
Powerful C Preprocessor
for Source Checking

Kiyoshi Matsui
kmatsui@t3.rim.or.jp

March 20th, 2004

Abstract

There has been a long history of confusion about
the specifications of C preprocessors. Although,
after C90, preprocessor specifications tend to
converge to the standard, however, so called
standard-conformant preprocessors still often be-
have wrong. Moreover, almost every existing pre-
processor is too reticent; it does not have ade-
quate capability to check source code. MCPP is
a free portable C preprocessor and provides a val-
idation suite to make thorough tests and evalua-
tion of C/C++ preprocessors. When this validation
suite is applied to various preprocessors, MCPP
achieved a prominent result; MCPP not only has
the highest conformance but also provides a vari-
ety of accurate diagnostic messages. MCPP thus
allows users to check almost all the preprocessing
problems of source code.

1 Introduction

I have been developing a C preprocessor for a long
time. My work so far has already been released as
cpp V 2.0 and V2.2 in August 1998 and in Novem-
ber 1998, respectively. During the course of up-
dating the software to V.2.3, it was selected as one
of the “Exploratory Software Projects for 2002” by
Information-Technology Promotion Agency (IPA),
Japan. [1] In 2003, it was continuously adopted
to the same Project. In this document, my cpp is
called MCPP (Matsui CPP) to distinguish it from

other cpps.
I personally boast of MCPP as being number

one C preprocessor now available in the world, not
merely from self-praise, but because of its big fea-
ture that its behaviors have been completely veri-
fied using “Validation Suite”, which I developed in
parallel with MCPP.

Another feature is that it provides a lot of diag-
nostic messages that allows you to check almost
all the preprocessing problems in source programs
and to increase source portability.

This document is organized as follows:
Section 2: Provides an overview of MCPP and

its Validation Suite.
Section 3: Shows data to compare Standard con-

formance level and qualities with other preproces-
sors.

Section 4: Shows examples of bugs in compiler-
system specific preprocessors.

Section 5: Describes MCPP’s source checking
and why such checking is required.

Section 6: Describes C preprocessing principles
and how to implement them.

Section 7: Describes what is achieved through
update to V.2.3 and V.2.4.

Section 8: Describes future update plans.

2 MCPP Overview

MCPP has the following features:

1. Has the highest conformance to C Standards

1

because MCPP aims at becoming a reference
model of C and C++ preprocessors. MCPP
provides run-time options to enable C99 [6,7]
and C++98 behaviors [8], needless to say
C90 [2–5].

2. Provides a validation suite that allows you
to test C or C++ preprocessors themselves in
great detail and comprehensively.

3. Provides a lot of diagnostic messages of more
than one hundred types to pinpoint a prob-
lem in source code. They are divided into sev-
eral classes. Messages of which class are dis-
played is controlled by run-time options.

4. Provides the #pragma directives to output
various debugging information. The direc-
tives allow you to trace tokenization and
macro expansion, to output a macro definition
list and etc.

5. MCPP’s multi-byte character processing facil-
ity can handle a variety of Japanese, Chinese,
Taiwanese and Korean encodings.

6. Processing speed is not so slow; it can be used
not only for debugging purpose but also for
daily processing. Since MCPP is so developed
that it can operate in 16-bit environments, it
can work properly in a system with a small
amount of memory.

7. Is portable. MCPP is so designed that it
can generate a preprocessor to be used to re-
place a compiler system specific one on UNIX-
like systems or DOS/Windows by modifying
some settings in header files on compilation of
MCPP. The portability MCPP provides is so
wide that it can be compiled not only with any
C90, C99 or C++98 conformant compiler sys-
tems, but also with K&R1st ones before C90.

8. In addition to “Standard” mode, which con-
forms to C90, C99 and C++98 Standards,
MCPP allows you to generate a preproces-
sor in various modes. These modes range

from the one based on the K&R1st specifica-
tions or the Reiser model to what I call “post-
Standard” mode in which all the problems in
C Standards are solved.

9. On UNIX-like systems, a configure script can
be used to automatically generate a MCPP ex-
ecutable.

10. MCPP is an open source software.

11. Detailed documentation is provided:

(a) README – Describes how to configure
and make.

(b) mcpp-summary.pdf – This summary doc-
ument

(c) manual.txt: Users Manual – Describes
how to use MCPP, its specifications and
meanings of diagnostic messages. Also
suggests how to write portable source
code.

(d) porting.txt: Porting Manual – Describes
how to port MCPP to particular compiler
systems.

(e) cpp-test.txt: Validation Suite Manual –
Also explain C Standards. It indicates
contradictions and deficiencies in Stan-
dards themselves and proposes alterna-
tives. It also shows the results of apply-
ing Validation Suite to several compiler
systems.

3 Results of Applying
Validation Suite to Various
Preprocessors

Another problem involved in preprocessor devel-
opment is how to verify preprocessor’s behavior
and its quality. Wrong behavior or poor quality
of compiler systems is, of course, out of question.
However, in fact, many problems were detected in
existing preprocessors when they were tested with
Validation Suite. As a part of MCPP development,

2

Number of Lowest Highest
Test Items Score Score

C90 Standard Conformance 173 -162 463
C99 Standard Conformance 20 0 98
C++98 Standard Conformance 9 0 26
Quality: Diagnostic Messages 47 0 74
Quality: Others 16 -40 113
Total 265 -202 774

Table 1: Number of Test Items and Scores covered by Validation Suite V.1.4

I developed Validation Suite and released it with
MCPP. Validation Suite provides quite a lot of test
items to measure various aspects of a preprocessor
objectively and comprehensively as much as pos-
sible.

As shown in Table 1, Validation Suite V.1.4 con-
tains as much as 265 test items, of which, 230
cover preprocessor behaviors and 35 documenta-
tion and quality evaluation. Score of each test
item is weighted. For preprocessors that prop-
erly implement specifications common between
K&R1st and C90, score 0 is given. For ones that
even fail to do that, a negative score is given. For
ones that properly implements new specifications
of C90 onward, a positive score is given. “Stan-
dard Conformance Level” includes evaluation of
diagnostic messages and documentation, as well
as of behaviors. “Standard Conformance Level”
for C99 and C++98 deals with new specifications
that do no exist in C90. “Quality: Diagnostic Mes-
sages” deals with diagnostic messages that are not
required by C Standards.

Table 2 shows the summary of results of ap-
plying Validation Suite V.1.4 to several compiler
systems. The table shows compiler systems in a
chronological order.

*1 Original version of DECUS cpp developed
by Martin Minow (1985/06), which was slightly re-
vised by the author and compiled by Linux/GNU
C 3.2. [9]

*2 JRCPP, shareware for UNIX, OS/2 and MS-
DOS, developed by J. Roskind and migrated to
MS-DOS - OS/2 for trial usage (1990/03). This is
a stand-alone preprocessor not corresponding for
any particular compiler systems. [10]

*3 Japanese version for 1993 (1994/12). [11]
*4 GNU C 2.7.1/cpp (1995/12) ported to GO32,

DOS extender, by DJ Delorie. Supported shift-JIS
when ported to the Japanese version. [12]

*5 Revised version beta-13 of LSI C-86/cpp by
Akira Kida (1996/02). [13]

*6 Cpp V.2.0 (1998/08), free software devel-
oped by the author. Was rewritten based on DE-
CUS cpp. Is ported to various combinations of
OSs and compiler systems, such as FreeBSD/GNU
C 2.7, DJGPP V.1.12, WIN32/Borland C 4.0,
MS-DOS/Turbo C2.0, LSI C-86 3.3, and OS-
9/09/Microware C. Although Cpp V.2.0 allows gen-
eration of a preprocessor in various modes, the 32-
bit system standard mode was used for this test.

*7 Japanese version (2000/08). [14]
*8 GNU C 2.95.3 (2001/03) used under

VineLinux 2.6, FreeBSD 4.4 or CygWIN 1.13. [15]
*9 GNU C 3.2R (2002/08) compiled by the au-

thor under VineLinux 2.6 and FreeBSD 4.7. [15]
*10 Portable free software (2003/01) devel-

oped by Thomas Pornin. A stand-alone preproces-
sor. [16]

*11 Microsoft (2003/04). [17]
*12 Shareware, with source code available, de-

veloped by Jacob Navia et al. (2003/08). Dennis
Ritchie’s C90-conforming preprocessor is used as
its preprocessing part. [18]

3

OS Compiler Systems Preprocessor (Version) (1) (2) Rem
Linux DECUS cpp 230 287 1
MS-DOS JRCPPCHK (V.1.00B) 400 451 2
WIN32 Borland C++ V.4.02J cpp32 397 444 3
DJGPP V.1.12 M4 GNU C 2.7.1 cpp 445 545 4
MS-DOS LSI C-86 V.3.30c cpp (beta13) 341 397 5
FreeBSD, WIN32, etc. GNU C, Borland C, etc. MCPP (V.2.0) 495 651 6
WIN32 Borland C++ V.5.5 cpp32 397 451 7
Linux, FreeBSD GNU C 2.95.3 cpp0 470 570 8
Linux, FreeBSD GNU C 3.2R cpp0 530 646 9
Linux, etc ucpp (V.1.3) 483 562 10
WIN32 Visual C++ .net 2003 cl 452 517 11
WIN32 LCC-Win32 V.3.2 lcc 396 476 12
Linux, FreeBSD, etc. GNU C, LCC-Win32, etc. MCPP (V.2.4.1) 583 750 13

(1) Standard Conformance (2) Overall Evaluation

Table 2: Validation Results of Each Preprocessor

*13 MCPP V.2.4.1 (2004/03). From V.2.0 on-
ward, MCPP has been ported to Linux/GNU C
(2.95.3, 3.2), FreeBSD/GNU C (2.95.4, 3.2), Cyg-
Win 1.13, LCC-Win32 3.2, Borland C 5.5, Visual
C++ .net 2003 and Plan 9 ed.4/pcc. [19]

As shown in the table, MCPP is by far the best
in every aspect – high conformance to C Stan-
dards, abundant and accurate diagnostic mes-
sages, detailed documentation, and its portabil-
ity. Other preprocessors are even behind cpp
V.2.0, which was developed five and half years
ago. V.2.4 has been further updated and enhanced
since then. You may think this result is natu-
ral because I tested my own preprocessor with my
own validation suite, but seeing that Validation
Suite offers such a variety of test items, you will
agree that the evaluation is highly objective.

According to the table, the second best pre-
processor to MCPP is GNU C/cpp. GNU C/cpp
presents almost no problems as long as it pro-
cesses C90 conforming legal sources. However,
GNU C/cpp still has the following problems, ex-
cept for unimplemented C99 and C++98 specifica-
tions, which will be implemented over time:

1. Diagnostic messages are insufficient. With
the -pedantic -Wall option, many prob-
lems can be checked, but there still remain
a lot of unchecked problems.

2. It provides little functionality to output de-
bugging information.

3. Documentation is poor; there are many un-
clear or undocumented specifications. The
problem is that the GNU C V.2/cpp has some
traditional behaviors when -traditional
option is not specified.

4. GNU C/cpp uses its own specifications that
are inconsistent with C Standards. Extended
specifications should be implemented with
#pragma.

Compared with GNU C V.2/cpp, GNU C
V.3/cpplib has been much improved in these as-
pects, but is still insufficient.

MCPP is inferior to GNU C/cpp only in process-
ing speed.

Other preprocessor has much more problems
than GNU C/cpp.

4

4 Examples of Preprocessor
Bugs and Erroneous Speci-
fications

Each preprocessor contains various bugs and erro-
neous specifications, only some of which this sec-
tion shows:

example-1
#define _VARIANT_BOOL /##/

example-2
_VARIANT_BOOL bool;

example-3
#if MACRO_0 && 10 / MACRO_0

example-4
#if MACRO_0 ? 10 / MACRO_0 : 0

example-5
#if 1 / 0

example-6
#include <limits.h>
#if LONG_MAX + 1

4.1 Comment Generating Macro

Example-1 is a macro definition that is actually
found in the Visual C++ .net 2003 system header.
This definition is used as shown in example-2.
This code expects _VARIANT_BOOL to be expanded
into //, commenting out that line. Actually, Vi-
sual C’s cl.exe processes this line as expected.

However, // is not a preprocessing-token. In
addition, macro definitions should be processed
and expanded after sources are parsed into to-
kens and a comment is converted into one space.
Therefore, it is irrational for a macro to gener-
ate comments. When this macro is expanded into
//, the result is undefined since // is not a valid
preprocessing-token.

This macro is, indeed, out of question, however,

it is Visual C/cl.exe, which allows such an out-
rageous macro to be preprocessed as a comment,
should be blamed. This example reveals the fol-
lowing serious problems this preprocessor has:

1. Preprocessing is not token-based but
character-based.

2. Preprocessing procedure (translation phases)
is implemented arbitrarily and lacks in logi-
cal consistency.

4.2 Expressions That Should Be
Skipped Causes an Error

The #if expressions in example-3 and 4 are cor-
rect expressions. These expressions are so care-
fully written that a division operation is carried
out only when a denominator is not zero. However,
some compiler systems perform a division when
MACRO_0 is zero and cause an error. Example-3
used to cause an error in many compiler systems,
but now it is processed properly. Example-4 still
causes an error in Visual C++, which shows that
Visual C++ does not implement basic C specifi-
cations regarding evaluation of expressions prop-
erly.

On the other hand, Borland C 5.5 issues a warn-
ing to both example-3 and 4, which may not be def-
initely wrong. However, Borland C 5.5 issues the
same warning to a division using a zero denomi-
nator shown in example-5. This means Borland
C 5.5 cannot tell correct source code from wrong
code. Turbo C issues the same error message to
both correct expressions and incorrect ones that
may cause a zero division error. Borland C sim-
ply degrades an error message to a warning. This
could not be called non-conformant, but indicates
a lack of careful consideration in and poor quality
of diagnostic messages.

4.3 Overflow is Overlooked

The #if expression in example-6 causes an over-
flow. Most compiler systems do not issue a diag-
nostic message to this overflow. Only Borland C

5

and ucpp are quite inconsistent about this; they
issue a warning to some cases, but not to most.

5 Why Is Source Code Check
by Preprocessors
Required?

A preprocessor is nothing but a small part of the
entire C processing. What is the use of developing
a preprocessor alone, even if it is ranked as num-
ber one in the world?

C preprocessing, as its name shows, is pro-
cessing that is performed before the compiler-
proper compiles source code. It tends to have
been treated as an addition to the compiler-proper.
However, the purpose of the preprocessing is to
increase readability and maintainability of source
code and to provide portability among various sys-
tems. In other words, it is to make it easy for
programmers to handle source code. C prepro-
cessing seriously affects coding and maintenance
tasks. Therefore, C preprocessing, when used in
an improper manner, would rather impair read-
ability and portability. In that sense, source code
checking by preprocessors is important.

Not a few C programs have preprocessing-level
problems; there are ones that are content with
successful compilation in a particular compiler
system and lack of portability, ones that are un-
necessarily tricky, and ones that are still based
on the specifications of a particular compiler sys-
tem before C90. These sources will impair porta-
bility, readability and maintainability, and, what
is worse, they will be likely to provide a hotbed
of bugs. Although, in many cases, it is easy to
rewrite such questionable sources into portable
and clear ones, however, they are often left as they
are.

One of the reasons for the existence of such
sources is that preprocessing specifications before
C90 were very ambiguous, which still leaves a
trail even now when C99 Standard has been al-
ready established. Another reason is that the ex-
isting preprocessors were too reticent; since they

passed questionable sources without issuing mes-
sages, problems remain unnoticed.

There has been a long history of confusion
about the specifications of C preprocessors. Al-
though, after C90, preprocessor specifications
tend to converge to the standard, so called
standard-conformant preprocessors still often be-
have wrong. This results from inadequate vali-
dation of compiler systems themselves. Behind
this, there lies a background that many C prepro-
cessors have been developed based on C90 prior
versions, and version upgrade has been made re-
peatedly, without C preprocessing principles be-
ing made clear. In order to develop a standard-
conformant C preprocessor, it is necessary to de-
fine principles clearly and totally rewrite source
programs based on these principles. In addition,
it is essential to provide software to validate their
conformity.

Moreover, as stipulated by the standard, all
the compiler system-specific specifications must
be documented. Accurate and detailed documen-
tation is an integral part of compiler system de-
velopment. However, many compiler systems fail
to do so. Ambiguity about specifications forms a
background to unportable source programs.

Furthermore, the standard’s own contradictions
and ambiguities, stemming from the historical
background, makes this problem more complex.
Although C preprocessors seem to be a techni-
cally matured field, many problems still remain
unsolved.

Nevertheless, I have an optimistic view about
this. Preprocessing is, for the most part, indepen-
dent of the run-time environment, so, unlike other
parts of a compiler system, it is relatively easy to
make itself portable. Thus, it might be even pos-
sible for every compiler system to use the same
high-quality and portable preprocessor.

5.1 How Much Do Preprocessors
Affect Sources?

By replacing a compiler system-specific preproces-
sor with MCPP, almost all the preprocessing prob-

6

lems in source programs, ranging from potential
bugs and Standard violations to portability prob-
lems, can be identified.

Since cpp V.2.0, I have reported the results of
applying MCPP to FreeBSD 2.2.2R (May 1997)
kernel and libc sources. Libc sources have al-
most no problems, but some kernel sources have
some, although such sources account for only a
small portion of the total number of source pro-
grams. Many of the problems were not origi-
nated in 4.4BSD-lite but occurred during porting
to FreeBSD and enhancement.

When I applied MCPP V.2.3 then under devel-
opment to preprocess Linux/glibc 2.1.3 (Septem-
ber 2000) sources, I found a lot of problems. These
problems were frequently found in the programs
that use traditional preprocessing specifications
in UNIX-like systems and those that use GNU
C/cpp’s own or undocumented specifications. I
think GNU C/cpp’s default approval of such un-
desirable source programs without issuing a mes-
sage not only preserves them but also produces
new ones. It is more problematic that such ille-
gal coding is not necessarily found in old sources
only; it is sometimes found in newly developed
sources. Sometimes, similar problems are found
even in system headers.

On the other hand, there are some improve-
ments; for example, nested comments, a Standard
violation that was frequently found by the mid-
dle of 1990s on UNIX-like systems, are no longer
found. This is because GNU C/cpp no longer al-
lowed them. This indicates how much a prepro-
cessor affects sources coding.

5.2 Sample Glibc Source Code
Fragment

To see some preprocessing problems, let me take
an example of a glibc 2.1.3 source code fragment
used in VineLinux 2.1 (i386).

5.2.1 Multi-line String Literal

Example-7 shows this case. This traditional spec-
ification does not need to be used at all, but it is

still used. Makefile sometimes generates this.
The preprocessing directive lines shown here re-

quire line splicing, so the code fragment should be
written as shown in example-8.

Regardless of directive lines or not, a more gen-
eral way of coding is to use string literal concate-
nation as shown in example-9. If this line were not
a directive one, line splicing would be, of course,
not required.

This way of coding is found in many source files,
but, somehow, the old way of writing still remains
in some.

5.2.2 ∗.S Files That Require Preprocessing

Some assembler sources have preprocessing di-
rectives, such as #if, and C comments embed-
ded. Since assembler and C have its own syn-
tax, the result of preprocessing assembler code
with a C preprocessor is unknown. In addition,
some source have some lines for assembler, such
as #APP and #NO_APP, which are syntactically in-
distinguishable from invalid preprocessing direc-
tives.

It is recommended that the asm() function
should be used whenever possible, as shown in
example-9, to embed the assembler source part in
a string literal, and that not ∗.S but ∗.c should be
used as a file name. In this way, directive lines
other than #include can be used in the middle of
the lines of string literals.

Some assembler sources have a macro embed-
ded, which cannot be dealt with asm(). This type
of source is not a C source and essentially should
be processed with an assembler macro processor.
It is not desirable to use a C preprocessor for this
purpose.

5.2.3 Macro Expanded to ‘defined’

There is a macro definition shown in example-10
and the macro is used as shown in example-11.

However, the behavior is undefined in Standard
C when a #if line have a ‘defined’ pp-token in a
macro expansion result. Apart from it, this macro
definition is first replaced as example-12.

7

example-7
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\

.text

.globl _dl_runtime_resolve
etc. ...

");

example-8
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\

.text\n\

.globl _dl_runtime_resolve\n\
etc. ...\n\

");

example-9
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\t" \

".text\n\t" \
".globl _dl_runtime_resolve\n\t" \
"etc. ...\n");

example-10
#define HAVE_MREMAP defined(__linux__) && !defined(__arm__)

example-11
#if HAVE_MREMAP

example-12
defined(__linux__) && !defined(__arm__)

example-13
defined(1) && !defined(__arm__)

example-14
#if defined(__linux__) && !defined(__arm__)
#define HAVE_MREMAP 1
#endif

example-15
#define CHAR_CLASS_TRANS SWAPU16

example-16
#define SWAPU16(w) ((((w) >> 8) & 0xff) | (((w) & 0xff) << 8))

example-17
#define CHAR_CLASS_TRANS(w) SWAPU16(w)

8

Supposing that __linux__ is defined as 1, and
__arm__ is not defined, it is finally expanded as
shown in example-13.
defined(1) on a #if expression, of course, is

a syntax error. The same thing would happen to
GNU C/cpp, if HAVE_MREMAP were not on a #if
line. However, on the #if line, GNU C/cpp stops
macro expansion at example-12 and evaluates it
as a #if expression. This specification lacks of con-
sistency in that how to expand a macro differs be-
tween when the macro is on a #if line and when on
other lines. It also lacks of portability. This code
should be written as shown in example-14.

5.2.4 Object-Like Macros Expanded to
Function-like Macros

Some object-like macros are defined to be ex-
panded to function-like macro names. These
macros are expanded as function-like macros.
This happens because the token sequence imme-
diately following the object-like macro invocations
are involved in macro expansion. This way of ex-
pansion is a traditional specification before C90,
which was approved by C90. In that sense, it can
be described as providing greater portability. Let
me take an example of an object-like macro shown
in example-15.
SWAPU16 is defined as shown in example-16.
What seems to be an object-like macro that is

actually expanded as a function-like macro is in-
ferior in readability at least. There is no reason to
write in this way. This way of writing originates
in an idea of editor-like text replacement, which
is not desirable for C function-like macro. This
macro should be written as a function-like macro
from the beginning, as shown in example-17.

5.2.5 Undocumented Specifications on
Environment Variable

This is a problem not of C sources but of Make-
file. In GNU C 2/cpp, there is an undocumented
specification that if an environment variable SUN-
PRO_DEPENDENCIES is defined and the -dM op-
tion is specified, macro definitions in source code

are output to the file specified with the envi-
ronment variable. One of the Makefiles fol-
lows this specification. Also, there is another
similar environment variable named DEPENDEN-
CIES_OUTPUT, which is documented. I wonder
why these environment variables need to be used?

In addition to the above, there is more undesir-
able coding, most of which can be easily written
in a clearer and more readable way. The source
programs in question account for only a small por-
tion of total number of the Glibc source files that
extends to several thousands, however, if GNU
C/cpp had issued a warning to such programs,
they would have been rewritten already, or writ-
ten in a quite different way from the beginning.

6 Principle on MCPP
Development

The goals I set when I developed MCPP are shown
in Section 2, “MCPP Overview”. It took a huge
amount of time to achieve them because they are
rather idealistic, but I think I could have almost
achieved them.

Needless to say that MCPP processes right
sources properly, I made so much of its ability
to issue an accurate diagnostic message to illegal
sources or suspicious ones that I prepared a vari-
ety of messages.

I also made much of documentation; to avoid
undocumented specifications, I tried to document
all the specifications other than those in common
with standard documents.

I have implemented MCPP in many combina-
tions of operating systems and compiler systems,
which, in turn, have improved portability of the
MCPP source itself and have lead to a thorough
check of MCPP behaviors.

Furthermore, concurrent development of the
comprehensive Validation Suite contributed to
creation of a bug-free preprocessor. The prepro-
cessing part of LCC-Win32, for example, uses
source code written by Ritchie, but is contains a
lot of bugs, specifically in evaluation of #if expres-

9

sions. However excellent Ritchie’s sources may
be, they cannot be free of bugs without a valida-
tion suite. GNU C/cpp has become almost bug free
since it has been debugged by many peoples over
times. With an adequate validate suite, it would
have been bug free much earlier. For the prepro-
cessors which are not so popular, it is safe to say
that debugging without a validation suite is im-
possible.

6.1 Principle on Token-Based
Processing

Let’s take a look at a principle of MCPP internal
implementation. What I made most of is “token-
based” processing.

The root cause of many problems detected by
MCPP lies in confusion about “token-based” pro-
cessing, a C preprocessing principle. Since the
principle had been ambiguous before C90, an idea
of character-based text processing came in. After
C90, many preprocessors overlooked or even al-
lowed themselves to perform character-based text
processing, thus prolonging the confusion. What
is worse, C Standards themselves contain several
half-hearted stipulations or contradictions, which
were not revised even in C99, making this prob-
lem more complicated. One of the reasons for exis-
tence of the preprocessing phase in C is to provide
greater portability, however, in fact, preprocessing
itself has impaired it.

MCPP has a program structure that strictly
follows the token-based preprocessing princi-
ple, which is quite different from traditional
character-based preprocessing. Other preproces-
sors seem to aim at token-based processing, but
actually character-based processing got mixed in
many cases. I think a certain percentage of pre-
processor bugs is caused by this.

In Borland C 4.0 and 5.5/cpp32, for example,
a token generated by macro expansion is some-
times merged with the proceeding or following one
to become one token. This is an example of half-
hearted token processing.

Many preprocessors, including GNU C 2/cpp, do

not issue a warning to an illegal token generated
by macro expansion because they simply neglect
checking a token generated by preprocessing. For
a preprocessor to be token-based, it must check
every token one by one, including generated ones.

What is more, I provide preprocessing in what I
call “post-Standard” mode, in which strict token-
based processing can be achieved by eliminating
deficiencies from C Standards themselves and re-
organizing them. If no problems were detected by
MCPP in this mode, the source can be described as
having high portability as long as preprocessing is
concerned.

6.2 Function-Like Expansion of
Function-Like Macros

In MCPP development, a macro expansion routine
is one of the key issues I made most of. I tried
to make MCPP program structure clear, without
adhering to that of existing programs.

Expansion of a macro without an argument is
rather straightforward. On the other hand, for
expansion of argument macros, many specifica-
tions have been existed historically, thus leading
to tremendous confusion about it. Although C90
seems to have put an end to this confusion, it still
lingers. For details on this issue, refer to 1.7.6 of
cpp-test.txt for Validation Suite.

This confusion is due to two factors: Text-
based thinking that originates in editor-like text
replacement, and the traditional specification on
macro expansion, that is, if a replacement list
forms the first half part of another argument
macro invocation, the succeeding token sequence
are involved in rescanning during macro expan-
sion. The example shown in 5.2.4 is one of the
least serious cases. This results from the fact
that C preprocessor’s traditional implementation
happens to have such a deficiency. Is not it a
bug specification, although unintentional, which
introduced various abnormal macros?

C90 tried put an end to this confusion about
how to expand argument macros by naming them
“function-like macros” and establishing a specifi-

10

cation similar to that of a function call. C90 ar-
ticulated that a macro in an argument is first ex-
panded and then a parameter in a replacement
list is substituted with the corresponding argu-
ment and that macro expansion in an argument
must be completed within the argument. (Before
C90, it seems that, in many cases, a parameter
is first substituted with an argument and then is
expanded during rescanning.)

On the other hand, however, C90 approved
the bug specification that succeeding token se-
quence are involved in rescanning, which violates
the function-like processing principle, resulting
in prolonged confusion. At the same time, C90
added the stipulation that a macro with the same
name should not be re-replaced during rescanning
to prevent infinite recursion in macro expansion.
However, because of its approval of involvement
of succeeding token sequence, the range in which
such re-replacement is inhibited still remains un-
clear. Thus, C Standards continues to sway, issu-
ing a corrigendum and then revising it.

Many C preprocessors seem to have a tradi-
tional program structure in which a replacement
list and its succeeding text are read successively
during macro rescanning. Each time they replace
a macro invocation with it’s replacement list, they
repeat rescanning for the next macro with its start
point shifting gradually.

This traditional program structure illustrates
the historical background of C preprocessors: they
were derived from macro processors. For some
preprocessors, including GNU C 2/cpp, a macro
rescanning routine is de facto main routine of a
preprocessor. The main routine rescans text with
its start point shifting gradually until it reaches
the end of an input file, during the course of which,
a routine to process preprocessing directives is
called. This is an old macro processor structure
with a disadvantage that macro expansion and
other processing are likely to got mixed. As shown
in 5.2.3, how to expand a macro differs between
when the macro is on a #if line and when on other
lines. This is one of the typical examples of this
mixture. (GNU C 2/cpp internally treats defined
on a #if line as a special macro.)

MCPP provides a macro expansion routine in
Standard and post-Standard modes that is quite
different from traditional routines. The macro ex-
pansion routine is dedicated to macro expansion
and performs no other tasks. Likewise, other rou-
tines ask the routine for macro expansion and
only receive the result. The macro expansion rou-
tine has a recursive structure, not of a repeat-
ing one, with a simple mechanism to prevent re-
replacement of a macro with the same name. Ex-
pansion of a function-like macro strictly follows
the function-like processing principle, and rescan-
ning is basically completed within a macro invoca-
tion. This is all that the macro expansion routine
does in post-Standard mode. In Standard mode,
the macro expansion routine provides a mecha-
nism to deal with the irregular specification in C
Standards so that it can exceptionally handle suc-
ceeding token sequence only when necessary. This
makes a program structure more clear but also
makes it easy to detect an abnormal macro to is-
sue a warning.

7 Major Achievements of
“Exploratory Software
Project”

After releasing V.2.2, I could not spare my time
to develop MCPP, so its development was stag-
nated. However, with adoption of MCPP to the
“Exploratory Software Project for 2002” by Yutaka
Niibe project manager as an opportunity, I spent
less time in working and more time in developing
MCPP.

7.1 V.2.3

The following subsections cover major achieve-
ments of MCPP V.2.3 and Validation Suite V.1.3
released in Feb. 2003.

11

7.1.1 Porting to GNU C 3.2

I replaced GNU C 3.2’s own preprocessor with
MCPP and recompiled GNU C 3.2 itself using
GNU C 3.2. I applied the testsuite to both of the
generated GNU C 3.2 to verify the results. I found
that MCPP has almost enough compatibility with
GNU C 3/cpp in practical use.

Thanks to MCPP, I was able to check GNU C
3.2 sources for preprocessing problems. I found
that GNU C 3.2 source contains far less problems
than other sources, such as glibc 2.1. This is be-
cause GNU C 3.2’s preprocessor has been entirely
rewritten from GNU C 2’s. In the future, the
revised preprocessor will continue to affect other
software sources than GNU C.

Compared with GNU C 2, the GNU C 3 pre-
processor was dramatically improved in many as-
pects; its preprocessor source code was entirely
rewritten and better documented, and the test-
cases of its testsuite were dramatically increased
in number. GNU C 3 now learns to issue a warn-
ing to a series of coding problems or a traditional
way of writing, such as multi-line string literal
shown in 5.2, as obsolete or deprecated. Now with
increased documentation, GNU C 3 seems to be-
come equal to MCPP, but it still lacks of warnings
and cannot be described as very well documented.

7.1.2 Porting Validation Suite to
GNU C/Testsuite

At V.1.3, I have created the edition of Validation
Suite which is written so that it can be used as
a testsuite for GNU C/cpp. I have confirmed that
this edition can be applied to three preprocessors,
GNU C 2.95 / cpp, GNU C 3.2/cpp and MCPP un-
der Linux and FreeBSD. I think the edition can
work with most GNU C 2.9x and 3.x versions.

The testcases of GNU C/cpp’s testsuite were
very unbalanced, so it is meaningful to provide
more comprehensive ones like those of Validation
Suite.

Besides, while the existing testcases of GNU C
3/testsuite expect only GNU C 3, and there are
many testcases which cannot be applied even to

GNU C 2/cpp, the testsuite edition of my Valida-
tion Suite has been written to test 3 preproces-
sors. The testcases of Validation Suite absorb the
difference of spacing in preprocessing output and
the difference of diagnostics by utilizing regular
expression facilities of testsuite tools, such as De-
jaGnu and Tcl. Since these tools sometimes pro-
cess regular expressions in a peculiar manner, and
sometimes they even fail to do so, I had to make
some contrivance to use them. With some con-
trivance, it was found that several compiler sys-
tems could be automatically tested.

However, in the testsuite, it is impossible to
change runtime options for each compiler sys-
tem. Actually, the C standard has several ver-
sions, such as C90, C95, C99 and etc., so it is nec-
essary to use the -std= option to indicate which
standard version a program conforms to. Unfortu-
nately, GNU C older versions do not have this op-
tion, Therefore, my testsuite can be applied only to
GNU C 2.9x or higher and MCPP V.2.3 or higher.

7.1.3 Creating English Documents

I asked “HighWell, Inc.” Limited Company, Tokyo,
for translation of all the documents on MCPP
V.2.3 and its Validation Suite into English. [20]
Three bilingual translators translated these doc-
uments. I have reviewed all the translated doc-
uments and, for technical details, I revised their
work.

7.2 V.2.4 prerelease

MCPP was continuously adopted to the “Ex-
ploratory Software Project for 2003” by Hiroshi
Ichiji project manager.

In Nov. 2003, MCPP V.2.4-prerelease that con-
tains the following updates was released:

7.2.1 Porting to Visual C++ .Net 2003

This time I took up Visual C++ .net 2003, the
most popular commercially available C compiler
system. I not only applied the Validation Suite to
Visual C++, but also ported MCPP to it.

12

It was found that even the latest version of Vi-
sual C++ preprocessor has some fundamental de-
fects, such as preprocessing procedure being im-
plemented arbitrarily, and character-based pro-
cessing still being mixed.

When I tried to port MCPP to Visual C++, it
was impossible to directly replace the Visual C++
specific preprocessor with MCPP because it is in-
tegrated into the Visual C++ compiler. To cope
with this situation, I had to write a makefile in
such a way that a source program is first prepro-
cessed by MCPP and then cl.exe is executed. In
the Integrated Development Environment (IDE),
MCPP cannot be used in a normal “project”. To
use MCPP in IDE, a makefile must be created
first. Then, if you create a “makefile project” in
IDE, it can recognize the makefile. This allows
users to utilize almost every IDE functions, in-
cluding source level debugging.

7.2.2 Creating Configure Script

On UNIX-like systems, I created a configure script
to automate MCPP compilation.

One of the MCPP features is that MCPP can re-
place the preprocessor of a target compiler system.
To achieve that, a lot of research on the implemen-
tation of the target compiler system is required,
unlike general application programs. In fact, writ-
ing a configure.ac file itself requires some knowl-
edge of the target compiler system.

When the target compiler system is GNU C ,
the configure script can automates the entire pro-
cess from compiling MCPP apropriately to replac-
ing the GNU C specific preprocessor with MCPP.
If the testsuite of GNU C were installed, ‘make
check’ could even execute the testsuite edition of
Validation Suite. I can do this because I know
GNU C.

Unfortunately, I have no experience to do the
same for other compiler systems on UNIXes. So,
I decided to write a configure script in such a
way that it provides several options and users can
specify necessary information using these options.
In addition, to replace compiler system specific

preprocessors with MCPP, additional work of writ-
ing source code to MCPP is required.

A configure script cannot be applied to compiler
systems on DOS/Windows, except for CygWIN. So,
DIFfile and makefile are provided for each of these
systems as before.

7.2.3 Other

MCPP options and #pragma directives have been
added, and diagnostic messages regarding macro
re-definition and expansion have been revised.
MCPP source code has been tidied out by deleting
old code.

Along with this revision, Japanese documents
have been updated.

Up till now, the MCPP source files and docu-
ments did not show any license notice explicitly.
From V.2.4 prerelease onward, these files include
a BSD-style license.

7.3 V.2.4

In Feb. 2004, MCPP V.2.4 that contains the fol-
lowing updates was released:

7.3.1 Handling of Various Multi-Byte
Character Encoding

Since V.2.0, MCPP has supported various multi-
byte (two-byte) character encodings, such as
Japanese EUC-JP and shift-JIS, Chinese GB
2312, Taiwanese Big5, and Korean KS C 5601
(KSX 1001). MCPP V.2.4 now provides a frame-
work to handle more complex encodings. To begin
with, MCPP V.2.4 has enabled ISO-2022-JP1 and
UTF-8 handling.

32-bit or more system ported MCPP has imple-
mented all these encodings at the same time. Now,
environment variables and run-time options allow
users to change the default encoding. MCPP V.2.4
has implemented the #pragma setlocale direc-
tive provided in Visual C++, which allows users to
change encodings in one source file. Furthermore,
if the compiler-proper cannot handle an encoding,
MCPP can now compensate its inability.

13

One system used to have only one fixed multi-
byte character encoding. At present, the more nec-
essary it is to have multi-language enabled pro-
grams, a more variety of encodings compiler sys-
tems must be able to handle. It is important for
software programmers to be able to handle var-
ious encodings easily through environment vari-
ables, run-time options and #pragma.

7.3.2 Ported to Plan 9

MCPP has been ported to Plan 9 edition 4/pcc.
This system uses the compiler written by Ken
Thompson and the preprocessor written by Den-
nis Ritchie. Ritchie’s cpp can be replaced with
MCPP. Of cource, MCPP is much superior in qual-
ity. Plan 9 uses UTF-8 as multi-byte character en-
coding. It was confirmed that MCPP could handle
UTF-8 properly.

7.3.3 Updated Documents

Along with this version, I have updated both En-
glish and Japanese versions of MCPP documents.
Just like a year ago, I asked Highwell to trans-
late the updated documents and completed them
by correcting the work.

7.3.4 Release to World

I packaged MCPP along with its English docu-
ments to send it to gnu.org and freebsd.org.

8 V.2.4.1

The “Exploratory Software Project” ended at Feb.
2004. After that, at Mar. 2004, MCPP V.2.4.1 was
released. In this version, I revised the recursive
macro expansion.

9 Update Plans for V.2.5

Following updates are planned for MCPP V.2.5.

1. Since MCPP provides a framework to facili-
tate addition of multi-byte character encod-
ings, MCPP will support more encodings, in-
cluding ISO-2022-∗.

2. MCPP diagnostic messages will be stored in
a separate file so that anyone can add diag-
nostic messages in various languages at any
time.

3. GNU C 3/cpp source programs and its test-
suite will be given more consideration.

4. An option to automatically rewrite un-
portable source programs to portable ones
will be implemented.

5. For better search, two versions, texinfo and
html, will be created for documents.

10 Conclusion

It was in 1992 when I began to develop MCPP
based on DECUS cpp. After ten years, MCPP
was adopted to one of the “Exploratory Software
Projects”, which gave me a chance to send it out
into the world. With the finishes that have ex-
tended for less than two years, I am very proud
to have finally completed a C preprocessor that
I think ranks number ONE in the world. I am
now ready to send out MCPP and its English docu-
ments into the world for international evaluation.
I am also satisfied with myself, who have done a
good job as a middle-aged amateur programmer.

The older versions of MCPP and
its Validation Suite are available at
http://download.vector.co.jp/pack/.

During “2002 Exploratory Software Projects”,
Niibe project manager created a cvs repository,
a ftp site, and web pages in m17n.org. [19] The
latest versions, including revisions under develop-
ment, are stored here.

Many C programmers’ comments and feedback,
as well as participation in MCPP development are
welcome!

14

Related Materials and URL

[1] Information-Technology Promotion Agency
(IPA), Japan,
“Exploratory Software Projects”.
http://www.ipa.go.jp/jinzai/esp/

[2] ISO/IEC. ISO/IEC 9899:1990(E) Program-
ming Languages – C. 1990.

[3] ISO/IEC.
ibid. Technical Corrigendum 1. 1994.

[4] ISO/IEC.
ibid. Amendment 1: C integrity. 1995.

[5] ISO/IEC.
ibid. Technical Corrigendum 2. 1996.

[6] ISO/IEC. ISO/IEC 9899:1999(E) Program-
ming Languages – C. 1999.

[7] ISO/IEC.
ibid. Technical Corrigendum 1. 2001.

[8] ISO/IEC. ISO/IEC 14882:1998(E) Pro-
gramming Languages – C++. 1998.

[9] Martin Minow, DECUS cpp.
http://sources.isc.org/devel/

lang/cpp-1.0.txt

[10] J. Roskind, JRCPPCHK.
At present, the site address is unknown.

[11] Borland International Inc.,
Borland C++ V.4.0. 1994.

[12] DJ Delory, DJGPP 1.12 m4.
http://www.vector.co.jp/soft/

dos/prog/se016978.html

[13] Akira Kida, LSI C-86 / cpp revised beta13.
This software was available in CD-ROM of
C Magazine in the past.

[14] Borland Software Corp.,
Borland C++ Compiler 5.5
http://www.borland.co.jp/

cppbuilder/freecompiler/

[15] Free Software Foundation, GCC.
http://gcc.gnu.org/

[16] Thomas Pornin., ucpp.
http://pornin.nerim.net/ucpp/

[17] Microsoft Corporation,
Visual C++ .net 2003

[18] Jacob Navia., LCC-Win32.
http://www.q-software-

solutions.com/lccwin32/

[19] Kiyoshi Matsui, MCPP V.2.4.1.
http://www.m17n.org/mcpp

[20] Highwell, Inc. Limited Company.
http://www.highwell.net/

15

