
MPICH2 User’s Guide∗

Version 1.4.1

Mathematics and Computer Science Division

Argonne National Laboratory

Pavan Balaji
Darius Buntinas
Ralph Butler
Anthony Chan
David Goodell
William Gropp
Jayesh Krishna
Rob Latham
Ewing Lusk

Guillaume Mercier
Rob Ross

Rajeev Thakur

Past Contributors:
David Ashton
Brian Toonen

August 24, 2011

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

1

Contents

1 Introduction 1

2 Getting Started with MPICH2 1

2.1 Default Runtime Environment 1

2.2 Starting Parallel Jobs . 1

2.3 Command-Line Arguments in Fortran 1

3 Quick Start 2

4 Compiling and Linking 3

4.1 Special Issues for C++ . 3

4.2 Special Issues for Fortran . 3

5 Running Programs with mpiexec 4

5.1 Standard mpiexec . 4

5.2 Extensions for All Process Management Environments 5

5.3 mpiexec Extensions for the Hydra Process Manager 5

5.4 Extensions for SMPD Process Management Environment . . 5

5.4.1 mpiexec arguments for SMPD 5

5.5 Extensions for the gforker Process Management Environment 8

5.5.1 mpiexec arguments for gforker 8

5.6 Restrictions of the remshell Process Management Environment 10

5.7 Using MPICH2 with SLURM and PBS 10

5.7.1 OSC mpiexec . 11

6 Debugging 11

6.1 TotalView . 11

i

7 Checkpointing 12

7.1 Configuring for checkpointing 12

7.2 Taking checkpoints . 13

8 MPE 14

8.1 MPI Logging . 14

8.2 User-defined logging . 14

8.3 MPI Checking . 16

8.4 MPE options . 16

9 Other Tools Provided with MPICH2 17

10 MPICH2 under Windows 17

10.1 Directories . 17

10.2 Compiling . 18

10.3 Running . 18

A Frequently Asked Questions 19

ii

1 INTRODUCTION 1

1 Introduction

This manual assumes that MPICH2 has already been installed. For instruc-
tions on how to install MPICH2, see the MPICH2 Installer’s Guide, or the
README in the top-level MPICH2 directory. This manual explains how to
compile, link, and run MPI applications, and use certain tools that come
with MPICH2. This is a preliminary version and some sections are not
complete yet. However, there should be enough here to get you started with
MPICH2.

2 Getting Started with MPICH2

MPICH2 is a high-performance and widely portable implementation of the
MPI Standard, designed to implement all of MPI-1 and MPI-2 (including
dynamic process management, one-sided operations, parallel I/O, and other
extensions). The MPICH2 Installer’s Guide provides some information on
MPICH2 with respect to configuring and installing it. Details on compiling,
linking, and running MPI programs are described below.

2.1 Default Runtime Environment

MPICH2 provides a separation of process management and communication.
The default runtime environment in MPICH2 is called Hydra. Other process
managers are also available.

2.2 Starting Parallel Jobs

MPICH2 implements mpiexec and all of its standard arguments, together
with some extensions. See Section 5.1 for standard arguments to mpiexec

and various subsections of Section 5 for extensions particular to various
process management systems.

2.3 Command-Line Arguments in Fortran

MPICH1 (more precisely MPICH1’s mpirun) required access to command
line arguments in all application programs, including Fortran ones, and

3 QUICK START 2

MPICH1’s configure devoted some effort to finding the libraries that con-
tained the right versions of iargc and getarg and including those libraries
with which the mpif77 script linked MPI programs. Since MPICH2 does not
require access to command line arguments to applications, these functions
are optional, and configure does nothing special with them. If you need
them in your applications, you will have to ensure that they are available in
the Fortran environment you are using.

3 Quick Start

To use MPICH2, you will have to know the directory where MPICH2 has
been installed. (Either you installed it there yourself, or your systems admin-
istrator has installed it. One place to look in this case might be /usr/local.
If MPICH2 has not yet been installed, see the MPICH2 Installer’s Guide.)
We suggest that you put the bin subdirectory of that directory into your
path. This will give you access to assorted MPICH2 commands to compile,
link, and run your programs conveniently. Other commands in this directory
manage parts of the run-time environment and execute tools.

One of the first commands you might run is mpich2version to find out
the exact version and configuration of MPICH2 you are working with. Some
of the material in this manual depends on just what version of MPICH2 you
are using and how it was configured at installation time.

You should now be able to run an MPI program. Let us assume that the
directory where MPICH2 has been installed is /home/you/mpich2-installed,
and that you have added that directory to your path, using

setenv PATH /home/you/mpich2-installed/bin:$PATH

for tcsh and csh, or

export PATH=/home/you/mpich2-installed/bin:$PATH

for bash or sh. Then to run an MPI program, albeit only on one machine,
you can do:

cd /home/you/mpich2-installed/examples

mpiexec -n 3 ./cpi

4 COMPILING AND LINKING 3

Details for these commands are provided below, but if you can success-
fully execute them here, then you have a correctly installed MPICH2 and
have run an MPI program.

4 Compiling and Linking

A convenient way to compile and link your program is by using scripts that
use the same compiler that MPICH2 was built with. These are mpicc,
mpicxx, mpif77, and mpif90, for C, C++, Fortran 77, and Fortran 90 pro-
grams, respectively. If any of these commands are missing, it means that
MPICH2 was configured without support for that particular language.

4.1 Special Issues for C++

Some users may get error messages such as

SEEK_SET is #defined but must not be for the C++ binding of MPI

The problem is that both stdio.h and the MPI C++ interface use SEEK SET,
SEEK CUR, and SEEK END. This is really a bug in the MPI-2 standard. You
can try adding

#undef SEEK_SET

#undef SEEK_END

#undef SEEK_CUR

before mpi.h is included, or add the definition

-DMPICH_IGNORE_CXX_SEEK

to the command line (this will cause the MPI versions of SEEK SET etc. to
be skipped).

4.2 Special Issues for Fortran

MPICH2 provides two kinds of support for Fortran programs. For Fortran 77
programmers, the file mpif.h provides the definitions of the MPI constants

5 RUNNING PROGRAMS WITH MPIEXEC 4

such as MPI COMM WORLD. Fortran 90 programmers should use the MPImodule
instead; this provides all of the definitions as well as interface definitions for
many of the MPI functions. However, this MPI module does not provide
full Fortran 90 support; in particular, interfaces for the routines, such as
MPI Send, that take “choice” arguments are not provided.

5 Running Programs with mpiexec

The MPI-2 Standard describes mpiexec as a suggested way to run MPI
programs. MPICH2 implements the mpiexec standard, and also provides
some extensions.

5.1 Standard mpiexec

Here we describe the standard mpiexec arguments from the MPI-2 Stan-
dard [1]. The simplest form of a command to start an MPI job is

mpiexec -f machinefile -n 32 a.out

to start the executable a.out with 32 processes (providing an MPI COMM WORLD

of size 32 inside the MPI application). Other options are supported, for
search paths for executables, working directories, and even a more general
way of specifying a number of processes. Multiple sets of processes can be
run with different executables and different values for their arguments, with
“:” separating the sets of processes, as in:

mpiexec -f machinefile -n 1 ./master : -n 32 ./slave

It is also possible to start a one process MPI job (with a MPI COMM WORLD

whose size is equal to 1), without using mpiexec. This process will become
an MPI process when it calls MPI Init, and it may then call other MPI
functions. Currently, MPICH2 does not fully support calling the dynamic
process routines from MPI-2 (e.g., MPI Comm spawn or MPI Comm accept)
from processes that are not started with mpiexec.

5 RUNNING PROGRAMS WITH MPIEXEC 5

5.2 Extensions for All Process Management Environments

Some mpiexec arguments are specific to particular communication sub-
systems (“devices”) or process management environments (“process man-
agers”). Our intention is to make all arguments as uniform as possible
across devices and process managers. For the time being we will document
these separately.

5.3 mpiexec Extensions for the Hydra Process Manager

MPICH2 provides a number of process management systems. Hydra is the
default process manager in MPICH2. More details on Hydra and its ex-
tensions to mpiexec can be found at http://wiki.mcs.anl.gov/mpich2/

index.php/Using_the_Hydra_Process_Manager

5.4 Extensions for SMPD Process Management Environment

SMPD is an alternate process manager that runs on both Unix and Win-
dows. It can launch jobs across both platforms if the binary formats match
(big/little endianness and size of C types– int, long, void*, etc).

5.4.1 mpiexec arguments for SMPD

mpiexec for smpd accepts the standard MPI-2 mpiexec options. Execute

mpiexec

or

mpiexec -help2

to print the usage options. Typical usage:

mpiexec -n 10 myapp.exe

All options to mpiexec:

http://wiki.mcs.anl.gov/mpich2/index.php/Using_the_Hydra_Process_Manager
http://wiki.mcs.anl.gov/mpich2/index.php/Using_the_Hydra_Process_Manager

5 RUNNING PROGRAMS WITH MPIEXEC 6

-n x

-np x

launch x processes

-localonly x

-np x -localonly

launch x processes on the local machine

-machinefile filename

use a file to list the names of machines to launch on

-host hostname

launch on the specified host.

-hosts n host1 host2 ... hostn

-hosts n host1 m1 host2 m2 ... hostn mn

launch on the specified hosts. In the second version the number of
processes = m1 + m2 + ... + mn

-dir drive:\my\working\directory

-wdir /my/working/directory

launch processes with the specified working directory. (-dir and -wdir
are equivalent)

-env var val

set environment variable before launching the processes

-exitcodes

print the process exit codes when each process exits.

-noprompt

prevent mpiexec from prompting for user credentials. Instead errors
will be printed and mpiexec will exit.

-localroot

launch the root process directly from mpiexec if the host is local. (This
allows the root process to create windows and be debugged.)

-port port

-p port

specify the port that smpd is listening on.

5 RUNNING PROGRAMS WITH MPIEXEC 7

-phrase passphrase

specify the passphrase to authenticate connections to smpd with.

-smpdfile filename

specify the file where the smpd options are stored including the passphrase.
(unix only option)

-path search path

search path for executable, ; separated

-timeout seconds

timeout for the job.

Windows specific options:

-map drive:\\host\share
map a drive on all the nodes this mapping will be removed when the
processes exit

-logon

prompt for user account and password

-pwdfile filename

read the account and password from the file specified.

put the account on the first line and the password on the second

-nopopup debug

disable the system popup dialog if the process crashes

-priority class[:level]

set the process startup priority class and optionally level.
class = 0,1,2,3,4 = idle, below, normal, above, high
level = 0,1,2,3,4,5 = idle, lowest, below, normal, above, highest
the default is -priority 2:3

-register

encrypt a user name and password to the Windows registry.

-remove

delete the encrypted credentials from the Windows registry.

-validate [-host hostname]

validate the encrypted credentials for the current or specified host.

5 RUNNING PROGRAMS WITH MPIEXEC 8

-delegate

use passwordless delegation to launch processes.

-impersonate

use passwordless authentication to launch processes.

-plaintext

don’t encrypt the data on the wire.

5.5 Extensions for the gforker Process Management Envi-
ronment

gforker is a process management system for starting processes on a sin-
gle machine, so called because the MPI processes are simply forked from
the mpiexec process. This process manager supports programs that use
MPI Comm spawn and the other dynamic process routines, but does not sup-
port the use of the dynamic process routines from programs that are not
started with mpiexec. The gforker process manager is primarily intended
as a debugging aid as it simplifies development and testing of MPI programs
on a single node or processor.

5.5.1 mpiexec arguments for gforker

In addition to the standard mpiexec command-line arguments, the gforker
mpiexec supports the following options:

-np <num> A synonym for the standard -n argument

-env <name> <value> Set the environment variable <name> to <value> for
the processes being run by mpiexec.

-envnone Pass no environment variables (other than ones specified with
other -env or -genv arguments) to the processes being run by mpiexec.
By default, all environment variables are provided to each MPI process
(rationale: principle of least surprise for the user)

-envlist <list> Pass the listed environment variables (names separated
by commas), with their current values, to the processes being run by
mpiexec.

5 RUNNING PROGRAMS WITH MPIEXEC 9

-genv <name> <value> The

-genv options have the same meaning as their corresponding -env version,
except they apply to all executables, not just the current executable (in
the case that the colon syntax is used to specify multiple execuables).

-genvnone Like -envnone, but for all executables

-genvlist <list> Like -envlist, but for all executables

-usize <n> Specify the value returned for the value of the attribute MPI UNIVERSE SIZE.

-l Label standard out and standard error (stdout and stderr) with the
rank of the process

-maxtime <n> Set a timelimit of <n> seconds.

-exitinfo Provide more information on the reason each process exited if
there is an abnormal exit

In addition to the commandline argments, the gforker mpiexec provides
a number of environment variables that can be used to control the behavior
of mpiexec:

MPIEXEC TIMEOUT Maximum running time in seconds. mpiexec will ter-
minate MPI programs that take longer than the value specified by
MPIEXEC TIMEOUT.

MPIEXEC UNIVERSE SIZE Set the universe size

MPIEXEC PORT RANGE Set the range of ports that mpiexec will use in com-
municating with the processes that it starts. The format of this is
<low>:<high>. For example, to specify any port between 10000 and
10100, use 10000:10100.

MPICH PORT RANGE Has the same meaning as MPIEXEC PORT RANGE and is
used if MPIEXEC PORT RANGE is not set.

MPIEXEC PREFIX DEFAULT If this environment variable is set, output to stan-
dard output is prefixed by the rank in MPI COMM WORLD of the process
and output to standard error is prefixed by the rank and the text
(err); both are followed by an angle bracket (>). If this variable is
not set, there is no prefix.

5 RUNNING PROGRAMS WITH MPIEXEC 10

MPIEXEC PREFIX STDOUT Set the prefix used for lines sent to standard out-
put. A %d is replaced with the rank in MPI COMM WORLD; a %w is re-
placed with an indication of which MPI COMM WORLD in MPI jobs that
involve multiple MPI COMM WORLDs (e.g., ones that use MPI Comm spawn

or MPI Comm connect).

MPIEXEC PREFIX STDERR Like MPIEXEC PREFIX STDOUT, but for standard er-
ror.

MPIEXEC STDOUTBUF Sets the buffering mode for standard output. Valid
values are NONE (no buffering), LINE (buffering by lines), and BLOCK

(buffering by blocks of characters; the size of the block is implemen-
tation defined). The default is NONE.

MPIEXEC STDERRBUF Like MPIEXEC STDOUTBUF, but for standard error.

5.6 Restrictions of the remshell Process Management Envi-
ronment

The remshell “process manager” provides a very simple version of mpiexec
that makes use of the secure shell command (ssh) to start processes on a
collection of machines. As this is intended primarily as an illustration of
how to build a version of mpiexec that works with other process managers,
it does not implement all of the features of the other mpiexec programs
described in this document. In particular, it ignores the command line
options that control the environment variables given to the MPI programs.
It does support the same output labeling features provided by the gforker
version of mpiexec. However, this version of mpiexec can be used much like
the mpirun for the ch p4 device in MPICH-1 to run programs on a collection
of machines that allow remote shells. A file by the name of machines should
contain the names of machines on which processes can be run, one machine
name per line. There must be enough machines listed to satisfy the requested
number of processes; you can list the same machine name multiple times if
necessary.

5.7 Using MPICH2 with SLURM and PBS

There are multiple ways of using MPICH2 with SLURM or PBS. Hydra
provides native support for both SLURM and PBS, and is likely the easiest

6 DEBUGGING 11

way to use MPICH2 on these systems (see the Hydra documentation above
for more details).

Alternatively, SLURM also provides compatibility with MPICH2’s in-
ternal process management interface. To use this, you need to configure
MPICH2 with SLURM support, and then use the srun job launching utility
provided by SLURM.

For PBS, MPICH2 jobs can be launched in two ways: (i) use Hydra’s
mpiexec with the appropriate options corresponding to PBS, or (ii) using
the OSC mpiexec.

5.7.1 OSC mpiexec

Pete Wyckoff from the Ohio Supercomputer Center provides a alternate util-
ity called OSC mpiexec to launch MPICH2 jobs on PBS systems. More infor-
mation about this can be found here: http://www.osc.edu/~pw/mpiexec

6 Debugging

Debugging parallel programs is notoriously difficult. Here we describe a
number of approaches, some of which depend on the exact version of MPICH2
you are using.

6.1 TotalView

MPICH2 supports use of the TotalView debugger from Etnus. If MPICH2
has been configured to enable debugging with TotalView then one can debug
an MPI program using

totalview -a mpiexec -a -n 3 cpi

You will get a popup window from TotalView asking whether you want to
start the job in a stopped state. If so, when the TotalView window appears,
you may see assembly code in the source window. Click on main in the stack
window (upper left) to see the source of the main function. TotalView will
show that the program (all processes) are stopped in the call to MPI Init.

http://www.osc.edu/~pw/mpiexec

7 CHECKPOINTING 12

If you have TotalView 8.1.0 or later, you can use a TotalView feature
called indirect launch with MPICH2. Invoke TotalView as:

totalview <program> -a <program args>

Then select the Process/Startup Parameters command. Choose the Par-
allel tab in the resulting dialog box and choose MPICH2 as the parallel sys-
tem. Then set the number of tasks using the Tasks field and enter other
needed mpiexec arguments into the Additional Starter Arguments field.

7 Checkpointing

MPICH2 supports checkpoint/rollback fault tolerance when used with the
Hydra process manager. Currently only the BLCR checkpointing library is
supported. BLCR needs to be installed separately. Below we describe how
to enable the feature in MPICH2 and how to use it. This information can
also be found on the MPICH Wiki: http://wiki.mcs.anl.gov/mpich2/

index.php/Checkpointing

7.1 Configuring for checkpointing

First, you need to have BLCR version 0.8.2 installed on your machine. If
it’s installed in the default system location, add the following two options
to your configure command:

--enable-checkpointing --with-hydra-ckpointlib=blcr

If BLCR is not installed in the default system location, you’ll need to
tell MPICH2’s configure where to find it. You might also need to set the
LD LIBRARY PATH environment variable so that BLCR’s shared libraries can
be found. In this case add the following options to your configure command:

--enable-checkpointing --with-hydra-ckpointlib=blcr

--with-blcr=BLCR_INSTALL_DIR LD_LIBRARY_PATH=BLCR_INSTALL_DIR/lib

where BLCR INSTALL DIR is the directory where BLCR has been installed
(whatever was specified in --prefix when BLCR was configured). Note,
checkpointing is only supported with the Hydra process manager. Hyrda

http://wiki.mcs.anl.gov/mpich2/index.php/Checkpointing
http://wiki.mcs.anl.gov/mpich2/index.php/Checkpointing

7 CHECKPOINTING 13

will used by default, unless you choose something else with the --with-pm=
configure option.

After it’s configured, compile as usual (e.g., make; make install).

7.2 Taking checkpoints

To use checkpointing, include the -ckpointlib option for mpiexec to spec-
ify the checkpointing library to use and -ckpoint-prefix to specify the
directory where the checkpoint images should be written:

shell$ mpiexec -ckpointlib blcr \

-ckpoint-prefix /home/buntinas/ckpts/app.ckpoint \

-f hosts -n 4 ./app

While the application is running, the user can request for a checkpoint at
any time by sending a SIGUSR1 signal to mpiexec. You can also automati-
cally checkpoint the application at regular intervals using the mpiexec option
-ckpoint-interval to specify the number of seconds between checkpoints:

shell$ mpiexec -ckpointlib blcr \

-ckpoint-prefix /home/buntinas/ckpts/app.ckpoint \

-ckpoint-interval 3600 -f hosts -n 4 ./app

The checkpoint/restart parameters can also be controlled with the envi-
ronment variables HYDRA CKPOINTLIB, HYDRA CKPOINT PREFIX and HYDRA

CKPOINT INTERVAL.

Each checkpoint generates one file per node. Note that checkpoints for
all processes on a node will be stored in the same file. Each time a new
checkpoint is taken an additional set of files are created. The files are num-
bered by the checkpoint number. This allows the application to be restarted
from checkpoints other than the most recent. The checkpoint number can
be specified with the -ckpoint-num parameter. To restart a process:

shell$ mpiexec -ckpointlib blcr \

-ckpoint-prefix /home/buntinas/ckpts/app.ckpoint \

-ckpoint-num 5 -f hosts -n 4

Note that by default, the process will be restarted from the first check-
point, so in most cases, the checkpoint number should be specified.

8 MPE 14

8 MPE

MPICH2 comes with the same MPE (Multi-Processing Environment) tools
that are included with MPICH1. These include several trace libraries for
recording the execution of MPI programs and the Jumpshot and SLOG tools
for performance visualization, and a MPI collective and datatype checking
library. The MPE tools are built and installed by default and should be
available without requiring any additional steps. The easiest way to use
MPE profiling libraries is through the -mpe= switch provided by MPICH2’s
compiler wrappers, mpicc, mpicxx, mpif77, and mpif90.

8.1 MPI Logging

MPE provides automatic MPI logging. For instance, to view MPI commu-
nication pattern of a program, fpilog.f, one can simply link the source file
as follows:

mpif90 -mpe=mpilog -o fpilog fpilog.f

The -mpe=mpilog option will link with appropriate MPE profiling libraries.
Then running the program through mpiexec will result a logfile, Unknown.clog2,
in the working directory. The final step is to convert and view the logfile
through Jumpshot:

jumpshot Unknown.clog2

8.2 User-defined logging

In addition to using the predefined MPE logging to log MPI calls, MPE
logging calls can be inserted into user’s MPI program to define and log
states. These states are called User-Defined states. States may be nested,
allowing one to define a state describing a user routine that contains several
MPI calls, and display both the user-defined state and the MPI operations
contained within it.

The typical way to insert user-defined states is as follows:

• Get handles fromMPE logging library: MPE Log get state eventIDs()

8 MPE 15

has to be used to get unique event IDs (MPE logging handles). 1 This
is important if you are writing a library that uses the MPE logging
routines from the MPE system. Hardwiring the eventIDs is considered
a bad idea since it may cause eventID confict and so the practice isn’t
supported.

• Set the logged state’s characteristics: MPE Describe state() sets the
name and color of the states.

• Log the events of the logged states: MPE Log event() are called twice
to log the user-defined states.

Below is a simple example that uses the 3 steps outlined above.

int eventID_begin, eventID_end;

...

MPE_Log_get_state_eventIDs(&eventID_begin, &eventID_end);

...

MPE_Describe_state(eventID_begin, eventID_end,

"Multiplication", "red");

...

MyAmult(Matrix m, Vector v)

{

/* Log the start event of the red "Multiplication" state */

MPE_Log_event(eventID_begin, 0, NULL);

... Amult code, including MPI calls ...

/* Log the end event of the red "Multiplication" state */

MPE_Log_event(eventID_end, 0, NULL);

}

The logfile generated by this code will have the MPI routines nested within
the routine MyAmult().

Besides user-defined states, MPE2 also provides support for user-defined
events which can be defined through use of MPE Log get solo eventID()

and MPE Describe event(). For more details, e.g. see cpilog.c.

1Older MPE libraries provide MPE Log get event number() which is still be-
ing supported but has been deprecated. Users are strongly urged to use
MPE Log get state eventIDs() instead.

8 MPE 16

8.3 MPI Checking

To validate all the MPI collective calls in a program by linking the source
file as follows:

mpif90 -mpe=mpicheck -o wrong_reals wrong_reals.f

Running the program will result with the following output:

> mpiexec -n 4 wrong_reals

Starting MPI Collective and Datatype Checking!

Process 3 of 4 is alive

Backtrace of the callstack at rank 3:

At [0]: wrong_reals(CollChk_err_han+0xb9)[0x8055a09]

At [1]: wrong_reals(CollChk_dtype_scatter+0xbf)[0x8057bff]

At [2]: wrong_reals(CollChk_dtype_bcast+0x3d)[0x8057ccd]

At [3]: wrong_reals(MPI_Bcast+0x6c)[0x80554bc]

At [4]: wrong_reals(mpi_bcast_+0x35)[0x80529b5]

At [5]: wrong_reals(MAIN__+0x17b)[0x805264f]

At [6]: wrong_reals(main+0x27)[0x80dd187]

At [7]: /lib/libc.so.6(__libc_start_main+0xdc)[0x9a34e4]

At [8]: wrong_reals[0x8052451]

[cli_3]: aborting job:

Fatal error in MPI_Comm_call_errhandler:

Collective Checking: BCAST (Rank 3) --> Inconsistent datatype signatures

detected between rank 3 and rank 0.

The error message here shows that the MPI Bcast has been used with in-
consistent datatype in the program wrong reals.f.

8.4 MPE options

Other MPE profiling options that are available through MPICH2 compiler
wrappers are

-mpe=mpilog : Automatic MPI and MPE user-defined states logging.

This links against -llmpe -lmpe.

9 OTHER TOOLS PROVIDED WITH MPICH2 17

-mpe=mpitrace : Trace MPI program with printf.

This links against -ltmpe.

-mpe=mpianim : Animate MPI program in real-time.

This links against -lampe -lmpe.

-mpe=mpicheck : Check MPI Program with the Collective & Datatype

Checking library. This links against -lmpe_collchk.

-mpe=graphics : Use MPE graphics routines with X11 library.

This links against -lmpe <X11 libraries>.

-mpe=log : MPE user-defined states logging.

This links against -lmpe.

-mpe=nolog : Nullify MPE user-defined states logging.

This links against -lmpe_null.

-mpe=help : Print the help page.

For more details of how to use MPE profiling tools, see mpich2/src/mpe2/README.

9 Other Tools Provided with MPICH2

MPICH2 also includes a test suite for MPI-1 and MPI-2 functionality; this
suite may be found in the mpich2/test/mpi source directory and can be
run with the command make testing. This test suite should work with
any MPI implementation, not just MPICH2.

10 MPICH2 under Windows

10.1 Directories

The default installation of MPICH2 is in C:\Program Files\MPICH2. Un-
der the installation directory are three sub-directories: include, bin, and
lib. The include and lib directories contain the header files and libraries

10 MPICH2 UNDER WINDOWS 18

necessary to compile MPI applications. The bin directory contains the pro-
cess manager, smpd.exe, and the MPI job launcher, mpiexec.exe. The dlls
that implement MPICH2 are copied to the Windows system32 directory.

10.2 Compiling

The libraries in the lib directory were compiled with MS Visual C++ .NET
2003 and Intel Fortran 8.1. These compilers and any others that can link
with the MS .lib files can be used to create user applications. gcc and g77

for cygwin can be used with the libmpich*.a libraries.

For MS Developer Studio users: Create a project and add

C:\Program Files\MPICH2\include

to the include path and

C:\Program Files\MPICH2\lib

to the library path. Add mpi.lib and cxx.lib to the link command. Add
cxxd.lib to the Debug target link instead of cxx.lib.

Intel Fortran 8 users should add fmpich2.lib to the link command.

Cygwin users should use libmpich2.a libfmpich2g.a.

10.3 Running

MPI jobs are run from a command prompt using mpiexec.exe. See Sec-
tion 5.4 on mpiexec for smpd for a description of the options to mpiexec.

A FREQUENTLY ASKED QUESTIONS 19

A Frequently Asked Questions

The frequently asked questions are maintained online here:http://wiki.
mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions

References

[1] Message Passing Interface Forum. MPI2: A Message Passing Interface
standard. International Journal of High Performance Computing Appli-
cations, 12(1–2):1–299, 1998.

http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions
http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions

	Introduction
	Getting Started with MPICH2
	Default Runtime Environment
	Starting Parallel Jobs
	Command-Line Arguments in Fortran

	Quick Start
	Compiling and Linking
	Special Issues for C++
	Special Issues for Fortran

	Running Programs with mpiexec
	Standard mpiexec
	Extensions for All Process Management Environments
	mpiexec Extensions for the Hydra Process Manager
	Extensions for SMPD Process Management Environment
	mpiexec arguments for SMPD

	Extensions for the gforker Process Management Environment
	mpiexec arguments for gforker

	Restrictions of the remshell Process Management Environment
	Using MPICH2 with SLURM and PBS
	OSC mpiexec

	Debugging
	TotalView

	Checkpointing
	Configuring for checkpointing
	Taking checkpoints

	MPE
	MPI Logging
	User-defined logging
	MPI Checking
	MPE options

	Other Tools Provided with MPICH2
	MPICH2 under Windows
	Directories
	Compiling
	Running

	Frequently Asked Questions

