimizeNodeDistribution determines whether or not to attempt to distribute
nodes evenly around the available space. If isOptimizeNodeDistribution is set to
true then nodeDistributionCostFactor is the factor by which the cost of a particular
node distribution is multiplied by to make an energy cost contribution to the total energy of a
particular graph layout. Increasing this value tends to result in a better distribution of nodes across
the available space, at the partial cost of other graph aesthetics, in particular edge lengths.

Page 128

Illustration 66 : nodeDistributionCost = 10,000

Illustration 67 : The same graph with nodeDistributionCost = 500,000

JGraph User Manual

7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor

isOptimizeEdgeLength determines whether or not to attempt to minimise edge
lengths. If isOptimizeEdgeLength is set to true then edgeLengthCostFactor is
the factor by which the cost of a particular set of edge lengths is multiplied by to make an energy
cost contribution to the total energy of a particular graph layout. Increasing this value tends to
result in shorter overall edge lengths, at the partial cost of other graph aesthetics, in particular node
distribution.

Page 129

Illustration 68 : edgeLengthCostFactor = 0.01

JGraph User Manual

7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor

isOptimizeEdgeCrossing determines whether or not to attempt to minimise the
number of edges crossing that appear in the laid out graph. If isOptimizeEdgeCrossing is
set to true then edgeCrossingCostFactor is the factor by which the cost of instance of
an edge crossing is multiplied by to make an energy cost contribution to the total energy of a
particular graph layout. Increasing this value tends to result in few edge crossing, at the partial cost
of other graph aesthetics, usually edge length. A number of types of graph do not work well with
aggressively high values for edgeCrossingCostFactor. This is because trying to avoid edge
crossing results in nodes being spread out to avoid edge overlap and this results in longer edges. If
the graph cannot be laid out in a way that avoid a number of overlaps, the longer edges can result in
an increase in the number of edge crossing, as shown in the example below.

Page 130

Illustration 69 : The same graph with
EdgeLengthCostFactor = 0.1

JGraph User Manual

Page 131

Illustration 70 : edgeCrossingCostFactor = 500

JGraph User Manual

Page 132

Illustration 71 : The same graph with edgeCrossingCostFactor = 500,000

JGraph User Manual

7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and fineTuningRadius

isOptimizeEdgeDistance determines whether or not to attempt to move nodes away
from edges that pass close by to them. If isOptimizeEdgeDistance is set to true then
edgeDistanceCostFactor is the factor by which the cost of a particular set of edge to
nodes distances is multiplied by to make an energy cost contribution to the total energy of a
particular graph layout. Increasing this value tends to result in nodes being moved away from edges,
at the partial cost of other graph aesthetics, usually node distribution and edge length.

Optimizing edge to node distance to computational expensive and pointless until the end of an
annealing layout. For this reason, it is deemed a fine tuning mechanism to be performed in the final
stages of the layout. isFineTuning determines whether or not any fine tuning will take place.
If it is set to false then the isOptimizeEdgeDistance value is ignored. If it is set to
true, then fine tuning will start when the current moveRadius (see the section on
moveRadius) reaches the value held by fineTuningRadius.

In summary, edge to node distance will only be taken into account if isFineTuning and
isOptimizeEdgeDistance are both set to true, which are their default values. The
radius within which new test positions for cells that are candidates for moving decreases through
each layout iteration. When it reaches fineTuningRadius, the edge to node distance cost
factor will start to be used and continue until the layout terminates.

Page 133

Illustration 72 : No fine tuning - no edge to node distance
cost factor used

JGraph User Manual

Page 134

JGraph User Manual

Page 135

Illustration 73 : The same graph with edgeDistanceCostFactor = 4000

JGraph User Manual

7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea

isOptimizeBorderLine determines whether or not to attempt to restrain the nodes
within a set boundary. If isOptimizeBorderLine is set to true then
borderLineCostFactor is the factor by which the cost of a particular set of node to
boundary distances is multiplied by to make an energy cost contribution to the total energy of a
particular graph layout. Increasing this value tends to result in nodes staying within the boundary,
at the partial cost of other graph aesthetics, usually node distribution if the graph is densely packed.
It is not impossible that a node might escape this boundary, though this becomes less likely the
higher the value given to this factor.

There are three ways of setting the boundary within which nodes are attempted to be
constrained. The first method is to set averageNodeArea before calling the run() method.
This variable defines the average area that each node will be given and using this and the total
number of nodes the total area of the boundary is calculated. Note that the boundary will be square
shaped. This is a good way to keep the node density reasonably constant without having to worry
about the size of the graph. Setting this variable to a non-zero positive value overrides any other
method of setting the boundary for this layout.

The second mechanism is to use the constructor of the annealing layout that accepts a rectangle.
The sets up the boundary for the lifetime of the layout object instance, unless overridden by setting
averageNodeArea.

The third method is used automatically if neither of the first two are. This just sets the
boundary to the bounds of the graph before the layout is applied.

Page 136

Illustration 74 : Bounds set using constructor
and borderLineCostFactor = 500

JGraph User Manual

Page 137

Illustration 75 : The same graph with isOptimizeBorderLine = false

JGraph User Manual

7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor

At each iteration each cell has a number of positions around it selected as candidate positions to
move to, in an attempt to decrease the total system energy. Those candidates positions are at fixed
angles around the perimeter of a circle that has the node as its centre. The radius of that circle starts
at initialMoveRadius and decreases with each iteration by being multiplied by
radiusScaleFactor. The value of initialMoveRadius is determined by the layout,
there is no need to override it unless for a specific reason. radiusScaleFactor is a double
between 0.0 and 1.0, lower values improve performance but raising it towards 1.0 can improve the
resulting graph aesthetics. When the radius hits the minimum move radius defined,
minMoveRadius, the layout terminates, unless the maximum number of iterations is reached
first. The minimum move radius should be set a value where the move distance is too minor to be
of interest.

Page 138

Illustration 76 : radiusScaleFactor = 0.5

JGraph User Manual

Page 139

JGraph User Manual

7.5.2.4.7 maxIterations

maxIterations is the maximum number of layout iterations that can take place. Layouts can
terminate before this value is reached because the minimum radius value has been reached, or the
layout has been unchanged for a certain number of rounds.

7.5.2.4.8 unchangedEnergyRoundTermination

If, at the end of an iteration it is determined whether any changes were made. If not, the count
of number of rounds where no change has taken place is incremented. If this count reaches
unchangedEnergyRoundTermination the layout terminates. If nothing is being moved
after a number of rounds it is assumed a good layout has been found. In addition to this if no nodes
are moved during an iteration the move radius is halved, presuming that a finer granularity is
required.

7.5.2.4.9 isDeterministic

The isDeterministic flag defines whether or not the annealing layout should produce
the same result for a given input graph and settings. The annealing layout uses random values in a
few places to attempt to improve the output. Setting isDeterministic to true degrades
the output only marginally, if at all, and is useful if you would like to experiment with the layout
settings knowing that constant settings values produce a constant output.

Page 140

Illustration 77 : The same graph with radiusScaleFactor = 0.9

JGraph User Manual

7.5.2.5 Hierarchical Layout

Page 141

Illustration 78 : A Hierarchical layout applied to a random graph

JGraph User Manual

The hierarchical layout is designed to work on directed graphs that have an overall flow, that is,
some start point(s), some end point(s) and some overall flow between those points. Often graphs
that have become too complex for a tree layout require the use of a hierarchical layout. These
layouts are commonly applied to workflows, process modelling diagrams, software engineering
diagrams and processes, databased visualization and other directed models.

The graph should have some distinct start and end node(s), that is at least one node with no
incoming edges and at least one node with no outgoing nodes, respectively. The roots of the layout
may be set explicitly, alternatively, by passing them in through the constructor:

 Object roots = getRoots(); // replace getRoots with your own
Object array of the hierarchical roots. NOTE: these are the root cell(s)
of the tree(s), not the roots of the graph model.
 JGraphFacade facade = new JGraphFacade(graph, roots); // Pass the
facade the JGraph instance
 JGraphLayout layout = new JGraphHierarchicalLayout(); // Create an
instance of the hierarchical layout
 layout.run(facade); // Run the layout on the facade.
 Map nested = facade.createNestedMap(true, true); // Obtain a map
of the resulting attribute changes from the facade
 graph.getGraphLayoutCache().edit(nested); // Apply the results to
the actual graph

It should be noted that the hierarchical layout might insert control points in certain edges to
route them correctly. This should be taken into account when performing additional editing
without applying the layout again. The JGraphFacade provides a method
resetControlPoints to assist with removing control points. Calling this method will
remove all additional control points from the edges passed into the next layout applied.

7.5.2.5.1 Orientation

Orientation refers to the compass direction in which the root node(s) of the layout will be
located relative to the rest of the tree. Using the setOrientation() method you can set the
orientation to SwingConstants.NORTH, SwingConstants.EAST,
SwingConstants.SOUTH or SwingConstants.WEST. The literal values of these
constants are 1, 3, 5 and 7 at the time of writing, but the variable names should always be used.

7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing

interRankCellSpacing is the distance between the lowest point of any vertex on one
layer of the layout to the highest point of any vertex on the next level down.
intraCellSpacing is the minimum distance between any two vertices on the same level.

7.5.2.5.3 isDeterministic

The isDeterministic flag defines whether or not the hierarchical layout should produce

Page 142

JGraph User Manual

the same result for a given input graph and settings. The hierarchical layout does not assure that
layer will be ordered in the order as provided by the graph model unless this flag is set. Setting
isDeterministic to true may degrade the output somewhat for larger graphs, since it
introduces a component with performance somewhere between linear and square.

Page 143

JGraph User Manual

7.5.3 EDGE ROUTING

7.5.3.1 Orthogonal Edge Routing

OrthogonalLinkRouter is a global edge router designed to avoid the overlap of edges with
vertices by constructing the edges in vertical and horizontal segments. The router is run like any
standard layout, its performance means it is not a good candidate for displaying during a preview.

Page 144

Illustration 79: The Orthogonal Edge Router

JGraph User Manual

7.5.4 SIMPLE LAYOUTS

7.5.4.1 Circle Layout

The circle layout arranges all the node into a circle, with constant spacing between each
neighbour node. The performance of this layout is proportional to the number of vertices in the
circle. Although, circle layouts are not commonly used by themselves, it has been noted that some
non-deterministic layouts (force-directed mainly) produce a better result if separated out by a
circle layout first. If a better result is not produce, often the same quality of result can be obtained
quicker (through less iterations of a force-directed layout) then without the initial circle applied.
There isn't a separate class for this layout as it is a trivial implementation. Instead, the method,
circle(List vertices), is part of the facade. Below is an example of using the circle
layout:

 JGraphFacade facade = new JGraphFacade(graph); // Pass the facade
the JGraph instance
 JGraphLayout layout = new
JGraphSimpleLayout(JGraphSimpleLayout.TYPE_CIRCLE); // Create an
instance of the circle layout
 layout.run(facade); // Run the layout on the facade.
 Map nested = facade.createNestedMap(true, true); // Obtain a map
of the resulting attribute changes from the facade
 graph.getGraphLayoutCache().edit(nested); // Apply the results to
the actual graph

Page 145

JGraph User Manual

7.6 Using the Example Source Code

7.6.1 THE PROGRESS METER

Some of the layouts are more CPU intensive than others and so require some graphical
indication than the application is still performing processing and has not crashed. The standard
way to do this is using a progress meter. A custom progress meter class is provided,
JGraphLayoutProgress, that may be used on layouts that implement the Stoppable
interface defined in JGraphLayout that enables the user to stop the layout running and return
to the previous graph if the layout takes too long. Layouts supporting the progress meter fire a
property change event to set the maximum value of the progress meter has well each time a
significant change to the value of the progress occurs.

The maximum value of the progress meter is set either as a constructor parameter, or passed into
the reset() method. Layouts call the setProgress() method during the running of the
layout to update the progress.

To implement a progress meter in an application, base it on the example in
JGraphExampleLayoutCache.layout(). Here, a PropertyChangeListener
is created that processes the possible event types. These event types are, specifically,
JGraphLayoutProgress.PROGRESS_PROPERTY for a new value of the progress meter
and JGraphLayoutProgress.MAXIMUM_PROPERTY to set the maximum progress
value. A standard ProgressMonitor can be used and implement cancellation functionality as
shown in the example code.

Page 146

JGraph User Manual

Appendix A – Definitions

• self-loop - an edge with both endpoints attached to the same vertex, also known as a reflexive
edge.

• parallel edges – more than one edge connecting a pair of vertices.

• directed edge - is an edge with a specific direction, like a vector. Directed edges have source
cells and target cells at their endpoints to indicate the direction. Note that all edges in JGraph
have a direction internally. It is up to an application whether to take edge direction into
account or to draw edge arrows.

• hyperedge - an edge that has more than two endpoints and so cannot be represented by just a
line.

• incident – If an edge connects to a vertex it is described as incident of that vertex.

• degree – The degree of a vertex is the number of edges incident upon it.

• simple graph – A graph that has no loops and no parallel edges

• directed graph – all edges of the graph are directed. Exchanging all the directed edges for
undirected edges provides the underlying graph.

• oriented graph – a directed graph whose underlying graph is simple.

Page 147

Illustration 80: A
self-loop edge

Illustration 81: A number of parallel edges

JGraph User Manual

• hypergraph - a graph with hyperedges

Page 148

	1 Introduction
	1.1 What does JGraph do?
	1.2 What is a Graph?
	1.2.1 Graph Visualization
	1.2.2 Graph Interaction
	1.2.3 Graph Layouts
	1.2.4 Graph Analysis

	1.3 About this Manual
	1.3.1 Pre-requisites for this Manual
	1.3.2 Getting Additional help

	1.4 About JGraph
	1.4.1 JGraph Swing Compatibility
	1.4.2 The JGraph Packages
	1.4.2.1 JGraphpad Pro

	1.4.3 MxGraph
	1.4.4 JGraph licensing

	1.5 Getting Started
	1.5.1 The JGraph Web Site
	1.5.2 Downloading JGraph
	1.5.3 Installing JGraph
	1.5.4 Project structure and build options

	1.6 The Design of JGraph
	1.6.1 The Use of Object Types

	2 JGraph and the Graph Model
	2.1 Understanding the HelloWorld application
	2.1.1 Creating the JGraph
	2.1.2 Inserting Cells
	2.1.2.1 Configuring Cells' Attributes before Insertion

	2.1.3 Editing Graph Cells
	2.1.3.1 Removing Cell Attributes

	2.1.4 Removing Cells
	2.1.5 Attribute Maps
	2.1.5.1 Attribute Map changes after edit calls

	2.1.6 Summary

	2.2 Creating and Configuring the JGraph class
	2.2.1 	Configuring JGraph

	2.3 The Graph Model
	2.3.1.1 Introduction
	2.3.1.2 The 3 editing methods
	2.3.1.3 Accessing the Graph Model Data
	2.3.1.4 Cloning the Graph Model
	2.3.1.5 Navigating Connections Using the GraphModel interface
	2.3.1.5.1 Obtaining a collection of edges connected to a vertex
	2.3.1.5.2 Obtaining the Source and Target Vertices of an Edges

	3 Cells
	3.1 Types of Cells
	3.2 Cell Interfaces and Default Implementations
	3.2.1 GraphCell Interface
	3.2.2 The Edge and Port Interfaces
	3.2.3 The DefaultGraphCell
	3.2.3.1 The Default Graph Cells Constructors and Methods

	3.2.4 Cloning Cells

	3.3 User Objects
	3.3.1 Obtaining and Changing the User Object

	3.4 Cell Views
	3.4.1 Cell Handles
	3.4.2 The Cell View hierarchy
	3.4.2.1 getPerimeterPoint
	3.4.2.2 getRenderer
	3.4.2.2.1 How to Create your Own Cell View and Renderer

	3.4.3 Creating Cell Views and Associating them with Cells
	3.4.4 default cell view and Renderer implementations
	3.4.4.1 The Cell Views
	3.4.4.2 The Cell Renderers
	3.4.4.2.1 PortRenderer
	3.4.4.2.2 VertexRenderer
	3.4.4.2.3 EdgeRenderer

	3.5 Using Cells
	3.5.1 Using Vertices
	3.5.1.1 Bounds
	3.5.1.2 Constraining Vertex Bounds
	3.5.1.3 Resizing and Autosizing
	3.5.1.4 Icon
	3.5.1.5 Label Text
	3.5.1.6 Borders
	3.5.1.7 Colors
	3.5.1.8 Inset

	3.5.2 Using Edges
	3.5.2.1 Bounds
	3.5.2.2 Control Points and Routing
	3.5.2.3 Positioning edge labels
	3.5.2.4 Edge Styles
	3.5.2.5 Edge end decorations
	3.5.2.6 Connections restraining

	3.5.3 Attributes for Both Vertices and Edges
	3.5.3.1 Constraining Basic Editing Functions
	3.5.3.2 Opaqueness
	3.5.3.3 Selection

	3.5.4 Using Ports
	3.5.4.1 Port Positioning

	3.6 Summary

	4 Advanced Editing
	4.1 Grouping
	4.1.1 Graph Model Representation of Grouping
	4.1.2 ParentMap
	4.1.3 Group Insets
	4.1.4 Move into/out of groups
	4.1.5 Removing Child Cells

	4.2 ConnectionSet
	4.3 The GraphLayoutCache
	4.3.1 View-Local independence
	4.3.2 Visibility
	4.3.2.1 Configuring Visibility after Editing Operations

	4.3.3 View-local attributes
	4.3.4 Expanding and Collapsing Groups
	4.3.5 Other GraphLayoutCache options

	4.4 Advanced Model Functions
	4.4.1 Model ordering
	4.4.2 Edits
	4.4.2.1 Undo/Redo
	4.4.2.1.1 Undo-support Relay
	4.4.2.1.2 GraphUndoManager

	4.5 Drag and Drop
	4.6 Zooming
	4.7 Summary

	5 Events
	5.1 Graph Change Events and Listeners
	5.2 The GraphUI and handling mouse input
	5.2.1 Mouse Tolerance
	5.2.2 Zooming
	5.2.3 MarqueeHandler
	5.2.4 Handles

	6 Input and Output
	6.1 XML Persistence
	6.2 Image Exporting
	6.3 SVG Export
	6.4 Exporting in a Headless Environment
	6.5 Working without the Swing component
	6.6 Printing

	7 Layouts
	7.1 Introduction
	7.2 Installation and compilation
	7.2.1 Requirements
	7.2.2 Installation
	7.2.2.1 Project structure and build options

	7.3 The Design of JGraph Layout Pro
	7.3.1 What does JGraph Layout Pro do?

	7.4 Running a layout
	7.4.1 Writing Your Own Layout
	7.4.2 Edge Control Points
	7.4.3 Examples

	7.5 Using the layouts
	7.5.1 The Tree Layouts
	7.5.1.1 Tree Layout
	7.5.1.1.1 Alignment
	7.5.1.1.2 Orientation
	7.5.1.1.3 levelDistance and nodeDistance
	7.5.1.1.4 combineLevelNodes
	7.5.1.1.5 positionMultipleTrees and treeDistance

	7.5.1.2 Compact Tree Layout
	7.5.1.3 Radial Tree Layout

	7.5.2 Organic Layouts
	7.5.2.1 Spring Embedded
	7.5.2.2 Fast Organic Layout
	7.5.2.3 Inverted Self Organising Map
	7.5.2.4 Organic Layout
	7.5.2.4.1 isOptimizeNodeDistribution and nodeDistributionCostFactor
	7.5.2.4.2 isOptimizeEdgeLength and edgeLengthCostFactor
	7.5.2.4.3 isOptimizeEdgeCrossing and edgeCrossingCostFactor
	7.5.2.4.4 isOptimizeEdgeDistance, edgeDistanceCostFactor, isFineTuning and fineTuningRadius
	7.5.2.4.5 isOptimizeBorderLine, borderLineCostFactor and averageNodeArea
	7.5.2.4.6 minMoveRadius, initialMoveRadius and radiusScaleFactor
	7.5.2.4.7 maxIterations
	7.5.2.4.8 unchangedEnergyRoundTermination
	7.5.2.4.9 isDeterministic

	7.5.2.5 Hierarchical Layout
	7.5.2.5.1 Orientation
	7.5.2.5.2 Intra Node Distance and Inter Rank Cell Spacing
	7.5.2.5.3 isDeterministic

	7.5.3 Edge Routing
	7.5.3.1 Orthogonal Edge Routing

	7.5.4 Simple Layouts
	7.5.4.1 Circle Layout

	7.6 Using the Example Source Code
	7.6.1 The progress meter

	Appendix A – Definitions

