Musical MIDI Accompaniment

Reference Manual

Bob van der Poel
Wynndel, BC, Canada

bvdp@uniserve.com

December 2, 2004



Table Of Contents

1 Overview and Introduction 7
1.1 License, Versionand Legalities . . . . . . . . . . . . ... 7
1.2 Installingafm . . . . . . . e e e e e 8
1.3 RunningMm . . . . . .. e 8
1.4 CommeNnts . . . . . . . e e e 9
1.5 Theory Of Operation . . . . . . . . . . . . e e 9
1.6 CaseSensitivity . . . . . . . . . e e e e 10

2 Running afm 12
21 CommandLineOptions . . . . . . . . . . . . . e e 12
2.2 LinesandSpaces . . . . . . . . e e 14
2.3 Programming Comments . . . . . . . .. e e e e 14

3 Tracks and Channels 15
3.1 ammTracks . . . . . . e 15
3.2 TrackChannels . . . . . . . . . e e 15
3.3 Track Descriptions . . . . . . . ... e e e 16

3.3.1 Drum ..o e e e e e 61
3.3.2 Chord . . . . . . e 17
3.3.3 AIpeggio . . ... e e 17
3.3.4 Scale . ... 17
3.35 Bass . . ... e e 17
3.3.6 Walk . . .. e 81
3.3.7 SoloandMelody . . . ... .. . . . ... e 18
3.4 SilencingaTrack . . . . . . . . e e 18

4 Patterns 19

4.1 DefiningaPattern . . . . . . . . . . e e 19
4.1.1 BaSS . . . . . e e e e 21
4.1.2 Chord . . . . . . e 22
4.1.3 Arpeggio . . . . . e e e 23



Table Of Contents M
4.1.4 Walk . . . e 32
415 Scale . . ... e 24
4.1.6 Drum . .. e e e e e e 52
4.1.7 DrumTone . . . . . . e e e e 25
4.2 Including Existing Patterns in New Definitions . . . . . . ... .. ... ... .... 26
4.3 Multiplying and Shifting Patterns . . . . . . . . . . ... e 26
5 Sequences 30
5.1 SeqClear . . . . . . . . . e 31
5.2 SegRNd . . . . .. e e 32
53 SegNoRnd . . . . . . . . .. e 33
5.4 SeqSize . . . . . e 33
6 Grooves 34
6.1 Creating AGIro0OVE . . . . . . . e e e 34
6.2 USINGAGIOOVE . . . . . o e e e 35
6.2.1 Overlay Grooves . . . . . . . . e 36
6.2.2 LibrarylIssues. . . . . . . . .. e e 37
7 Riffs 38
7.1 RIiff . e e, 38
7.2 MultipleRiffs . . . . . . . e e 39
8 Musical Data Format 41
8.1 BarNumbers . . . . . . . e e e 41
8.2 BarRepeat . . . . . . . . . e 42
8.3 Chords . . . . . . . . e e 42
8.4 RESIS . . . e s e 43
8.5 CaseSensitivity . . . . . . . . e e 44
9 Lyrics 45
9.1 LyricOptions . . . . . . . . e e 45
9.1.1 EventType . . . . . . e e e 46
9.1.2 Word Splitting . . . . . . . .. e 46
9.2 Setting LyriCS . . . . . . . e e e 46
10 Solo and Melody Tracks 50
10.1 NoteDataFormat. . . . . . . . . . . . e e e 51
10.1.1 NotesonDuration . . . . . . . . . . . . . e e 52
10.1.2 Tilde Duration . . . . . . . . . . e e e 53
10.1.3 UsingDefaults . . . . . . . .. .. . ... e 54
10.1.4 OtherCommands . . . . . . . . . . . . e e 54
10.2 KeySig . . . o o o e e 54
10.3 AutoSoloTracks . . . . . . . . . e e e e e 55
10.4 Drum SoloTracks . . . . . . . . . e e 55
105 Mallet . . . . . e e e 56



Table Of Contents

10.5.1
10.5.2

Rate . . . . . . .
Decay . . . . . . e e e,

11 Chord Voicing
11.1 VOICING . . . . o o e e e e

12

13

14

15

1111
11.1.2
11.1.3
11.1.4
11.1.5
11.1.6

VoicingMode . . . . . . . e e
VoicingRange . . . . . . . . e e
Voicing Center . . . . . ... e e e
Voicing Move . . . . . . e e
Voicing Dir . . . . . L
Voicing Rmove . . . . . . . . e e

11.2 COMPIESS . . . o o o e e e e e e e e e e
11.3 DupROOt . . . . . e

11.4 Invert
11.5 Limit
11.6 Range

Tempo and Timing
12.1 TemMPO . . . . o e e

12.2 Time

12.3 TIMESIQ . . . . o o o o
12.4 BeatAdjust . . . . . . . e
125 Fermata . . . . . . . . . e e

12.6 Cut .

Volume and Dynamics

13.1 AcCeNnt . . . . . e e e
13.2 AdjustMolume . . . . . e e e
13.3 Volume . . . . . e
13.4 Crescand DeCresSC . . . . . . v v v i i e e e e e e
13.5 RVolume . . . . . e e e e

13.6 Saving

Repeats

and RestoringVolumes . . . . . . . . . e e

Variables, Conditionals and Jumps

15.1 Variabl
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.1.6

B i e e
Set[string] . . . . . . . e
Mset [lines] MsetEnd/EndMset . . . . . . . . . ... L e
UnSet VariableName . . . . . . . . . . . . .. .. e
ShowVars . . . . . . . e e
IncandDec . . . . . . . . .. e
VExpand OnorOff . . . . . . . . ... . . .

15.2 Predefined Variables . . . . . . . . .. e
15.3 Conditionals . . . . . . . . . e



Table Of Contents

16 Low Level MIDI Commands
16.1 Channel . . . . . . . . e e
16.2 ChannelPref. . . . . . . . . . e

17

18

16.3 ChSh
16.4 MIDI
16.5 MidiF

ale . . . e e e e e e e e e e e e e e e

1

16.6 MIDISeq . . . . . . . . e
16.7 MIDIVOICE . . . . . . e e
16.8 MIDIClear . . . . . . . . . e e
16.9 MIDIINC. . . . . . . e e

16.10 Pan
16.11 Porta
16.12 Chan

MENTO . . . . o o e e e e e
nelVolume . . . . . . . e e

Other Commands and Directives
17.1 Articulate . . . . . . . e e e

17.2 Copy

17.3 Comment . . . . . . .. e e e e e
17.4 Debug . . . . . . . e
17.5 Delete . . . . . . e
17.6 Direction . . . . . . . e e e
17.7 Duplicate . . . . . . . .

17.8 Harm
17.9 Harm

ONY o o o e e e e e e e
onyonly . . .

17.10 Octave . . . . . . e e

17.11 Off .
17.12 On..
17.13 Print

17.14 PrintACtiVe . . . . . . . e e e e e e
17.15RSKID . . o o o e e
17.16 RTIME . . . . o o e e e e
17.17 ScaleType . . . . . . . e e

17.18 Seq

17.19Strum . . L . e e e
17.20 TranSPOSEe . . . . . o o o e e e e e e e

17.21 Unify
17.22 \oice

17.23VOICETT . . . . s e e

Begin/End Blocks

18.1 Begin
18.2 End

86
86
87
87
88
89
90
92
93
93
95
96
96

97
97
98
98
99
100
100
101
101
102
103
103
104
104
104
104
105
106
106
107
107
107
108
109

110
110
111



Table Of Contents M
19 Documentation Strings 112
19.1 DOC . . . . o o e 112
19.2 AUthOr . . . . e e 112

20 Paths, Files and Libraries 113
20.1 File EXtENSIONS . . . . . . . . e e e 113
20.2 Eof . . . . 114
20.3 LibPath . . . . . . e 114
20.4 OutPath . . . . . . . . e e 115
20.5 Include . . . . . e 115
20.6 IncPath . . . . . . . . e e 116
20.7 USe . . . 116
20.8 MmaStart . . . . . . . e e 117
209 MmaENnd . . . . .. 118
2010 RCFFiles . . . . . e 118
20.11 Library Files . . . . . . . e 119

21 Creating Effects 120
21.1 Overlapping NoOtes . . . . . . . . . e e 120
21.2 Jungle Birds . . . . . .. e e 121
22 Frequency Asked Questions 122
22.1 AABASONgFOrMS . . . . . . e e e e 122
22.2 Where'sthe GUI? . . . . . . e e e 123
22.3 Where’'sthe manualindex? . . . . . . . . . . . . e e 123

A Symbols and Constants 124
Al ChordNames . . . . . . . . . e e e 124
A2 MIDIVOICES . . . . . o 127
A.2.1 \oices, Alphabetically . . . .. ... .. .. .. .. e 127

A.2.2 Voices,ByMIDIValue . . . . . . . . . . . e 128

A3 DrumNotes . . . . . . . e e 130
A.3.1 Drum Notes, Alphabetically . . . . . . ... ... . . ... ... .. 130

A.3.2 Drum Notes,byMIDIValue . . . . ... .. .. ... .. ... 130

A4 MIDIControllers . . . . . . . . e 132
A.4.1 Controllers, Alphabetically . . . . . . . ... .. .. .. .. ... 132

A.4.2 Controllers,byValue . . . . . . . ... .. 133

B Command Summary 135



Chapter 1

Overview and Introduction

Musical MIDI Accompanimenté=z®, generates standard MIPfiles which can be used as a backup track
for a soloist. It was written especially for me—I am an aspgrsaxophonist and wanted something to
practice my jazz solos. With#z | can create a track based on the chords in a song, transposthé
correct key for my instrument, and play my very bad improtgses until they get a bit better.

| also have a small combo group which is always missing at leaes player. Withwéza generated tracks
we can practice and perform even if a rhythm player is missiings all works much better than | expected
when | started to write the program.

1.1 License, Version and Legalities

The programméz was written and is copyright Robert van der Poel, 2002—2004.

This program, the accompanying documentation, and libiikey can be freely distributed according to
the terms of the GNU General Public License (see the dis&ibfile “COPYING”).

If you enjoy the program, make enhancements, find bugs, @bl & note to me dwvdp@uniserve.com
or a postcard (or even money) to PO Box 57, Wynndel, BC, Can@@a2NO.

The current version of this package is maintainedit://mypage.uniserve.com/"bvdp/mma/mma.
html .

This document reflects version 0.12 1a#a.

Warning: This program is currently in a beta state. The commands uséakei input files, the
output, the overall logic and anything else you can think mfithchange in the future.

This manual most likely has lots of errors. Spelling, gramraad probably a number of the
examples need fixing. Please give me a hand and report agythitill make it much easier
for me to generate a really good product for all of us to enjoy.

IMusical MIDI Accompaniment and the short forma in the distinctive script are names for a program written loypBan
der Poel. The “MIDI Manufacturers Association, Inc.” uske acronym MMA, but there is no association between the two.
2MIDI is an acronym for Musical Instrument Digital Interface



1.2 Installing M Overview and Introduction

1.2 Installing afm

2w 1S a Python program developed with version 2.3 of PythonhAtery least you will need this version
(or later) of Python!

To play the MIDI files you'll need a MIDI player. Pmidi, tseZyl, and many others are available for Linux
systems. For Windows and Mac systems I'm sure there are many choices.

You'll need a text editor to create input files.
ama consists of a variety of bits and pieces:

J1 The executable Python script, mma, must somewhere in ydhr F@r users running a Windows
system, please check our website for details on how to Insiadhese systems.

J1 A number of Python modules. These should all be installeceumtige directory/usr/local/
share/mma/modules

J3 Anumber of library files defining standard rhythms. Theseusthall be installed under the directory
lust/local/share/mma/lib/stdlib

The script “install” will (hopefully) installagz properly for you. It assumes that main script is to be
installed in/usr/local/bin and the support files ifusr/local/share/mma . If you want an alternate
location, you can edit the paths in the script. The only sujgploalternate to use Issr/share/mma

In addition, youcanrun a#=z from the directory created by the untar. This is not reconaeen but will
show some ofviz’s stuff.

You should be “root” to run the install script.

1.3 Running am

For details on the command line operationsda please refer to chapter 2.
To create a MIDI file you need to:

1. Create a text file (also referred to as the “input file”) witktructions whichéz understands. This
includes the chord structure of the song, the rhythm to Umeetedmpo, etc. The file can be created
with any suitable text editor.

2. Process the input file. From a command line the instruction
mma myfile <ENTER>
will invoke a1 and, assuming no errors are found, create a MIDI file “myfiid’m

3. Play the MIDI file with any suitable MIDI player.

3]f someone using a Mac system could let me know how to instath@s system I'd be glad to include those details on my
website.



1.4 Comments Overview and Introduction

4. Edit the input file again and again until you get the perfieatk.

5. Share any patterns, sequences and grooves with the aottiay can be included in future releases!
An input file consists of the following information:

1. a#m directives. These includBempg Time Volume etc. See chapter 17. .

2. Pattern SequencandGrooveSee chapters 4, 5 and 6.

3. Music information. See chapter 8.

4. Comment lines and blank lines. See below.

Items 1 to 3 are detailed later in this manual. Please reauwl tfedore you get too involved in this program.

1.4 Comments

We do believe that proper indentation, white space and cortswage agyood thing But, in most casesd=
really doesn'’t care:

J1 Any leading space or tab characters are ignored,
71 Multiple tabs and other white space are treated as singlacteas,
71 Any blank lines in the input file are ignored.
Each line is initially parsed for comments. A comment is aimg following a “//” (2 forward slashes).

Comments are stripped from the input stream. Lines stawitigthe Commentlirective are also ignored.
See the&Commentiscussion for details (see page 98).

1.5 Theory Of Operation

To understand howsz works it's easiest to look at the initial development condajiially, a program
was wanted which would take a file which looked something like

Tempo 120
Fm
Cc7

and end up with a MIDI file which played the specified chordsr@drum track.

Of course, after starting this “simple” project a lot of cdeties developed.

4We wanted to use “#" for comments, but that sign is used foatiss” in chord notation.



1.6 Case Sensitivity Overview and Introduction

First, the chord/bar specifications. Just having a singtedtiper bar doesn’t work—many songs have
more than one chord per bar. Second, what is the rhythm oftbels? What about a bass line? Oh, and
what drum track?

Well, things got more complex after that. At a bare minimure,veeded the ability to:
J1 Be able to specify multiple chords per bar,
J1 Be able to define different patterns for chords, bass lindslamm tracks,
J1 Make the input files easy to create and debug,
J1 Provide a reusable library that a user could simply plug irmodify.
From these simple needsz was created.

The basic building blocks aoffz arePatterrs. A pattern is a specification which tellsz what notes of a
chord to play, the start point in a bar for the chord/noted,tae duration and the volume of the notes.

M patterns are combined in®equence This lets you create multi-bar rhythms.

A collection of patterns can be saved and recalle@e®ves. This makes it easy to pre-define complex
rhythms in library files and incorporate them into your sonthwa simple two word command.

a2 IS bar or measure based (we use the words interchangealtlis iddcument). This means theia
processes your song one bar at a time. The music specifidetgmall assume that you are specifying a
single bar of music. The number of beats per bar can be adjust@ever, all chord changes must fall on
a beat division (the playing of the chord or drum note can paoywhere in the bar).

To make the input files look more musicaka supportRepeatandRepeatEndingt However, complex-
ities like D.S. and Coda are not internally supported (butloa created by using ti@otocommand).

1.6 Case Sensitivity

Just about everything in®&m file is case insensitive.
This means that the command:
Tempo 120
could be entered in your file as:
TEMPO 120
or even
TeMpO 120
for the exact same results.

Names for patterns, and grooves are also case insensitive.

10



1.6 Case Sensitivity Overview and Introduction

The only exceptions are the names for chords, note&3ois, and filenames. In keeping with standard
chord notation, chord names are in mixed case; this is ddtanl Chapter 8. Filenames are covered in

Chapter 20.

11



Chapter 2
Running M

a2 is a command line program. To run it, simply type the programe followed by the required options.
For example,

mma test

processes the file “testand creates the MIDI file “test.mid”.

2.1 Command Line Options

The following command line options are available:

Option | Description

-V Show program’s version number and exit.

-d Enable LOTS of debugging messages. This option is mainligded for program
development and may not be useful to users.

-0 A debug subset. This option forces the display of completmdines/paths as they

are opened for reading. This can be quite helpful in detarmgiwhich library files
are being used.

-p Display patterns as they are defined. The result of this eigmot exactly a duplicate
of your original definitions. Most notable are that the nateation is listed in MIDI
ticks, and symbolic drum note names are listed with their encrequivalents.

-S Display sequence info during run. This shows the expandtsidised in sequences.
Useful if you have used sequences shorter (or longer) tharctinrent sequence
length.

LActually, the file “test” or “test. mma” is processed. Pleasad section 20.1 (see page 113).

12



2.1 Command Line Options Running M

-fFILE

-Mx

Display running progress. The bar numbers are displayeldegsare created com-
plete with the original input line. Don’t be confused by niypike listing of “*” lines.
For example the line

33 Cm=* 2
would be displayed as:

88: 33 Cm =2

89: 33 Cm *2
This makes perfect sense if you remember that the same lis@ise to create both
bars 88 and 89.

Disable generation of MIDI output. This is useful for doingeat run or to check for
syntax errors in your script.

Show parsed/expanded lines. Sinea does some internal fiddling with input lines,
you may find this option useful in finding mismatchigdginblocks, etc.

Display the tracks allocated and the MIDI channel assigrimafter processing the
input file. No output is generated.

Set the maximum number of bars which can be generated. Thaltlsétting is 500
bars (a long song). This setting is needed since you can create infinite logps b
improper use of thgotocommand. If your song really is longer than 500 bars use
this option to increase the permitted size.

Update the library database for the files in thgPath You should run this command
after installing new library files or adding a new groove toearsting library file. If
the database (stored in the fNMADIR is not updatedgs= will not be able to auto-
load an unknown groove.

The current installation of#z does not set directory permissions. It simply copies
whatever is in the distribution. If you have trouble using thption, you will proba-
bly have to reset the permissions on the lib directory.

a1 Will update the groove database with all files in the curdgbPath All files
musthave a “.mma” extension. Any directory containing a file ndriW/AIGNORE
will be ignored. Note, thatIMAIGNOREonNsists of all uppercase letters and is usually
an empty file.

Same as the “-g” option (above), but the uppercase versimesahe creation of a
new database file—an update from scratch just in case sargetmlly goes wrong.

Set output to FILE. Normally the output is sent to a file witk ttaeme of the input file
with the extension “.mid” appended to it. This option letsiyset the output MIDI
file to any filename.

Generate type 0 or 1 MIDI files. The paramater “x” must be se¢h&single digit
“0” or "1". For more details, see th®lidiSMF section on see page 89.

The following commands are used to create the documentai®a user you should
probably never have a need for any of them.

2500 bars with 4 beats per bar at 200 BPM is about 10 minutes.

13



2.2 Lines and Spaces Running M

-Dx Expand and prinDoc commands used to generate the standard library referemce. N
MIDI output is generated when this command is given. Doaggiin RC files are
not processed. Files included in other files are processed.

-Dn Create a table of the available chord types.

-Dda Create a table of the MIDI drum note names, arranged alpicaitigt

-Ddm Create a table of the MIDI drum note names, arranged by MIDle/a

-Dia Create a table of the MIDI instrument names, arranged alkgticably.

-Dim Create a table of the MIDI instrument names, arranged by MHMe.

A number of the debugging commands can also be set dynaynicallsong. See the debug section (see
page 99) for details.

2.2 Lines and Spaces

Whenasm reads a file it processes the lines in various places. Thedmsling strips out blank lines and
comments of the “//” type.

On the initial pass though the file any continuation linesjaireed. A continuation line is any line ending
with a single "—simply, the next line is concatenated to the current lmereate a longer line.

Unless otherwise noted in this manual, the various partsliokeaare delimited from each other by runs
of whitespace. Whitespace can be tab characters or spatiesr daracters may work, but that is not
recommended, and is really determined by Python’s defirstio

2.3 Programming Comments

i 1S designed to read and write files; it is not a filter (this coog changed, but we’re not sure why this
would be needed).

As noted earlier in this manualsz has been written entirely in Python.There were some irgbalcerns
about the speed of a “scripting language” when the projeststarted, but Python’s speed appears to be
entirely acceptable. On an AMD Athlon 1900+ system runningnliranke Linux 10.1, most of songs
compile to MIDI in well under one second. If you need fastesufes, you're welcome to recode this
program into C or C++, but it would be cheaper to buy a fastetesy, or spend a bit of time tweaking
some of the more time intensive Python loops.

The manual has been prepared with #igX typesetting system. Once life and the program settle down
the source files may be released as well. Currently, thertgvareersions available: a PDF file intended for
printing or on-screen display (generated with dvipdf) amtiTaIL version (transformed withM[EX2HTMLD)

for electronic viewing. If other formats are needed ... péeaffer to volunteer.

14



Chapter 3

Tracks and Channels

This chapter discusseg= tracks and MIDI channels. If you are reading this manualfierftrst time you
might find some parts confusing. If you do just skip ahead—gai runasz without knowing many of
these details.

3.1 a6m Tracks

To create your accompaniment trackaéa divides output into several internal tracks. There are @ taft
8 different types of tracks, and an unlimited number of galoks.

Whenasz is initialized there are no tracks assigned; however, as ilanary and song files are processed
various tracks will be created Each created a unique name. trélsk types are discussed later in this
chapter, but for now they aigass Chord Walk Drum, Arpeggiq Scale MelodyandSola

All tracks are named by appending a “-” and“name” to the tppeae. This makes it very easy to remember
the names, without any complicated rules. So, drum trachkhese names “Drum-1", “Drum-Loud” or
even “Drum-a-long-name”. The other tracks follow the saole.r

In addition to the hyphenated names described above, yoalsamame a track using the type-name.
So, “DRUM” is a valid drum track name. In our library files weuadly use the type-name to describe
patterns.

All track names are case insensitive. This means that theesd@hord-Sus”, “CHORD-SUS” and
“CHORD-sus” all refer to the same track.

If you want to see the names defined in a song, justnon the file with the “-¢” command line option.

3.2 Track Channels

MIDI defines 16 distinct channels numbered 1 to'TBhere is nothing which says that “chording” should
be sent to a specific channel, but the drum channel shoulyslbechannel 18.

1We use the values 1 to 16 in this document. Internally theystaned as values O to 15.
2This is not a MIDI rule, but a convention established in the @B&neral MIDI) standard. If you want to find out more
about this, there are lots of books on MIDI available.

15



3.3 Track Descriptions Tracks and Channels

For a#m to produce any output, a MIDI channel must be assigned tack.tiuring initialization all of the
DRUM tracks are assigned to special MIDI channel 10. As nalslata is created other MIDI channels
are assigned to various tracks as needed.

Channels are assigned from 16 down to 1. This means thatwlee lmimbered channels will most likely
not be used, and will be available for other programs or aegbi&iard” track on your synth.

In most cases this will work out just fine. However, there areimber of methods you can use to set the
channels “manually.” You might want to read the section<hiannel(see page 86 ChShare(see page
87),0n (see page 104), ar@ff (see page 103).

Why bother with all these channels? It would be much easiputall the information onto one channel,
but this would not permit you to set special effects (lk@tamentoor Pan) for a specific track. It would
also mean that all your tracks would need to use the samemstrtation.

3.3 Track Descriptions

You might want to come back to this section after reading nedte manual. But, somewhere we need
to describe the different track types, and why they exist.

Musical accompaniment comes in a combination of the folhgi
J1 Chords played in a rhythmic or sustained manner,
71 Single notes from chords played in a sustained manner,
J1 Bass notes. Usually played one at a time in a rhythmic manner,
J1 Scales, or parts of scales. Usually as an embellishment,
71 Single notes from chords played one at time: arpeggios.
J1 Drums and other percussive instruments played rhythngicall

Of course, this leaves the melody ... but that is up to youanet. . but, if you suspect that some power
is missing here, read the brief descriptiorSafioandMelodytracks (see page 18) and the complete “Solo
and Melody Tracks” chapter (see page 50).

M comes with several types of tracks, each designed to fikdifit accompaniment roles. However, it’s
quite possible to use a track for different roles than oatijnenvisioned. For example, the bass track can
be used to generate a single, sustained treble note—or gdijiegHarmonymultiple notes.

The following sections describe the tracks and give a fevgsstijons on their uses.

3.3.1 Drum

Drums are the first thing we usually think about when we heamtbrd “accompaniment”. Alhvéz drum
tracks share MIDI channel 10, which is a GM MIDI conventiorrub tracks play single notes determined

16



3.3 Track Descriptions Tracks and Channels

by theTonesetting for a particular sequence.

3.3.2 Chord

If you are familiar with the sound of guitar strumming, theouyre familiar with the sound of a chord.
ama chord tracks play a number of notes, all at the same time. ®hene of the notes (and the number of
notes) and the rhythm is determined by pattern definitiohg.istrument used for the chord is determined
by theVoicesetting for a sequence.

3.3.3 Arpeggio

In musical terms aarpeggic® is the notes of a chord played one at a timea arpeggio tracks take the
current chord and, in accordance to the current pattery, gitegle notes from the chord. The choice of
which note to play is mostly decided by=z. You can help it along with thBirection modifier.

We useArpeggiotracks quite often to highlight rhythms. Using tRSkipdirective produces broken
arpeggios.

Using different note length values in patterns helps to niadeesting accompaniments.

3.3.4 Scale

Another embellishment. Whew= plays a scale, it first determines the current chord. Iteescale started
on the first note of the chord (if the chord is a C7, the scaléheila C scale). Currently, three types of
scales are supported: major, natural minor and chromatic.

The major scale is selected for all chords which are not of momilavor, or if theScaleTypas set to
Major.

The natural minor scale is selected for all “minor” chordhislincludes chords such as “Cm7”, “G#m13”,
etc. If theScaleTypés set toMinor this scale is always used.

If the ScaleTypés set toChromatic then a chromatic scale is used.

M plays successive notes of a scale. The timing and lengtheohdles is determined by the current
pattern. Depending on tHgirection setting, the notes are played up, down or up and down the.scale

3.3.5 Bass

Basstracks are designed to play single notes for a chord for stanohss patterns. The note to be played,
as well as its timing, is determined by the pattern definitidime pattern defines which note from the

3The term is derived from the Italian “to play like a harp”.

17



3.4 Silencing a Track. Tracks and Channels

current chord to play. For example, a standard bass pattigt alternate the playing of the root and fifth
notes of a scale or chord. You could also Bsesstracks to play single, sustained treble notes.

3.3.6 Walk
The Walk tracks are designed to imitate “walking bass” lines. Tiaddlly, they are played on bass
instruments like the upright bass, bass guitar or tuba.

A Walktrack uses a pattern to define the note timing and volume. Mote is played is determined from
the current chord and a simplistic algorithm. There is na aeatrol over the note selection.

3.3.7 Solo and Melody

SoloandMelodytracks are used for arbitary note data. Most likely, this medody or counter-melody
... but these tracks can also be used to create interestiliggemtroductions or transitions.

3.4 Silencing a Track

There a number of ways to silence a track:
J1 Use theOff (page 103) command to stop the generation of MIDI data,
71 Disable the sequence for the bar with an empty sequence §iage
J1 Delete the entire sequence wileqClearpage 31).
71 Disable the MIDI channel with a “Channel 0" (page 86).

Please refer to the appropiate sections on this manual fitvefiudetails.

18



Chapter 4

‘Patterns

i builds its output based gratterns andsequencesupplied by you. These can be defined in the same
file as the rest of the song data, or can be included (see ctptérom a library file.

A pattern is a definition for a voice or track which describdsatwhythm to play during the current bar.
The actual notes selected for the rhythm are determinedebgahg bar data (Chapter 8).

4.1 Defining a Pattern

The formats for the different tracks vary, but are similapegh to confuse the unwary.
Each pattern definition consists of three parts:

J3 A unique label to identify the pattern. This is case-instresi Note that the same label names can
be used in different tracks—for example, you could use tmeendvlyPattern” in both a Drum and
Chord pattern... but this is probably not a good idea. Nama@suse punctuation characters, but
must not begin with an underscore’(): The pattern names “z” or “Z” and “-” are also reserved.

JJ A series of note definitions. Each set in the series is dedunitith a “:”.
J3 The end of the pattern definition is indicated by the endiud:|

In the following sections we show the definitions in contitioia lines; however, it is quite legal to mash
all the information onto a single line.

The following concepts are used when defining a pattern:

Start When to start the note. This is expressed as a beat offseexgarple, to start a note at the start of
a bar you use “1”, the second beat would be “2”, the fourth ‘&&¢. You can easily use off-beats
as well: The “and” of 2 is “2.5”, the “and ahh” of the first beat'll.75", etc. Using a beat offset
greater than the number of beats in a bar or less than “1” ipemhitted. Sedime(see page 66).

Duration The length of a note is somewhat standard musical notatimce$t is impractical to draw in
graphical notes or even to use fractions likefz uses a shorthand notation detailed in the following
table:

19



4.1 Defining a Pattern Patterns

Notation | Description

1 Whole note

2 Half

4 Quarter

8 Eighth

16 Sixteenth

32 Thirtysecond

64 Sixtyfourth

3 One note of an eighth-note triplet
0 A single MIDI tick

The last note length, “0” is a special value often used in dinaitks where the actual “ringing”length
appears to be controlled by the MIDI synth, not the drivinggyam. Internally, a “0” note length in
converted to a single MIDI tick.

Lengths can have a single or double dot appended. For exatgples a dotted half note and “4..”
adds an eight and sixteenth value to a quarter note.

Note lengths can be combined using “+”. For example, to maketi@ed eight note use the notation
“8+16", a dotted half “2+4”, and a quarter triplet “3+3".

It is permissible to combine notes with “dots” and “+”’s. Thatation “2.+4” would be the same as
a whole note.

The actual length of the note will be adjusted by Bréiculatevalue (see page 97).

Volume The MIDI velocity! to use for the specified note. For a detailed explanationwfdie calculates
the volume of a note, see chapter 13.

MIDI velocities are limited to the range 0 to 127. Howevetz does not check the volumes specified
in a pattern for validity. This is a feature. If you want to aresthat a note is always sounded use a
very large value (eg. 1000) for the volume. That way, fut@stments will maintain a large value
and this large value will be clipped to the maximum permitté®I velocity.

In most cases velocities in the range 50 to 100 are useful.

Offset The offset into the current chord. If you have, for exampl€, minor chord (C, & and G) has 3
offsets: 0, 1 and 2. Note that the offsets refer tod¢herd not the scale. For example, a musician
might refer to the “fifth"—this means the fifth note of a scalein a major chord this is the third
note, which has an offset of 2 .

Patterns can be defined fBass Walking Chord, Arpeggiq Chord and Drum tracks. All patterns are
shared by the tracks of the same typ€herd-Susand Chord-Pianoshare the patterns f@&€hord As a
convenienceaz will permit you to define a pattern for a sub-track, but rementhat it will be shared
by all similar tracks. For example:

Drum Define S1 1 0 50

IMIDI “note on” events are declared with a “velocity” valuehifik of this as the “striking pressure” on a piano.

20



4.1 Defining a Pattern Patterns

and
Drum-woof Define S1 1 0 50

Will generate identical outcomés.

4.1.1 Bass

A bass pattern is defined with:
Position Duration Offset Volume ; ..
Each group consists of an beat offset for the start pointhttie duration, the note offset and volume.

The note offset is one of the digits “1” through “7”, each regenting a note of the chord scale. So, if you
want to play the root and fifth in a traditional bass patteragaise “1” and “5” in your pattern definition.

The note offset can be modified by appending a single or nheil§et of “+” or “-” signs. Each “+” will
force the note up an octave; each “-” forces it down. This redis handy in creating bass patterns when
you wish to alternate between the root note and the root upctave . .. but we're sure users will find

other interesting patterns. There is no limit to the numlétts or “-’s. You can even use both together
if you're in a mood to obfuscate.

The note offset can be further modified with a single acciaef’, "&” or "b”. This modifier will raise
or lower the note by a semitone. Be careful using this! We'sedua "6#” to generate a dominate 7th in
our boogie-woggie library file.

Bass Define Broken8 1 8 1 90 ; \
28580 ; \
3839 ; \
4 8 1+ 80

Sheet Music Equivalent

"'\\,*

- N
4 J'vﬁvgv

Example 4.1: Bass Definition

2What really happens is that the definition is stored in a skatciting the track’s type, not it's name.

21



4.1 Defining a Pattern Patterns

Example 4.1 defines 4 bass notes (probably staccato eigigt)raitbeats 1, 2, 3 and 4 irfdime bar. The
first note is the root of the chord, the second is the fifth; bkltnote is the third; the last note is the root
up an octave. The volumes of the notes are set to a MIDI vglo€i®0 for beats 1 and 3 and 80 for beats
2 and 4.

i refers to note tables to determine the “scale” to use in ajpatssrn. Each recognized chord type has
an associated scale. For example, the chord “Cm” consisteafotes “c”, “@” and “g”; the scale for this
chordis“c,d, e, f, g, a, b".

Due to the ease in which specific notes of a scale can be spe&#sstracks and patterns are useful for
much more than “bass” lines! We use these tracks for sustatreng voices, interesting arpeggio and
scale lines, and counter melodies.

4.1.2 Chord

A Chord pattern is defined with:
Position Duration Volumel Volume2 .. ; ...

Each group consists of an beat offset for the start pointntite duration, and the volumes for each note
in the chord. If you have fewer volumes than notes in a chbwl|dst volume will apply to the remaining
notes.

Chord Define Straight4+3 1 4 100 ; \
249 ; \
3 4 100 ; \
4 390 ; \
43 380 ; \
46 3 80

Sheet Music Equivalent

|—3—l
Example 4.2: Chord Definition

Example 4.2 defines apattern in a quarter, quarter, quarter, triplet rhythm. @barter notes sound on
beats 1, 2 and 3; the triplet is played on beat 4. The examplarass that you have C major for beats 1
and 2, and G major for 3 and 4.

22



4.1 Defining a Pattern Patterns

Using a volume of “0” will disable a note. So, you want only tle®t and third of a chord to sound, you
could use something like:

Chord Define Dups 1 8 90 0 90 0; 3 8 90 0 90 O

4.1.3 Arpeggio

An Arpeggio pattern is defined with:
Position Duration Volume ; ...

The arpeggio tracks play notes from a chord one at a time. i$lysite different from chords where the
notes are played all at once—refer to Steumdirective (see page 107).

Each group consists of an beat offset, the note durationftendote volume. You have no choice as to
which notes of a chord are played (however, they are playedténnating ascending/descending orler.
Volumes are selected for the specific beat, not for the acital.

Arpeggio Define 4s 1 4 100; \
2 4 90; \
3 4 100; \
4 4 100

Sheet Music Equivalent

o) o @ s @

Example 4.3: Arpeggio Definition

Example 4.3 plays quarter note on beats 1, 2, 3 and 4 of a Hatinme.

4.1.4 Walk

A Walking Bass pattern is defined with:

Position Duration Volume ; ...

3See theDirection command (see page 100).

23



4.1 Defining a Pattern Patterns

Walking bass tracks play up and down the first part of a scal@ng attention to the “colof”of the chord.
Walking bass lines are very common in jazz and swing musi@ dppear quite often as an “emphasis”
bar in marches.

Each group consists of an beat offset, the note durationtrendote volumeas=z selects the actual note
pitches to play based on the current chord (you cannot chiug)e

Walk Define Walkd 1 4 100 ; \
2 4 90; \
34 90

Example 4.4: Walking Bass Definition

Example 4.4 plays a bass note on beats 1, 2 and 3 of a Bame.

4.1.5 Scale

A scale pattern is defined with:
Position Duration Volume ; ...

Each group consists of an beat offset for the start pointytite duration, and volume.

Scale Define S1 1 1 90
Scale Define S4 S1 x 4
Scale Define S8 S1 * 8

Example 4.5: Scale Definition

Example 4.5 defines three scale patterns: “S1” is just aesiwgble note, not that useful on its own, but it
used as a base for “S4” and “S8”.

“S4” is 4 quarter notes and “S8” is 8 eight notes. All the voasrare set to a MIDI velocity of 90.

Scale patterns are quite useful in endings. More optionsdales detailed in th&caleDirection(see page
100) andScaleTypésee page 106) sections.

4The color of a chord are items like “minor”, “major”, etc. Therrent walking bass algorithm generates acceptable
(uninispired) lines. If you want something better there ashing stopping you from using Riff to over-ride the computer
generated pattern for important bars.

24



4.1 Defining a Pattern Patterns

4.1.6 Drum

Drum tracks are a bit different from the other tracks disedsso far. Instead of having each track saved
as a separate MIDI track, all the drum tracks are combinea DI track 10.

A Drum pattern is defined with:

Position Duration Volume; ...

Drum Define S2 1 0 100; \
2080 ; \
3 0 100 ; \
4 0 80

Example 4.6: Drum Definition

Example 4.6 plays a drum sound on beats 1, 2, 3 and 4 of a l§aimre. The MIDI velocity (volume) of
the drum is 100 on beats 1 and 3; 80 on beats 2 and 4.

In this example we have used the special duration of “0” wimclicates 1 MIDI tick.

4.1.7 Drum Tone

Essential to drum definitions is tAi®nedirective.

When a drum pattern is defined, there is no drum tone or notfigaein the pattern.. By default, all
drum patterns use a snare drum sound. But, this can (anddjHmeikchanged using thEonedirective.
This is normally issued at the same time as a sequence is gst@phapter 5).

Toneis a list of drum sounds which match the sequence length. '$1arghort, concocted example (see
the library files for many more):

Drum Define S1 1 0 90

Drum Define S2 S1 * 2

Drum Define S4 S1 =+ 4

SeqClear

SeqSize 4

Drum Sequence S4 S2 S2 S4

Drum Tone SnareDruml SideKick LowToml Slap

Here we first define the drum patterns “S2” to sound a drum otsldeand 3 and “S4” to sound on beats

1, 2, 3 and 4 (see section 4.3 for details on the “*” option).xN&e set a sequence size of 4 bars and
set a drum sequence to use this pattern. Finally, we institicto use a SnareDrum1 sound in bar 1, a
SideKick sound in bar 2, a LowTom1 in bar 3 and a Slap in bar thdfsong has more than four bars, this
sequence will be repeated.

25



4.2 Including Existing Patterns in New Definitions Patterns

In most cases you will probably use a single drum tone namth&entire sequence, but it can be useful
to alternate the tone between bars.

To repeat the same “tone” in a sequence list, use a single “/".

The “tone” can be specified with a MIDI note value or with a syinbname. For example, a snare drum
could be specified as “38” or “SnareDrum1”. Appendix A.3diatl the defined symbolic names.

4.2 Including Existing Patterns in New Definitions

When defining a pattern, you can use an existing pattern narpé&ace of a definition grouping. For
example, if we have already defined a chord pattern (whickaigepl on beats 1 and 3) as:

Chord Define M13 1 4 80; 3 4 80

We can create a new pattern which plays on same beats and attdgeapush note just before the third
beat:

Chord Define M1+3 M13; 2.5 16 80 O
A few points to note:
JJ the existing pattern must exist and belong to the same track,
JJ the existing pattern is expanded in place,

J1 itis perfectly acceptable to have several existing definii just be sure to delimit each with a “;”,

JJ the order of items in a definition does not matter, each wilplaeed at the correct position in the
bar.

This is a powerful shortcut in creating patterns. See thieided library files for examples.

4.3 Multiplying and Shifting Patterns

Since most pattern definitions are, internally, repetgiowou can create complex rhythms by multiplying
a copy of an existing pattern. For example, if you have defanpdttern to play a chord on beats 1 though
4 (a quarter note strum), you can easily create a similaepato play eighth note chords on beats 1, 1.5,
etc. though 4.5 with a command like:

Track Define NewPattern OldPattern * N

where “Track” is a valid track name (“Chord”, “Walk”, “Bass’Arpeggio” or “Drum”, as well as “Chord2”
or “DRUM3”, etc.).

The “*” is absolutely required.

“N” can be any integer value between 2 and 100.

26



4.3 Multiplying and Shifting Patterns Patterns

Drum Define S1 1 1 100
Drum Define S13 S1 * 2
Drum Define S1234 S2
Drum Define S8 S1234
Drum Define S16 S8 * 2
Drum Define S32 S16 * 2
Drum Define S64 S1 * 64

2
2

Example 4.7: Multiply Define

In example 4.7 we start by defining a Drum pattern which plagaua tone on beat 1 (assumitigime).
We then derive a new pattern, “S13” which is the old “S1” npliéd by 2. This new pattern will play a
tone on beats 1 and 3.

Next, “S1234” is created. This plays 4 notes on the each beat.

Note the definition for “S64”. We could have multiplied “S3BY 2, but for illustrative purposes have
used “S1” and multiplied it by 64.

When azz multiplies an existing pattern it will (usually) do what yexpect. The start positions for all
notes are adjusted to the new positions; the length of alhtites are adjusted (quarter notes become
eighth notes, etc.). No changes are made to note offsetduomes.

Example 4.8 shows how to get a swing pattern which might b&ulieae a snare drum.

To see the effects of multiplying patterns, create a singséftle and process it thougla= with the “-p”
option.

Even coole? is combining a multiplier, and existing pattern and a newiguatall in one statment. The
following is quite legal (and useful):

Drum Define D1234 1 0 90 = 4
which creates drum hits on beats 1, 2, 3 and 4.
More contrived (but we need examples) is:
Drum Define Dfunny D1234 x 2; 1.5 0 70 * 2
If you're really interested in the result, rum=z with the “-p” option with the above definition.

An existing pattern can be modified Ihifting it a beat, or portion of a beat. This is done im®
definition with theShiftdirective. Example 4.9 shows a triplet pattern created4y ph beat 1, and then
a second pattern played on beat 3.

5In this case the word “cool” substitutes for the more corfaseful”.

27



4.3 Multiplying and Shifting Patterns Patterns

Begin Drum Define
SB8 1 2+16 0 90 ; 3.66 4+32 80

SB8 SB8 * 4
End

Sheet Music Equivalent, Normal Notation

4

Sheet Music Equivalent, Actual Rhythm

LT DIITD,

Example 4.8: Swing Beat Drum Definition

Note that the shift factor can be a negative or positive valtean be fractional. Just be sure that the
factor doesn't force the note placement to be less than leatgrthan th@imesetting.

And, just like the multiplier discussed earlier you can shétterns as they are defined. And shifts and
multipliers can be combined. So, to define a series of quadies on the offbeat you could use:

Drum Define D1234" 1 0 90 * 4 Shift .5

which would create the same pattern as the longer:
Drum Define D1234’ 1.5 1 90; 25 1 90; 35 1 90; 45 1 90

28



4.3 Multiplying and Shifting Patterns

Chord Define C1-3 1 3 90;
1.33 3 90; 1.66 3 90

3

\

Chord Define C3-3 C1-3 Shift 2

:

%}qﬂ@

Example 4.9: Shift Pattern Definition

$33

Patterns

29



Chapter 5

Sequences

Patterns by themselves don’'t do much good. They have to bbioedhinto sequences to be of any use to
you or toam.

A Sequenceommand sets the pattern(s) used in creating each trackuimspng:
Track Sequence Patternl Pattern2 ...
“Track” can be any valid track name: “Chord”, “Walk”, “Walg&us”, “Arpeggio-88”, etc.

All pattern names used when setting a sequence need to bedlefiren this command is issued; or you
can use what appears to be a pattern definition right in theeseg command by enclosing the pattern
definition in a set of curly bracketg“}”.

SeqClear
SeqSize 2
Begin Drum
Sequence Snare4
Tone Snaredruml
End
Begin Drum-1
Sequence Bassl Bass2?
Tone KickDrum2
End
Chord Sequence Broken8
Bass Sequence Broken8
Arpeggio Sequence {11100 » 8 } {11
80 » 4 }

Example 5.1: Simple Sequence

Example 5.1 creates a 2 bar pattern. The Drum, Chord and B#tesns repeat on every bar; the Drum-1
sequence repeats after 2 bars. Note how the Arpeggio pateefined at run-timet

LIf you run a#m with the “-s” option you'll see pattern names in the format™ The leading underscore indicates that the
pattern was dynamically created in the sequence.

30



5.1 SeqClear Sequences

If there are fewer patterns th&eqSizethe sequence will be filled out to correct size. If the numidfer
patterns used is greater th&egSiz€¢see Chapter 17) a warning message will be printed and therpat
list will be truncated.

When defining longer sequences, you can use the “repeat’dyralsingle “/”, to save typing. For
example, the following two lines are equivalent:

Bass Sequence Bassl Bassl Bass2 Bass?2
Bass Sequence Bassl / Bass2 /

The special pattern name “-” (no quotes, just a single hyplara single “z” can be used to turn a track
off. For example, if we have set the sequences in examplegl.flecide to delete the Bass halfway though
the song we could:

Bass Sequence -

The special sequences, “-” or“z”, are also the equivalerd oést or “tacet” sequence. For example, in
defining a 4 bar sequence with a 1-5 bass pattern on the firss3hd a walking bass on bar 4 we might
do something like:

Bass Sequence Bass4-13 / / z
Walk Sequence z / / Walk4-4

When a sequence is created a series of pointers to the gxsiterns are created. If you change the
definition of a particular pattern later in your file the newidiion will have no effect on your exisiting
sequences.

Sequences are the workhorsesefi. With them you can set up many interesting patterns andti@nz
This chapter should certainly give more detail and many reaeemples.

The following commands help manipulate sequences in yaations:

5.1 SeqClear

This command clears all existing sequences from memory.useful when defining a new sequence and
you want to be sure that no “leftover” sequences are actikie.cbmmand:

SeqClear
deletes all sequence information.
Alternately, the command:
Drum SeqClear
deletesall drum sequences. This includes the track “Drum”, “Drum1g, et
If you use a sub-track:

Chord-Piano SeqClear

31



5.2 SeqRnd Sequences

only the sequence for that track is cleafed.
In addition to clearing the sequence pattern, the follovaitiger settings are restored to a default condition:

J1 Track Invert setting,

J1 Track Sequence Rnd setting,

J1 Track MidiSeq setting,

JJ Track octave,

J1 Track voice,

71 Track Rvolume,

71 Track Volume,

7 Track RTime,

J3 Track Strum.

CAUTION: Itis not possible to clear onlprum, Chord etc. using this command. Use the “-” option.

5.2 SeqRnd

Normally, the patterns used for each bar are selected im.dfdeexample, if you had a sequence:
Drum-2 Sequence P1 P2 P3 z

bar 1 would use “P1”, bar 2 “P2”, etc. However, if you Sg#qRndor a specific track, the pattern used
for that trackwill be selected at random from the sequence list. Note @abars are included in the
selection. Due to the nature of random selection, it is quotesible to get a several bars with the same (or
in the above case, no) pattern.

You can only use this command in a track or in a global context:
Drum SegRnd

or
SegRnd

The latter example is interesting. Let us assume you haviotosving sequences defined (the contents
of the patterns don’t matter for the purpose of the example):

Chord C1 C2 C3 C4
Bass B1 B2 B3 z

2It is probably easier to use the command:
Chord-Piano Sequence -

if that is what you want to do. In this casaly sequence pattern is cleared.

32



5.3 SeqgNoRnd Sequences

Walk z / /| W1

The idea of theBassandWalk sequences is to plagither one of the patterns, never both. If you were to
randomize the tracks you might get a bar with no bass at adl ,abithe two, or none. However, if you set
SegRnautside the tracks, then you will have one of the followintig@s:

Cl Bl z
C2 B2 z
C3 B3 z
C4 z W1

A SegRnds cleared by &eqCleamor aSeqNoRndlirective.
If you have setnvertfor a track, the inversions will follow the patterns. For exae:

Chord Sequence C1 C2 C3 C4
Invert 0 1 2 3 SegRnd

Whenever pattern “C1” is selected it will be used with invens0, “C2” will always be inversion 1, etc.

5.3 SeqNoRnd

This command sets the sequence order for the specified trackinal. It undoes the effect of tls=qRnd
directive. Example:

Drum-3 SegNoRnd

5.4 SeqSize

The number of bars in a sequence are set with the “SeqSizerhemith. For example:
SeqSize 4

sets it to 4 bars. The SeqSize applies to all tracks.

This command resets tlsequence counteto 1.

If some sequences have already been defined, they will beateoh or expanded to the new size. Trun-
cation is done by removing patterns from the end of the sempjexpansion is done by duplicating the
sequence until it is long enough.

33



Chapter 6

Grooves

Grooves, in some ways, anez’s answer to macros. . . but we think they are cooler, easies¢pand have
a more musical name.

Really, though, a groove is just a simple mechanism for gpaimd restoring a set of patterns and se-
guences. Using grooves it is easy to create sequence éibnatiich can be incorporated into your songs
with a single command.

6.1 Creating A Groove

A groove can be created at anytime in an input file with the camgin
DefGroove SlowRhumba

Optionally, you can include a documentation string to the enthis command:
DefGroove SlowRumba A descriptive comment!

A groove name can include any character, including digits@mctuation. However, it cannot include a
a/: ]_.

In normal operation the documentation strings are ignoredwever, wherwsz is run with the -Dx
command line option these strings are printed to the terdnstraen inATEX format. The standard library
document is generated from this data. The commenistbe suitable forATgX: this means that special
symbols like “#”, “&”, etc. must be “quoted” with a precedifiy'’.

At this point the following information is saved:
J1 Current Sequence size,
J1 The current sequence for each track,
J1 Time setting (quarter notes per bar),
71 “Accent”,
71 “Articulation” settings for each track,

J1 “Compress’,

IThe '/" is reservered for future enhancements.

34



6.2 Using A Groove Grooves

JJ “Direction”,

41 “DupRoot”,

71 “Duplicate”,

J1 “Harmony”

J3 “HarmonyOnly™”,
3 “Invert”,

J3 “Limit”,

33 “MidiSeq”,

JJ “Octave”,

53 “RSkip”,

JJ “Rtime”,

3 “Rvolume”,

JJ “Scale”,

J1 “SeqRnd”, globally and for each track,
93 “Strum?”,

43 “Tone” for drum tracks,
JJ “Voice”,

J1 “VoicingCenter”,
J1 “VoicingMode”,
J1 “VoicingMove”,
JJ “VoicingRange”,

3 “Volume” for tracks and master.

6.2 Using A Groove

You can restore a previously defined groove a anytime in youg svith:
Groove Name
At this point all of the previously saved information is r@sd.

A few cautions:

35



6.2 Using A Groove Grooves

J1 Pattern definitions ameot saved in grooves. Redefining a pattern results in a new patinition.
Sequences use the pattern definition in effect when the sequg declared.

J1 The “SeqSize” setting is restored with a groove. The sequ@oint is also reset to bar 1. If you
have multi-bar sequences, restoring a groove may upseigeaiof the sequence pattern.

6.2.1 Overlay Grooves

To make the creation of variations easier, you can@sm®vein a track setting:
Scale Groove Funny

In this case only the information saved in the corresponBeffsroove Funnyfor the Scaletrack will be
restored. You might think of this as a “groove overlay”. HaMeok at the sample song “Yellow Bird” for
an example.

When restoring track grooves, as in the above example&SéaSizes not reset. The sequence size of the
restored track is adjusted to fit the current sequence siierge

One caution with these “overlays” is that no check is doneewibthe track you're using exists. Yes, the
Groovemust have been defined, but not the track. Huh? Well, you re&ddw a bit about howm
parses files and how it handles new tracks. Whenreads a line in a file it first checks to see if the first
word on the line is a simple command likint, MIDI or any other command which doesn’t require a
leading trackname. If it is, the appropriate function idexbnd file parsing continues. If it is not a simple
commandwz tests to see if it is a track specific command. But to do thétsithas to test the first word
to see if it is a valid track name likBassor Chord-Major. And, if it is a valid track name and that track
doesn’t exist, the track is created. . . this is dtwedorethe rest of the command is processed. So, if you
have a command like:

Bass-Foo Groove Something
and you really meant to type:

Bass-Foe Groove Something
you’ll have a number of things happening:

1. The trackBass-Foowill be created. This is not an issue to be concerned oveesioaata will be
created for this new track unless you s&exqjuencéor it.

2. As part of the creation, all the existii@yooves will have theBass-Fodrack (with its default/empty
settings) added to them.

3. And the current setting you think you're modifying withetBass-Foesettings will be created with
the Bass-Foasettings (which are nothing).

4. Eventually you'll wonder whyvz isn’t working.

So, be very careful using this command option. Check youltisge And use thePrintActivecommand
to verify your Groovecreations.

36



6.2 Using A Groove Grooves

6.2.2 Library Issues

If you are using a groove from a library file, you just need tssdmething like:
Groove Rhumba2
at the appropriate position in your input file.

One minor problem whicimayarise is that more than one library file has defined the sanw/gnsame.
This might happen if you have a third-party library file. Foetproposes of this example, lets assume
that the standard library file “rhumba.mma” and a second kig-rhumba.mma” both define the groove
“Rhumba2”. The auto-load routines (see page 116) whichchethe library database will load the first
“Rhumbaz2” it finds, and the search order cannot be determifi@dvercome this possible problem, do a
explicit loading of the correct file. In this case, simply do:

Use xyz-rhumba

near the top of your file. And if you wish to switch to the groalefined in the standard file, you can
always do:

Use rhumba

just before the groove call. These will read the specified file and overwrite the old definition of
“Rhumba2” with its own.

37



Chapter 7

Riffs

In previous chapters we learned how to creaRatiernwhich becomes a part of$equenceAnd how to
set a musical style by defining@roove

These predfine@roovesare wonderful things. And, yes, entire accompaniment gaeak be created with
just some chords and fe@rooves But, often we want a bit of variety in the track.

7.1 Riff

The Riff command permits the setting of an alternate pattern for i@k for a single bar—this overrides
the currentSequencéor that track.

The syntax folRiff is very similar to that oDefine with the execption that no pattern name is used. You
might think of Riff as the setting of aBequenc&ith an anonymous pattern.

A Riff is set with the command:
Track Riff Pattern

where:

Track is any validasz track name,

Pattern is any existing pattern name defined for the specified track, pattern definition following the
same syntax as Befine In addition the pattern can be a single “z”, indicating nt¢tgxa for the
specified track.

Following is a short example usirRjff to change the Chord Pattern:

Groove Rhumba

1 Fm7

2 Bb7

3 EbM7

Chord Riff 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70
4 Eb6 / Eb

5 Fm7

38



7.2 Multiple Riffs Riffs

In this case we have a Rhumba Groove for the song. But, in bae #ant to emphasize the melodic
pattern by chording a quarter-note triplet over beats 3 ard this case we have defined the pattern right
in the Riff command.

Our next example shows thRiff patterns can be defined just like the patterns used in a seguen

Begin Drum
Define Emphl 1 0 128
Define Emph8 Emphl = 8
End

Groove Blues

ruml Riff Emph8

OhWQONER
OTOS OO0

In this case we have defined tBenph8 pattern as a series of eighth notes. We then apply this fd3rihe
bar. If you compile and play this example you will hear a sgardandclap on bar 3. THeruml track
is using a handclap tone with a random skip factor (previodsfined in the Blues groove).

The special pattern “z” can be used to turn off a track for glsitvar. This is similar to using a “z” in the
Sequencdirective.

A few things to keep in mind when usirigjffs
71 A RIff is in effect for only one bar.

J1 Riff sequences are always enabled. Even if there is no sequeracedok, or if the “z” sequence is
being used, the pattern specifiedRiif will apply.

J1 The existing voicing, articulation, etc. for the track valbply to theRiff.

J1 It's quite possible to use a macro for repeaRifis. In example 7.1 we have created a macro which
sets the/olume Articulate, etc. as well as the pattern. Note how the pattern is inytsg as single
whole note, but redfined in theiff as a run controlled by another macro. In bar 2 an eight note run
is played and in bar 5 this is changed to a run of triplets.

Riffs can also be used to specify a bar of music i8ado or Melody track. Please see the “Solo and
Melody” chapter (see page 50).

7.2 Multiple Riffs

Use the syntax described above you can reset the sequeneetioe snelody notes for a single bar—the
bar which follows theRiff command. As an alternate, you can set a number of lines atusiog theRiffs

39



7.2 Multiple Riffs

Mset CRIff
Begin Scale
Define Run 1 1 120
Riff Run * $SSpeed
Voice AltoSax
Volume f
Articulate 80
Rskip 5
End
MsetEnd
Groove Blues
1C
Set SSpeed 8
$CRIff
2 G
3G
Set SSpeed 12
$CRIFF
5C

Example 7.1: Using Macros and Riffs

Riffs

command (the only difference here is the trailing “s”). Te@nmand “stacks” its argument on a special

stack; each line is “pulled” from the stack as successivedhioes are processed.

Recycling an earlier example, lets assume that we want ta aastomized pattern for bars 4 and 5 in our

mythical song:

Groove Rhumba

1 Fm7
2 Bb7
3 EbM7

Chord Riffs 1 4 100; 3 8 90; 3.666 8 80; 4.333 8 70

Chord Riffs 1 2 100; 3 8 90;

4 Eb6 / Eb

5 Fm7

In this example the firs€hord Riff will be used in bar 4; the second in bar 5. For an example ofsis
the sample filegs/riffs.mma

40



Chapter 8

Musical Data Format

Compared to patterns, sequences, grooves and the varieativéis used imé=z, the actual bar by bar
chord notations are surprisingly simple.

Any line in your input file which is not a directive or commeastassumed to be a bar of chord data.
A line for chord data consists of the following parts:
71 Optional line number,
43 Chord or Rest data,
J1 Optional lyric data,
J1 Optional solo or melody data,
JJ Optional multiplier.
Formally, this becomes:
[num] Chord [Chord ...] [lyric] [solo] [ *  Factor]
As you can see, all that is really needed is a single chordth®&dine:
Cm
is completely valid. As is:
10 Cm Dm Em Fm 4

The optional solo or melody data is enclosed{n}". The complete format and use is detailed in 8@o
and Melody Trackshapter (see page 50).

8.1 Bar Numbers

The optional leading bar number is silently discardeddsy. It is really just a specialized comment which
helps you debug your music. Note that only a numeric item imfiged here.

Get in the habit of using bar numbers. You’'ll thank yourseffen a song seems to be missing a bar, or
appears to have an extra one. Without the leading bar nunitbsas be quite frustrating to match your
input file to a piece of sheet music.

41



8.2 Bar Repeat Musical Data Format

You should note that it is perfectly acceptable to have ordgranumber on a line. This is common when
you are using bar repeat, for example:

1 Cm=+ 4
2

3
4
5

8.2 Bar Repeat

Quite often music has several sequential identical basted of typing these bars over and over again,
= has an optionainultiplier which can be placed at the end of a line of music data. The pfieltior
factor can is specified as “* NN” This will cause the current tzerepeated the specified number of times.
For example:

Cm /Dm/ * 4

produces 4 bars of output with each the first 2 beats of each 6an chord and the last 2 a Dm. (The “/”
is explained below.)

8.3 Chords

The most important part of a musical data line is, of coutse chords. You can specify a different chord
for each beat in your music. For example:

Cm Dm Em Fm

specifies four different chords in a bar. It should be obvioysow that in a piece ij you'll end up with
a“Cm” chord on beat 1, “Dm” on 2, etc.

If you have fewer chord names than beats, the bar will be fdl#dmatically with the last chord name on
the line. In other words:

Cm
and

Cm Cm Cm Cm
are equivalent (assuming 4 beats per bar). There must be@pn®e(e) spaces between each chord.
One further shorthand is the “/”. This simply means to repleaiast chord. So:

Cm / Dm /

is the same as

42



8.4 Rests Musical Data Format

Cm Cm Dm Dm

It is perfectly okay to start a line with a “/”. In this case tlaest chord from the previous line is used. If
the first line of music data begins with a “/” you'll get an arress= tries to be smart, but it doesn’t read
minds.

M recognizes a wide variety of chords in standard notatiorielRe the complete table in the appendix
for details (see page 124).

8.4 Rests

To disable a voice for a beat you can use a “z” for a chord nafeseld by itself a “z” will disable all but
the drum tracks for the given beat. However, you can disaBleotd”, “Arpeggio”, “Scale”, “Walk” or
“Bass” tracks as well by appending a track specifier to the Tzack specifiers are the single letters “C”,
A, UST, "W B or ‘D” and “!”. Track specifiers are only valid if you also specify a chord. The track
specifiers are:

D - Alldrum tracks,

W - All walking bass tracks,

B - All bass tracks,

C - Allchord tracks,

A - All arpeggio tracks,

S- All scale tracks,

I - All tracks (almost the same as DWBCA, see below).

Assuming the “C” is the chord and “AB” are the track specifiers

CzAB - mutes the “A” and “B” tracks,

Z- mutes all the tracks except for the drums,
Cz- IS not permitted,
ZAB - IS not permitted.

Assuming that you have a drum, chord and bass pattern defined:
Fm z G7zC CmzD
would generate the following beats:

1- Drum pattern, Fm chord and bass,
2- Drum pattern only,

3- Drum pattern and G7 bass, no chord,
4- Cm chord and bass, no drum.

In addition, there is a super-z notation. “z!” forces alltmsnents to be silent for the given beats. “z!” is
the same as “zABCDW?”, except that the later is not valid sihoeeds a prefixed chord.

The “z” notation is used when you have a “tacet” beat or be@tse alternate notations can be used to
silence specific tracks for a beat or two, but this is usedftesgiently.

43



8.5 Case Sensitivity Musical Data Format

8.5 Case Sensitivity

In direct conflict with the rest of the rules for input files| @hord namesre case sensitive. This means
that youcan notuse notations like “cm”—use “Cm” instead.

The “z” and the associated track specifiers are also caséigen$or example, the form “Zc” wilihot
work!

44



Chapter 9
Lyrics

MIDI files can include song lyrics. And some MIDI players ogsencers can display them as a file is
played. Some, but not all.

We’re not aware of any keyboards which display lyrics. Andsiioinux based do not display them.
Exceptions to the rule are the prograiisid which displays and highlights lyrics almost in a Karaoke
mannerxplaymidi andtimidity which display the lyrics in a secondary panel.

With this qualifier out of the way, there really is no reasonljwics NOT to be useful in a program like
am. Singers do not want a melody playing while they are voaadjZreally, they are no different in this
than any other instrumentalist). And, it is our understagdhat some platformsther than Linux support
lyric display in a more useful format.

The “Standard MIDI File” document describegyric Meta-event:

FF 05 len textLyric. A lyric to be sung. Generally, each syllable will be a sepahgatic
event which begins at the event’s tirhe.

Unfortunately, not all players and creators follow the sfpeation—the most notable exception are “.kar”
files. These files eschew thgric event and place their lyrics asTaxt Event There are programs strewn
on the net which convert between the two formats, and thiscaudoesn’t really know if conversion is
needed.

If you want to read the word from the source, refer to the @fidfiDI lyrics documentation akttp:
[Iwww.midi.org/about-midi/smf/rp017.shtml

9.1 Lyric Options

2, has a number of options in setting lyrics. They are all caliedheLyric command. All options are

set as option/setting pairs with the option name and thinggtiined with an “=".

LPointers and reviews to other players would be would apatedi
2] am quoting from “MIDI Documentation” distributed with tHESE Library. Pete Goodcliffe, Oct. 21, 1999. Page 41.

45



9.2 Setting Lyrics Lyrics

9.1.1 Event Type
a1 supports both format for lyrics (discussed above). EMENT option is used to select the desired
mode.
Lyric EVENT=LYRIC
selects the defaultyric Eventmode.
Lyric EVENT=TEXT

selects th@ext Eventmode. Use of this option also prints a warning message.

9.1.2 Word Splitting

Another option controlled by theyric command is to determine the method used to split words. As
mentioned earlier (and in various MIDI documents), thedgrshould be split into syllablesyiz does
this by taking each word (ie. anything with whitespace sumding it) and setting a MIDI event for that.
However, depending on your player, you might want only orenéper bar. You might even want to put
the lyrics for several bars into one event. In this case sirset the “bar at a time” flag:

Lyric SPLIT=BAR
You can return to normal (syllable/word) mode at anytimehwit

Lyric SPLIT=NORMAL

9.2 Setting Lyrics

Adding a lyric to your song is a simple matter ...and like sowntnings, there is more than one way to
doit.

Lyrics can be set for a bar in-between a paiflsfsomewhere in a data baEor example:

z [ Pardon ]

C [ me If I'm]

E7 [ sentimental, \r]
C [when we say good ]

The alternate method is to use thgic Setdirective:
Lyric Set Hello Young Lovers

Unlike the otherLyric options, theSetoption must be the last one on a line, and it does not use the “="
sign. If you are setting the lyric for a single verse [feeare optional; however, for multiple verses they are

3Although the lyric can be placed anywhere in the bar, we renend that you only place the lyric at the end of the bar. All
the examples follow this style.

46



9.2 Setting Lyrics Lyrics

used (just like they are when you include the lyric in a ddtard line). The advantage to usihgric Setis
that you can specify multiple bars of lyrics at one point intle. See the sample fikgs/lyrics.mma
for an example.

The lyrics for each bar are separated into individual eveot® for each word ...unless the option
Split=Bar has been used, in which case the entire lyric is placed atftbet corresponding to the start of
the bar.

M recognizes two special characters ibyaic:

J1 A \r is converted into an EOL character (hex value 0xOD)r Ahould appear at the end of each
lyrical line.

1 A\nis converted into a LF character (hex value OxOA\¥should appear at the end of each verse
or paragraph.

When a multi-verse section is created usirigegpeabr Goto, different lyrics can be specified for different
passes. In this case you simply specify two more sets ofdyric

A | Am |/ [First verse] [Second Verse]

However, for this work properly you must set the internal euLyricVersefor any verse other than 1.
This counter is set with the command:

Lyric Verse=Value | INC | DEC
This means that you can directly set the value (the defalueva 1) with a command like:
Lyric Verse=2

And you can increment or decrement the value withit#& andDEC options. This is handy at to use in
repeat sections:

Lyric Verse=Inc
You cannot set the value to a value less than 1.
There are a couple of special cases:

J1 If there is only one set of lyrics in a line, it will be treates txt for verse 1, regardless of the value
of LyricVerse

J1 If the value ofLyricVerseis greater than the number of verses found after splittieditie, then no
lyrics are produced. In most cases this is probably not whatwant.

At times you may wish to overridesz’s method of determining the beat offsets for a lyric or a Eng
syllable in a lyric. You can specify the beat in the bar by estlg the value in £>" brackets. For
example, suppose that your song starts with a pickup bar amd Yike the lyrics for the first bar to start
on beat 4:

z z C [ <4>Hello ]
[

z
F [ Young lovers ]

47



9.2 Setting Lyrics Lyrics

Assumingj the above would put the word “Hello” at beat 4 of the first bafoting” on the first beat of
bar 2; and “lovers” on beat 3 of bar 2.

Note: there must not be a space inside the>", nor can there be a space between the bracket and the
syllable it applies to.

If you really want to have < >"in your lyric, you can include a dummy to keep= happy:

C [ <><Verse 1.>This is a Demo ]

Example 9.1 shows a complete song with lyrics. You should also examiadikbegs/lyrics.mma  for
an alterante example.

4Included in this distribution asongs/twinkle.mma

48



9.2 Setting Lyrics Lyrics

Tempo 200

Groove Folk

Repeat

G [Twinkle,] [When the]

G [Twinkle] [blazing ]

C [little] [sun is]

G [star; \r] [gone, \r]
Am [How I] [When he ]

G [wonder] [nothing]

D7 [what you] [shines u-]
G [are. \r] [pon. \r]
G [Up a-] [then you]

10 D7 [bove the] [show your]
11 G [world so] [little]

12 D [high, \r] [light, \r]
13 G [Like a] [Twinkle, ]

14 D7 [diamond] [twinkle,]

15 G [in the] [all the]

16 D7 [sky! \r] [night. \r]
17 G [Twinkle,]

18 G [twinkle]

19 C [Little]

20 G [star, \r]

21 Am [How 1]

22 G [wonder]

23 D7 [what you]

24 G J[are. \r \n]

=

O©CoOoO~NOUILhhWN

Lyric Verse=Inc
RepeatEnd

Example 9.1: Twinkle, Twinkle, Little Star

49



Chapter 10

Solo and Melody Tracks

So far we have discussed the creation of accompanimenstrestkg drum and chord patterns. However,
there are times when chording (and chord variations suchpaggios) are not sufficient. Sometimes you
might want a real melody line!

2w has two internal track types reserved for melodic lines.yTdre theSoloandMelodytracks. These
two track types are identical with two major exceptions:

71 Solotracks are only initialized once, at startup. Commands3iggCleamare ignored bysolotracks.
71 No settings inSolotracks are saved or restored wiBifoovecommands.

These differences mean that you can set parametersSolodrack in a preamble in your music file and
have those settings valid for the entire song. For example nyay want to set an instrument at the top of
asong:

Solo Voice TenorSax

On the other handylelodytracks save and restore grooves just like all the otheraailtracks. If we
have the following sequence in a song file:

Melody Voice TenorSax
Groove Blues
musical data

we should not be surprised to find that Melodytrack playing with the default voice (Piano).

As a general rule, we have designdelodytracks as a “voice” to accompany a predefined form defined
in aGroove—it is a good idea to definklelodyparamaters as part ofGroove Solotracks are thought to
be specific to a certain song file, with their parameters defimé¢he song file.

Apart from the exceptions noted abo8nloandMelodytracks are identical.

Unlike the other available tracks, you do not define a sequ@ngattern for &oloor Melody track.
Instead, you specify a series of notes dRifd pattern. For example, consider the first two bars of “Bill
Bailey” (the details of melody notation will be covered late this chapter):

Solo RIiff 4c;2d;4f;

F

Solo Riff 4.a;8g#;4a;4c+;
F

50



10.1 Note Data Format Solo and Melody Tracks

In this example we have added the melody to our song file.

Specifying &Riff for each bar of your song can get tedious, so there is a short@any data surrounded by
curly brackets { }” is interpeted as iff for a Soloor Melodytrack. This means that the above example
could be rewritten as:

F {4c;2d;4f; }

F {4.a;8g#;4a;4c+; }
By default the note data is inserted into thelotrack. If more than one set of note data is present, it will
be inserted into the next track set by thetoSoloTracksommand (see page 55).

10.1 Note Data Format

The notes is &oloor Melodytrack are specified as a series of “chords”. Each chord carsbeke note,
or several notes (all with the same duration). Each chordérbar is delimited with a single semicolén.

Each chord can have several parts. All missing parts withalketo the value in the previous chord. The
various parts of a chord must be specified in the order givéineriollowing table.

Duration The duration of the note. This is specified in the same marsenard patterns. The following
note values are permitted:

Notation | Description

1 Whole note

2 Half

4 Quarter

8 Eighth

16 Sixteenth

32 Thirtysecond

64 Sixtyfourth

3 One note of an eight note triplet
0 A single MIDI tick

A duration can be modified by appending a single “.” which addi the value to the note. For
example, “2.” would be three beats.

A duration can be modified by appending a two “.”s which ad@¢hquarters of the value to the
note. For example, “2..” would be three and one half beats.

Note lengths can be combined using “+”. For example, to maketi@ed eight note use the notation
“8+16”, a dotted half “2+4”, and a quarter triplet “3+3”.

1| have borrowed heavily from the notation program MUP forsgatax used here. For notation | highly recommend MUP
and use it for most of my notation tasks, including the coeatf the score snippets in this manual. MUP is available from
Arkkra Enterpriseshttp://www.Arkkra.com/

51



10.1 Note Data Format Solo and Melody Tracks

It is permissible to combine notes with “dots” and “+”’s. Thatation “2.+4” would be the same as
a whole note.

Pitch The note in standard musical notation. The lowercase $t&érto “g” are recognized as well as
“r" to specify a rest (please note the exceptionBosum Solo Trackssee page 55).

Accidental A pitch modifier consisting of a single “#” (sharp), “&” (fladr “n” (natural). Please note that
an accidental will override the curreleysigfor the current bar (just like in real musical notation).
Unlike standard musical notation the accidemal apply to similarly named notes in different
octaves.

Please note that when you specify a chordan you can use either a “b” or a “&” to represent a
flat sign; however, when specifying notes faaloyou can only use the “&” character.

Octave Without an octave modifier, the current octave specified leyGbtavedirective is used for the
pitch(es). Any number of “-” or “+” signs can be appended taéen Each “-” drops the note by an
octave and each “+” will increase it. The base octave begitis"w@” below the treble clef staff.

Volume A volume can be specified. The volume is a string like “ff” sunmnded by <>" brackets. For
example, to set the volume of a chord to “very loud”, you couseé the string<ffff > in the chord
specification (see page 72) Of course, it is probably easiset accented beats with tecent
directive (see page 73).

Tilde The tilde character, =, can appear as the first or last itenniot@ sequence. As the last character
it signals that the final note duration extend past the entdebar; as the first character it signals
to use the duratation extending past the end of the previauadan initial offset. For details, see
below.

Null You can set a “ignore” or “do nothing” chord with the simpletaion “<>". If this is the only
item in the chord then that chord will be ignored This mearsd tio tones will be generated, and
the offset into the bar will not be changed. The use of thetiartas mainly for tilde notation with
notes held over multiple bars.

To make your note data more readable, you can include any euafitspace and tab characters (which
are ignored byvim).

Example 10.1 shows a few bars of “Bill Bailey” with the= equivalent.

10.1.1 Notes on Duration

71 If you have a note tied into a new bar in your music score yousgatify a note duration which
creates a note ending past the current bar end. For exarhpte) have a bar with a 2 half notes,
and the second one is tied to a half note in the next bar youtmight something like:

Cm{ 2a; 1b; }
F { 2r; 4a; b; }

Here we use a rest in the second bar to compensate for thelegtdnration of the preceeding note.

J1 Any notes which extend into the next bar will be reported inaaning message.

52



10.1 Note Data Format Solo and Melody Tracks

F

0 L
S CEEREE |
KeySig 1b
F { 4ca-; 2da-; 4fd; }
F { 4.af, 8g#f, 4af; c+f; }
F { 4ca-; 2da-; 4fc; }
F { 1af, }

Example 10.1: Solo Notation

71 Notes cannot start past the end of the of the current bar.

10.1.2 Tilde Duration

Notes tied across bar lines can be easily handled#nscores. Consider the following:

F

I ——— =

o) o @

It can be handled in three different ways in your score:

3 F 4c;d;e;4+2f;
F 2r.2c;

In this case yows= will generate a warning message since the last note of thdérsends past the
end of that bar. The rest in the second bar is used to poshi®hadlf note correctly.

D F 4c.d;e;4+2f;
F 2r;2c;

This time we've added a ~ character to the end of the first linethis case it just signals that we
“know” that the note is too long, so no warning is printed.

D F 4c.d;e;4+2f;
F "2c;:

The cleanest method is shown here. The “forces the insatithe extra 2 beats from the previous
bar into the start of the bar.

53



10.2 KeySig Solo and Melody Tracks

If you have a very long note, as in this example:

C

P [ ) (@)
U _‘_ e — v -6-

you can have both leading and ending tildes in the same choveever, to forceviz to ignore the chord
you need to include an empty chord marker:

C 4c;d;e;4+2f;
C "<
C "2c;
1 has some builtin error detection which will signal problefgu use a tilde at the end of a line which

doesn't have a note held past the end of the current bar owifuge a tilde to start a bar which doesn’t
have one at the end of the previous bar.

10.1.3 Using Defaults
The use of default values can be a great timesaver, and leamhtosion! For example, the following all
generate four quarter note “f’’s:

Solo RIiff 4f; 4f; 4f, A4f;
Solo Riff 4f; f; f; f;
Solo RIiff 4f; 4; 4; 4;
Solo Riff 4f; ; ; ;

10.1.4 Other Commands

Most of the timing and volume commands available in otheskisaalso apply t&GoloandMelodytracks.
Important commands to consider inclulldiculate, VoiceandOctave Also note thaffransposes applied
to your note data.

10.2 KeySig

If you are includingSoloor Melodytracks you should set the key signature for the song:
KeySig 2b

The argument consists of a single digit “0” to “7” followed byb” or “&” for flat keys or a “#” for sharp
keys.

54



10.3 AutoSoloTracks Solo and Melody Tracks

Setting the key signature effects the notes usefdloor Melodytracks and sets a MIDI Key Signature
event.

10.3 AutoSoloTracks

When a{ }” expression is found in a chord line, it is assumed to be nata dnd is treated asRiff. You
can have any number of “}” expressions in a chord line. They will be assigned to thekisaspecified in
the AutoSoloTrackslirective.

By default, four tracks are assignesolg Solo-1 Solo-2 andSolo-3 This order can be changed:
AutoSoloTracks Melody-Oboe Melody-Trumpet Melody-Horn

Any number of tracks can be specified in this command, but tinest all beSoloor Melodytracks. You
can reissue this command at any time to change the assigament

The list set in this command is also used to “fill out” melodyels for tracks set ddarmonyOnly Again,
an example:

AutoSoloTracks Solo-1 Solo-2 Solo-3 Solo-4
Solo-2 HarmonyOnly 3Above
Solo-3 HarmonyOnly 8Above

Of course, we set some voicing, etc. Now, we have a chord line:
C {4ab;cd; }

The note datd4a;b;c;d;} will be set to theSolo-1track. But, if we've not set any other note data by way
of Riff commands t&olo-2andSolo-3 the note data will also be copied to these two tracks. Natethe
track Solo-4is uneffected since it isot aHarmonyOnlytrack. This feature can be very useful in creating
harmony lines with the harmonies going to different instemts. The supplied filegs/harmony.mma
shows an example.

10.4 Drum Solo Tracks

A solo or melody track can also be used to create drum solos.fifdt thing to do is to set a track as a
drum solo type:

Solo-MyDrums DrumType

This will create a newSolotrack with the namesolo-MyDrumsand set its “Drum” flag. If the track
already exists and has data in it, the command will fail. THBMhannel 10 is automatically assigned to
all tracks created in this manner. You cannot change a “dtuack back to a normal track.

These is no limit to the number &oloor Melodytracks you can create ... and it probably makes sense to
have several different tracks if you are creating anythiegomd a simple drum pattern.

55



10.5 Mallet Solo and Melody Tracks

Tracks with the “drum” setting ignoréransposeandHarmonysettings.

The specification for pitches is different in these tracksstéad of standard notation pitches, you must
specify a series of drum tone names or MIDI values. If you waote than one tone to be sounded
simultaneously, create a list of tones separated by commas.

Some examples:
Solo-MyDrums Riff 4 SnareDruml; ; r ; SnareDruml;

would create a snare hit on beats 1, 2 and 4 of a bar. Note hosettand hit uses the default tone set in
the first beat.

Solo-MyDrums Riff 8,38;;;;

creates 4 hits, starting on beat 1. Instead of “names” we baed MIDI values (in this case, 38 and
“SnareDrum1” are identical. Note how we use a “,” to sepattaganitial length from the first tone.

Solo-MyDrums Riff 4 SnareDrum1,53,81; r; 4 SideKick ;
creates a “chord” of 3 tones on beat 1, a rest on beat 2, andlaK&ik” on beat 3.

Using MIDI values instead of names lets you use the full raofgeote values from 0 to 127. Not all will
produce valid tones on all synths.

10.5 Mallet

Some instruments (Steel-drums, banjos, marimbas, etrjamally played with rapidly repeating notes.
Instead of painfully inserting long lists of these noteg) gan use th&lallet directive for aSoloor Melody
track. TheMallet directive accepts a number of options, each a OPTION=VALBEIE fFor example:

Solo-Marimba Mallet Rate=16 Decay=-5

The following options are supported:

10.5.1 Rate

TheRatemust be a valid note length (ie. 8, 16, or even 16.+8).
For example:
Solo-Marimba Mallet Rate=16
will set all the notes in the “Solo-Marimba” track to be soedd series of 16th notes.
J1 Note duration modifiers such as articulate are applied th esgultent note,
J1 Itis guaranteed that the note will sound at least once,

J1 The use of note lengths assures a consitant sound indepi@idiea song tempo.

56



10.5 Mallet Solo and Melody Tracks

To disable this setting use a value of “0”.

10.5.2 Decay

You can adjust the volume (velocity) of the notes being reggbevhenMallet is enabled:
Solo-Mallet Mallet Decay=-15

The argument is a percentage of the current value to add twotleeesach time it is struck. In this example,
assuming that the note length calls for 4 “strikes” and thiainvelocity is 100, the note will be struck
with a velocity of 100, 85, 73 and 63.

Important: a positive value will cause the notes to get loudegative values cause the notes to get softer.
Note velocities will never go below 1 or above 255.

The decay option value must be in the range -20 to 20. The etlue is 0 (no decay).

57



Chapter 11

Chord Voicing

In music, a chord is simply defined as two more notes playedlsmeously. Now, this doesn’t mean that
you can play just any two or three notes and get a chord whighdsonice—but whatever you do get will
be a chord of some type. And, to further confuse the unwaffgrdnt arrangements of the same notes
sound better (or worse) in different musical situations.

As a simple example, consider a C major chord. Built on thé tingd and fifth notes of a C major scale
it can be manipulated into a variety of sounds:

b——t—

Root Wide Position

1st Inversion |
2nd Inversion

These are all C major chords ... but they all have a differeand or color. The different forms a chord
can take are called “voicings”. Again, this manual is no¢ided to be a primer on musical theory—that’s
a subject way beyond our abilities, and (again) we reallpmanend your favorite music teacher and the
study of basic music theory if you want to understand how ahy = creates its tracks.

The different options in this chapter effect not only the weprds are constructed, but also the way bass
lines and other tracks are formed.

There are generally two ways itz to take care of voicings.
1. usenm’s extensivevoicingoptions, most likely with théOptimal” voicing algorithm,
2. do everything by yourself with the commaridsertandCompress

The commandgimit andDupRootmay be used independently for both variants.

11.1 Voicing

The Voicing command is use to set the voicing mode and several othermngptedating to the selected
mode. The command needs to hav€laord track specified and a series of Option=Value pairs. For
example:

58



11.1 Voicing Chord Voicing

Chord-Piano Voicing Mode=Optimal Rmove=10 Range=9

In the following sections we will cover all the options awale.

11.1.1 Voicing Mode

The easiest way to deal with chord voicings is to viatoeing Mode=XXoption.

When choosing the inversion of a chord to play an accompaiiistake into consideration the style of
the piece and the chord sequences. In a general sense,réfesried to as “voicing”.

A large number of the library files have been written to takeasatiage of the following voicing commands.
However, not all styles of music take well to the concept. Adaoin't forget about the other commands
since they are useful in manipulating bass lines, as weltlar @hord tracks (eg. sustained strings).

am has a variety of sophisticated, intelligent algoritArtsdeal with voicing.

As a general rule you should not use theert andCompressommands in conjunction with théoicing
command. If you do, you may create beautiful sounds. Butyekalts are more likely to be less-than-
pleasing. Use of voicing and other combinations will digplarious warning messages.

The main command to enable voicings is:
Chord Voicing Mode=Type

As mentioned above, this command can only be appliedhord tracks. Also note that this effects all
bars in the sequence ...you cannot have different voiciogdifferent bars in the sequence (attempting
to do this would make no sense).

The following MODE types are available:

Optimal A basic algorithm which automatically chooses the best dmgnvoicing depending on the
voicing played before. Always try this option before anpthielse. It might work just fine without
further work.

The idea behind this algorithm is to keep voicings in a sege@tose together. A pianist leaves his
or her fingers where they are, if they still fit the next chortem, the notes closest to the fingers are
selected for the next chord. This way characteristic nategmphasized.

Root This Option may for example be used to turn\@fficingwithin a song.Voicing Mode=Roomeans
nothing else than doing nothing, leaving all chords in raagifion.

None This is the same as thiRootoption.

Invert Rather than basing the inversion selection on an analygiasifchords, this method quite stupidly
tries to keep chords around the base point of “C” by inverti@gand “A’ chords upward and “D”,
“E” and “F” downward. The chords are also compressed. Qdytaiot an ideal algorithm, but it
can be used to add variety in a piece.

1Great thanks are due to Alain Brenzikofer who not only pressgme into including th&oicingoptions, but wrote a great
deal of the actual code.

59



11.1 Voicing Chord Voicing

CompressedDoes the same as the stand-al@wmnprescommand. LikeRoot it is only added to be
used in some parts of a song wh&acing Mode=0Optimals used.

11.1.2 Voicing Range
To get wider or closer voicings, you may define a range for thieings. This can be adjusted with the
Rangeoption:

Chord-Guitar Voicing Mode=Optimal Range=12

In most cases the default value of 12 should work just fine, Y8t may want to fine tune .. .it's all up to
you. This command only effects chords created witbde=Optimal

11.1.3 \Voicing Center
Just minimizing the Euclidean distance between chordsrdods the trick as there could be runaway
progressions that let the voicings drift up or down infinjtel

When a chord is “voiced” or moved to a new position, a “centa@n{ must be used as a base. By default,
the fourth degree of the scale corresponding to the chordeasonable choice. However, you can change
this with:

Chord-1 Voicing Center=<value>

Thevaluein this command can be any number in the range 0 to 12. Tryrdiftevalues. The color of
your whole song might change.

Note that the value is the note in the scale, not a chord-rusgipn.

This command only effects chords created wWitbde=Optimal

11.1.4 \Voicing Move

To intensify a chord progression you may want to have asognaoli descending movement of voicings.
This option, in conjunction with th®ir optional (see below) sets the number of bars over which a mov-
ment is done.

For theMoveoption to have any effect you must also set the directiontteeei1 or 1. Be careful that
you don't force the chord too high or low on the scale. Use of tommand in &Repeatsection can
cause unexpected results. For this reason we suggest thaigtode anSeqcommand at the beginning
of repeated sections of your songs.

In most cases the use of this command is limited to a secti@saing, its use is not recommended in
groove files. You might want to do something like this in a song

60



11.2 Compress Chord Voicing

..select groove with voicing

chords..

Chord-Piano Voicing Move=5 Dir=1
more chords..

Chord-Piano Voicing Move=5 Dir=-1
more chords..

11.1.5 Voicing Dir

This option is used in conjunction with tihdoveoption to set the direction (-1 or 1) of the movement.

11.1.6 Voicing Rmove

As an alternate to movement in a specified direction, randa@vement can add some color and variety
to your songs. The command option is quite useful (and saieepin groove files. The argument for this
option is a percentage value specifying the frequency ttyapmove in a random direction.

For example:
Chord-3 Voicing Mode=Optimal Rmove=20

would cause a movement (randomly up or down) in 20% of the. bAssnoted earlier, using explicit

movement instructions can move the chord into an undesinaige or even “off the keyboard”; how-
ever, the algorithm used in RMOVE has a sanity check to enbatethe chord center position remains,
approximately, in a two octave range.

11.2 Compress

Whenasm grabs the notes for a chord, the notes are spread out fronothgosition. This means that
if you specify a “C13” you will have an “A’ nearly 2 octaves alethe root note as part of the chord.
Depending on your instrumentation, pattern, and the chwtattsire of your piece, notes outside of the
“normal” single octave range for a chonslysound strange.

Chord Compress 1
Forcesaz to put all chord notes in a single octave range.

This command is only effective iBhord and Arpeggiotracks. A warning message is printed if it is used
in other contexts.

Notes:Compresgakes any value between 1 and 5 as arguments (however, stuas vall have no effect
as detailed above). You can specify a differ€ampresgor each bar in a sequence. Repeated values can
be represented with a “/”:

Chord Compress 1 / 0 /

61



11.3 DupRoot Chord Voicing

To restore to its default (off) setting, use a “0” as the argotn

For a similar command, with different results, seeltimit command (see page 63).

11.3 DupRoot

To add a bit of fullness to chords, it is quite common of keylgalayers to duplicate the root tone of a
chord into a lower (or higher) octave. This is accomplishregitz with the command:

DupRoot -1 1 -1 1

The command determines whether or not the root tone of a dsalldplicated in another octave. By
default notes are not added. A value of -1 will add a note otaedower than the root note, -2 will add
the tone 2 octaves lower, etc. Similarly, the value of 1 wdilla note one octave higher than the root tone,
etc.

Only the values -9 to 9 are permitted.
Different values can be used in each bar of the sequence.
The option is reset to 0 after élequencer SeqCleacommands.

The DupRootcommand is only valid irChordtracks. A similar command Buplicate(see page 101).

11.4 Invert

By defaultasza uses chords in the root position. By example, the notes of ajonohord are C, E and G.
Chords can be inverted (something musicians do all the tigggking with our C major chord, the first
inversion shifts the root note up an octave and the chordrbesde, G and C. The second inversion is G,
CandE.

M extends the concept of inversion a bit by permitting thet$bibe to the left or right, and the number
of shifts is not limited. So, you could shift a chord up seveaaves by using large invert valués.

Inversions apply to each bar of a sequence. So, the folloisiagyood example:

SeqSize 4
Chord-1 Sequence STR1
Chord-1 Invert 0 1 0 1

Here we set the sequence pattern size to 4 bars and set taemdatteach bar in the Chord-1 track to
“STR1”. Without the next line, this would result in a rathesring, repeating pattern. But, the Invert
command forces the chord to be in the root position for thebias, the first inversion for the second, etc.

2We've used the term “shift” here, but that’s not quite whet does. The order of the notes in the internal buffer stays the
same, just the octave for the notes is changed. So, if theletaies are “C E G” with the MIDI values “0, 4, 7” an invert of 1
would change the notes to & G” and the MIDI values to “12, 4, 7”.

62



11.5 Limit Chord Voicing

You can use a negative Invert value:
Chord-1 Invert -1
In this case the C major chord becomes G, C and E.

Note that using fewer Invert arguments than the currentesscpisize is permittedviza simply expands
the number of arguments to the current sequence size. Yowseag “/” for a repeated value.

A Sequencer ClearSeqcommand resetsivertto O.

This command on has an effect @hord and Apreggiotracks. And, franklyArpeggies sound a bit odd
with inversions.

If you use a large value fdnvertyou can force the notes out of the normal MIDI range. In thisecthe
lowest or highest possible MIDI note value will be used.

11.5 Limit

If you use “jazz” chords in your piece, some people might ikat the results. To some folks, chords like
11th, 13th, and variations have a dissonant sound. And, tsoethey are in a chart, but don’t really
make sense. Themit command can be used to set the number of notes of a chord used.

For example:
Chord Limit 4

will limit any chords used in th€hordtrack to the first 4 notes of a chord. So, if you have a C11 chord
whichis C, E, G, B, D, and F, the chord will be truncated to C, E, G and B

This command only applies t@Ghord and Arpeggiotracks. It can be set for other tracks, but the setting
will have no effect.

Notes:Limit takes any value between 0 and 8 as an argument. The “0” arguwlegisable the command.
This command applies to all chords in the sequence—only alug\can be given in the command.

To restore to its default (off) setting, use a “0” as the argom

For a similar command, with different results, see @@mpres£ommand (see page 61).

11.6 Range

For Arpeggioand Scaletracks you can specify the number of octave used. The eftéctise Range
command is slightly different between the two.

Scale Scale tracks, by default, create three octave scalesR&hgevalue will modify this to the number
of octaves specified. For example:

Scale Range 1

63



11.6 Range Chord Voicing

will force the scales to one octave. A value of 4 would creabetéve scales, etc.

Arpeggio Normally, arpeggios use a single octave (really, they usatewer notes are in the chord, which
might exceed the octave). Using tRangecommand we specify the number of octaves to use. The values
of “0” and "1” have the same effect.

64



Chapter 12

Tempo and Timing

2w has a rich set of commands to adjust and vary the timing of gong.

12.1 Tempo
The tempo of a piece is set in Beats per Minute with the “TengEctive.

Tempo 120
sets the tempo to 120 beats/minute. You can also use the teompmand to increase or decrease the
current rate by including a leading “+”, “-” or “*” in the rateFor example (assuming the current rate is
120):

Tempo + 10

will increase the current rate to 130 beats/minute.

The tempo can be changed series of beats, much like a ritcoiraeal music. Assuming that we are in
4, the current tempo is 120, and there are 4 beats in a bar, thenand:

Tempo 100 1

will cause 4 tempo entries to be placed in the current bah@MIDI meta track). The start of the bar
will be 115, the 2nd beat will be at 110, the 3rd at 105 and teeda100.

You can also vary an existing rate using a “+”, ”-” or “*” in thate.
You can vary the tempo over more than one bar. For example:
Tempo + 20 5.5

tells a#m to increase the tempo by 20 beats per minute and to step tteaseover the next five and a half
bars. Assuming a start tempo of 100 and 4 beats/bar, the naetawill have a tempo settings of 101,
102, 103 ...120. This will occur over 22 beats (5.5 bars * 4$)eaf music.

Using the multiplier is handy if you are switching to “doubiee”:
Tempo * 2

and to return:

65



12.2 Time Tempo and Timing

Temp * .5

Note that for “+”,”-” or “*” the sign must be separated frometliempo value by at least one space. The
value forTempaocan be any value, but will be converted to integer for the faediing.

12.2 Time

2w doesn’t really understand time signatures. It just caresiaiine number of beats in a bar. So, if you
have a piece irf time you would use:

Time 4
For 3 use:
Time 3
For § you'd probably want either “2” or “6”.

Changing the time also cancels all existing sequences.fteo aaime directive you’ll need to set up your
sequences or load a new grobve

12.3 TimeSig

Even thoughnz doesn’t really use Time Signatures, some MIDI programs dogrize and use them.
So, here’s a command which will let you insert a Time Sigrataryour MIDI output:

TimeSig NN DD

The NN parameter is the time signature numerator (the nuwiidegats per bar). 1§ you would set this
to “311.

The DD parameter is the time signature denominator (thetheofjthe note getting a single beat). in
you would set this to “4”.

The NN value must be an integer in the range of 1 to 126. The Dikevaust be one of 1, 2, 4, 8, 16, 32
or 64.

Mm assumes that all songs aretiand places that MIDI event at offset 0 in the Meta track.

TheTimeSigvalue is remembered igrooves and is properly set when grooves are switched. You should
probably have a time signature in any groove library files g@ate (the supplied files all do).

The time value is saved/restored with grooves so settingait redundant in this case.

66



12.4 BeatAdjust Tempo and Timing

12.4 BeatAdjust

Internally, a4= tracks its position in a song according to beats. For exampke? piece the beat position
is incremented by 4 after each bar is processed. For the radstips works fine; however, there are some
conditions when it would be nice to manually adjust the beaitpn:

J1 You may want to insert some extra (silent) beats at the endiofdosimulate a pause,
41 You may want to delete some beats to handle a “short” bar.

Let us deal with both instances in turn. In example 12.1 waukite a pause at the end of bar 10. One
problem with this logic is that the inserted beat will be sflebut certain notes (percussive things like
piano) often will continue to sound (this is related to thealeof the note, not thatsz has not turned off
the note). Frankly, we've not been able to get this to workvied . . . which is why theFermata(see page
68) was added.

Time 4
1Cm/ /]
10 Am / C /

BeatAdjust 1

Example 12.1: Adding Extra Beats

In example 12.2 we handle the problem of the “short bar”. lis #xample, the sheet music has the
majority of the song irf time, but bar 4 is irg. We could handle this by setting tHémesetting to 2 and
creating some different patterns. Forcing silence on teedabeats and backing up the counter is a bit
easier.

1Cm /[ ]

4 Am /[ z! ]
BeatAdjust -2
Example 12.2: Short Bar Adjustment

Note that the adjustment factor can be a partial beat. Fonpbea
BeatAdjust .5

will insert half of a beat between the current bars.

67



12.5 Fermata Tempo and Timing

12.5 Fermata

A “fermata” or “pause” in written music tells the musician hold a note for a longer period than the
notation would otherwise indicate. In standard music maat is represented by &~ above a note.

To indicate all this iz we use a command like:
Fermata 1 1 200
Note that there are three parts to the command:

1. The beat offset from the current point in the score to agy'pause”. The offset can be positive or
negative and is calculated from the current bar. Positivelars will apply to the next bar; negative
to the previous. For offsets into the next bar you use offstging at “0”; for offsets into the
previous bar an offset of “-1” represents the last beat ihlaa

For example, if you were irf time and wanted the quarter note at the end of the next bar to be
paused, you would use an offset of 3. The same effect can bevadhby putting thd~ermata
command after the bar and using an offset of -1.

2. The duration of the pause in beats. For example, if you hayearter note to pause your duration
would be 1, a half note (or 2 quarter notes) would be 2.

3. The adjustment. This represented as a percentage ofrilemtualue. For example, to force a note
to be held for twice the normal time you would use 200 (two<red percent). You can use a value
smaller than 100 to force a shorter note, but this is seldomedo

Example 12.3 shows how you can placEeamatabefore or after the effected bar.

The second example, 12.4, shows the first four bars of a pofoutd song. The problem with the piece is
that we want the first beat of bar four to be paused, and thenam t@ switch the accompaniment in the
middle of the bar. We have split the fourth bar with the firshto@en one line and the balance on a second.
The “z!”s are used to “fill in” the 4 beats skipped by tBeatAdjust

The following conditions will generate warning messages:
71 A beat offset greater than one bar,
J1 A duration greater than one bar,
J1 An adjustment value less than 100.

This command works by adjusting the global tempo in the MIRtatrack at the point of the fermata. In
most cases you can put more than érematacommand in the same bar, but they should be in beat order
(no checks are done). If tHeermatacommand has a negative position argument, special codeakad

to remove any note-on events in the duration specified, tfeestart of the beat.This means that extra
rhythm notes will not be sounded—probably what you expeald hote to sound like.

2Technically speakingyim determines an interval starting 5% of a beat after the sfaheofermata to a point 5% of a beat
before the end. Any MIDI Note-On events in this range (in @tks) are deleted.

68



12.6 Cut Tempo and Timing

Ly o

'Y)

M Equivalent

Fermata 3 1 200
C
Gm7

Alternate
C

Fermata -1 1 200
Gm7

Example 12.3: Fermata

C C#dim

G7

C / C#dim

G7 z!

Fermata -4 1 200
Cut -3

BeatAdjust -3.5
Groove EasySwing
z! G7 C7

Example 12.4: Fermata with Cut

12.6 Cut

This command was born of the need to simulate a “cut” or, moreectly, a “caesura”. This is indicated
in music by two parallel lines put at the top of a staff indicgithe end of a musical thought. The symbol

69



12.6 Cut Tempo and Timing

is also referred to as “railroad tracks”.
The idea is to stop the music on all tracks, pause briefly, asdme’

iz provides thecut command to help deal with this situation. We have found iteouseful in other
situations. But, before we describe the command in detailivarsion: just how is a note or chord
sustained in a MIDI file?

Let us assume that @= input file (and the associated library) files dictates thaheamotes are to be
played from beat 2 to beat 4 in an arbitrary bar. Wirat does is:

J1 determine the position in the piece as a midi offset to theetuibar,

JJ calculate the start and end times for the notes,

J1 adjust the times (if necessary) based on adjustable fesasuh astrum articulate, rtime, etc.,

71 insert the required MIDI “note on” and “note off” commandstaé appropriate point in the track.

You may think that a given note starts on beat 2 and ends (astioyilate 100 right on beat 3—but you
would most likely be wrong. So, if you want the note or chorcb®“cut”, what point do you use to
instructagz correctly? Unfortunately, the simple answer is “it depéndgyain, our answers will consist
of some examples.

In this first case we wish to stop the track in the middle of #s# bar. The simplest answer is:
1C

36 C/z! [/

Unfortunately, this will “almost” work. But, any chords wdhi are longer than one or two beats may
continue to sound. This, often, gives a “dirty” sound to thd ef the piece. The simple solution is to add
to the end of the piece:

Cut -2

Depending on the rhythm you might have to fiddle a bit with thevalue. But, the example here puts a
“all notes off” message in all the active tracks at the sthlteat 3. The exact same result can be achieved
by placing:

Cut 3
beforethe final bar.

In our second example we want a tiny bit of silence betweeas #and 5. This might be the end of an
introduction. The following bit should work:

1C
2 G
3G
4 C

3The answer to the music theory question of whether the “gdakes timefromthe current beat or is treated as a “fermata”
is not clear—but as far ag= is concerned the command has no effect on timing.

70



12.6 Cut Tempo and Timing

Cut
BeatAdjust .2
5G

In this case the “all notes off” is placed at the end of bar 4taaltenths of a beat is inserted at the same
location. Bar 5 continues the track.

Our final example show how you might combioet with fermata In this case the sheet music shows a
caesura after the first quarter note and fermatas over theequates on beats 2, 3 and 4.

1 C C#dim

2 G7

3 C / C#dim
Fermata 1 3 120
Cut 1.9

Cut 2.9

Cut 3.9

4 G7 | C7 |/

5 F6

A few tutorial notes on the above:
3 The command
Fermata 1 3 120

applies a slow-down in tempo to the second beat for the fatigwar (an offset of 1), for 3 beats.
These 3 beats will be played 20% slower than the set tempo.

J1 The threecutcommands insert MIDI “all notes off” in all the active tracksst beforebeats 2, 3 and
4.

Finally, the proper syntax for the command:
[Voice] Cut [Offset]
If the voice is omitted, MIDI “all notes off” will be insertethto each active track.

If the offset is omitted, the current bar position will be ds&his the same as using an offset value of 0.

71



Chapter 13

Volume and Dynamics

2 1S very versatile when it comes to the volumes or dynamicd usgour song.

Each generated note goes though 4 volume adjustments:

1.
2.
3.
4.
5.

The initial volume is set in the pattern definition, seeptba4,
the initial volume is adjusted with the track volume,

this volume is further adjusted with the master volume,

if certain notes are to be accented, the volume is furitieisted,

and, finally, if the random volume is set, this is applied,

For the most partsz uses conventional musical score notation for volumesrnaty, the dynamic name
is converted to a percentage value. The note volume is adjlstthe percentage.

The following table shows the available volume settings ttwecadjustment values.

Symbolic Name Ratio Adjustment
off 0
ppPpPpP 20
ppPp 30
pp 45
p 55
mp 75
mf 90
f 100
ff 110
fif 120
ffff 150

The settingOff is useful for generating fades at the end of a piece. For ebeamp

Volume ff
Decresc Off 5
G/ Gm/ * 5

will cause the last 5 bars of your music to fade from a “ff” tkesce.

72



13.1 Accent Volume and Dynamics

The initial volume (or velocity) is set in the pattern defioit (see chapter 4). The following commands
set the master volume, track volume and random volume awi@mns.

In addition to the volumes (velocities) generatedady your MIDI device can also change the mix be-
tween channels. See the discussionGbannelVoluméprefchannelvol).

13.1 Accent

“Real” musicians, in an almost automatic manner, emphasites on certain beats. In popular Western
music written inZ time this is usually beats one and three. This emphasisteefsilse or beat in a piece.

In a2 you can set the volumes in a pattern so that this emphasiss. déor example, when setting a
walking bass line pattern you could use a pattern definitlan |

Define Walk W1234 1 4 100; 2 4 70; 3 4 80; 4 4 70

However, it is much easier to use a definition which has alltilemes the same:
Define Walk W1234 1 1 90 * 4

and use thé\ccentcommand to increase or decrease the volume of notes onrcbeais:
Walk Accent 1 20 2 -10 4 -10

The above command will increase the volume for walking basesion beat 1 by 20%, and decrease the
volumes of notes on beats 2 and 4 by 10%.

You can use this command for all tracks.

When specifying the accents, you must have matching paustai The first item in the pair is the beat
(which can be fractional), the second is the volume adjustmehis is a percentage of the current note
volume that is added (or subtracted) to the volume. Adjustrfeetors must be in the range -100 to 100.

The Accens apply to all bars in a track. You cannot set different accémt different bars. If you need
to do this it's a simple matter to create duplicate tracksi¢ivltan even share the same MIDI channel).
For example, you might want even bars to have beats 1 and 8tadcand odd bars to have only beat 1
accented. An abbreviated attempt might look like:

Begin Chord-1
Sequence C1234 z
Voice Pianol
Accent 1 20 3 30

End

Begin Chord-2
Sequence z C1234
Voice Pianol
ChShare Chord-1
Accent 1 20

End

73



13.2 AdjustVolume Volume and Dynamics

13.2 AdjustVolume

The ratios used to adjust the volume can be changed from theeadhble. For example, to change the
percentage used for the “mf” setting:

AdjustVolume MF 95
If you want to adjust a number of settings:

Begin AdjustVolume
PP 47

ppp 50
End

All values must be positive integers. Any value over 180 Wireported as a warning.

You might want to do these adjustment in your MMArc file(s).

13.3 Volume

The volume for a track, or all tracks, is given the “Volume’hwmand. Volumes can be specified much
like standard sheet music with the conventional dynamiceagrfihese volumes can be applied to a track
or to the entire song. For example:

Arpeggiol Volume p

sets the volume for Arpeggiol track to something approximggtiano.
Volume f

sets the master volume forte.

In most cases the volume for a track will be set with the segeeefinition; the master volume is used in
the music file to adjust the overall feel of the piece.

13.4 Cresc and Decresc

If you wish to adjust over a series of bars use@rescor Decresccommands. These commands are only
valid in the master context; they can not be applied to imligl tracks.

For all practical purposes, the two commands are equiva&pect for the warning. If the new volume in
less than the current volume irGaesca warning will be displayed; the converse applies egresc

The command requires two arguments. The first is the new \@ldine second is the number of bars to
adjust it over.

For example:

74



13.5 RVolume Volume and Dynamics

Cresc fff 5
will gradually vary the master volume from its current g&itio a triple forte over the next 5 bars.
Similarly:
Decresc mp 2
will decrease the master volume to mezzo piano over the neat
A SeqClearcommand will reset all track volumes to the defautft(ie. no adjustment).
When usingvolumefor a specific track, you can use a different value for eachrbarsequence:
Drum Volume mp ff / ppp

A “/” can be used to repeat values.

13.5 RWolume

Not even the best musician can play each note at the same @olNior would he or she want to—the
result would be quite unmusical. The note volumes can beorahdadjusted with th&volumecommand.

The command can be applied to a specific track or (if you'redyrto all tracks: Examples:

Chord RVolume 10
RVolume 5

The RVolumeargument is a percentage value by which a volume is adjustesitting of O disables the
adjustment for a track (this is the default).

When set, the note velocity (after the track and master veladjustments) is randomized up or down by
the value. Again, using the above example, let us assume thaete in the current pattern gets a MIDI
velocity of 88. The random factor of 10 will adjust this by 18 or down—the new value can be from
78 to 98.

The idea behind this is to give the track a more human soureffegt. You can use large values, but it’s
not recommended. Usually, values in the 5 to 10 range work Well might want slightly larger values
for drum tracks. Using a value greater than 30 will generat@mming message.

Notes:
71 No generated value will be out of the valid MIDI velocity rang

41 You may uséRVolumewithout a leading track name. In this case it will effect bt tracks (probably
not recommended).

J3 When usingRVolumeor a specific track, you can use a different value for eachirbarsequence:
Scale RVolume 10 0 / 20

The best use of usingVolumefor all tracks is with a “0” argument to (temporarily) disalihe setting for all tracks.

75



13.6 Saving and Restoring Volumes Volume and Dynamics

1 A" can be used to repeat values.

13.6 Saving and Restoring Volumes

Dynamics can get quite complicated, especially when youadpesting the volumes of a track inside
a repeat or other complicated sections of music. In this@eete will attempt to give some general
guidelines and hints.

For the most part, the supplied groove files will have baldne@dumes between the different instruments.
In a future version ofsz avolumeAdjustommand will let you fine tune differences between your synth
and the standards in the library. This will be done beforéseer1.0.

Remember thaGrooves save all the current volume settings. This includes theenagtting as well
as individual track settings. So, if you are using the myhgroove “Wonderful” and think that the
Chord-Pianovolume should be louder in a particular song it's easy to doething like:

Groove Wonderful
Chord-Piano Volume ff
DefGroove Wonderful

Now, when you call this groove the new volume will be used. eNthiat you'll have to do this for each
variation of the groove that you use in the song.

In most songs you will not need to do major changes. But, iids to use the same volume each time
though a section. In most cases you'll want to do a expli¢tregeat the start of a section. For example:

Repeat
Volume mf

Cresc ff 5

EndRepeat
Another useful technique is the use of théastVolumemacro. For example:

Volume pp
Cresc f 5

$_LastVolume // restores to pp

76



Chapter 14

Repeats

M attempts to be as comfortable to use as standard sheet Mmh&Edncludesepeatsandendings

More complex structures likB.S, Coda, etc. arenot directly supported. But, they are easily simulated
with by using some simple variables, conditionals &wtos. See chapter 15 for details. Often as not,
it may be easier to use your editor to cut, paste and duplicat®ther, alternate, method of handling
complicated repeats is to set sections of coddset(see page 80) variables and simply expand those.

A section of music to be repeated is indicated witRepeatand Repeatendr EndRepedt In addition,
you can havérepeatEndings

)

e
NN

Repeat

1 Am

2 C
RepeatEnding 2
3 D7
RepeatEnding
4 D7 /| Dm
RepeatEnd

5 G7

6 A

Example 14.1: Repeats

In example 14.54z produces music with bars:

1,2,3,

The reason for botEndRepeaandRepeatEnds that we have botHEnd andEndlf.

77



Repeats

1,2,3,

1! 2! 4!
1,2,5,6

This works just like standard sheet music. Note that Ré&peatEndingand RepeatEndccan take an

optional argument indicating the number of times to use titing or to repeat the block. The effect of
an optional count foRepeatEndings illustrated in the example, above. The following simptamaple:

Repeat

1 Am

2 Cm
RepeatEnd 3

Will expand to:

1, 2,
1, 2,
1,2

Note that the optional argument “3” produces a total of tloegies. The default argument fBepeats
“2” (values less than 2 are not permitted).

Combining optional counts with botRepeatEndingand RepeatEnds permitted. However, the final
repeats will not include the endings. Another example:

Repeat

1 Am

2 C
RepeatEnding 2
3 D7
RepeatEnd 2

Produces:

1,2,3,
1,2,3
1,2
1,2

M processes repeats by reading the input file and creatingcdtgs of the repeated material. This means
that a directive in the repeated material would be processdtlple times. Unless you know what you
are doing, directives should not be inserted in repeat@etiBe especially careful if you define a pattern
inside a repeat. Usingempowith a “+” or “-” will be problematic as well.

Repeats can be nested to any level.

There must be onRepeatEndr EndRepeator every Repeat Any number ofRepeatEndingsan be
included before th&®epeatEnd

78



Chapter 15

Variables, Conditionals and Jumps

To make the processing of your music easies supports a very primitive set for variable manipulations
along with some conditional testing and the oft-frowneadiugotocommand.

15.1 Variables

i lets you set a variable, much like in other programming laggps and to do some basic manipulations
on them. Variables are most likely to be used for two reasons:

J1 For use in setting up conditional segments of your file,
J1 As a shortcut to entering complex chord sequences.
To begin, the following list shows the available commandseband manipulate variables:

Set VariableName String
Mset VariableName ... MsetEnd
UnSet VariableName

ShowVars

Inc Variablename [value]

Dec Variablename [value]
Vexpand ON/Off

All variable names are case-insensitive. Any charactenseaused in a variable name. The only excep-
tions are that a variable name cannot start with a “$” or’g&n underscore—this is reserved for internal
variables, see below).

Variables are set and manipulated by using their names.abas are expanded when their name is
prefaced by a space followed by single “$” sign. For example:

Set Silly Am / Bm /
1 $Silly

The first line creates the variable “Silly”; the second cesa bar of music with the chords “Am /Bm /”.

Note that the “$” must be the first item on a line or follow a spabaracter. For example, the following
will NOT work:

79



15.1 Variables Variables, Conditionals and Jumps

Set Silly 4a;b;c;d;
1 Am {$Silly }

However:
1 Am { $Silly }
will work fine.

Following are details on all the available variable comnsand

15.1.1 Set/[string]
Set or create a variable. You can skip steingif you do want to assign an empty string to the variable.
A valid example is:

Set PassCount 1

15.1.2 Mset [lines] MsetEnd/EndMset

This command is quite similar et but Msetexpects multiple lines. An example:

MSet LongVar
1 Cm
2 Gm
3 G7
MsetEnd

It is quite possible to set a variable to hold an entire saatianusic (perhaps a chorus) and insert this via
macro expansion at various places in your file.

EachMsetmust be terminated by BndMsetor MsetEndcommand (on its own separate line).

15.1.3 UnSet VariableName

Removes the variable. This can be useful if you have comwdititests which simply rely on a certain
variable being “defined”.

15.1.4 ShowVars

Displays the names of the defined variables and their cantémainly used for debugging. The display
will preface each variable name with a “$”. Note that intérmaz variable are also displayed with this
command.

80



15.1 Variables Variables, Conditionals and Jumps

15.1.5 Inc and Dec

These commands increment or decrement a variable. If noremguis given, a value of 1 is used; other-
wise, the value specified is used. The value can be an integeft@ating point number.

A short example:

Set PassCount 1
Set Foobar 4
Showvars

Inc FooBar 4
Inc PassCount
ShowVars

This command is quite useful for creating conditional tésteroper handling of codas or groove changes
in repeats.

15.1.6 VExpand On or Off

Normally variable expansion is enabled. These two optialigwn expansion on or off. Why would you
want to do this? Well, here’s a simple example:

Set LeftC Am Em

Set RightC G /
VExpand Off

Set Full $LeftC $RightC
VExpand On

In this case the actual contents of the variable “Full” is é8C $RightC”. If theOff/Onoption lines had
not been used, the contents would be “Am Em G /. You can easilify this with theShowVarsoption.

When asm processes a file it expands variables in a recursive mann@s rmeans that, in the above
example, the line:

1 $Full

will be changed to:
1 Am Em G /

However, if later in the file, you change the definition of ori¢ghe variables ... for example:
Set LeftC Am /

the same line will now be “1 Am /G /.

Most of a#m’s internal commandsan be redefined with variables. However, we really don't thiruy
should use this feature. It's been left for two reasons: ghihbe useful, and, it's hard to disable.

However, not all commands can be redefined. The followindgpastdist of things which will work (but,
again, we're not suggesting you do this):

81



15.2 Predefined Variables Variables, Conditionals and Jumps

Set Rate Tempo 120
$Rate

Set R Repeat

$R

But, the following will not work:

Set B Begin
Set E End
$B Arpeggio Define
$E
This fails since the Begin/End constructs are expanded&efriable expansion. However:

Set A Define Arpeggio
Begin $a ... End

is quite alright.

Even though you can use a variable to substitute forRbpeator If directives, using one foRepeat-
End/EndRepeaRepeatEndingLabel or IFEnd/EndIf will fail.

Variable expansion should usually not be a concern. In moshal files, a4z will expand variables as
they are encountered. However, when reading the dataRepeeat If or Mset section the expansion
function is skipped—but, when the lines are processed; bétimg stored in an internal queue, variables
are expanded.

15.2 Predefined Variables

For your conveniencers tracks a number of internal settings and saves their vatueariables you can
access just like you would a user defined variable. All of ¢éhtasternal” variables are prefaced with a
single underscore. For example, the current tempo is savite ivariable TEMPQ this can be accessed
in your script with the notatio$ TEMPQ,

_Groove Name of the currently selected groove. May be empty if no ggdwms been selected.
_LastGroove Name of the groove selecté@forethe currently selected groove.
_SegSizeCurrentSeqSizsetting.

_Tempo CurrentTempo Note that if you have used the optiorar countin setting the tempo this will
be the target tempo.

_Time The currenflime(beats per bar) setting.
_Transpose CurrentTransposesetting.

_Volume Current global volume setting.

82



15.3 Conditionals Variables, Conditionals and Jumps

_LastVolume Previously set global volume setting.
_Debug Current debug settings.
_LastDebug Debug settings prior to lafiebugcommand. This setting can be used to restore settings, ie:

Debug Warnings=off
... stuff generating annoying warnings
Debug $_LastDebug

15.3 Conditionals

The most important reason we created variablegsinwas to use them in conditionals. haz a condi-
tional consists of a line starting with dihdirective, a test, a series of lines to process (dependiog the
result of the test), and a closifndIf or IfEnd! directive. An optionaElsestatement may be included.

The first set of tests are unary (they take no arguments):
Def VariableName Returns true if the variable has been defined.
Ndef VariableName Returns true if the variable has not been defined.

In the above tests you must supply the name of a variable—tdagske the mistake of including a “$”
which will invoke expansion and result in something you weoéexpecting.

A simple example:

If Def InCoda
5 Cm
6 /

Endif

The other tests are binary (they take two arguments):

LT Strl Str2 Returns true ifStrlis less tharStr2 (Please see the discussion below on how the tests are
done.)

LE Strl Str2 Returns true istrlis less than or equal t6tr2
EQ Strl Str2 Returns true itrlis equal toStr2

NE Strl Str2 Returns true itrlis not equal tdtr2

GT Strl Str2 Returns true iktrlis greater thastr2

GE Strl Str2 Returns true iktrlis greater than or equal ®ir2

In the above tests you have several choices in specifytinibandStr2 At some point, whensz does the
actual comparison, two strings or numeric values are ergde&o, you really could do:

We probably suffer from mild dyslexia and can’t remembeh# tommand is IFEND or ENDIF, so both are permitted.
Use whichever is more comfortable for you.

83



15.3 Conditionals Variables, Conditionals and Jumps

If EQ abc ABC

and get a “true” result. The reason that “abc” equals “ABCthiat all the comparisons imz are case-
insensitive.

You can also compare a variable to a string:
If GT $foo abc

will evaluate to “true” if thecontentsof the variable “foo” evaluates to something “greater théadic”.
But, there is a bit of a “gotcha’ here. If you have set “foo” ttwa word string, themsz will choke on
the command. In the following example:

Set Foo A B
If GT $Foo abc

the comparison is passed the line:
If GT A B abc

andafm seeing three arguments generates an error. If you want thpartson done on a variable which
might be more than one word, use the “$$” syntax. This delagsekpansion of the variable until thfe
directive is entered. So:

If $$foo abc
would generate a comparison between “A B” and “ABC".
Delayed expansion can be applied to either variable. It wwigks in anlf directive.

Strings and numeric values can be confusing in compariséasexample, if you have the strings “22”
and "3” and compare them as strings, “3” is greater than “2@&iyvever, if you compare them as values
then 3 is less than 22.

The rule inasm is quite simple: If either string in a comparison is a numesdue, both strings are
converted to values. Otherwise they are compared as stAngs

This lets you do consistent comparisons in situations like:
Set Count 1
If LE $$Count 4
IfEnd
Note that in the above example we could have used “$Count”ydu should probably always use the
“$$” in tests.
Much like other programming languages, an optidelaecondition may be used:

If Def Coda
Groove Rhumbal

2An attempt is made to convert each string to a float. If conwearef both strings is successful, the comparison is made
between two floats, otherwise two strings are used.

84



15.4 Goto Variables, Conditionals and Jumps

Else
Groove Rhumba
Endif

TheElsestatement(s) are processed only if the test follfthest is false.
Nesting oflf s is permitted:

If ndef Foo
Print Foo has been defined.
Else
If def bar
Print bar has been defined. Cool.
Else
Print no bar...go thristy.
Endif
Endif

works just fine. We've used indentation in our examples tartyeshow the nesting and conditions. We
suggest you do the same.

15.4 Goto

The Goto command redirects the execution order of you script to that@ which aLabel has been
defined. There are really two parts to this:

1. A command defining a label, and,
2. TheGotocommand.
A label is set with thd_abeldirective:
Label Pointl

The string defining the label can be any sequence of chasadiabels are case-insensitive. You can not
set two points in your file to the same label.

To cause execution to jump to a labeled point:
Goto Pointl
This causes an immediate jump. Any remaining lines in a rfiepeeonditional segment are discarded.

a1 does not check to see if you are jumping into a repeat or dondit section of code—but doing so
will usually cause an error. Jumping out of these sectionsuslly safe.

For an example of how to use some simple labels to simulateéSsdilltoda” examine the file “lullaby-of-
Broadway” in the sample songs directory.

85



Chapter 16

Low Level MIDI Commands

The commands discussed in this chapter directly effect Mild output devices.

Not all MIDI devices are equal. Many of the effects in this ptea may be ignored by your devices. Sorry,
but that’s just the way MIDI is.

16.1 Channel

As noted in the Tracks and Channels chapter (see pagev#bpssigns MIDI channels dynamically as
it creates tracks. In most cases this works fine; however,caouif you wish force the assignment of a
specific MIDI channel to a track with th@hannelcommand.

You cannot assign a channel number to a track if it alreadydéffwell, see the sectiddhShare below,
for the inevitable exception), nor can you change the chaassiggnments for any of tHarum tracks.

Let us assume that you want tBasstrack assigned to MIDI channel 8. Simply use:
Bass Channel 8

Caution: If the selected channel is already in use an erdbbe/igenerated. Due to the waytz allocates
tracks, if you really need to manually assign track we recemdrihat you do this in EIMArc file.

You can disable a channel at any time by using a channel nuofi@er
Arpeggio-1 Channel 0

will disable the Arpeggio-1 channel, freeing it for use b@ttracks. A warning message is generated.
Disabling a track without a valid channel is fine. When youasehannel to O the track is also disabled.
You can restart the track with tf@n command (see page 104).

You don't need to have a valid MIDI channel assigned to a ttacko things like: Pan, Portamento
ChannelVolumer even the assignment of any music to a track. MIDI data iatexein tracks and then
sent out to the MIDI buffers. Channel assignment is checkeldadlocated at this point, and an error will
be generated if no channels are available.

It's quite acceptable to do channel reassignments in thelmiof a song. Just assign channel 0 to the
unneeded track first.

MIDI channel settings areot saved inGrooves

86



16.2 ChannelPref Low Level MIDI Commands

am inserts a MIDI “track name” meta event when the channel bsiffee first assigned at a MIDI offset
of 0. If the MIDI channel is reassigned, a new “track name’hisarted at the current song offset.

A more general method is to uS#hannelPrefdetailed below.

16.2 ChannelPref

If you prefer to have certain tracks assigned to certain cbgn/ou can use thehannelPrefcommand to
create a custom set of preferences. By defauh, assigns channels starting at 16 and working down to
1 (with the expection of drum tracks which are all assigneahciel 10). If, for example, you would like
the Basstrack to be on channel 9, sustained bass on channel 3Agegigioon channel 5, you can have
a command like:

ChannelPref Bass=9 Arpeggio=5 Bass-Sus=3
Most likely this will be in yourmmarcfile.

You can use multiple command lines, or have multiple ass@rtson a single line. Just make sure that
each item consists of a trackname, an “=" and a channel numlibiee range 1 to 16.

16.3 ChShare

a6 is fairly conservative in its use of MIDI tracks. “Out of theXJ it demands a separate MIDI channel
for each of its tracks, but only as they are actually used. dstroases, this works just fine.

However, there are times when you might need more tracksthigaavailable MIDI channels or you may
want to free up some channels for other programs.

If you have different tracks with the same voicing, it's gugimple. For example, you might have an
arpeggio and scale track:

Arpeggio Sequence Al6 z
Arpeggio Voice Pianol
Scale Sequence z S8
Scale Voice Pianol

In this exampleasz will use different MIDI channels for thé&rpeggioand theScale Now, if you force
channel sharing:

Scale ChShare Arpeggio
both tracks will use the same MIDI channel.

This is really foolproof in the above example, especialhcsithe same voice is being used for both. Now,
what if we wanted to use a different voice for the tracks?

87



164 MIDI Low Level MIDI Commands

Arpeggio Sequence Al6 z
Arpeggio Voice Pianol Strings
Scale Sequence z S8

Scale ChShare Arpeggio

You might think that this would work, but it doesn#z ignores voice changes for bars which don’t have
a sequence, so it will set “Pianol” for the first bar, then it®s” for the second (so far, so good). But,
when it does the third bar (alrpeggig it will not know that the voice has been changed to “Strinigg”
the Scaletrack.

So, the general rule for track channel sharing is to use amwoice.
One more example which doesn’t work:

Arpeggio Sequence A8
Scale Sequence S4
Arpeggio Voice Pianol
Scale Voice Pianol
Scale ChShare Arpeggio

In this example we have an active scale and arpeggio sequreeaeh bar. Since both use the same voice,
you may think that it will work just fine ... but it may not. Thegblem here is thatsz will generate
MIDI on and off events which may overlap each other. One oother will be truncated. If you are using
a different octave, it will work much better. It may sound gkiaut you should probably find a better way
to do this.

When aChShardlirective is parsed the “shared” channel is first checked$oiee that it has been assigned.
If not currently assigned, the assignment is first done. Whiatmeans is that you are subvertimga’s
normal dynamic channel allocation scheme. This may causéépletion of avaiable channels.

Please note that we've never found it really necessary tthesehSharecommand, so it might have more
problems than outlined here. But, to do some testing we dadheseommand to shai®assand Walk
channels in a few groove files.

This command will always display a warning message.

For another, simpler, way of reassigning MIDI tracks antrgtasz do most of the work for you, refer to
theDeletecommand (see page 100).

16.4 MIDI

The complete set of MIDI commands is not limitless—»but frdnis tend it seems that adding commands
to suit every possible configuration is never-ending. Sanrattempt to satisfy everyone, we've added a
command which will place any arbitray MIDI stream in yourdka. In most cases this will be a MIDI
“Sysex” or “Meta” event.

The data can be placed in the meta track or a specific voicaay.tr

88



16.5 MidiFile Low Level MIDI Commands

For example, you might want to start a song off with a MIDI tese
MIDI OxFO Ox05 Ox7e Ox7f O0x09 Ox01 Oxf7

The values passed to the MIDI command are normal integevgever, they must all be in the range of
0x00 to Oxff. In most cases it is easiest to use hexadecimabeus by using the “0x” prefix. But, you
can use plain decimal integers if you prefer.

In the above example:
0xFO Designates a SYSEX message
0x05 The length of the message
Ox7e ...The actual message
Another example places the key signature of F major (1 flat)émmeta track:
MIDI Oxff 0x59 0x02 Oxff 0x00
Somecautions:
71 afm makes no attempt to verify the validity of the data!
J1 The “Length” field must be manually calculated.

J1 Malformed sequences can create unplayable MIDI files. Ineex¢ situations, these might even
damange your synth. You are on your own with this commande. caveful.

J1 TheMidi directive always places data in tMetatrack at the current time offset into the file. This
should not be a problem.

Cautions aside, an include file which the author uses hasibeleded in the main distribution axludes/
init.Lmma . You might want to have the command:

MMAstart init
in yourmmarcfile. The file is pretty well commented and it sets a synth upptoething reasonably sane.

If you need a brief delay after a raw MIDI command, it is pokstb insert a silent beat with tligeatAdjust
command (see page 67). See theifibhides/reset. mma for an example.

16.5 MidiFile

This option controls some fine points of the generated MI®L filThe command is issued with a series of
paramaters in the form “MODE=VALUE”. You can have mulitpletisngs in a singléidiFile command.

2w can generate two types of SMF (Standard MIDI Files):

0. This file contains only one track into which the data forta# different channel tracks has been
merged. A number of syths which accept SMF (Casio, Yamaha#nais) only accept type O files.

89



16.6 MIDISeq Low Level MIDI Commands

1. This file has the data for each MIDI channel in its own tra€kis is the default file generated by
M.

You can set the filetype in an RC file (or, for that matter, in &leyprocessed by#=) with the command:
MidiFile SMF=0

or
MidiFile SMF=1

You can also set it on the command line with the -M option. gdhe command line option will override
theMidiSMF command if it is in a RC file.

By defaultafz uses “running status” when generating MIDI files. This cadigabled with the command:
MidiFile Running=0

or enabled (but this is the default) with:
MidiFile Running=1

Files generated without running status will be about 20 & 3@rger than their compressed counterparts.
They may be useful for use with braindead sequencers andbougdeng generated code. There is no
command line equivalent for this option.

16.6 MIDISeq

It is possible to associate a set of MIDI controller messag#scertain beats in a sequence. For example,
you might want to have the Modulation Wheel set for the firgtben a bar, but not for the third. The
following example shows how:

Seqsize 4

Begin Bass-2

Voice NylonGuitar

Octave 4

Sequence {14 190; 243090, 345290441+ 90 }
MIDIDef WheelStuff 1 1 Ox7f ; 2 1 Ox50; 3 1 O

MidiSeq WheelStuff

Articulate 90

End

C=x 4

The MidiSeqcommand is specific to a track and is saved as part oGtloevedefinition. This lets style
file writers use enhanced MIDI features to dress up theirdsun

The command has the following syntax:

TrackName MidiSeq <Beat> <Controller> <Datum> [ ; ...]

90



16.6 MIDISeq Low Level MIDI Commands

where:

Beat is the Beat in the bar. This can be an integer (1,2, etc.) oraditfip point value (1.2, 2.25, etc.). It
must be 1 or greater and less than the end of bat imust be less than 5).

Controller A valid MIDI controller. This can be a value in the range 0x0@7f or a symbolic name.
See see page 132 for a list of defined names.

Datum All controller messages use a single byte “parameter” irrdinge 0x00 to Ox7f.

You can enter the values in either standard decimal notatiam hexadecimal with the prefixed “0x”. In
most cases, your code will be clearer if you use values lik&{Orather than the equivalent “127”.

The MIDI sequences specified can take several forms:
1. A simple series like:
MIDISeq 1 ReleaseTime 50; 3 ReleaseTime 0O
in this case the commands are applied to beats 1 and 3 in eaohtha sequence.
2. As a set of names predefined inMiDIDef command:

MIDIldef Rell 1 ReleaseTime 50; 3 ReleaseTime 0O
MIDIdef Rel2 2 ReleaseTime 50; 4 ReleaseTime O
MIDISeq Rell Rel2

Here, the commands defined in “Rell” are applied to the firstildéhe sequence, “Rel2” to the
second. And, if there are more bars in the sequence thantaefsin the line, the series will be
repeated for each bar.

3. Asetof series enclosed{n} braces. Each braced series is applied to a different baeiseuence.
The example above could have been does as:

MIDISeq { 1 ReleaseTime 50; 3 ReleaseTime 0 P\
{ 2 ReleaseTime 50; 4 ReleaseTime O }

4. Finally, you can combine the above into different combares. For example:

MIDIDef Rell 1 ReleaseTime 50
MIDIDef Rel2 2 ReleaseTime 50
MIDISeq { Rell; 3 ReleaseTime 0 } { Rel2; 4 ReleaseTime 0 }

You can have specify different messages for different b@atdifferent messages/controllers for the same
beat) by listing them on the samidiSegline separated by “;’s.

If you need to repeat a sequence for a measure in a sequencaryose the special notation “/” to force
the use of the previous line. The special symbol “z” or ”-” ¢enused to disable a bar (or number of bars).
For example:

Bass-Dumb MIDISeq 1 ReleaseTime 20 z / FOOBAR

would set the “ReleaseTime” sequence for the first bar ofélaq@snce, no MIDISeq events for the second
and third, and the contents of “FOOBAR?” for the fourth.

91



16.7 MIDIVoice Low Level MIDI Commands

To disable the sending of messages just use a single “-”:

Bass-2 MidiSeq - // disable controllers

16.7 MIDIVoice

Similar to theMIDISeqcommand discussed in the previous section MtiBlVoice command is used to
insert MIDI controller messages into your files. Insteadesfding the data for each bars$DISeqdoes,
this command just sends the listed control events at theddtartrack and then, if needed, at the start of
each bar.

Again, a short example. Let us assume that you want to usdledse Time” controller to sustain notes
in a bass line:

Seqsize 4

Begin Bass-2

Voice NylonGuitar

MidiVoice 1 ReleaseTime 50

Octave 4

Sequence {14 190; 24390, 345090;,441+9 }
Articulate 60

End

Cx 4
should give an interesting effect.
The syntax for the command is:
Track MIDIVoice <beat> <controller> <Datum> [; ...]

This syntax is identical to that discussed in the sectioMDISeq above. The<beat-value is required
for the command—it determines if the data is sent before w@r d@heVoice command is sent. Some
controllers are reset by a voice, others not. My experimgintsv thatBankshould be sent before, most
others after. Using a “beat” of “0” forces the MidiVoice datebe sent before the Voice control; any other
“beat” value causes the data to be sent after the Voice doitrthis silly example:

Voice Pianol
MidiVoice {0 Bank 5; 1 ReleaseTime 100 }

we end up with MIDI data being created something like:

0 Param Ch=xx Con=00 val=05
0 ProgCh Ch=xx Prog=00
0 Param Ch=xx Con=72 val=80

All the MIDI events occur at the same offset, but the ordemsay be) important.

92



16.8 MIDIClear Low Level MIDI Commands

By defaultasz assumes that the MIDIVoice data is to be used only for thelfasin the sequence. But,
it's possible to have a different sequence for each bar irséggience (just like you can have a different
Voicefor each bar). In this case, group the different data groupis {§ brackets:

Bass-1 MIDIVoice {1 ReleaseTime 50 } {1 ReleaseTime 20 }
This list is stored with otheGroovedata, so is ideal for inclusion in a style file.
If you want to disable this command after it has been issuedcam use the form:
Track MIDIVoice - /I disable
Some technical notes:
J1 afm tracks the events sent for each bar and will not duplicataessoes.

J1 Be cautious in using this command to switch voice banks. if gon't switch the voice bank back
to a sane value you'll be playing the wrong instruments!

J1 Do use theMIDIClear command (below) to “undo” anything you've done vidvdDIVoice com-
mand.

16.8 MIDIClear

As noted earlier in this manual you should be very carefutggpamming MIDI sequences into your song
and/or library files. Doing damage to a synthesizer is priybalbemote possibility ... but leaving it in a
unexpected mode is likely. For this reason we have include¥tDIClear command as a companion to
the MIDIVoice andMIDISeqcommands.

Each time a MIDI track (not necessary the same @@aarack) is ended or a ne@rooveis started, a check
is done to see if any MIDI data has been inserted in the tratk aMIDIVoice or MIDISeqcommand. If
it has, a further check is done to see if there is an “undo” eege defined via MIDIClear command.
That data is then sent; or, if data has not be defined for thk,teawarning message is displayed.

TheMIDIClear command uses the same syntaidBIVoice andMIDISeq however, you can not specify
different sequence for different bars in the sequence:

Bass-Funky MIDIClear 1 Modulation 0; 1 ReleaseTime 0

As in MIDIVoice andMIDISegyou can include sequences defined Mi®IDef. The <beat>offsets are
required, but ignored.

16.9 MIDIinc

i has the ability to include a user supplied MIDI file at any paihits generated files. These included
files can be used to play a melodic solo overa pattern or to fill a section of a song with something like
a drum solo.

93



16.9 MIDIinc Low Level MIDI Commands

When theMIDIlinc command is encountered the current line is parsed for aptibe file is inserted into
the stored MIDI stream, and processing continues. Thedechas no effect on any song pointers, etc.

MIDlinc has a number of options, mostly set in the form OPTION=VALB&llowing are the recognized
values:

FILENAME The filename of the file to be included. This must be a complitedme. No processing
or expansion is done by on the name.

VOLUME An adjustment for the volume of all the note on events in thauided MIDI file. The ad-
justment is specified as a percentage with values under 1ff@ateng the volume and over 100
increased it. If the resultant volume (velocity) is lessitiaa velocity of 1 will be used; if it is over
127, 127 will be used.

OCTAVE Octave adjustment for all notes in the file. Values in the eas#gto 4 are permitted. Notes in
drum tracks (channel 10) will not be effected.

TRANSPOSE Transposition adjustment settings in the range -24 ot 2¢amaitted. If you do not set a
value for this the global transpose setting will be appliexpécting channel 10, drum, notes).

TRACK A trackname must be be setinto which notes are inserted. doget more than one track/channel
if you wish. For example, if you had the opti@RUM=10any notes in the MIDI file with a channel
10 setting would be inserted into thez Drumtrack. Similarity,Solo-Tenor=will copy notes from
channel 1 into th&olo-Tenortrack. If the track doesn'’t exist, it will be created. Nothistmeans
that the channel assignment in your included file and thearemgenerated file will most likely be
different.

A complete example of usage is shown in the files in the dirgatgs/frankie in the distribution. A
short example:

MIDIlinc File=test.mid Solo-Piano=1 Drum=10 Volume=70

will include the MIDI file “test.mid” at the current positioand assign all notes in channel 1 to ®elo-
Pianotrack and the notes from channel 10 to Bremtrack. The volumes for all the notes will be adjusted
to 70

A few notes:

J1 MIDI files to be included do not have to have the same tempo. INHjusts this automatically on
playback. However, the internal setting for beat divisibod be the samessz assumes a beat
division of 192 (this is set in bytes 12 and 13 of the MIDI fil#)the included file differs a warning
is printed andvizz will attempt to adjust the timings.

J1 Allfiles are parsed to find the offset of the first note-on eyantes to be included are set with their
offsets compensated by that time. This means that any silahthe start of the included file is
skipped. If you want the included file to start somewheredessthe start of the current bar you can
use aBeatadjusbefore theMidilnc—use another to move the pointer back right after the inctade
keep the song pointer correct.

71 Not all events in the included files are transferred: notalilgystem and meta events are ignored.

94



16.10 Pan Low Level MIDI Commands

J1 If you want to apply differenvolumeor other options to different tracks, just do multiple irtés
of the same file (with each include using a different track apiibons).

16.10 Pan

In MIDI-speak “pan” is the same as “balance” on a stereo. Bystohg thePanfor a track you can direct
the output to the left, right or both speakers. Example:

Bass Pan 4

This command is only available in track mode. The data geeéiia not sent into the MIDI stream until
musical data is created for the relevant MIDI channel.

The value specified must be in the range 0 to 127, and must beeger.

Panis not saved or restored li3roovecommands, nor is it effected I8eqClear A Panis inserted directly
into the MIDI track at the point at which it is encountered e tmusic file. This means that the effect of
Panwill be in use until anothePanis encountered.

Pan can be used in MIDI compositions to emulate the sound of@restra. By assigning different values
to different groups of instruments, you can get the feelihgtiongs, horns, etc. all placed in the “correct”
position on the stage.

We use Pan for much cruder purposes. When creating accomeainiracks for our jazz group, we set
all the bass tracks (Bass, Walk, Bass-1, etc) to a Pan 0. Nbenwracticing at home we can have a
“full band”; and the bass player can practice without theggated bass lines simply by turning off the left
speaker.

Because your MIDI keyboard most likely does not do a resevéen tunes, you should probably undo
anyPaneffects at the end of your file. Example:

Include swing
Groove Swing
Bass Pan O

Walk Pan O

1C

2 C

123 C

Bass Pan 64
Walk Pan 64

1This is much easier to do with the MMAStart and MMAENd optigsee chapter 20).

95



16.11 Portamento Low Level MIDI Commands

16.11 Portamento

This sets the MIDI portamento (in case you're new to all thagtamento is like glissando between notes—
wonderful, if you like trombones! To enable portamento:

Arpeggio Portamento 30
The parameter can be any value between 1 and 127. To turndhreysff:
Arpeggio Portamento 0

This command will work with any track (including drum tragksiowever, the results may be somewhat
“interesting” or “disappointing”, and many MIDI devicesmiosupport portamento at all. So, be cautious.
The data generated is not sent into the MIDI stream until caliglata is created for the relevant MIDI
channel.

16.12 ChannelVolume

MIDI devices equipped with mixer settings can make use of@ennel” or “Master” volume settings.

M doesn’t set any channel volumes without your knowledge.oli yant to use a set of reasonable
defaults, look at the filencludes/init. nma which sets all channels other than “1” to “100”. Channel
“1” is assumed to be a solo/keyboard track and is set to themmuam volume of “127”.

You can set all or selectedhannelVolums
ChannelVolume 99

will set all channels to “99”. And:
Chord ChannelVolume 55

will set only the Chord track channel. For most users, theofisieis command isiot recommended since
it will upset the balance of the library grooves. If you neettack softer or louder you should use the
volume setting for the track.

The data generated is not sent into the MIDI stream until calislata is created for the relevant MIDI
channel.

2We discovered this on our keyboard after many frustratingdiattempting to balance the volumes in the library. Other
programs would change the keyboard settings, and not beiageaf the changes, we’d end up scratching our heads.

96



Chapter 17

Other Commands and Directives

In addition to the “Pattern”, “Sequence”, “Groove” and “Feg’ and other directives discussed earlier,
and chord datayfz supports a number of directives which affect the flavor ofryausic.

The subjects presented in this chapter are ordered alptalbet

17.1 Articulate

Whenasz processes a music file, all the note lengths specified in arpaite converted to MIDI lengths.
For example in:
Bass Define BB 1 4 1 100; 2 4 5 90; 3 4 1 80; 4 45 90

we define bass notes on beats 1, 2, 3 and 4. All these notesfareddas quarter notess=, being quite
literal about things, will make each note exactly 192 Mizks long—which means that the note on beat
2 will start at the same time as the note on beat 1 ends.

2w has an articulate setting for each voice. This value is eggb shorten the note length. By default,
the setting is 90. Each generated note duration is takenagkecentage of this setting, So, a quarter note
with a MIDI tick duration of 192 will become 172 ticks long.

If articulate is applied to a short note, you are guarantbatithe note will never be less than 1 MIDI tick
in length.

To set the value, use a line like:
Chord-1 Articulate 96
Articulate values must be greater than 0 and less than ot &g@@o0.

You can specify a differerArticulatefor each bar in a sequence. Repeated values can be reptesgthte
a “/H:

Chord Articulate 50 60 / 30

Notes: The full values for the notes are saved with the patefinition. The articulate adjustment is
applied at runtime. The articulate setting is saved wigiiave

97



17.2 Copy Other Commands and Directives

17.2 Copy

Sometimes it is useful to duplicate the settings from onee/td another. Th€opycommand does just
that:

Bass-1 Copy Bass

will copy the settings from thBasstrack to theBass-1track.
The Copycommand only works between tracks of the same type.
The following settings are copied:

J1 Wolume (see page %
RVolume &ee page 76
RSkip (see page 104
RTime (see page 105
Strum Gee page 107
Octave §ee page 103
Harmony 6ee page 101

g 8 8 8 8 8 8

Direction (see page 100

J1 ScaleTypedee page 106

71 Voice or Tone §ee page 108 or 5
71 Invert (see page 62

J1 Articulate see page 97

J1 Compressdee page 6}

17.3 Comment

As previously discussed, a commentamz is anything following a “//” in a line. A second way of
marking a comment is with theommendtirective. This is quite useful in combination tBeginandEnd
directives. For example:

Begin Comment
This is a description spanning
several lines which will be
ignored by MMA.
End

You could achieve the same with:

98



17.4 Debug Other Commands and Directives

/[ This is a description spanning
I/l several lines which will be
/I ignored by MMA.

or even:

Comment This is a description spanning
Comment several lines which will be
Comment ignored by MMA.

One minor difference betweéhandComments that the first is discarded when the input stream is read;
the more verbose version is discarded during line procgssin

We find thatBegin Comment/Eng handy to delete large sections of a song we are writing emaaorary
basis.

17.4 Debug

To enable you to find problems in your song files (and, perteygs) find problems with#= itself) various
debugging messages can be displayed. These are normdlgredhe command line (see page 12).

However, it is possible to enable various debugging messageamically in a song file using thzebug
directive. In a debug statement you can enable or disablefamyariety of messages. A typical directive
is:

Debug Debug=0On Expand=0ff Patterns=0On

Each section of the debug directive consists afi@eand the command wor@N or Off. The two parts
must be joined by a single=". You may use the values “0” for “Off” and “1” for “On” if desid.

The available modes with the equivalent command line swgdre:

Mode Command Line Equivalent
Debug -d debugging messages
Filenames -0 display filenames
Patterns | -p  pattern creation
Sequence| -s  sequence creation
Runtime | -r running progress
Warnings | -w warning messages
Expand | -e display expanded lines

The modes and command are case-insensitive (althoughtimand line switches are not).

The current state of the debug flags is saved in the variabletg and the state prior to a change is saved
in $_LastDebug.

99



17.5 Delete Other Commands and Directives

17.5 Delete

If you are using a track in only one part of your song, espBcifit is at the start, it may be wise to free
that track’s resources when you are done with it. Dieéetecommand does just that:

Solo Delete

If a MIDI channel has been assigned to that track, it is madsethvailable” and the track is deleted. Any
data already saved in the MIDI track will be written whesm is finished processing the song file.

17.6 Direction

In tracks using chords or scales you can change the direictihich they are applied:
Scale Direction UP
The effects differ in differnt track types. F&caleandArpeggiotracks:

UP Plays in upward direction only
DOWN Plays in downward direction only
BOTH Plays upward and downwardgfault)
RANDOM Plays notes from the chord or scale randomly

When this command is encountered iB@aletrack the start point of the scale is reset.

A Walktrack recognizes the following option settings:

BOTH The default. The bass pattern will go up and down a gartia

scale. Some notes may be repeated.
UP Notes will be chosen sequentially from an accendingapaciale.

DOWN Notes will be chosen sequentially from a decendingtjglescale.
RANDOM Notes will be chosen in a random direction from a @rstcale.

All four patterns are useful and create quite differentaffe

In aChordtrack the command is only used wh8trumis set. The default setting idp; any setting other
thanDownis treated asJp.

You can specify a differerDirection for each bar in a sequence. Repeated values can be reptesgthte
a H/”:

Arpeggio Direction Up Down / Both

The setting is ignored bBass DrumandSolotracks.

100



17.7 Duplicate Other Commands and Directives

17.7 Duplicate

Judicious use of thBuplicatedirective can do much to make a composition sound “fuller$séntially
what it does is to duplicate all the notes played to a specifatave. For example:

Begin Bass
Define B1234 0 4 1 90; 1 4 5 90; 2 4 1 90; 3 45 90
Sequence B1234
Octave 4
Duplicate -1
End

Creates @assline which plays a single note on beats 1, 2, 3 and 4 (the rabfiéth of the chord). The
Duplicatedirective forces the notes to be played in the specified ecad one octave below that.

Notes: Duplicatetakes any value between -9 and 9 as arguments—nbut, if thiingsoiote is forced out
of the MIDI range, the note will not sound.

You can specify a differeribuplicatefor each bar in a sequence. Repeated values can be repteaghte
a ((/H:

Chord Duplicate -1 1 / 0
To restore to its normal (off) setting, use a “0” as the argnime

This command has no effect orDaum, SoloandMelodytracks (no warnings or errors are generated).
For a similar command sd2upRoot(see page 62).

17.8 Harmony

a1 can generate harmony notes for you .. . just like hitting twmore keys on the piano! And you don’t
have to take lessons.

Automatic harmonies are available for the following traggeds: Bass, Walk, Apreggio, Scale, Solo and
Melody. To enable harmony notes, use a command like:

Solo Harmony 2
You can set a different harmony method for each bar in younesecge.
The following are valid harmony methods:
2 Two part harmony. The harmony note selected is lower (on¢hkex
3 Three part harmony. The harmony notes selected are lower.
OPEN Two part harmony, however the gap between the two notesgsrdnan in “2”.
2Above The same as “2”, but the harmony note is raised an octave.

3Above The same as “3", but both notes are raised an octave.

101



17.9 HarmonyOnly Other Commands and Directives

OpenAbove The same as “Open”, but the note is raised an octave.
8 or 8BBELOW A single note one octave below is added.
8ABOVE A single note one octave above is added.
16 or 16BELOW A single note two octaves below are added.
16ABOVE A single note two octaves above are added.
8BOTH Notes an octave above and below are added.
16BOTH Notes two octaves above and below are added.
All harmonies are created using the current chord.
To disable harmony use a “0” or a “-".
Be careful in using harmonies. They can make your song soeadyhespecially witlBassnotes.

Just in case you are thinking theitz is a wonderful musical creator when it comes to harmonies’t e
fooled. a#m’s ideas of harmony are quite facile. It determines harmartgsiby finding a note lower than
the current note being sounded in the chord. And its notiofopén” is certainly not that of traditional
music theory. But, the sound isn’t too bad.

The command has no effect @um or Chordtracks.

17.9 HarmonyOnly

As a added feature to the automatic harmony generationstisdun the previous section, it is possible to
set a track so that iinly plays the harmony notes. For example, you might want to séiva@arpeggio
tracks with one playing quarter notes on a piano and a harrranl playing half notes on a violin. The
following snippet is extracted from the song file “Cry Me A BV and sets up 2 different choir voices:

Begin Arpeggio
Sequence A4
Voice ChoirAahs
Invert 0 1 2 3
SeqRnd
Octave 5
RSkip 40
Volume p
Articulate 99

End

Begin Arpeggio-2
Sequence A4
Voice VoiceOohs
Octave 5

102



17.10 Octave Other Commands and Directives

RSkip 40

Volume p

Articulate 99

HarmonyOnly Open
End

Just like theHarmonycommand, above, you can have different settings for eacinmbayur sequence.
Setting a bar (or the entire sequence) to *-” or “0” disaldesh theHarmonyandHarmonyOnlysettings.

The command has no effect @rum or Chordtracks.

If you want to use this feature witholoor Melodytracks you can duplicate the notes in y®uff or inline
notationor set the voices to use via theitoHarmonyTracksommand (see see page 55).

17.10 Octave

Whenasn initializes and after th&eqgCleacommand all track octaves are set to “4”. This will place most
chord and bass notes in the region of middle C.

You can change the octave for any voice withtavecommand. For example:
Bass-1 Octave 3
Sets the notes used in the “Bass-1" track one octave lowarrtbemal.

The octave specification can be any value from 0 to 10. Varousbinations ofnvert, Transposeand
Octavecan force notes to be out of the valid MIDI range. In this céselowest or highest available note
will be used.

You can specify a differerfDctavefor each bar in a sequence. Repeated values can be repesghta
“/”:

Chord Octave 4 5 / 4

17.11 Off

To disable the generation of MIDI output on a specific track:
Bass Off

This can be used anywhere in afile. Use it to override the teffieg predefined groove, if you wish. This
is simpler than resetting a voice in a groove. The only waeset this command is with@n directive.

103



17.12 On Other Commands and Directives

17.12 On

To enable the generation of MIDI output on a specific trackoltias been disabled with &ff directive:

Bass On

17.13 Print

The Print directive will display its argument to the screen when itie@untered. For example, if you
want to print the filename of the input file while processingy yould insert:

Print Making beautiful music for MY SONG
No control characters are supported.

This can be useful in debugging input files.

17.14 PrintActive

The PrintActivedirective will the currently activésrooveand the active tracks. This can be quite useful
when writing groove files and you want to modify and existimgaye.

Any parameters given are printed as single comment at thefehé header line.

This is strictly a debugging tool. NBrintActive statements should appear in finalized grooves or song
files.

17.15 RSKip

To aid in creating syncopated sounding patterns, you camhedeSkipdirective to randomly silence or
skip notes. The command takes a value in the range 0 to 99. h&rument disables skipping. For
example:

Begin Drum
Define D1 1 0 90
Define D8 D1 * 8
Sequence D8
Tone OpenHiHat
RSkip 40

End

104



17.16 RTime Other Commands and Directives

In this case we have defined a drum pattern to hit short notes Bgy and have set up a sequence to play
this with “OpenHiHat”. TheRSkipargument of “40” will cause the note to be NOT sounded (rangpm
only 40% of the time.

Using a value of “10” will cause notes to be skipped 10% fortthee (they are played 90% of the time),
“90” means to skip the notes 90% of the time, etc.

You can specify a differerRSkipfor each bar in a sequence. Repeated values can be repregdihta
“/”:

Scale RSkip 40 90 / 40

If you use theRSkipin a chord track, the entire chowdll not be silenced. The option will be applied to
the individual notes of each chord. This may or may not be wbatare after. You cannot use this option
to generate entire chords randomly. For this effect you neenteate several chord patterns and select
them withSeqgRnd

You can useRSkipwithout a track argument. This is useful when used with anment of “0” to (tem-
porarily) disable the setting for all tracks.

17.16 RTime

One of the biggest problem with computer generated drumlaytdm tracks is that, unlike real musicians,
the beats are precise and “on the beat”. Ri@medirective attempts to solve this.

The command can be applied to all tracksfootnote:The besbiussingRTimefor all tracks is with a “0”
argument to (temporarily) disable the setting for all track

RTime 5
or a specified one:
Drum4 Rtime 4

The value passed to the RTime directive are the number of M¢R$ with which to vary the start time of
the notes. For example, if you specify “5” the start timed walry from -5 to +5 ticks) on each note for
the specified track. There are 192 MIDI ticks in each quarbée.n

Any value from 0 to 100 can be used; however values in the r@ngel0 are most commonly used.
Exercise caution in using large values!

You can specify a differeriRTimefor each bar in a sequence. Repeated values can be repcegethta
H/”:

Chord RTime 4 10 / 4

105



17.17 ScaleType Other Commands and Directives

17.17 ScaleType

This option is only used b$caletracks. It can be set for other tracks, but the setting is setu
By default, theScaleTypés set toAuta The settings permissible are:

CHROMATIC Forces use of a chromatic scale
AUTO Uses scale based on the current chord (default)

When this command is encountered iB@aletrack the start point of the scale is reset.

17.18 Seq

If your sequence, or groove, has more than one pattern (iehgee set SeqSize to a value other than 1),
you can use this directive to force a particular patternfaoife used. The directive:

Seq

resets thesequence counteto 1. This means that the next bar will use the first pattermendurrent
sequence. You can force a specific pattern point by using@ongpvalue after the directive. For example:

Seq 8

forces the use of pattern point 8 for the next bar. This canuite gseful if you have a multibar sequence
and, perhaps, the eight bar is variation which you want usedyesight bars, but also for a transition bar,
or the final bar. Just putgeq 8at those points. You might also want to putegat the start of sections to
force the restart of the count.

This command will also disable the effectsS¢gRndOne difference betwee®eqNoRn@&ndSeqis that
the current sequence point is set with the latter; \Bi#tgNoRndt is left at a random point.

Note: Using a value greater than the cur®at|Sizés not permitted.

This is a very useful command! For example, look at the fourtaoduction of the song “Exactly Like
You™:

Groove BossanovaEnd
seq 3

1C

seq 2

2 Am7

seq 1

3 Dm7

seq 3

4 G7 | G7#5

Here we have used the four bar ending groove to create aestiteg introduction.

106



17.19 Strum Other Commands and Directives

17.19 Strum

By defaultasz plays all the notes in a chord at the same time. To make thelehore like something a
guitar or banjo might play, use tl&rumdirective. For example:

Chord-1 Strum 5
sets the strumming factor to 5 for track Chord-1.

Setting theStrumin any track other than @hordtrack will generate a warning message and the command
will be ignored.

The strum factor is specified in MIDI ticks. Usually valuesand 10 to 15 work just fine. The valid range
for Strumis 0 to 100.

You can specify a differerstrumfor each bar in a sequence. Repeated values can be repregdthta
“/H:

Chord Strum 20 5 / 10

Note: When chords have bottsaumandinvertapplied, the order of the notes played will not necessarily
be root, third, etc. The notes are sorted into ascending,csddor a C major scale with andvert of 1

the notes played would be “E G C”. That is, unlessEheection (see page 100) has been set to “DOWN”
in which case the order would be reversed (but the notes warittle same).

17.20 Transpose

You can change the key of a piece with the “Transpose” commé&uwd example, if you have a piece
notated in the key of “C” and you want it played back in the kéyy’:

Transpose 2

will raise the playback by 2 semi-tones. Since | play tenaopaone, | quite often do:
Transpose -2

which puts the MIDI keyboard into the same key as my horn.

You can use any value between -12 and 12. All tracks (withdlgeal exception of the drum tracks) are
effected by this command.

17.21  Unify

The Unify command is used to force multiple notes of the same voice @old {o be combined into a
single, long, tone. This is very useful when creating a snsthvoice track. For example, consider the
following which might be used in real groove file:

107



17.22 Voice Other Commands and Directives

Begin Bass-Sus

Sequence 111 90 4
Articulate 100

Unify On

Voice TremoloStrings
End

Without theUnify Oncommand the strings would be sounded (or hit) four timesndueiach bar; with it
enabled the four hits are combined into one long tone. Tis tan span several bars if the note(s) remain
the same.

The use of this command depends on a number of items:

J1 TheVoicebeing used. It makes sense to use enable the setting if usirsjained tone like “Strings”;
it probably doesn’t make sense if using a tone like “Pianol”.

71 For tones to be combined you will need to h#&réiculateset to a value of 100. Otherwise the on/off
events will have small gaps in them which will cancel the @feof Unify.

J1 Ensure thaRtimeis not set forUnify tracks since the start times may cause gaps.

J1 If your pattern or sequence has different volumes in diffeteeats (or bars) the effect oflnify
will be to igore volumes other than the first. Only the fixkite Onand the lasNote Offevents will
appear in the MIDI file.

You can specify a differerinify for each bar in a sequence. Repeated values can be repcegdhta
“/”:

Chord Unify On / /| Off
But, we're not sure why you'd want to.

Valid arguments are “On” or “1” to enable; “Off” or “0” to disde.

17.22 \oice

The MIDI instrument or voice used for a track is set with:
Chord-2 Voice Pianol

\oices apply only to the specified track. The actual instmnoan be specified via the MIDI instrument
number, or with the symbolic name. See the tables in the Miiiding section (see page 127) for lists of
the recognized names.

You can create interesting effects by varying the voice wsild drum tracks. By default “Voice 0” is
used. However, you can change the drum voices. Our librayg @b not change the voices since this
appears to be highly dependent on the MIDI synth you are using

You can specify a differerWoicefor each bar in a sequence. Repeated values can be reptesdthta
“I"

108



17.23 VoiceTr Other Commands and Directives

Chord Voice Pianol / / Piano2

17.23 VoiceTr

In previous section we saw how to set a voice for a track bygugsstandard MIDI name. TheoiceTr
command sets up a translation table that can be used in tfeoatif situations:

J1 It permits creation of your own names for voices (perhapsffareign language),
71 It lets you override or change voices used in standard lifiks.

VoiceTrworks by setting up a simple translation table of “name” aaliis” pairs. Whenevertz encoun-
ters a voice name in a track command it first attempts to @émshis name though the alias table.

To set a translation (or series of translations):
VoiceTr Pianol=Clavinet Hmmm=18

Note that you additionaVoiceTrcommands will add entries to the existing table. To clear#sde use
the command with no arguments:

VoiceTr // Empty table

Assuming the first command, the following will occur:
Chord-Main Voice Hmmm

TheVoicefor the Chord-Maintrack will be set to “18” or “Organ3”.
Chord-2 Voice Pianol

TheVoicefor the Chord-2track will be set to “Clavinet”.

If your synth does not follow standard GM-MIDI voice namingnwentions you can create a translation
table which can be included in all yowsz song files via an RC file. But, do note that the resulting files
will not play properly on a synth conforming to the GM-MIDI agification.

Following is an abbreviated and untested example for usingosolete and unnamed synth:

VoiceTr Pianol=3 \
Piano2=4 \
Piano3=5 \

\
Strings=55 \

Notes: the translation is only done one time and no veriboas done when the table is created.

109



Chapter 18

Begin/End Blocks

Entering a series of directives for a specific track can gdéedadious. To make the creation of library
files a bit easier, you can create a block. For example, thexoig:

Drum Define X 0 2 100; 50 2 90
Drum Define Y 0 2 100
Drum Sequence X Y

Can be replaced with:

Drum Begin
Define X 0 2 100; 50 2 90
Define Y 0 2 100 End
Drum Sequence X Y

Or, even more simply, with:

Drum Begin Define
X 0 2 100; 50 2 90
Y 0 2 100

End

If you examine some of the library files you will see that we thge shortcut a lot.

18.1 Begin

TheBegincommand requires any number of arguments. Valid exampbdsda:

Begin Drum
Begin Chord2
Begin Walk Define

Once aBeginblock has been entered, all subsequent lines have the wordstieBegincommand pre-
pended to each line of data. There is not much magic h&egiHEndis really just some syntactic sugar.

110



18.2 End Begin/End Blocks

18.2 End

To finish off aBeginblock, use a singl&ndon a line by itself.

Defining musical data, repeats, or otlg#girs inside a block (other than COMMENT blocks) will not
work.
Nesting is permitted. Eg:
Scale Begin
Begin Define
stuff
End

Sequence stuff
End

A Beginmust be competed withBnd before the end of a file, otherwise an error will be generaidue:
UseandIncludecommands are not permitted inside a block.

111



Chapter 19

Documentation Strings

We've mentioned a few times already the importance of gfedocumenting your files and library files.
For the most part, you can use comments in your files; but naybfiles we suggest you use tBec
directive.

In addition to the commands listed in this chapter, you sthaldo note thé®efGroovesection (see page
34).

For some real-life examples of how to document your librdesfilook at any of the library files supplied
with this distribution.

19.1 Doc

A Doccommand is pretty simple:
Doc This is a documentation string!

In most cased)ocs are treated aSommentsHowever, if the-Dx* option is given on the command line,
Docs are processed and printed to standard output.

For producing thesz Standard Library Reference a trivial Python program is used to collate the output
generated with a command like:

mma -Dx -w /usr/local/lib/mma/swing

Note, we added the ’-w’ option to suppress the printing ofirag messages.

19.2 Author

As part of the documentation package, thereAsithorcommand:
Author Bob van der Poel

Currently Author lines are processed and the data is saved, but never useay Ibenused in a future
library documentation procedures, so you should use ityriarary files your write.

1See the command summary (see page 12).

112



Chapter 20

Paths, Files and Libraries

This chapter coversim filenames, extensions and a variety of commands and/ortideeavhich effect
the way in which files are read and processed.

But, first a few comments on the location of tmez Python modules.

The Python language (which was used to writ&) has a very useful feature: it can include other files
and refer to functions and data defined in these files. A langaer of these files or modules are included
in every Python distribution. The programa consists of a short “main” program and several “module”
files. Without these additional modulegz will not work.

The only sticky problem in a program intended for a wider ande is where to place these modules.
We've decided that they should be in one of three locations:

43 Jusr/local/share/mma/modules
43 Jusr/share/mma/modules
43 /modules

If, when initializing itself, a#z2 cannot find one of the above directories, it will terminatéhwan error
message.

20.1 File Extensions

For most files the use of a the filename extension “.mma” ioopti However, we suggest that most files
(with the exceptions listed below) have the extension priesemakes it much easier to identifiy= song
and library files and to do selective processing on these files

In processing an input song filgm can encounter several different types of input files. Fofilak, the
initial search is done by adding the filename extension “.iimdilename (unless it is already present),
then a search for the file as given is done.

For files included with thé&Jsedirective, the directory set witbetLibPathis first checked, followed by the
current directory.

For files included with théncludedirective, the directory set witbetincPaths first checked, followed by
the current directory.

Following is a summary of the different files supported:

113



20.2 Eof Paths, Files and Libraries

Song Files The input file specified on the command line should always Ibeedwith the “.mma” exten-
sion. Whem searches for the file it will automatically add the extensidhe file name specified
does not exist and doesn’t have the extension.

Library Files Library filesreally shouldall be named with the extensionsz will find non-extension
names when used inseor Includedirective. However, it will not process these files when tirgea
indexes with the “-g” command line option—these index files ased by thé&roovecommands to
automatically find and include libraries.

RC Files As noted in the RC-File discussion (see page 1#&) will automatically include a variety of
“RC” files. You can use the extension on these files, but comusaige suggests that these files are
probably better without.

MMAstart and MMAend a#z will automatically include a file at the beginning or end obpessing
(see page 118). Typically these files are namddAstartandMMAend Common usage is toot
use the extension if the file is in the current directory; Ueefile if it is in an “includes” directory.

One further point to remember is that filenames specified ercimmand line are subject to wildcard
expansion via the shell you are using.

20.2 Eof

Normally, a file is processed until its end. However, you chartscircuit this behavior with thé&of
directive. If am finds a line starting witticof no further processing will be done on that file .. . it's just as
if the real end of file was encountered. Anything on the same hfter theEof is also discarded.

You may find this handy if you want to test process only a pa# fife, or if you making large edits to a
library file. It is often used to quit when using thabeland Goto directives to simulate constructs like
D.C. al Coda etc.

20.3 LibPath

The search for library files can be set with the LibPath vaeiabo setLibPath:
SetLibPath PATH
You can have only one path in tigetLibPathdirective.
Whenasz starts up it sets the library path to the first valid directioryhe list:
93 lusr/local/share/mmallib
93 lusr/share/mmallib
93 b

114



20.4 OutPath Paths, Files and Libraries

The last choice lets you rum= directly from the distribution directory.
You are free to change this to any other location in a RCFéde (s|ge 118).

The LibPath is used by the routine which auto-loads groonas the library, and th&sedirective. The
-g command line option is used to maintain the library dadal{iaee page 13).

You can include a leading’* ” in the path. In this case the path will be expanded to a cotaathname.

20.4 OutPath

MIDI file generation is to an automatically generated fileeajgee page 12). If thOutPath variable is
set, that value will be prepended to the output filename. Ttheevalue:

SetOutPath PATH

Just make sure that “PATH” is a simple pathname withspaces in it. The variable is case sensitive
(assuming that your operating system supports case serfdginames). This is a common directive in a
RC file (see page 118). By default, it has no value.

You can disable th®utPath variable by not using an argument in tS8etOutPatltdirective.

The PATH used in this command is processed though the Pythgath.expanduseriprary routine, so
it is permissible to include a leading “™” in the name (whictpands, on Unix and Linux systems, to the
name of the user’'s home directory).

If the name set by this command begins with a “.”, “/” df ft is prepended to the complete filename
specified on the command line. For example, if you have thetifilpnametest mma and the output path
is “/mids —the output file will belhome/bob/mids/test.mid

If the name doesn't start with the special characters natetieé preceeding paragraph the contents of
the path will be inserted before the filename portion of thmutrfilename. Again, an example: the input
filename ismma/rockicrying  and the output path is “midi"—the output file will lema/rock/midi/
crying.mid

20.5 Include

Other files with sequence, pattern or music data can be iadlatlany point in your input file. There is
no limit to the level of includes.

Include Filename

A search for the file is done in tHacPath directory (see below) and the current directory. The “.mma”
filename extension is optional.

The use of this command should be quite rare in user files. \&eatuextensively in our library files to
include standard patterns.

115



20.6 IncPath Paths, Files and Libraries
20.6 IncPath

The search for include files can be set with thePath variable. To seincPath:
SetincPath PATH
You can have only one path in tigetIncPattdirective.
Whenasz initializes it sets the include path to first found directory
73 lusr/local/share/mmalincludes
73 lusr/share/mma/includes
J3 .lincludes
The last location lets you rumizz from the distribution directory.

If this value is not appropriate for your system, you are freehange it in a RC File. You can include a
leading “/ " in the path. In this case the path will be expanded to a cotadathname.

20.7 Use

Similar to Include but a bit more useful. Th&/lsecommand is used to include library files and their
predefined grooves.

Compared tdnclude Usehas important features:
J1 The search for the file is done in the paths specified by thedtibPariable,

71 The current state of the program is saved before the libriarjsfread and restored when the opera-
tion is complete.

Let's examine each feature in a bit more detail.
When aUsedirective is issued, eg:
use stdlib/swing

am first attempts to locate the file “stdlib/swing” in the dirent specified bylLibPath or the current
directory. As mentioned abovesz automatically added the “.mma” extension to the file and kbdar
the non-extension filename if that can’t be found.

If things aren’t working out quite right, check to see if tHeffiame is correct. Problems you can encounter
include:

J1 Search order: you might be expecting the file in the currerdctry to be used, but the same
filename exists in theibPath, in which case that file is used.

73 Not using extensions: Remember that fikdth the extension added are first checked.

116



20.8 MmaStart Paths, Files and Libraries

J1 Case: The filename isase sensitive The files “Swing” and “swing” are not the same. Since most
things inafm are case insensitive, this can be an easy mistake to make.

J1 The file is in a subdirectory of theibPath In a standard distribution the actual library files are in
lusr/local/share/mma/lib/stdlib , but the libpath is set tausr/local/share/mma/lib . In
this case you must name the file to be usedtdbb/rhumbanot rhumba

As mentioned above, the current state of the compiler iscsdueing aUse sz accomplishes this by
issuing a slightly modifie@efGrooveandGroovecommand before and after the reading of the file. Please
note thatncludedoesn't do this. But, don't let this feature fool you—sinbe effects of defining grooves
are cumulative youweally shouldhaveSeqClearstatements at the top of all your library files. If you don't
you’'ll end up with unwanted tracks in the grooves you are dlggin

In most cases you will not need to use th&se directive in your music files. If you have properly
installedas=z and keep the MMADIR files up-to-date by using the command:

mma -g

grooves from library files will be automatically found anétted. Internally, th&sedirective is used, so
existing states are saved.

If you are developing new or alternate library files you witiditheUsedirective handy.

20.8 MmaStart

If you wish to process a certain file or files before your mapuirfile, set theMmaStartfilename in an
RCFile. For example, we have a number of files in a directoricivive wish certairPansettings. In that
directory, we have a filemmarc which contains the following command:

MmasStart setpan
The actual filesetpan has the following directives:

Bass Pan O
Bassl Pan O
Bass2 Pan O
Walk Pan O
Walkl Pan 0O
Walk2 Pan 0O

So, before each file in that directory is processed Pdwefor the bass and walking bass voices are set to
the left channel.

If the file specified by &MmasStartdirective does not exist a warning message will be printes {5 not
an error).

Also useful is the ability to include a generic file with aletMIDI files you create. For example, we like
to have a MIDI reset at the start of our files, so we have thevietig in ourmmarc file:

117



20.9 MmaEnd Paths, Files and Libraries

MMAstart reset
This includes the fileeset.mma located in the “includes” directory (see page 116).

Because it is not uncommon to have multipienarc files, each with a differen¥IMAstartdirective, the
files are appended to the existing list. Each file will be psseel in the order it is declared. You can have
multiple filenames on MMAstartline.

20.9 MmaEnd

Just the opposite dfimaStarf this command specifies a file to be included at the end of a mpirt file.
See our comments above for more details.

To continue our example, in oamarc file we have:
MmaEnd nopan
and in the filenopan we have:

Bass Pan 64
Bassl Pan 64
Bass2 Pan 64
Walk Pan 64
Walkl Pan 64
Walk2 Pan 64

If the file specified by ¢maEnddirective does not exist a warning message will be printeid (& not an
error).

Because it is not uncommon to have multiphkenarc files, each with a differenfMAenddirective, the
files are appended to the existing list. Each file will be psseel in the order it is declared. You can have
multiple filenames on 8MAendline.

20.10 RC Files

Whenasm starts it checks for initialization files. Only the first falifile is processed.
The following files are checked (in order):

1. mmarc

2. ".mmarc

3. lusr/localletc/mmarc

4. [etc/mmarc

118



20.11 Library Files Paths, Files and Libraries

All found files will be processed.
Note that the second file is an “invisible” file due to the leafi.” in the filename.
By default, no rc files are installed.

The rc file is processed assaz input file. As such, it can contain anything a normal input &b,
including music commands. However, we suggest you limicth@ents of your RC files to things like:

SetOutPath
SetLibPath
MMAStart
MMAEnNd

A useful setup is to have your source files in one directoryMiidl files saved into a different directory.
Having the filemmarc in the directory with the source files permits settdgtPath to the MIDI path.

20.11 Library Files

Included in this distribution are a number of predefinedgratt, sequences and grooves. They are in
different files in the “lib” directory.

The library files should be self-documenting. A list of stardtifile and the grooves they define is included
in the separate document, supplied in this distributiomasa-lib.ps”.

119



Chapter 21

Creating Effects

It's really quite amazing how easy and effective it is to teedifferent patterns, sequences and special
effects. As we develop the program we try lots of silly thingshis chapter is an attempt to display and
preserve some of them.

The examples don’t show any music to apply the patterns aresemps to. We assume that if you've gotten
this far in the manual you’'ll know that you should have sonmgglhike:

1C
2 G
3G
4 C

as a simple test piece to apply tests to.

21.1 Overlapping Notes

We've mentioned earlier that you should create patterngigoriotes don’t overlap. However, here’s an
interesting effect which relies on ignoring that advice:

Begin Scale
define S1 1 1+1+1+1 90
define S32 S1 * 32
Sequence S32
ScaleType
Direction Both
Voice Accordion
Octave 5

End

We define “S1” with a note length of 4 whole notes (1+1+1+1)kst tvhen we multiply it for S32 we
end up with a pattern of 32 8th notes. Of course, the notesaguelRunning this up and down a chromatic
scale is “interesting.” You might want to play with this a bitd try changing “S1” to:

define S1 1 1 90

to see what the effect is of the notes overlapping.

120



21.2 Jungle Birds Creating ‘Effects

21.2 Jungle Birds

Here’s another use f@cales. We decided that some jungle sounds would be perfect asraduation to
“Yellow Bird”.

groove Rhumba
Begin Scale

End

define S1 1 1 90
define S32 S1 * 32
Sequence S32
ScaleType Chromatic
Direction Random
Voice BirdTweet
Octave 5 6 4 5
RVolume 30

Rtime 2 3 4 5

Volume pp pp ppp ppp

DefGroove BirdRumba

The above is an extract from thwe=z score. The entire song is included in the “songs” directdrihis
distribution.

A neat trick is to create the bird sound track and then add ihéoexisting Rhumba groove. Then we

define a new groove. Now we can select either the library “dbaihor our enhanced “BirdRhumba” with
a simpleGroovedirective.

121



Chapter 22

Frequency Asked Questions

This chapter will serve as a container for questions askesbbye enthusiastiefz users. It may make
some sense in the future to distribute this information s=pasate file.

22.1 AABA Song Forms

How can one define parts as part "A”, part "B” ... and arrangedim at the end of the file? An option to
repeat a “solo” section a number of times would be nice as well

Using a#m variables and some simple looping, one might try somethieg |

Groove Swing
/I Set the music into a
/I series of macros
mset A
Print Section A
C
G
endmset
mset B
print Section B
Dm
Em
endmset
mset Solo
Print Solo Section $Count
Am / B7 Cdim

endmset
/I Use the macros for an
/I "A, A, B, Solo * 8, A"
/I form
$A
$A
$B
set Count 1
label a

$solo

inc COUNT

if le $count 8

goto A

endif

$A

Note that the “Print” lines are used for debugging purpo¥éshave mixed the case of the variable names
just to illustrate the fact that “Solo” is the same as “SOLOfigh is the same as “solo”.

Now, if you don't like things that look like old BASIC progracode, you could just as easily duplicate

the above with:

122



22.2 Where's the GUI? Frequency AsKed Questions

Groove Swing Dm
repeat Em
repeat Set Count 1
Print Section A Repeat
C Print Solo $Count
G Am
If Def count Inc Count
eof Repeatending 7

Endif Repeatend
Endrepeat Repeatend
Print Section B

The choice is up to you.

22.2 \Where's the GUI?

| really think thatasz is a cool program. But, it needs@UI. Are you planning on writing one? Will you
help me if | start to write one?

Well, we appreciate the fact that you likeza. We like it too.

We've actually started to write a number @UIs for a#z. But, nothing seemed to be much more useful
than the existing text interface. So, we figured that it jussmwit worth the bother.

Now, we are not against graphical programming interfacesjust don’t see it in this case.

But, we may well be wrong. If you think it'd be better with@UI .. . well, this is open source and you are
more than welcome to write one. If you do, we’d suggest thatmake your program a front-end which
lets a user compile standands= files. If you find that more error reporting, etc. is requiredriteract
properly with your code, let us know and we’ll probably betgquvilling to make those kind of changes.

22.3 Where's the manual index?

We agree that this manual needs an index. We just don’t hauentle to go though and do all the necessary
work. Is there a volunteer?

123



Appendix A

Symbols and Constants

This appendix is a reference to the chords that recognizes and name/value tables for drum and instru-

ment names. The tables have been auto-generategsaysing the -D options.

A.1 Chord Names

M recognizes standard cord names as listed below. The nameas®# sensitive and must be entered in
uppercase letters as shown:

A
At
Ab
B

B
Bb
C

Ct
Ch
D

Dt
Db
E

Bz

Eb
=

Fi
b
G

Gt
Gb

Please note that in your input files you must use a lowercdser‘dn “&” to represent @ and a “#” for a

1.

The following types of chords are recognized (these are sssitive and must be in the mixed upper and
lowercase shown):

N
11
119
13

6

7
7611
7¢5
7¢549

See “aug”

9th chord plus 11th.

9th chord plus flat 11th.

Dominant 7th (including 5th) plus 13th.
Major tiad with added 6th.

Dominant 7th.

See “311”

7th, sharp 5.

Dominant 7th with sharp 5th and sharp 9th.

124



A.1 Chord Names

74509
749
719111
7+
7+5
7+9
7-5
7-9
75
75549
7559
759
7sus
7sus2
7sus4
9
911
o5
»H5

M

M13

M7
M7111
M7b5
M9

aug
aug’7
augmn9
dim
dim7

m

mg5
m(ma;j7)
m(sus9)
m+5
m+7
m1l

Dominant 7th with sharp 5th and flat 9th.

Dominant 7th with sharp 9th.

Dominant 7th plus sharp 9th and sharp 11th.

See “aug?7”
See “#5”
See “#9”
See “B5”
See “D9”
7th, flat 5.

Dominant 7th with flat 5th and sharp 9th.
Dominant 7th with flat 5th and flat 9th.

Dominant 7th with flat 9th.

Symbols and Constants

7th with suspended 4th, dominant 7th with 3rd raised hakton

A sus2 with dominant 7th added.
See “sus4”
Dominant 7th plus 9th.

Dominant 7th plus 9th and sharp 11th.

Dominant 7th plus 9th with sharp 5th.
Dominant 7th plus 9th with flat 5th.

Major triad. This is the default and is used in the absensenpfagher chord type

specification.

Major 7th (including 5th) plus 13th.
Major 7th.

Major 7th plus 9th and sharp 11th.
Major 7th with a flatted 5th.

Major 7th plus 9th.

Augmented triad.

An augmented chord (raised 5th) with a dominant 7th.
Augmented 7th with flat 5th and sharp 9th.
Diminished.as assumes a diminished 7th.

See “dim”

Minor triad.

Major triad with augmented 5th.
See ‘mM7”

Minor triad plus 9th (no 7th).

See “ny5”

See ‘mM7”

9th with minor 3rd, plus 11th.
Minor 6th.

Minor 7th.

See “mB5”

Minor 7th, flat 5 (aka 1/2 diminished).
Minor 7th with added flat 9th.
Minor triad plus 7th and 9th.

Minor triad, flat 5, plus 7th and 9th.

125



A.1 Chord Names Symbols and Constants

mM7 Minor Triad plus Major 7th. You will also see this printed a®(maj7)”, “m+7”,
“min(maj7)” and “ming7” (which a1 accepts); as well as the= invalid forms:
“-(A7)”, and “ming7”.

maj7 See “M7”

mb5 Minor triad with flat 5th.

ming7 See ‘mM7”

min(maj7) See “mM7”

sus See “sus4’

sus2 Suspended 2nd, major triad with major 2nd above root swibstitfor 3rd.
sus4 Suspended 4th, major triad with 3rd raised half tone.

sus9 Dominant 7th plus 9th, omit 7th.

In modern pop charts the “M” in a major 7th chord (and otheranahords) is often represented by/st’
When entering these chords, just replace tewith an “M”. For example, change “G7” to “GM7".

Modern pop charts sometimes use “slash” chords in the form/ER. a#=z is not capable of correctly
interpreting this notation. If you encounter it just lealie t'slash” part off and all should work fine. See
your favorite music theory book or teacher for an explameétio

A chord name without a type is interpreted as a major chordr{@d). For example, the chord “C” is
identical to “CM".

126



A.2 MIDI Voices Symbols and Constants

A.2 MIDI Voices

When setting a voice for a track (ie Bass Voice NN), you carcifpehe patch to use with a symbolic
constant. Any combination of upper and lower case is peedhitThe following are the names with the
equivalent voice numbers:

A.2.1 \Voices, Alphabetically

5thSawWave 86 EnglishHorn 69 Organ2 17
Accordion 21 Fantasia 88 Organ3 18
AcousticBass 32 Fiddle 110 OverDriveGuitar 29
AgogoBells 113 FingeredBass 33 PanFlute 75
AltoSax 65 Flute 73 Pianol 0
Applause/Noise 126 FrenchHorn 60 Piano2 1
Atmosphere 99 FretlessBass 35 Piano3 2
BagPipe 109 Glockenspiel 9 Piccolo 72
Bandoneon 23 Goblins 101 PickedBass 34
Banjo 105 GuitarFretNoise 120 PizzicatoString 45
BaritoneSax 67 GuitarHarmonics 31 PolySynth 90
Bass&lLead 87 GunShot 127 Recorder 74
Bassoon 70 HaloPad 94 ReedOrgan 20
BirdTweet 123 Harmonica 22 ReverseCymbal 119
BottleBlow 76 HarpsiChord 6 RhodesPiano 4
BowedGlass 92 HelicopterBlade 125 Santur 15
BrassSection 61 Honky-TonkPiano 3 SawWave 81
BreathNoise 121 IceRain 96 SeaShore 122
Brightness 100 JazzGuitar 26 Shakuhachi 77
Celesta 8 Kalimba 108 Shamisen 106
Cello 42 Koto 107 Shanai 111
Charang 84 Marimba 12 Sitar 104
ChifferLead 83 MelodicTom1 117 SlapBassl 36
ChoirAahs 52 MetalPad 93 SlapBass2 37
ChurchOrgan 19 MusicBox 10 SlowStrings 49
Clarinet 71 MutedGuitar 28 SoloVoice 85
Clavinet 7 MutedTrumpet 59 SopranoSax 64
CleanGuitar 27 NylonGuitar 24 SoundTrack 97
ContraBass 43 Oboe 68 Space\oice 91
Crystal 98 Ocarina 79 SquareWave 80
DistortonGuitar 30 OrchestraHit 55 StarTheme 103
EPiano 5 OrchestralHarp 46 SteelDrums 114
EchoDrops 102 Organl 16 SteelGuitar 25

127



4.2 MIDI Voices

Strings
SweepPad
SynCalliope
SynthBassl
SynthBass2
SynthBrassl1
SynthBrass2
SynthDrum
SynthStrings1
SynthStrings2

48
95
82
38
39
62
63

118
50
51

SynthVox 54
TaikoDrum 116
TelephoneRing 124
TenorSax 66
Timpani 47
TinkleBell 112
TremoloStrings 44
Trombone 57
Trumpet 56
Tuba 58

A.2.2 \Voices, By MIDI Value

Pianol
Piano2
Piano3

RhodesPiano
EPiano
HarpsiChord
Clavinet
Celesta
Glockenspiel
MusicBox
Vibraphone
Marimba
Xylophone
TubularBells
Santur
Organl
Organ2
Organ3
ChurchOrgan
ReedOrgan
Accordion
Harmonica
Bandoneon
NylonGuitar
SteelGuitar
JazzGuitar
CleanGuitar

O© 0o ~NO Ul WNPELO

NNNNNNNNMNRRREPRRRRRR
~N~NO U BRWNRPOOOMNODUNWNERO

Honky-TonkPiano

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

MutedGuitar
OverDriveGuitar
DistortonGuitar
GuitarHarmonics
AcousticBass
FingeredBass
PickedBass
FretlessBass
SlapBassl
SlapBass2
SynthBassl
SynthBass2
Violin

Viola

Cello
ContraBass
TremoloStrings
PizzicatoString
OrchestralHarp
Timpani

Strings
SlowStrings
SynthStrings1
SynthStrings2
ChoirAahs
VoiceOohs
SynthVox
OrchestraHit

Symbols and Constants

TubularBells 14
Vibraphone 11
Viola 41
Violin 40
VoiceOohs 53
WarmPad 89
Whistle 78
WoodBlock 115
Xylophone 13
56 Trumpet

57 Trombone

58 Tuba

59 MutedTrumpet
60 FrenchHorn
61 BrassSection
62 SynthBrassl
63 SynthBrass2
64 SopranoSax
65 AltoSax

66 TenorSax

67 BaritoneSax
68 Oboe

69 EnglishHorn
70 Bassoon

71 Clarinet

72 Piccolo

73 Flute

74 Recorder

75 PanFlute

76 BottleBlow
77 Shakuhachi
78 Whistle

79 Ocarina

80 SquareWave
81 SawWave
82 SynCalliope
83 ChifferLead

128



4.2 MIDI Voices

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Charang
SoloVoice
5thSawWave
Bass&Lead
Fantasia
WarmPad
PolySynth
Space\oice
BowedGlass
MetalPad
HaloPad
SweepPad
IceRain
SoundTrack
Crystal

99 Atmosphere

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Brightness
Goblins
EchoDrops
StarTheme
Sitar

Banjo
Shamisen
Koto
Kalimba
BagPipe
Fiddle
Shanai
TinkleBell
AgogoBells

114
115
116
117
118
119
120
121
122
123
124
125
126
127

Symbols and Constants

SteelDrums
WoodBIlock
TaikoDrum
MelodicTom1
SynthDrum
ReverseCymbal
GuitarFretNoise
BreathNoise
SeaShore
BirdTweet
TelephoneRing
HelicopterBlade
Applause/Noise
GunShot

129



A.3 Drum Notes Symbols and Constants

A.3 Drum Notes

When defining a drum tone, you can specify the patch to useansymbolic constant. Any combination
of upper and lower case is permitted. The following are theewmwith the equivalent note numbers:

A.3.1 Drum Notes, Alphabetically

Cabasa 69 LongLowWhistle 72 OpenSudro 86
Castanets 84 LowAgogo 68 OpenTriangle 81
ChineseCymbal 52 LowBongo 61 PedalHiHat 44
Claves 75 LowConga 64 RideBell 53
ClosedHiHat 42 LowTimbale 66 RideCymball 51
CowBell 56 LowTom1 43 RideCymbal2 59
CrashCymball 49 LowTom2 41 ScratchPull 30
CrashCymbal2 57 LowWoodBlock 77 ScratchPush 29
HandClap 39 Maracas 70 Shaker 82
HighAgogo 67 MetronomeBell 34 ShortGuiro 73
HighBongo 60 MetronomeClick 33 ShortHiWhistle 71
HighQ 27 MidTom1 a7 SideKick 37
HighTimbale 65 MidTom2 45 Slap 28
HighTom1l 50 MuteCuica 78 SnareDruml 38
HighTom2 48 MuteHighConga 62 SnareDrum2 40
HighWoodBlock 76 MuteSudro 85 SplashCymbal 55
JingleBell 83 MuteTriangle 80 SquareClick 32
KickDrum1 36 OpenCuica 79 Sticks 31
KickDrum?2 35 OpenHiHat 46 Tambourine 54
LongGuiro 74 OpenHighConga 63 VibraSlap 58

A.3.2 Drum Notes, by MIDI Value

27 HighQ 38 SnareDruml 49 CrashCymball
28 Slap 39 HandClap 50 HighToml

29 ScratchPush 40 SnareDrum?2 51 RideCymball
30 ScratchPull 41 LowTom2 52 ChineseCymbal
31 Sticks 42 ClosedHiHat 53 RideBell

32 SquareClick 43 LowToml 54 Tambourine

33 MetronomeClick 44 PedalHiHat 55 SplashCymbal
34 MetronomeBell 45 MidTom2 56 CowBell

35 KickDrum2 46 OpenHiHat 57 CrashCymbal2
36 KickDruml 47 MidToml 58 VibraSlap

37 SideKick 48 HighTom2 59 RideCymbal2

130



A.3 Drum Notes

60
61
62
63
64
65
66
67
68

HighBongo
LowBongo
MuteHighConga
OpenHighConga
LowConga
HighTimbale
LowTimbale
HighAgogo
LowAgogo

69
70
71
72
73
74
75
76
77

Cabasa
Maracas
ShortHiWhistle
LongLowWhistle
ShortGuiro
LongGuiro
Claves
HighWoodBlock
LowWoodBlock

78
79
80
81
82
83
84
85
86

Symbols and Constants

MuteCuica
OpenCuica
MuteTriangle
OpenTriangle
Shaker
JingleBell
Castanets
MuteSudro
OpenSudro

131



A4 MIDI Controllers Symbols and Constants

A.4 MIDI Controllers

When specifying a MIDI Controller in MidiSeqor MidiVoice command you can use the absolute value
in (either as a decimal number or in hexadecimal by prefixmgualue with a “0x”), or the symbolic
name in the following tables. The tables have been extrdcted information athttp://www.midi.
org/about-midi/table3.shtml . Note that all the values in these tables are in hexadeciotation.

Complete reference for this is not a partsafi. Please refer to a detailed text on MIDI or the manaul for
your synthesizer.

A.4.1 Controllers, Alphabetically

AlINotesOff 7b Ctrl15 of Ctrl79 af
AllSoundsOff 78 Ctrl20 14 Ctrl85 55
AttackTime 49 Ctrl21 15 Ctrl86 56
Balance 08 Ctrl22 16 Ctrl87 57
BalancelLSB 28 Ctrl23 17 Ctrl88 58
Bank 00 Ctrl24 18 Ctrl89 59
BankLSB 20 Ctrl25 19 Ctrl9 09
Breath 02 Ctrl26 la Ctrl90 5a
BreathLSB 22 Ctrl27 1b Data 06
Brightness 4a Ctrl28 1c DataDec 61
Chorus 5d Ctrl29 1d Datalnc 60
Ctrl102 66 Ctrl3 03 DataLSB 26
Ctrl103 67 CtrI30 le DecayTime 4b
Ctrl104 68 Ctrl31 1f Detune 5e
Ctrl105 69 Ctrl35 23 Effectl Oc
Ctrl106 6a Ctrl41 29 EffectlLSB 2C
Ctrl107 6b Ctrl46 2e Effect2 0d
Ctrl108 6C Ctrl47 2f Effect2LSB 2d
Ctrl109 6d Ctrl52 34 Expression 0Ob
Ctrl110 6e Ctrl53 35 ExpressionLSB 2b
Ctrl111 o6f CtrI54 36 Foot 04
Ctrl112 70 Ctrl55 37 FootLSB 24
Ctrl113 71 Ctrl56 38 Generall 10
Ctrl114 72 Ctrl57 39 GenerallLSB 30
Ctrl115 73 Ctrl58 3a General2 11
Ctrl116 74 Ctrl59 3b General2LSB 31
Ctrl117 75 Ctrle0 3c General3 12
Ctrl118 76 Ctrle1 3d General3LSB 32
Ctrl119 77 Ctrl62 3e Generald 13
Ctrl14 Oe Ctrl63 3f General4dLSB 33

132



A4 MIDI Controllers Symbols and Constants

General5 50 Pan Oa Resonance 47
General6 51 PanLSB 2a Reverb 5b
General7 52 Phaser 5f SoftPedal 43
General8 53 PolyOff Te Sostenuto 42
Hold2 45 PolyOn 7f Sustain 40
Legato 44 Portamento 05 Tremolo 5c
LocalCltrl 7a Portamento 41 Variation 46

PortamentoCtrl 54
PortamentoLSB 25
RegParLSB 64
RegParMSB 65

Modulation 01
ModulationLSB 21
NonRegLSB 62
NonRegMSB 63

VibratoDelay de
VibratoDepth 4d
VibratoRate 4c
Volume 07

OmniOff 7c ReleaseTime 48 VolumeLSB 27
OmniOn 7d ResetAll 79
A.4.2 Controllers, by Value
00 Bank 19 Ctrl25 32 General3LSB
01 Modulation la Citrl26 33 General4LSB
02 Breath 1b Ctrl27 34 Ctrl52
03 Ctrl3 1c Ctrl28 35 Ctrl53
04 Foot 1d Ctrl29 36 Ctrl54
05 Portamento le Ctrl30 37 Ctrl55
06 Data 1f CtrI31 38 Ctrl56
07 Volume 20 BankLSB 39 Ctrl57
08 Balance 21 ModulationLSB 3a Ctrl58
09 Ctrl9 22 BreathLSB 3b Ctrl59
Oa Pan 23 Ctrl35 3c Ctrle0
Ob Expression 24 FootLSB 3d Ctrl6l
Oc Effectl 25 PortamentoLSB 3e Citrl62
0d Effect2 26 DatalLSB 3f Ctrl63
Oe Ctrl14 27 VolumelLSB 40 Sustain
of Ctrl15 28 BalancelLSB 41 Portamento
10 Generall 29 Ctrl41 42 Sostenuto
11 General2 2a PanLSB 43 SoftPedal
12 General3 2b ExpressionLSB 44 Legato
13 General4 2c EffectlLSB 45 Hold2
14 Ctrl20 2d Effect2LSB 46 Variation
15 Ctrl21 2e Ctrl46 47 Resonance
16 Ctrl22 2f Ctrl47 48 ReleaseTime
17 Ctrl23 30 GenerallLSB 49 AttackTime
18 Ctrl24 31 General2LSB 4a Brightness

133



A4 MIDI Controllers Symbols and Constants

4b DecayTime 5d Chorus 6f Ctrl1ll

4c VibratoRate 5e Detune 70 Ctrl112

4d VibratoDepth 5f Phaser 71 Ctrl113

4e VibratoDelay 60 Datalnc 72 Ctrl114

4f Ctrl79 61 DataDec 73 Ctrl115

50 General5 62 NonRegLSB 74 Ctrl116

51 General6 63 NonRegMSB 75 Ctrl117

52 General7 64 RegParLSB 76 Ctrl118

53 General8 65 RegParMSB 77 Ctrl119

54 PortamentoCitrl 66 Ctrl102 78 AllISoundsOff
55 Ctrl85 67 Ctrl103 79 ResetAll
56 Ctrl86 68 Ctrl104 7a LocalCtrl
57 Ctrl87 69 Ctrl105 7b AlINotesOff
58 Ctrl88 6a Ctrl106 7c OmniOff
59 Ctrl89 6b Ctrl107 7d OmniOn
5a Ctrl90 6¢ Ctrl108 7e PolyOff

5b Reverb 6d Ctrl109 7f PolyOn

5¢c Tremolo 6e Ctrl110

134



Appendix B

Command Summary

Commands Requiring a Leading Track Specification

Accent .............. 73
Articulate ........... 97
ChShare ............ 87
Channel ............. 86
Compress........... 61
Copy ...t 98
Debug............... 99
Define............... 19
Delete.............. 100
Direction ........... 100
DrumType .......... 55
DupRoot ............ 62
Duplicate .......... 101

ChannelVolume . .... 96
Cut ................. 69
RSkip .............. 104
RTime ............. 105
AdjustVolume ....... 74
Author ............. 112
AutoSoloTracks ..... 55
Bar Numbers ........ 41
BarRepeat.......... 42
BeatAdjust .......... 67
Begin.............. 110
ChannelPref......... 87
Comment ........... 98
CresC........cvvnt. 74

HarmonyOnly
MIDIClear ..........

MIDIVoice

SeqClear
SeqNoRnd

EndRepeat..........

Pan ................. 95
Portamento ......... 96
Range............... 63
Riffs ................ 39
Riff ................. 38
ScaleType.......... 106
Sequence............ 30
Strum ... 107
Tone ................ 25
Unify .............. 107
Voice............... 108
Voicing .............. 58

Volume ............. 74
Goto ...l 85
IfEnd ............... 83
| 83
Include ............ 115
Inc .................. 81
KeySig .............. 54
Label ............... 85
MIDI ... ... 88
MidiFile ............. 89
Midilnc ............. 93

135



MmaEnd .......... 118
MmaStart .......... 117
MsetEnd ............ 80
Mset ................ 80
PrintActive ......... 104
Print ............... 104
RepeatEnding........ 77

RepeatEnd.......... 77

Repeat.............. 77
SeqSize............. 33
Seq ... 106
SetincPath ......... 116
SetLibPath ......... 114
SetOutPath ........ 115
Set.................. 80
Showvars ........... 80

Command Summary

Tempo .............. 65
TimeSig ............. 66
Time ................ 66
Transpose.......... 107
unSet............... 80
Use................ 116
VoiceTr ............ 109

136



