
Libmesh HOWTO

libmesh-users@lists.sourceforge.net

Revision: 1.1

February 2, 2005

1 General usage

1.1 Debug / Profile mode

Debugging and profiler modes can be switched on with make METHOD=dbg and make METHOD=pro. For syntax
checking use make METHOD=syn.

1.2 Performance logging

• Create a logger: PerfLog perf log ("Matrix Assembly") Ex4.

• Start logging: perf log.start event("elem init")

• Stop logging: perf log.stop event("elem init");

1.3 Petsc-Tools

Use the Petsc tools as command line parameters to the program invocation, e.g. ./myTestProgram -log summary.
Frequently used options are

• -log summary: show setup and performance

• -log info: show setup

• -ksp monitor: show convergence

2 Basic tasks

2.1 Restart a model

Restarting a model is done by loading a simulation, that has been stored with equation systems.write. It
is stored either in a ASCII-File or in the HDF format. It is read with equation systems.read. (Ex2).

2.2 Translate / deform / rotate a mesh

A mesh object can be translated, deformed or rotated with

MeshTools : : Mod i f i ca t i on : : t r a n s l a t e (mesh , 1 0 . , 1 .) ;
MeshTools : : Mod i f i ca t i on : : r o t a t e (mesh , 9 0 . , 1 0 . 0 .) ;

1

2.3 Equation system parameters

Equation system parameters are set with the following methods

es .parameters.set<Real> (”myParam”) = 42.;.
es .parameters.set<unsigned int> (”linear solver maximum iterations”) = 250;

Their values can later be obtained with

Real answer = es.parameters.get<Real> (”myParam”);.

2.4 Write to postprocessing file

Libmesh supports many post-processing file types. Writing the mesh is as easy as

GMVIO(mesh).write(”out.gmv”);

Writing a the mesh together with the current solution is equally simple

GMVIO(mesh).write equation systems (”out.gmv”, es);

2.5 Add an additional vector, and project it on refined meshes

Add a new vector to a system with system.add vector("myvec");.
Upon mesh refinement, the vector can be projected onto the new mesh with system.project vector(system.get vector("myvec"));.

3 Programming tips

3.1 Autopointer

Automatically take care of a pointer (safely delete it when it goes out of scope) AutoPtr<FEBase> (Ex5)

3.2 Scopes

Even in a very simple main program the there need to be scopes so that the variables go out of scope before
ending PetSc.

l ibMesh : : i n i t (argc , argv) ;
{

Mesh mesh (3) ;
}

return l ibMesh : : c l o s e () ;

2

