
High Quality C Preprocessor MCPP

Kiyoshi Matsui
kmatsui@t3.rim.or.jp

March 19th, 2005

Abstract

There has been a long history of confusion
about the specifications of C preprocessors. Al-
though, after C90, preprocessor specifications
tend to converge to the standard, so called
standard-conformant preprocessors still often be-
have wrong. Moreover, almost every existing pre-
processor is too reticent; it does not have ade-
quate capability to check source code. MCPP is
a free portable C preprocessor and provides a val-
idation suite to make thorough tests and evalua-
tion of C/C++ preprocessors. When this validation
suite is applied to various preprocessors, MCPP
achieves a prominent result; MCPP not only has
the highest conformance but also provides a vari-
ety of accurate diagnostic messages. MCPP thus
allows users to check almost all the preprocessing
problems of source code.

1 Introduction

There has been a long history of confusion about
the specifications of C preprocessors. Although,
after C90 (C89) [2–5], preprocessor specifica-
tions tend to converge to the standard, so called
standard-conformant preprocessors still often be-
have wrong. It can be said that preprocessing is a
rather immature field compared to compiling.

Behind this, there lies a background that pre-
processing specifications before C90 were very
ambiguous. C90 gave the first overall definition
of C preprocessing, going back to the principles of
“what is preprocessing?”. C90, however, has some

compromising parts with the historical negative
inheritance, which have not been cleared even by
C99 [6–8]. Moreover, most of the existing prepro-
cessors seem to have grafted each specifications of
the Standard one by one without C preprocessing
principles being made clear, thus prolonging the
problems.

Against these backgrounds, not a few C pro-
grams have preprocessing-level problems, such
as unnecessarily implementation-dependent code
lacking of portability. One of the reasons for exis-
tence of the preprocessing phase in C is to provide
greater portability, however, in fact, preprocessing
itself has impaired it.

I have been developing a C preprocessor for
a long time. My work so far has already been
released as cpp V.2.0 and V.2.2 in August 1998
and in November 1998, respectively. During
the course of updating the software to V.2.3, it
was selected as one of the “Exploratory Software
Projects” for year 2002 and for year 2003 by
Information-Technology Promotion Agency (IPA),
Japan. [1] V.2.3 and V.2.4 were released as the re-
sults of the project. Now, I release this V.2.5. My
cpp is called MCPP (Matsui CPP) to distinguish it
from other cpps.

I personally boast of MCPP as being number
one C preprocessor now available in the world, not
merely from self-praise, but because of its big fea-
ture that its behaviors have been completely veri-
fied using “Validation Suite”, which I developed in
parallel with MCPP.

Another feature is that it provides a lot of diag-
nostic messages that allows you to check almost

1



all the preprocessing problems in source programs
and to increase source portability.

This document is organized as follows:
Section 2: Provides an overview of MCPP.
Section 3: Introduces briefly the basic specifica-

tions of C preprocessing.
Section 4: Introduces MCPP’s accompanying

Validation Suite and shows data to compare Stan-
dard conformance level and qualities with other
preprocessors.

Section 5: Shows examples of bugs in compiler-
system resident preprocessors.

Section 6: Describes source checking by MCPP
of the real world programs.

Section 7: Discusses C preprocessing principles
and how to implement them.

Section 8: Describes the current version of
MCPP and future update plans.

2 MCPP Overview

MCPP has the following features:

1. Has the highest conformance to C Standards
because MCPP aims at becoming a reference
model of C and C++ preprocessors. MCPP
provides run-time options to enable C99 and
C++98 behaviors [9], needless to say C90.

2. Provides a validation suite that allows you
to test C or C++ preprocessors themselves in
great detail and comprehensively.

3. Provides a lot of diagnostic messages of more
than one hundred types to pinpoint a prob-
lem in source code. They are divided into sev-
eral classes. Messages of which class are dis-
played is controlled by run-time options.

4. Provides the #pragma directives to output
various debugging information. The direc-
tives allow you to trace tokenization and
macro expansion, to output a macro definition
list and etc.

5. MCPP’s multi-byte character processing can
handle a variety of Japanese EUC-JP, shift-
JIS and ISO-2022-JP, Chinese GB-2312, Tai-
wanese Big-5 and Korean KSX-1001 encod-
ings as well as UTF-8. For the compiler-
proper which cannot recognize shift-JIS or
Big-5, MCPP can complement it.

6. Processing speed is not so slow; it can be
used not only for debugging purpose but also
for daily use. Since MCPP is so developed
that it can operate in 16-bit environments, it
can work properly in a system with a small
amount of memory.

7. MCPP’s source is portable. MCPP is so de-
signed that it can generate a preprocessor to
be used replacing a compiler system resident
one on UNIX-like systems or DOS/Windows
by modifying some settings in header files on
compilation of MCPP. The portability MCPP
source provides is so wide that it can be com-
piled not only with any C90, C99 or C++98
conformant compiler systems, but also with
K&R1st ones before C90.

8. In addition to “Standard” mode, which con-
forms to C90, C99 and C++98 Standards,
MCPP allows you to generate a preprocessor
in various behavioral modes. You can gen-
erate the one based on the K&R1st specifi-
cations too. The Standard mode MCPP has
run-time options to specify the version of the
Standards, moreover, it has an option of what
I call “post-Standard” mode in which all the
problems in C Standards are cleared. The
pre-Standard mode one also has an option of
the Reiser model cpp mode.

9. On UNIX-like systems, a configure script can
be used to automatically generate a MCPP
executable. If GNU C testsuite has been in-
stalled, most of the testcases of validation
suite can be automatically executed by ‘make
check’ command.

10. MCPP is an open source software. Under the
BSD-style license, all of the sources, docu-

2



ments and the validation suite are provided
open.

11. Sufficient documentation is provided both
in Japanese and in English. The En-
glish versions was translated by Highwell
inc.(Tokyo) [19] from the Japanese ones at
“Exploratory Software Projects” and have
been revised by the author.

(a) INSTALL – Describes how to configure
and make MCPP.

(b) mcpp-summary.pdf – This summary doc-
ument.

(c) mcpp-manual.txt: Users Manual – De-
scribes how to use MCPP, its specifica-
tions and meanings of diagnostic mes-
sages. Also suggests how to write
portable source code.

(d) mcpp-porting.txt: Porting Manual – De-
scribes how to port MCPP to particular
compiler systems.

(e) cpp-test.txt: Validation Suite Manual –
Also explain C Standards. It indicates
contradictions and deficiencies in Stan-
dards themselves and proposes alterna-
tives. It also shows the results of apply-
ing Validation Suite to several preproces-
sors.

3 Basic Specifications of
Preprocess

Before entering into the subject, let me summa-
rize the basic specifications of C/C++ preprocess-
ing.

3.1 Procedure of Preprocess

The procedure of preprocessing was not at all de-
scribed in K&R1st, hence had been the source of
many confusions. C90 made clear the procedure
by specifying the translation phases as follows:

1. Map source file characters to source character
set, if necessary. Replace trigraphs.

2. Delete ¡backslash¿¡newline¿ sequences, splic-
ing physical source lines to form logical source
lines.

3. Decompose source file to preprocessing-
tokens and white space sequences. Replace
each comment by one space character. ¡new-
line¿s are retained.

4. Execute preprocessing directives, expand
macro invocations. Process header file named
by #include directive from phase 1 through
phase 4, recursively.

5. Convert from source character set to execu-
tion character set, including escape sequences
in string literals and character constants.

6. Concatenate adjacent string literals.

7. Convert preprocessing-tokens into tokens and
compile.

8. Link.

After that, C99 added processing of _Pragma()
operator in phase 4, also added and modified a few
words. Nevertheless, the above outline was not
changed.

C++98 inserted ‘instantiation’ phase after
phase 7, and appended a so-called UCN specifi-
cation, that is to convert source file character not
in the basic source character set to universal char-
acter name (UCN) in phase 1, and convert it again
to execution character set in phase 5.

Of these translation phases, from phase 1
through phase 4 are usually called preprocessing.

3.2 Diagnostics and Documentation

The definitions of diagnostics and document are
virtually all the same among C90, C99 and C++98
except some difference of wording, and defined as
follows:

Implementation shall issue diagnostic message,
if a translation unit contains a violation of any

3



Table 1: Number of Test Items and Scores covered by Validation Suite V.1.5
Number of Highest
Test Items Score

Standard K&R 31 166
conformance C90 140 432

C99 20 98
C++98 9 26

Quality diagnostics 47 74
issues others 18 164

total 265 960

syntax rule or constraint. It is implementation-
defined how a diagnostic is identified.

Implementation shall document its choice on
any implementation-defined behavior.

4 Results of Applying
Validation Suite to Various
Preprocessors

Another problem involved in preprocessor devel-
opment is how to verify preprocessor’s behavior
and its quality. Wrong behavior or poor quality
of compiler systems is, of course, out of question.
However, in fact, many problems were detected in
existing preprocessors when they were tested with
Validation Suite. As a part of MCPP development,
I developed Validation Suite and released it with
MCPP. Validation Suite provides quite a lot of test
items to measure various aspects of a preprocessor
objectively and comprehensively as much as pos-
sible.

As shown in Table 1, Validation Suite V.1.5 con-
tains as much as 265 test items, of which, 230
cover preprocessor behaviors and 35 documenta-
tion and quality evaluation. Score of each test
item is weighted. The lowest score of each item
is all 0. “Standard conformance” includes evalu-
ation of diagnostic messages and documentation,
as well as of behaviors. “K&R” means specifica-
tions common between K&R1st and C90. “Stan-

dard conformance” for C99 and C++98 deals with
new specifications that do no exist in C90. “Stan-
dard conformance” covers all the specifications of
Standards.

“Quality: diagnostics” deals with diagnostic
messages that are not required by C Standards.
“Quality: others” deals with execution options,
#pragmas, multi-byte character handling, pro-
cessing speed, etc.

Table 2 shows the summary of results of ap-
plying Validation Suite V.1.5 to several compiler
systems. The table shows compiler systems in a
chronological order.

*1 DECUS cpp: Original version developed by
Martin Minow, which was slightly revised by the
author and compiled by Linux/GNU C 3.2. [10]

*2 Borland C 4.0: Japanese version for 1993.
Tested on MS-DOS version [11]

*3 MCPP 2.0: Free software developed by
the author. Was rewritten based on DECUS
cpp. Was ported to various compiler systems,
such as FreeBSD/GNU C 2.7, DJGPP V.1.12,
WIN32/Borland C 4.0, MS-DOS/Turbo C 2.0, LSI
C-86 3.3, and OS-9/09/Microware C. Although
MCPP V.2.0 allows generation of a preprocessor in
various modes, the 32-bit system standard mode
was used for this test (compiled by GNU C 2.95.3
on Linux).

*4 Borland C 5.5: Japanese version. [12]
*5 GNU C 2.95.3: Bundled in VineLinux 2.6

and 3.1, FreeBSD 4.4 or CygWIN 1.13.

4



Table 2: Validation Results of Each Preprocessor

No. Preprocessor year/month conformance quality overall
K&R C90 C99 C++ total diag others evaluation

98
1 DECUS cpp 1985/01 150 240 0 0 390 15 78 483
2 Borland C 4.0 1994/12 164 366 14 6 552 14 69 633
3 MCPP 2.0 1998/08 166 430 58 10 664 68 125 857
4 Borland C 5.5 2000/08 164 368 20 6 558 18 72 646
5 GNU C 2.95.3 2001/03 166 404 56 6 632 23 113 768
6 GNU C 3.2 2002/08 166 419 86 20 691 33 117 841
7 ucpp 1.3 2003/01 166 384 88 9 647 25 88 760
8 Visual C 2003 2003/04 156 394 43 15 610 20 83 711
9 LCC-Win32 3.2 2003/08 160 376 18 6 560 18 96 674

10 Wave 1.0.0 2004/01 140 338 53 18 549 20 79 648
11 GNU C 3.4.3 2004/11 166 415 87 20 688 39 120 847
12 MCPP 2.5 2005/03 166 432 98 22 718 74 134 926

highest score 166 432 98 26 722 74 164 960

*6 GNU C 3.2: Compiled by the author under
VineLinux 2.6 and FreeBSD 4.7. [13]

*7 ucpp 1.3: Portable free software devel-
oped by Thomas Pornin. A stand-alone preproces-
sor. [14]

*8 Visual C++ 2003: Visual C++ .net 2003. Mi-
crosoft. [15]

*9 LCC-Win32 3.2: Shareware, with source
code available, developed by Jacob Navia et al.
Dennis Ritchie’s C90-conforming preprocessor is
used as its preprocessing part. [16]

*10 Wave 1.0.0: Free software written by Hart-
mut Kaiser. Implemented using “Boost C++ pre-
processor library” written by Paul Mensonides et.
al. Tested about an executable on WIN32. [17]

*11 GNU C 3.4.3: Compiled on VineLinux 3.1.
*12 MCPP 2.5: From V.2.0 onward, MCPP has

been ported to Linux/GNU C (2.95, 3.2, 3.3, 3.4),
FreeBSD/GNU C (2.95, 3.2, 3.4), CygWIN 1.13,
LCC-Win32 3.2, Borland C 5.5, Visual C++ .net
2003 and Plan 9 ed.4/pcc. [18]

As shown in the table, MCPP is by far the best
in every aspect. Its conformance is perfect except

it does not implement the C++98 queer specifica-
tion to convert multi-byte character to UCN. It has
more leads over other preprocessors on quality is-
sues, such as abundant and accurate diagnostic
messages, detailed documentation, useful execu-
tion options, #pragmas, handling of various multi-
byte character encodings, and portability.

According to the table, the second best pre-
processor to MCPP is GNU C/cpp. GNU C/cpp
presents almost no problems as long as it pro-
cesses C90 conforming sources. However, GNU
C/cpp still has the following problems, except for
some unimplemented C99 and C++98 specifica-
tions, which will be implemented over time:

1. Diagnostic messages are insufficient. With
the -pedantic -Wall option, many prob-
lems can be checked, but there still remain
a lot of unchecked problems.

2. It provides little functionality to output de-
bugging information.

3. Documentation is insufficient; there are
many unclear or undocumented specifica-

5



0 100 200 300 400 500 600 700 800 900

highest score

MCPP 2.5

GNU C 3.4.3

Wave 1.0.0

LCC-Win32 3.2

Visual C 2003

ucpp 1.3

GNU C 3.2

GNU C 2.95.3

Borland C 5.5

MCPP 2.0

Borland C 4.0

DECUS cpp

C90 conformance (K&R spec) C90 conformance (new spec) C99,C++98 conformance quality

Figure 1: Validation Results of Each Preprocessor

tions. The problem is that the GNU C
V.2/cpp has some traditional behaviors when
-traditional option is not specified.

4. GNU C/cpp uses its own specifications that
are inconsistent with C Standards. Extended
specifications should be implemented with
#pragma.

Compared with GNU C V.2/cpp, GNU C
V.3/cpplib has been much improved in these as-
pects, but is still insufficient.

MCPP is inferior to GNU C/cpp only in process-
ing speed.

Other preprocessor has much more problems
than GNU C/cpp. The following problems are com-
monly found in many preprocessors.

1. As for the new specifications of C99 and
C++98, most of the preprocessors implement
only half of them.

2. Most preprocessors do not provide diagnostics
sufficiently.

3. Most preprocessors provide few diagnostics
on portability matters.

4. It is not uncommon to see off-target diagnos-
tics issued.

5. Most preprocessors do not provide document
sufficiently.

6. Most preprocessors cannot handle more than
1 or 2 multi-byte character encodings.

Moreover, at least 1 or 2 bugs are found in most
preprocessors.

5 Examples of Preprocessor
Bugs and Erroneous Speci-
fications

Each preprocessor contains various bugs and erro-
neous specifications, only some of which this sec-
tion cites. The samples are shown in figure 2.

6



example-1
#define _VARIANT_BOOL /##/

example-2
_VARIANT_BOOL bool;

example-3
#if MACRO_0 && 10 / MACRO_0

example-4
#if MACRO_0 ? 10 / MACRO_0 : 0

example-5
#if 1 / 0

example-6
#include <limits.h>
#if LONG_MAX + 1

Figure 2: Sample of Preprocessor Bugs

5.1 Comment Generating Macro

Example-1 is a macro definition that is actually
found in the Visual C++ .net system header. This
definition is used as shown in example-2. This
code expects _VARIANT_BOOL to be expanded into
//, commenting out that line. Actually, Visual C’s
cl.exe processes this line as expected.

However, // is not a preprocessing-token. In
addition, macro definitions should be processed
and expanded after sources are parsed into to-
kens and a comment is converted into one space.
Therefore, it is irrational for a macro to gener-
ate comments. When this macro is expanded into
//, the result is undefined since // is not a valid
preprocessing-token.

This macro is, indeed, out of question, however,
it is Visual C/cl.exe, which allows such an outra-
geous macro to be processed as a comment, should
be blamed. This example reveals the following se-
rious problems this preprocessor has:

1. Preprocessing is not token-based but
character-based.

2. Preprocessing procedure (translation phases)
is implemented arbitrarily and lacks in logi-
cal consistency.

5.2 Expressions That Should Be
Skipped Causes an Error

The #if expressions in example-3 and 4 are cor-
rect expressions. These expressions are so care-
fully written that a division operation is carried
out only when a denominator is not zero. However,
some compiler systems perform a division when
MACRO_0 is zero and cause an error. Example-
3 used to cause an error in many compiler sys-
tems, but now it is processed properly. Example-4
still causes an error in Visual C++, which shows
that its preprocessor does not implement basic C
specifications regarding evaluation of expressions
properly.

On the other hand, Borland C 5.5 issues a warn-
ing to both example-3 and 4, which may not be def-
initely wrong. However, Borland C 5.5 issues the
same warning to a division using a zero denomi-
nator shown in example-5. This means Borland
C 5.5 cannot tell correct source code from wrong
code. Turbo C issued the same error message to
both correct expressions and incorrect ones that
may cause a zero division error. Borland C sim-
ply degrades the error message to a warning. This
could not be called non-conformant, but indicates
a lack of careful consideration in and poor quality
of diagnostic messages.

5.3 Overflow is Overlooked

The constant expression in example-6 causes an
overflow in C90. Most compiler systems do not
issue a diagnostic message to this overflow. Only
Borland C and Ucpp are quite inconsistent about
this; they issue a warning to some cases, but not
to most.

6 Why Is Source Code Check
by Preprocessors
Required?

Now, we will see source code checking by MCPP of
the real world programs, taking examples of glibc

7



and others.
Not a few C programs have preprocessing-level

problems; there are ones that are content with
successful compilation in a particular compiler
system and lack of portability, ones that are un-
necessarily tricky, and ones that are still based
on the specifications of a particular compiler sys-
tem before C90. These sources will impair porta-
bility, readability and maintainability, and, what
is worse, they will be likely to provide a hotbed
of bugs. Although, in many cases, it is easy to
rewrite such questionable sources into portable
and clear ones, however, they are often left as they
are.

One of the reasons for the existence of such
sources is that preprocessing specifications before
C90 were very ambiguous, which still leaves a
trail even now when C99 Standard has been al-
ready established. Another reason is that the ex-
isting preprocessors are too reticent; since they
pass questionable sources without issuing mes-
sages, problems remain unnoticed.

6.1 How Much Do Preprocessors
Affect Sources?

By replacing a compiler system-resident prepro-
cessor with MCPP, almost all the preprocessing
problems in source programs, ranging from po-
tential bugs and Standard violations to portability
problems, can be identified.

Since MCPP V.2.0, I have reported the results
of applying MCPP to FreeBSD 2.2.2R (May 1997)
kernel and libc sources. Libc sources have al-
most no problems, but some kernel sources have
some, although such sources account for only a
small portion of the total number of source pro-
grams. Many of the problems were not origi-
nated in 4.4BSD-lite but written during porting
to FreeBSD and enhancement.

When I applied MCPP V.2.3 then under devel-
opment to preprocess Linux/glibc 2.1.3 (Septem-
ber 2000) sources, I found a lot of problems. These
problems were frequently found in the programs
that use traditional preprocessing specifications

in UNIX-like systems and those that use GNU
C/cpp’s own or undocumented specifications. I
think GNU C/cpp’s default approval of such un-
desirable source programs without issuing a mes-
sage not only preserves them but also produces
new ones. It is more problematic that such ille-
gal coding is not necessarily found in old sources
only; it is sometimes found in newly developed
sources. Sometimes, similar problems are found
even in system headers.

On the other hand, there are some improve-
ments; for example, nested comments, a Standard
violation that was frequently found by the mid-
dle of 1990s on UNIX-like systems, are no longer
found. This is because GNU C/cpp no longer al-
lowed them. This indicates how much a prepro-
cessor affects sources coding.

6.2 Sample Glibc Source Code
Fragment

To see some preprocessing problems, let me take
an example of a glibc 2.1.3 source code fragments
used in VineLinux 2.1 (i386). The samples are
shown in figure 3.

6.2.1 Multi-line String Literal

Example-7 shows this case. This traditional spec-
ification does not need to be used at all, but it is
still used. Makefile sometimes generates this.

The preprocessing directive lines shown here re-
quire line splicing, so the code fragment should be
written as shown in example-8.

Regardless of directive lines or not, a more gen-
eral way of coding is to use string literal concate-
nation as shown in example-9. If this line were not
a directive one, line splicing would be, of course,
not required.

This way of coding is found in many source files,
but, somehow, the old way of writing still remains
in some.

8



example-7
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\

.text

.globl _dl_runtime_resolve
etc. ...

");

example-8
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\

.text\n\

.globl _dl_runtime_resolve\n\
etc. ...\n\

");

example-9
#define ELF_MACHINE_RUNTIME_TRAMPOLINE asm ("\t" \

".text\n\t" \
".globl _dl_runtime_resolve\n\t" \
"etc. ...\n");

example-10
#define HAVE_MREMAP defined(__linux__) && !defined(__arm__)

example-11
#if HAVE_MREMAP

example-12
defined(__linux__) && !defined(__arm__)

example-13
defined(1) && !defined(__arm__)

example-14
#if defined(__linux__) && !defined(__arm__)
#define HAVE_MREMAP 1
#endif

example-15
#define CHAR_CLASS_TRANS SWAPU16

example-16
#define SWAPU16(w) ((((w) >> 8) & 0xff) | (((w) & 0xff) << 8))

example-17
#define CHAR_CLASS_TRANS(w) SWAPU16(w)

Figure 3: Code Fragments from glibc

9



6.2.2 ∗.S Files That Require
Preprocessing

Some assembler sources have preprocessing direc-
tives, such as #if, and C comments embedded.

It is recommended that the asm() function
should be used whenever possible, as shown in
example-9, to embed the assembler source part in
a string literal, and that not ∗.S but ∗.c should be
used as a file name. In this way, directive lines
other than #include can be used in the middle of
the lines of string literals.

Some assembler sources have a macro embed-
ded, which cannot be dealt with asm(). This type
of source is not a C source and essentially should
be processed with an assembler macro processor.
It is not desirable to use a C preprocessor for this
purpose.

6.2.3 Macro Expanded to ‘defined’

There is a macro definition shown in example-10
and the macro is used as shown in example-11.

However, the behavior is undefined in Standard
C when a #if line have a ‘defined’ pp-token in a
macro expansion result. Apart from it, this macro
definition is first replaced as example-12.

Supposing that __linux__ is defined as 1, and
__arm__ is not defined, it is finally expanded as
shown in example-13.
defined(1) on a #if expression, of course, is

a syntax error. The same thing would happen to
GNU C/cpp, if HAVE_MREMAP were not on a #if
line. However, on the #if line, GNU C/cpp stops
macro expansion at example-12 and evaluates it
as a #if expression. This specification lacks of con-
sistency in that how to expand a macro differs be-
tween when the macro is on a #if line and when on
other lines. It also lacks of portability. This code
should be written as shown in example-14.

6.2.4 Object-Like Macros Expanded to
Function-like Macros

Some object-like macros are defined to be ex-
panded to function-like macro names. These

macros are expanded as function-like macros.
This happens because the token sequence imme-
diately following the object-like macro invocations
are involved in macro expansion. This way of ex-
pansion is a traditional specification before C90,
which was approved by C90. In that sense, it can
be described as providing greater portability. Let
me take an example of an object-like macro shown
in example-15.

SWAPU16 is defined as shown in example-16.

What seems to be an object-like macro that is
actually expanded as a function-like macro is in-
ferior in readability at least. There is no reason to
write in this way. This way of writing originates
in an idea of editor-like text replacement, which
is not desirable for C function-like macro. This
macro should be written as a function-like macro
from the beginning, as shown in example-17.

6.2.5 Undocumented Specifications on
Environment Variable

This is a problem not of C source but of a
Makefile. In GNU C 2/cpp, there is an un-
documented specification that if an environment
variable SUNPRO_DEPENDENCIES is defined and
the -dM option is specified, macro definitions
in source code are output to the file specified
with the environment variable. One of the
Makefiles follows this specification. Also, there
is another similar environment variable named
DEPENDENCIES_OUTPUT, which is documented. I
wonder why these environment variables need to
be used?

In addition to the above, there is more undesir-
able coding, most of which can be easily written
in a clearer and more readable way. The source
programs in question account for only a small por-
tion of total number of the Glibc source files that
extends to several thousands, however, if GNU
C/cpp had issued a warning to such programs,
they would have been rewritten already, or writ-
ten in a quite different way from the beginning.

10



7 Principles of C Preprocess-
ing and MCPP implementa-
tion

Behind the many preprocessing problems iden-
tified by MCPP and its Validation Suite, there
lies a confusion about principles of C preprocess-
ing. The principles and specifications of C pre-
processing before C90 were very ambiguous. C90
gave the first overall definition of C preprocessing,
going back to its principles. Most existing pre-
processors, however, seem to have implemented
each specifications of the Standard one by one
without C preprocessing principles being made
clear, thus prolonging the problems. Furthermore,
C90’s own contradictions and ambiguities stem-
ming from the historical background, which have
not been revised even by C99, makes the problem
more complex.

We can reasonably extract some principles from
C90 preprocessing specifications as follows:

1. Preprocessing is token-based in principle.

2. The syntax of macro call with arguments is
similar to that of function call.

3. Processing of macros is one of the preprocess-
ing tasks and have no priority over other pro-
cessing.

4. Preprocessing is the phase of “pre”processing
independent from the execution environment,
and requires little implementation-defined
parts.

Those are also the principles of MCPP imple-
mentation.

7.1 Principle on Token-Based
Processing

C preprocessing is “token-based” in principle.
Since the principle had been ambiguous before
C90, an idea of character-based text processing
came in. After C90, many preprocessors have

overlooked or even allowed themselves to per-
form character-based text processing, still leav-
ing the problem. What is worse, C90 itself con-
tains some compromising parts with character-
based processing, as in the specifications of # oper-
ator or header-name token. (For the discussion on
this issue, see section 1.7.1 of cpp-test.txt of Vali-
dation Suite.)

MCPP has a program structure that strictly
follows the token-based preprocessing princi-
ple, which is quite different from traditional
character-based preprocessing. Other preproces-
sors seem to aim at token-based processing, but
actually character-based processing got mixed in
many cases. I think a certain percentage of pre-
processor bugs is caused by this.

In Borland C 4.0,5.5 or Visual C++ .net 2003, for
example, a token generated by macro expansion is
sometimes merged with the proceeding or follow-
ing one to become one token. This is an example
of half-hearted token processing. Many preproces-
sors do not issue any warning to an illegal token
generated by macro expansion because they sim-
ply neglect checking a token generated by prepro-
cessing.

7.2 Function-Like Expansion of
Function-Like Macros

Expansion of a macro without an argument is
rather straightforward. On the other hand, for ex-
pansion of macros with arguments, many specifi-
cations have been existed historically, thus lead-
ing to tremendous confusion about it. Although
C90 seems to have put an end to this confusion, it
still lingers. For details on this issue, refer to 1.7.6
of cpp-test.txt.

This confusion is due to two factors: Text-
based thinking that originates in editor-like text
replacement, and the traditional specification on
macro expansion, that is, if a replacement list
forms the first half part of another argument
macro invocation, the succeeding token sequence
are involved in rescanning during macro expan-
sion. The example shown in 6.2.4 is one of the

11



least serious cases. This results from the fact
that C preprocessor’s traditional implementation
happens to have such a deficiency. Is not it a
bug specification, although unintentional, which
introduced various abnormal macros?

C90 tried put an end to this confusion about
how to expand macros with arguments by nam-
ing them “function-like macros” and establishing
a specification similar to that of a function call.
In other words, C90 first intended that function-
like macro and function are interchangeable each
other. C90 articulated that a macro in an argu-
ment is first expanded and then a parameter in
a replacement list is substituted with the corre-
sponding argument and that macro expansion in
an argument must be completed within the argu-
ment. (Before C90, it seems that, in many cases,
a parameter is first substituted with an argument
and then is expanded during rescanning.)

On the other hand, however, C90 approved
the bug specification that succeeding token se-
quence are involved in rescanning, which violates
the function-like processing principle, resulting
in prolonged confusion. At the same time, C90
added the stipulation that a macro with the same
name should not be re-replaced during rescanning
to prevent infinite recursion in macro expansion.
However, because of its approval of involvement
of succeeding token sequence, the range in which
such re-replacement is inhibited still remains un-
clear. Thus, C Standards continue to sway, issuing
a corrigendum and then revising it.

7.3 Separation of Macro Expansion
from the Other Processing

Many C preprocessors seem to have a traditional
program structure in which a replacement list and
its succeeding text are read successively during
macro rescanning. Each time they replace a macro
invocation with its replacement list, they repeat
rescanning for the next macro with its start point
shifting gradually.

This traditional program structure illustrates
the historical background of C preprocessors: they

were derived from macro processors. For some
preprocessors, including GNU C 2/cpp, a macro
rescanning routine is de facto main routine of a
preprocessor. The main routine rescans text with
its start point shifting gradually until it reaches
the end of an input file, during the course of which,
a routine to process preprocessing directives is
called. This is an old macro processor structure
with a disadvantage that macro expansion and
other processing are likely to got mixed. As shown
in 6.2.3, how to expand a macro differs between
when the macro is on a #if line and when on other
lines. This is one of the typical examples of this
mixture. (GNU C 2/cpp internally treats defined
on a #if line as a special macro.)

MCPP provides a macro expansion routine in
Standard and post-Standard modes that is quite
different from traditional routines. The macro ex-
pansion routine is dedicated to macro expansion
and performs no other tasks. Likewise, other rou-
tines ask the routine for all macro expansion and
only receive the result. The macro expansion rou-
tine has a recursive structure, not of a repeat-
ing one, with a simple mechanism to prevent re-
replacement of a macro with the same name. Ex-
pansion of a function-like macro strictly follows
the function-like processing principle, and rescan-
ning is basically completed within a macro invoca-
tion. This is all that the macro expansion routine
does in post-Standard mode. In Standard mode,
the macro expansion routine provides a mecha-
nism to deal with the irregular specification in C
Standards so that it can exceptionally handle suc-
ceeding token sequence only when necessary. This
makes a program structure more clear but also
makes it easy to detect an abnormal macro to is-
sue a warning.

7.4 Portable C Preprocessor

Although one of the reasons for existence of the
preprocessing phase in C is to provide greater
portability, preprocessing itself has often impaired
it, because in most compiler-systems the prepro-
cessor has been an addition to the compiler and
has had unnecessarily implementation-specific

12



behaviors. In contrast, C90 specified preprocess-
ing as a phase mostly independent from the execu-
tion environment, hence guaranteed rather great
portability.

What is more, thanks to C90, most parts of a
preprocessor itself can be written portable, unlike
other components of a C compiler-system. Thus, it
might be even possible for every compiler-system
to use the same high quality and portable prepro-
cessor. A portable preprocessor for portable source
has been ready to appear since C90. Develop-
ment of MCPP began motivated by this situation.
Though, many existing compilers have absorbed
preprocessor into themselves, an independent pre-
processor has a merit of decreasing compiler-
dependent behaviors and increasing portability of
preprocessing as an independent phase.

The above principles were embodied in the C90
preprocessing stipulations. At the same time, the
above contradictions also existed, which were left
to later Standard to solve. C99, however, solved
none of these basic problems, while it added some
new features. What is worse, there are a few areas
where simple-and-clearness of the specifications
were impaired by the appended features. C++98
has more problems than C99. (For these problems,
refer to cpp-test.txt.)

After all, it can be said that, in the history of
C preprocessing, C90 was the one and only at-
tempt to clarify the basics of the language, though
not satisfactory enough. Today, the specifications
began to diffuse again, and clarification stepping
into the basics is expected. I think that the di-
rection should be to complete the principles which
C90 did only halfway.

MCPP is a C preprocessor which is constructed
on the principles of “token-based processing”,
“function-like expansion of function-like macro”,
“separation of macro expansion routine from other
processing” and “portable preprocessing”. In its
conformant mode, MCPP obeys the Standard’s
irregularities using some modifications on these
principles. In addition, MCPP provides prepro-
cessing in what I call “post-Standard” mode, in
which these principles are obeyed thoroughly by
eliminating deficiencies from Standards them-

selves and reorganizing them. If no problems were
detected in this mode, the source can be said as
having high portability as long as preprocessing
is concerned.

8 Current Version and
Update Plans

8.1 V.2.5

MCPP V.2.5 is an update to V.2.4.1 which was re-
leased in March 2004. The updated points are as
follows:

1. Absorbed the ’post-Standard’ mode into an ex-
ecution option of the ’Standard’ mode. Ab-
sorbed the ’old-preprocessor’ setting into an
execution option of the ’pre-Standard’ mode.

2. Revised again and made perfect the recursive
macro expansion.

3. Modified ’old-preprocessor’ specifications to
follow Reiser cpp.

4. Changed some execution options and
#pragma directive names.

5. Added portings to GNU C V.3.3 and V.3.4.

6. Made a few small improvements.

7. Changed the point allotment of Validation
Suite.

8.2 Update Plans for V.2.6

Updating of MCPP is getting behind from the pre-
vious plan. At present, following updates are
planned for MCPP V.2.6.

1. MCPP diagnostic messages will be stored in
a separate file so that anyone can add diag-
nostic messages in various languages at any
time.

2. GNU C 3/cpp source programs and its test-
suite will be given more consideration.

13



3. An option to automatically rewrite un-
portable source programs to portable ones
will be implemented.

4. For better search, two versions, texinfo and
html, will be created for documents.

9 Conclusion

I have developed a C preprocessor MCPP in par-
allel with an exhaustive validation suite for C
preprocessing, aiming at the highest conformance
and the highest quality. As a result, I have suc-
ceeded to show superiority of MCPP over other C
preprocessors. Also, I have discussed the imple-
mentation method of C preprocessor and asserted
that it is vital for an excellent preprocessor to con-
struct program on the ground of clear principles.

It was in 1992 when I began to develop MCPP
based on DECUS cpp. After ten years, MCPP
was adopted to one of the “Exploratory Software
Projects”, which gave me a chance to send it out
into the world. With the finishes that extended
for nearly two years, I completed a C preprocessor
that I think ranks number one in the world. Now,
I will send out MCPP with its English documents
into the world for international evaluation. More-
over, I was estimated as one of the highest class
programmers by the achievement of “Exploratory
Software Projects”. I am also satisfied with my-
self, who have done a good job as a middle-aged
amateur programmer.

The older versions of MCPP and
its Validation Suite are available at
http://download.vector.co.jp/pack/.

During “2002 Exploratory Software Projects”,
cvs repository, a ftp site, and web pages are cre-
ated in m17n.org. [18] MCPP V.2.3 and later are
stored here.

I have continued updating of MCPP after the
project, and will keep on it. Many C programmers
comments and feedback, as well as participation
in MCPP development are welcome!

Related Materials and URL

[1] Information-Technology Promotion Agency
(IPA), Japan,
“Exploratory Software Projects”.
http://www.ipa.go.jp/jinzai/esp/

[2] ISO/IEC. ISO/IEC 9899:1990(E) Program-
ming Languages – C. 1990.

[3] ISO/IEC.
ibid. Technical Corrigendum 1. 1994.

[4] ISO/IEC.
ibid. Amendment 1: C integrity. 1995.

[5] ISO/IEC.
ibid. Technical Corrigendum 2. 1996.

[6] ISO/IEC. ISO/IEC 9899:1999(E) Program-
ming Languages – C. 1999.

[7] ISO/IEC.
ibid. Technical Corrigendum 1. 2001.

[8] ISO/IEC.
ibid. Technical Corrigendum 2. 2004.

[9] ISO/IEC. ISO/IEC 14882:1998(E) Pro-
gramming Languages – C++. 1998.

[10] Martin Minow, DECUS cpp.
http://sources.isc.org/devel/

lang/cpp-1.0.txt

[11] Borland International Inc.,
Borland C++ V.4.0. 1994.

[12] Borland Software Corp.,
Borland C++ Compiler 5.5
http://www.borland.co.jp/

cppbuilder/freecompiler/

[13] Free Software Foundation, GCC.
http://gcc.gnu.org/

[14] Thomas Pornin., ucpp.
http://pornin.nerim.net/ucpp/

[15] Microsoft Corporation,
Visual C++ .net 2003

14



[16] Jacob Navia., LCC-Win32.
http://www.q-software-

solutions.com/lccwin32/

[17] Hartmut Kaiser, Wave V.1.0.0.
http://sourceforge.net/

projects/spirit/

[18] Kiyoshi Matsui, MCPP V.2.5.
http://www.m17n.org/mcpp

[19] Highwell, Inc. Limited Company.
http://www.highwell.net/

15


