
module Pesco.Regex
— Regular expression matching “better than Perl” —

Sven Moritz Hallberg <pesco@gmx.de>

December 6th, 2004

Abstract

This document is a literate Haskell module. It wraps Text.Regex. It
exposes functions for compiling, matching, and substitution. The func-
tions are overloaded on the type of thing to match against, so strings or
compiled regexes can be passed interchangeably wherever a regular ex-
pression is expected. The substitution operator is a polyvariadic function
taking any combination of replacement strings and submatch references
(Ints) as arguments, thus avoiding errors from parsing or constructing a
replacement string with escape characters.

{-# OPTIONS -fglasgow-exts #-}
{-Documentation for this module can be found in the doc directory in the MissingH distribution◦ -}

module MissingH.Regex.Pesco
( Regex (match) -- type class
, Match (. .) -- data type
, Subst -- type class
, ('), (w)
, ($˜), (˜$)
, (//˜), (˜//)
, (/˜), (˜/)
, CRegex -- data type
, Rexopt (. .) -- data type
, cregex
, subst
, subst1
, test -- to be removed
)

where
import qualified Text.Regex as TR
import Data.Maybe (isJust)
import Data.List (unfoldr)

1



Motivation

When asked the inevitable1 by a Perl programmer, what do we answer?

Of course it does, it uses the POSIX regex library, just import
Text.Regex, and have a look at mkRegex and matchRegex . . .

which to the Perl programmer must sound like “Basically, it works as in C”.
Therefore I’d like to answer instead

Basically, it works just as in Perl.

followed by appropriate mumbling about strong typing and syntax aesthetics.
Well, of course Haskell neither can nor should absolutely resemble Perl. I’ve

tried to catch the essence that makes the use of regular expressions so easy
in Perl while still doing so in what a prototypical Haskell programmer could
consider “the right way”.

Overview

Motivated by the above, I export operators for the common regex operations:

s ' r tests whether string s matches the regular expression r .

(') :: (Regex ρ)⇒ String→ ρ→ Bool

Notice the type class Regex. It alleviates the need to explicitly “compile”
or “make” regexes. You can pass compiled expressions or plain strings
anywhere a Regex is expected.

s $˜ r applies regex r to the string s, yielding the list of all matches.

($˜) :: (Regex ρ)⇒ String→ ρ→ [Match]

The Match data type will be defined shortly. It’s a record telling which
substring of s matched, as well as any subexpression matches.

(s //˜ r) p. . . replaces any match of r in s with pattern p. . . .

(//˜) :: (Regex ρ,Subst π)⇒ String→ ρ→ π

Notice the type class Subst. This operator takes a variable number of
arguments of possibly different types. The mechanism will become clear
when class Subst is defined. The effect, anyway, is that p. . . in the above
can be an arbitrary sequence of String or Int arguments. The Ints repre-
sent submatch references, so for example,

test = ("Hello, World!" //˜ "W(o)rld") "Hell" (1 :: Int) :: String

yields "Hello, Hello!".

(s /˜ r) p. . . is like //˜ but replaces only the first match.

(/˜) :: (Regex ρ,Subst π)⇒ String→ ρ→ π

1“Does it support regexes?”

2



In addition to the above, each operator has a “flipped” sibling, the rule being
that “the pattern goes on the same side as the tilde2 (~)”.

(w) :: (Regex ρ)⇒ ρ→ String→ Bool
(˜$) :: (Regex ρ)⇒ ρ→ String→ [Match]
(˜//) :: (Regex ρ,Subst π)⇒ ρ→ String→ π
(˜/) :: (Regex ρ,Subst π)⇒ ρ→ String→ π

All exported operators are non-associative and bind with priority 4. That
makes them bind looser than ++ and :, similar to ≡.

infix 4 ',w, $˜, ˜$, ˜//, //˜, ˜/, /˜
All operators are based on the fundamental pattern matching operation

match, which is the single method of class Regex:
class Regex ρ where

match :: ρ→ String→ Maybe Match
For the purpose of substitution, functions of a non-polyvariadic type are also

provided.
subst :: (Regex ρ)⇒ ρ→ [Repl]→ String→ String
subst1 :: (Regex ρ)⇒ ρ→ [Repl]→ String→ String

subst performs a global substitution while subst1 only replaces the first match.
Both take the replacement pattern as a list of Repls, representing consecutive
parts of the replacement pattern. Each Repl is either a literal replacement string
or a submatch reference.

data Repl = Repl lit String
| Repl ref Int

Finally, the Match data type is a record containing

1. the substring preceding the match (m before),

2. the matching substring itself (m match),

3. the rest of the string after the match (m after), and

4. the list of strings matching the regex’s subexpressions (m submatches).

data Match = Match{m before :: String
, m match :: String
, m after :: String
, m submatches :: [String]
}

deriving (Eq,Show,Read)
Note that the list of subexpression matches does not include the match itself, so
for example, m submatches (head ("Foo" $˜ "F(o)")) is ["o"], not ["Fo", "o"].

Matching

Compiled regular expressions are represented by the abstract data type CRegex,
which wraps Regex from Text.Regex.

newtype CRegex = CRegex TR.Regex
They are created from regular expression strings by the function cregex , which
can take options:

2In plain text code, ' is written as =~ and w as ~=, so ' is the one taking the pattern on
the right.

3



data Rexopt = Nocase | Linematch deriving (Eq,Show,Read)
Nocase makes the matching case-insensitive. Linematch results in ’^’ and ’$’
matching start and end of lines instead of the whole string, and ’.’ not matching
the newline character. By default, matches are case-sensitive and ’^’ and ’$’
refer to the whole string.

cregex :: [Rexopt]→ String→ CRegex
cregex os s = CRegex (TR.mkRegexWithOpts s lm cs)

where
lm = elem Linematch os
cs = ¬ (elem Nocase os)

The matching operation is overloaded on the regex type. Matching of com-
piled regexes is performed by a helper match cregex . If the regex is passed
as a plain string it is compiled with default options before being passed to
match cregex .

instance Regex CRegex where
match = match cregex

instance Regex String where
match = match cregex ◦ cregex [ ]

The match cregex function is a wrapper around Text.Regex.matchRegexAll
whose only purpose is to unwrap the CRegex argument and to wrap the result
in a Match.

match cregex :: CRegex→ String→ Maybe Match
match cregex (CRegex cr) str =

do
(b,m, a, s)← TR.matchRegexAll cr str
return $ Match{m before = b

, m match = m
, m after = a
, m submatches = s
}

Now, the match testing operators are trivial to define.
(w) r = isJust ◦match r

I define ' in terms of w and not the other way around, so that applying
(r w) to several strings compiles r only once (when r is a string). The same
note applies to all other operators as well.

(') = flip (w)
($˜) = flip (˜$)

The ˜$ operator must find all matches within the given string. That can be
achieved by consecutively applying match to the m after field of the previous
match, if any. That’s an instance of unfoldr .

match all :: (Regex ρ)⇒ ρ→ String→ [Match]
match all r = unfoldr step

where
step :: String→ Maybe (Match,String)
step x = do ma ← match r x

return (ma,m after ma)
This way, however, each match’s m before field only extends to the end of the
previous match. The list returned by match all is only meaningful in its original
order. For ther operators, I expand the matches to span the entire string.

(˜$) r = expand matches ◦match all r

4



Let m be a match, as retured by match all . If m is the first match in the list,
it does not need to be expanded. It’s expansion is the empty string "". If, on the
other hand, m has a predecessor p, its expansion is m before p ++ m match p.
So the list of expansions for all matches is given by:

expansions :: [Match]→ [String]
expansions ms = "" : map (λp → m before p ++ m match p) ms

That list contains one extraneous entry at the end, but that can be ignored
because expand matches is now a simple instance of zipWith3.

expand matches :: [Match]→ [Match]
expand matches ms = zipWith expand ms (expansions ms)

where
expand m s = m{m before = s ++ m before m }

Substitution

class Subst π where
subst ′ :: String→ [Match]→ [Repl]→ π

instance Subst String where
subst ′ s ms rs = replace ms (reverse rs) s

instance (Subst π)⇒ Subst (String→ π) where
subst ′ s ms rs = λx → subst ′ s ms (Repl lit x : rs)

instance (Subst π)⇒ Subst (Int→ π) where
subst ′ s ms rs = λi → subst ′ s ms (Repl ref i : rs)

replace :: [Match]→ [Repl]→ String→ String
replace [ ] s = s
replace (m : ms) rs = ( m before m

++ concatMap replstr rs
++ replace ms rs (m after m)
)

where
replstr r = case r of

Repl lit x → x
Repl ref 0 → m match m
Repl ref i → m submatches m !! (i − 1)

subst r = λrs s → replace (match all r s) rs s
subst1 r = λrs s → replace (take 1 (match all r s)) rs s
(˜//) r = λs → subst ′ s (match all r s) [ ]
(˜/) r = λs → subst ′ s (take 1 (match all r s)) [ ]
(//˜) = flip (˜//)
(/˜) = flip (˜/)

3Applause!

5


