
JGraph Adapter Notes

Table of Contents
1. Introduction .. 1
2. Participants ... 1
3. Validation .. 2
4. Business Objects ... 2

1. Introduction
This example demonstrates how to implement a custom model for a transactional backend (such as a
database). It takes into account the command history (ie it is notified on all changes including undo and
redo) and hooks into the graph model to notify the backend of all changes. It is possible for the backend
to not accept certain changes.

In order to take full advantage of this example you must download a JDBC driver. The default database
is HSQLDB, which may be downloaded from http://hsqldb.sourceforge.net
[http://hsqldb.sourceforge.net]. Note that the example also runs without a database connection, but the
query window will not produce results without a database.

To enable the HSQLDB database, you must uncomment the following lines in JGraphAdapter-
Example.main:

Class.forName("org.hsqldb.jdbcDriver");
conn = DriverManager.getConnection("jdbc:hsqldb:" + backendFilename, "sa", "");

2. Participants

Figure 1. Adapter Participants

The main class is the JGraphAdapterModel, a DefaultGraphModel extension which will be used as the
graph model. The JGraphAdapterModel has a reference to a backend which implements the JGraphAd-
apterBackend interface. The interface provides the methods which the graph model requires to keep the

1

http://hsqldb.sourceforge.net

business model in sync.

In the example, the JGraphSQLBusinessModel acts as the graph model and the JGraphSQLBackend is
in charge of updating the database based on the notifications that the business model sends to the
backend.

3. Validation
All methods (except for the commit and rollback methods which are used to mark transaction boundar-
ies) in the JGraphAdapterBackend have a validate boolean parameter. If this parameter is true then the
backend is expected not to perform the actual changes, but to check whether the changes are valid and
throw an exception if they are not.

If an exception is thrown during a transaction (a non-validating invocation-sequence), then the rollback
method is invoked. Otherwise, after all invocations in the sequence, the commit method is invoked.

4. Business Objects

Figure 2. Adapter Business Objects

The user objects in the example application are JGraphBusinessObjects. A JGraphBusinessObject is an
object with an arbitrary number of properties stored in a hashtable. The object has two subclasses: The
JGraphSQLEntity is used to represent vertices and groups, and the JGraphSQLRelation represents edges
in the business model. (Note that the parent-child relation and the source and target of the edge is stored
not only in the graph model, but also in the business model and that the ports are created on the fly, one
per vertex/group.)

The mapping from business objects to cells is implemented in the JGraphAdapterModel. While it is pos-
sible to map multiple business objects to one cell, it is not possible to map one business object to mul-
tiple cells. The mapping of multiple objects to one cell may be used to compose information from vari-
ous sources (aka backends). For example one could implement a backend for an LDAP server and one
for a project database, and compose a Person-cell out of the data from both systems. To implement such
a setup, you'd have to implement a multicast-backend which is composed out of a set of other backends
and manages the invocation of their methods.

JGraph Adapter Notes

2

