
MSORT Reference Manual

William J. Poser
billposer@alum.mit.edu

Contents

1. Introduction
2. Comparison with GNU sort
3. What msort Does

1. Parsing Into Records
2. Extracting Keys

1. Parsing Records into Fields
2. Specifying Key Fields
3. Reversing Keys
4. Multiple Keys
5. Optional Keys

3. Sorting
1. Sort Algorithms
2. Comparison Types

1. Numeric Comparison
2. Numeric String Comparison
3. Lexicographic Comparison
4. Hybrid Comparison
5. Date Comparison
6. Time Comparison
7. ISO8601 Date/Time Comparison
8. Month Name Comparison
9. Angle Comparison

10. Domain Name Comparison
11. Size Comparison
12. Random Comparison

3. Case Sensitivity
4. Writing Out the Sorted Records

4. Exclusions
5. Character Simplifications
6. Overview of the Sorting Process
7. Backslash Escapes
8. The Command Line
9. Examples

10. Logging
11. Checking Whether the Input is Already Sorted
12. Speed
13. Character Set and Encoding
14. Limits
15. Defaults

Version 8.42 MSORT 7 October 2007

– 2 –

16. Exit Status
17. Summary of Command Line Options
18. Command Line Equivalences with GNU sort
19. Copyright and License

1. Introduction

Msort is a program for sorting text files in sophisticated ways, intended especially
for linguistic databases. It allows you to specify arbitrary sort orders, to sort blocks
of text delimited in a number of ways rather than just lines, and to specify particular
fields of a record as sort keys. Msort is capable of sorting on several keys, so that
when two records tie on one key, the tie may be broken on another. Any or all
keys may be optional. It provides a number of specialized types of comparison in
addition to the usual numeric and lexicographic comparisons.

msort is a complex program which often requires a long and intimidating-looking
command line. With luck, this manual will resolve any difficulties. However, the
reader may be interested to know that a graphical interface to msort called msg is
available.

2. Comparison with GNU sort

Msort ’s capabilities are very close to a superset of those of GNU sort . Msort provides
greater flexibility in selecting key fields, more comparison types, the ability to use
collation rules from different locales on different keys, and a variety of other options
lacking in GNU sort . Capabilities of GNU sort lacking in msort are the ability to
merge files without sorting them (the –merge option) and the ability to emit only
the first of an equal run (the –unique option).

Generally speaking, msort is the more powerful program, either the only choice
or the more convenient choice in cases in which something other than standard
sorts of positionally selected fields are required. Although msort tries not to be
inefficient, its design emphasizes the ability to perform complex and unusual sorts
over efficiency.

On the other hand, if GNU sort is capable of doing what you want, it will
generally be faster since it has been optimized for more standard types of sort and
does not have some of the overhead that msort incurs in order to deal with a wider
range of options. The exact ratio varies with the details of the sort and the nature
of the input, but in my tests, where msort and GNU sort are capable of performing
the same sort, GNU sort is typically two to three times faster.

3. What msort does

The use of msort is best understood in terms of the operations it performs. It
performs four tasks:

Version 8.42 MSORT 7 October 2007

– 3 –

a. parsing the input into records;
b. extracting the sort keys from each record;
c. sorting the records;
d. writing out the sorted records;

3.1. Parsing into Records

A record is the basic unit on which msort operates. When it reads its input, it
breaks it up into a sequence of records. A record may consist of a single line of text,
as in typical sorting programs. To specify that a record is a single line, give the
command line option –l.

However, for many applications it is desirable for a record to consist of sev-
eral lines. For example, a lexical database might contain records consisting of a
prounciation field, a gloss, and a category, such as this:

P:ditnikwun
G:dandelion
C:N

msort therefore recognizes a second type of record, one consisting of a block of text.

Sometimes records are separated by a special separator character. (Records
consisting of a single line are really just the special case of this where the separator
is an end-of-line character.) msort recognizes such records if the separator character
is specified by the –r option. Backslash escapes are recognized and may be used to
supply values otherwise difficult to enter on the command line.

msort also recognizes blocks terminated by one or more blank lines. msort
treats such blocks as records by default. This may be explicitly specified by giving
the command line option –b.

One other type of record is recognized: a record consisting of a specified number
of bytes. These are selected by the -O option. Such fixed-length records are primar-
ily found in old-fashioned databases but are still encountered from time-to-time.

3.2. Extracting Keys

The information used for sorting is known as the sort key. For example, if we sort
a mailing list by postal code, ignoring the name and address, the postal code is the
sort key. By default msort uses the entire record as the sort key. (This default may
be explicitly specified by giving the command line option –w .) If only part of the
record is used as the sort key, this may be done in several ways: (a) a position range,
based on fields, may be used as the key; (b) a particular field may be used as the
key; (c) a character range may be used as the key.

3.2.1. Parsing Records into Fields

A field is a portion of a record beginning at the beginning of a record or at the end
of the previous field, and ending when a terminator character is encountered. For

Version 8.42 MSORT 7 October 2007

– 4 –

example, if the record consists of blocks of text and the field terminator is the end-
of-line character, then each line of the record will be a field. If a record consists of
a single line of text and the field terminators are space and tab (collectively known
as “whitespace”), then each “word” of the line will constitute a field.

msort sets default values for the field terminators which depend on whether the
record is a single line or a block of text. If the record is a single line, the field
terminators are space and tab. If the record is a block of text, the field terminator
is end-of-line. These defaults may be over-ridden by using the command line option
–d . Backslash escapes are recognized and may be used to supply values otherwise
difficult to enter on the command line.

3.2.2. Specifying Keys

The first way of specifying a key is by means of a position range. A position is a
location within the record consisting of a field number and an optional character
offset into the field. A position range is a pair of positions. The key consists of
everything between the two positions, including the endpoints.

Keys are selected by position range by using the command line option –n. In
the simplest case, the argument is a field number. Field 1 is the first field, field
2 the second field, etc. Field numbers may be negative, in which case they are
interpreted relative to the end of the record. That is, field -1 is the last field, field
-2 the next-to-last, etc. A field number of 0 is meaningless and is treated as an
error. A range consisting of a single field number contains all of that field. Thus,
the key specification -n 1 means all of the first field.

A position may also contain a character offset, consisting of a positive integer
separated from the field number by a period. The key specification -n 1.1 is the
same as -n 1 , while -n 1.3 says to use all of the first field except for the first two
characters.

If two positions are used to specify a range, they are separated by a comma. The
key specification -n 1.2,3.1 indicates that the key starts at the third character of the
first field and ends at the second character of the third field. The specification -n
1.1,-1.2 identifies the first field through the last field, with only the first character
of the last field in the key.

The beginning and end of a range may be the same. In this case, the key
consists of a single character. For example, the specification -n 1.2,1.2 indicates a
key consisting of the second character of the first field.

The second way of specifying the field to use as a sort key is by its tag, the
characters with which the field begins. For example, if we specify the sort key as
the field with tag P:, the field beginning with the characters P: will be used as
the sort key. Only the characters following the tag form part of the key; the tag
is used only to identify the key field. Therefore, in the example above, if we give
the command line option –t P: to specify the key as the field with tag P:, the field
P:ditnikwun will be the key field, and the actual key will be ditnikwun.

Although tags that are simply strings are sufficient most of the time, msort ’s tag
specifications are actually regular expressions. This means that they may contain
wildcards, character sets, and disjunctions. The syntax used is that of the PCRE

Version 8.42 MSORT 7 October 2007

– 5 –

library, which is approximately that of PERL. If your tags are plain strings you need
not concern yourself with the more general regular expression facility except in the
case in which characters in your strings have special meanings. The characters with
special meaning are: ˆ $. * [] () + ? – and \. The character “–” has special
meaning only when enclosed by square brackets. In general, you may prevent these
characters from taking on their special meaning by quoting them with a preceding
\. To specify a literal backslash, use two backslashes: \\.

Regular expressions as tags have several uses. First, they can be used to absorb
characters that are properly speaking part of the beginning of the key but that we
wish to ignore in sorting. For example, the regular expression P:–? has the effect
of sorting on the field with tag P: and of ignoring a hyphen at the beginning of the
key.

Second, character sets can be used when, for example, the database is incon-
sistent in capitalization. For example, the tag specification [pP]: has the effect of
sorting on the field with tag P: or the tag p:, whichever comes first within the record
if both are present.

Third, some databases using tagged fields separate the field name from the data
in the field by a separator consisting of an arbitrary amount of whitespace (spaces or
tabs). This whitespace can be absorbed into the tag by using appropriate wildcards.
For example, to specify a key of P: followed by any amount of whitespace, use the
tag specification P:[]* where the brackets contain a space and a tab.

Here are some examples of more complex regular expressions. To select a tag
of either p: or P: followed by any amount of whitespace, use the tag specification
[pP]:[]* where as above the second pair of brackets contain a space and a tab.

To select a tag of P: or p: followed by any amount of whitespace and to ignore
leading hyphens, use the tag specification [pP]:[]*–? where as above the second
pair of brackets contain a space and a tab.

Occasionally, you may wish to sort on one of two quite different tags. For
example each entry in a lexical database might have either a gloss, tagged g:, or a
definition, tagged df:. To sort on whichever one is present, specify the tag as df:|g:.

Note that what you consider the tag need not be what was intended to be the
field label when the database was created. For example, suppose that you use the
label S: to indicate the source of the material in an entry, and that some entries
come from a written source abbreviated M, which is followed by the section or page
number, e.g. M82 . You might extract the entries obtained from this source and
then sort them into their original order (perhaps in order to check them against
the written source) by specifying the tag as S:M and performing a numerical sort.
Treating the M as part of the field label has the effect of stripping it from the key
and so preventing it from interfering with the numerical sort.

The third way of specifying the key is by character ranges. That is, using the
-e option, you may specify that the key consists of the mth through nth characters
in the record. Positive values start at one. Negative values indicate characters
counting from the end of the record. For example, the range 3,-2 consists of the
third character through the next-to-last character.

Version 8.42 MSORT 7 October 2007

– 6 –

It is possible for a record not to contain a key field, in the case of numerical spec-
ification because there are not enough fields, in the case of specification by character
range because there are not enough characters, and in the case of specification by
tag because there is no field with the specified tag. In this case, if the key is not
optional, msort reports the number of the offending record, writes a copy of the
offending record into the log, and aborts.

If, as is possible when keys are specified by tag, a record contains more than
one key field, msort uses the first and ignores the remainder, without reporting an
error.

Since msort has to start at the beginning of each record and search for key fields
when key fields are specified by tags, sorting is faster if the key fields are near the
beginning of the record. If you know that you are likely to want to sort on some
fields and unlikely to want to sort on others, you can improve the speed of the sort
by putting the fields on which you are likely to sort at the beginning of the record.
With current computers this is not very important.

3.2.3. Reversing Keys

The command line option –R causes the characters of the associated key to be re-
versed if it is lexicographic. (If a numeric, time, or date comparison is specified, this
option has no effect.) That is, the last character of the key is treated as the first, the
next to last character as the second, etc. This is useful for the generation of reverse
dictionaries. Key reversal is performed after the interpretation of multigraphs.

3.2.4. Multiple Keys

When sorting on multiple keys, you specify the keys to sort on in the order in which
they are to be used. For each key field, you may also specify the nature of the
comparison to be used, that is, whether textual or numeric. If it is textual, you may
specify the sort order to use. The specification of the field to use as the key and the
nature of the comparison may be separated by other options, but each comparison
specification is paired with the nearest preceding key field specification. Options
that are not key-specific may appear anywhere. For example, in order to sort first
on the P: field using the sort order in the file c2.ord and then on the C: field using
the sort order in the file cats.ord , you would give a command beginning like this:

msort –t “P:” –s c2.ord –t “C:” –s cats.ord

If you give a non-key-specific option, such as –l , which tells msort to treat lines as
records, it may appear in any postion.

For example, the following is an acceptable command line:

msort –t “P:” –l –s c2.ord –t “C:” –s cats.ord

msort can still determine that c2.ord contains the sort order to be used on the key
obtained from the field with tag “P:” because –t “P:” is the nearest preceding key
field selector.

To sort on the section number following the letter M in the field labelled S: and
then on the pronunciation in the P: field using the sort order in the file c2.ord, you
would give a command beginning like this:

Version 8.42 MSORT 7 October 2007

– 7 –

msort –t “S:M” –n –t “P:” –s c2.ord

To sort using ASCII order on the second field and then in decreasing numerical
order on the first field, you would give a command beginning like this:

msort –n 2 –n 1 –i

Here the –i option reverses numerical comparisons and inverts the sort order for
lexicographic comparisons. Note the omission of a comparison specification after the
first field specification. This causes msort to use the default of textual comparison
using the ASCII order, assuming that the machine collating sequence is ASCII.

3.2.5. Optional Keys

Any or all keys may be specified as optional except when sorting on the entire record.
A key is declared optional by giving the command line option –o. The argument to
this option determines how records with missing values for this key are handled.

There are three possibilities. In some cases, it is desirable to have all records
that lack a key sort before or after all records that possess it. If, for example, we are
editing a database and wish to add the information in question to records that lack
it, we may wish to arrange for them to come first. On the other hand, if records
that lack the information in question are of no immediate interest, we may wish to
move them to the end. The third possibility is that we wish the missing key to have
no effect at all, which will result if we arrange for missing keys to compare as equal
to whatever they are compared to. Thus, for each optional key we specify whether
missing keys are to compare as less than (that is, sort ahead of), greater than (that
is, sort after), or equal to records that possess the key. The possible arguments to
this option are therefore:

less than l
L
<

greater than g
G
>

equal to e
E
=

Only the first character of the argument is checked, so if you wish you may spell
these out or use familiar abbreviations, e.g. less than or lt . If the argument given
is not recognized, the default is equality.

The optional key facility is useful for purposes other than dealing with missing
values. It can also be used to put an entire class of key values into a certain category.
For example, my database for the Stuart/Trembleur Lake dialect of Carrier contains
entries taken from Father Adrien-Gabriel Morice’s book The Carrier Language. In
the source field, these are identified by the letter “M” followed by the section number.
The source field may contain multiple entries, separated by slashes, e.g.:

%S:D/ROHA/YVPI/M454

Version 8.42 MSORT 7 October 2007

– 8 –

This field indicates that the entry is to be found in the Central Carrier Bingual
Dictionary (“D”) and in Father Morice’s book in section 454, and that it has also
been recorded from two Carrier speakers whose names are abbreviated “ROHA”
and “YVPI”.

Someone working on another Carrier dialect wanted to use this lexical database,
which is by far the largest for any Carrier dialect, to suggest words to look for in
her own dialect. She was particularly interested in old words such as those to be
found in Father Morice’s book. I therefore wanted to sort the lexicon so that words
found in Father Morice’s work would be listed first. I used the following command
to do this:

msort -t "%S:(M[0-9]+|.*/M[0-9]+).*" -o g -t "%P:"

The first tag specification is a regular expression that selects those source fields
in which either the letter M plus one or more digits immediately follow either the
source tag or a slash. The effect is to pick out all of the source fields which contain
a reference to Father Morice’s book. By making this field optional and specifying
that if it is not present the record follows one in which it is present, we arrange for
all of the records containing an entry found in Father Morice’s book to precede the
others. Since the tag exhausts the field, the source field has no other effect on the
sort. The second key is the Carrier headword, which results in the records being
ordered alphabetically within the two major categories.

3.3. Sorting

Once msort has extracted the keys from the records, it performs the sort. Each time
it compares two records, it compares the keys in order. If the first key is sufficient
to order the two records, no other keys are used. If, however, two records tie on a
key and there is a further key available, msort moves on to the next key.

3.3.1. Sort Algorithms

Msort offers a choice of several algorithms for performing the actual sort: Insertion-
sort, Mergesort, Quicksort, and Shellsort, selected by the –a flag. (The “Quicksort”
used is actually a hybrid, with Insertionsort used for small subpartitions. This is
generally faster than a pure Quicksort.) For most users for most purposes the dif-
ferences among the four algorithms will be of no concern. The only difference in
the result of sorting is that between Insertionsort and Mergesort, which are stable
algorithms, and Quicksort and Shellsort, which are unstable. A stable sorting algo-
rithm is one that preserves the original order of two records whenever they compare
equal. An unstable sorting algorithm may reorder records that compare equal. For
example, suppose that the input consists of:

smith
Smith
Saiki
Smyth

and that we sort this input without regard to case. Two outputs will satisfy the
ordering criteria:

Version 8.42 MSORT 7 October 2007

– 9 –

Saiki
smith
Smith
Smyth

and

Saiki
Smith
smith
Smyth

An unstable sort algorithm could produce either output. A stable algorithm is
guaranteed to produce the first output since it preserves the original order of the
two items, smith and Smith, that compare as equal.

Most of the time it makes no difference whether the sort algorithm is stable or
unstable, but in some circumstances stability is desirable. If you require stability,
choose Mergesort or Insertionsort. Otherwise, the algorithms differ in their speed for
particular types of input data. Mergesort and Quicksort are generally faster than
Shellsort and Insertionsort for larger numbers of records. However, Insertionsort
and Shellsort tend to be faster if the input data is already in order or very close
to it. Similarly, Insertionsort and Shellsort tend to be faster if the input data is
in reverse order or close to it. Mergesort has better worst case performance than
Quicksort, but in many cases Mergesort will be faster than Quicksort.

3.3.2. Comparison Types

Nine types of comparison are available, selected using the –c option. In addition to
the usual numeric and lexicographic comparisons, a hybrid comparison is provided.
Specialized comparisons are provided for angles, dates, times, and ISO 8601 date-
time combinations. Comparison by string length (measured in Unicode characters)
is available. Finally, comparisons may be random, which allows for unsorting.

The sense of the comparison for a particular key may be inverted by giving the
–i option. The –I option, with which key-specific –i options may be combined,
inverts the overall order of the output. Giving the –I option is equivalent to first
performing the sort and then reversing the output item-by-item.

3.3.2.1. Numeric Comparison

Msort can sort on the numerical value of a field rather than on its textual value.
The numerical value will be used if the argument of the –c option begins with n or
N . If the argument to the –c option is x or X , the key field will be interpreted as a
hexadecimal integer.

Msort stores numeric keys internally as double precision floating point numbers.
The conversion is done using the standard C library function strtod(3), which under-
stands both standard and scientific notation, decimal and hexadecimal. The special
values INFINITY and NAN are also supported. For details, see the documentation
for strtod(3). The interpretation of strings as numbers is governed by the locale

Version 8.42 MSORT 7 October 2007

– 10 –

setting. Numbers containing delimiters such as commas can be sorted numerically
by using msort ’s exclusion facilities to remove the delimiters.

Whitespace (as defined for the current locale) is stripped from numeric keys
before they are converted from string to numeric form. This is done in order to
prevent msort from thinking that the field does not consist entirely of numbers and
reporting an error when neither records nor fields consist of of lines.

By default numbers are assumed to be in the usual Indo-Arabic numerals with
the standard extensions for hexadecimal. Integers in most other number systems
are also supported. The -y flag is used to specify the writing system for a key. Its
argument may be any of the various writing systems supported, e.g. “Chinese” or
“Gurmukhi”, or one of two special values: “all” and “any”. The value “all” means
that any supported writing system may be used. Different records may make use
of different writing systems. msort will detect the writing system used by each key.
The value “any” means that any supported writing system may be used but that
all records must use the same one. msort will determine the writing system on the
basis of the first record and assume that subsequent records use the same writing
system for that field.

A list of the supported number systems may be obtained by calling msort with the
–N option. The number systems supported are:

Arabic
Arabic Alphabetic
Armenian Alphabetic
Balinese
Bengali
Burmese
Chinese (including simplified, financial, and Suzhou forms)
Cyrillic Alphabetic
Devanagari
Egyptian
Ethiopic (Amharic and Tigrinya)
Glagolitic Alphabetic
Greek Alphabetic
Gujarati
Gurmukhi (Panjabi)
Hebrew
Kannada
Khmer
Klingon
Lao
Limbu
Malayalam
Mongolian
New Tai Lue
Nko
Old Italic
Old Persian

Version 8.42 MSORT 7 October 2007

– 11 –

Oriya
Osmanya
Perso-Arabic
Phoenician
Roman numerals
Sinhala
Tamil
Telugu
Tengwar
Thai
Tibetan
Western

3.3.2.2. Numeric String Comparison

Numeric string comparison is an alternative way of handling numbers. Instead of
converting numbers to floating point and comparing numerical values, the numbers
are stored as strings and compared using a special form of string comparison that
produces the same result as numeric comparison. The advantage of numeric string
comparison is that there is no loss of precision due to conversion to floating point
representation. If your data contains very large or very small values, or values that
differ by minute amounts, it is advisable to use numeric string comparison.

Numeric string comparison is slightly slower than numeric comparison and uses
somewhat more memory. It is also more limited in the form of the numbers for which
it can be used. The same range of number systems is available as for numeric keys.
However, when the number system is Western, acceptable numbers must match the
following POSIX regular expression: (+|−)?[0123456789]∗ .?[0123456789]∗. That is,
they must be decimal numbers in standard notation with an optional leading sign.
Scientific notation is not understood, nor are bases other than 10. Hexadecimal
integers with leading 0x may be used with numeric strings by specifying the number
system as Hexadecimal .

3.3.2.3. Lexicographic Comparison

Lexicographic comparison is done if the argument of the –c option begins with l or
L.

Lexicographic comparisons are based on a sort order that is normally read from
a file specified by the –s command line option. If the argument is not a filename it
is taken to be a locale name. In that case, the collation rules for the specified locale
are used. As a special case, instead of a filename or locale name the argument to
the –s flag may be the word locale. In this case, the collation rules for the current
locale are used. If the -s flag is not used characters are ranked in accordance with
the numerical value of their Unicode codepoints.

If a sort order is specified but values are omitted, characters for which no rank is
specified will sort in Unicode order compared to each other but after all characters,
including multigraphs, for which a rank is specified.

Version 8.42 MSORT 7 October 2007

– 12 –

The order of the lines in the sort order file determines the sort order. Characters
appearing on an earlier line sort before those appearing on a subsequent line. For
example, if the sort order file consists of the lines:

a
b
c

a will sort before b which will sort before c.

Characters appearing on the same line, separated by separator characters, have
the same sort rank. For example, if we wish no distinction to be made, for purposes
of sorting, between upper-and lower-case letters, we would put them on the same
line:

a A
b B
c C

etc.

Sequences of characters are often used to represent single sounds, and in such
cases we often want to treat them as if they were single letters for purposes of
sorting. For example, in languages in which the digraph lh is used to represent the
voiceless lateral fricative, lh is often alphabetized as a single letter ordered after l ,
so that, for example, lho is ordered after lo, not before it as it would be if the l
and h were treated as separate letters and the usual order of the Roman alphabet
followed.

msort allows such multigraphs to be defined in the sort order file. Any characters
not separated by tabs are treated as a single letter. For example, to add lh to the
Roman alphabet as above the relevant portion of the sort order file would look like
this:

k
l
lh
m

Like ordinary letters, multigraphs may be assigned the same sort rank. To
continue the above example, if we wanted upper- and lower-case letters to have the
same sort rank, the relevant portion of the sort order file would look like this:

K k
L l
Lh lh
M m

msort imposes no limit on the length of multigraphs. The limit on the number
of multigraphs is set so high as to be unlikely to be of any practical importance.

Version 8.42 MSORT 7 October 2007

– 13 –

Notice that you may wish to define as multigraphs for sorting purposes sequences
of letters that are not intended to represent single sounds. For example, suppose
that you wish to sort a lexical database by part of speech. You might define a sort
order like this:

N Noun
V Verb
A Adjective Adj ADJ
ADV Adverb Adv
PP Postposition
INT Interjection

Notice how variants are placed on the same line so that they will not be distinguished
for purposes of sorting, and how words are treated as multigraphs.

Similarly, the multigraph facility can be used to sort records according to a
classification scheme having nothing to do with spelling or sound. For example,
dictionary entries tagged for semantic field can be sorted by semantic field. For
example, here is a fragment of the sort order for the topical index to a dictionary:

animals-land
animals-water
animals-domestic
animals-distant
animals-misc

Since every character in the sort order file counts, it is important to put into it
exactly what you mean to put into it. Do not include blank lines or comments.

Unless your character set is very unusual, it is recommended that you include the
space (blank) character explicitly in your sort order and that you rank it first. Doing
this has two advantages. First, it makes sure that items intended to contain spaces
will be sorted as they are usually desired to be. Second, it avoids problems with
unintended trailing spaces. It is easy to add unintended, invisible space characters
at the end of a line. If the space character is not ranked before the other characters,
this can result in incorrect orderings whose cause is mysterious. For example, the
word an should precede the word and . If, however, a space has inadvertently been
added to the end of an, and you have not specified that space should precede all
other characters, the default ranking will cause an to be ordered after and , and
since the space is invisible, it will be difficult to detect the cause of the problem.

In addition to ordinary single-byte characters msort recognizes backslash escapes
in the sort order file. These escapes may be used to specify characters not easily
entered by the user’s word-processor, or which are given a special interpretation in
the sort order file. For example, the tab and space characters that serve to separate
entries in the sort order file may be entered into the sort order by specifying them
as \011 and \040 since the ASCII codes for tab and space are octal 011 (decimal 9)
and octal 040 (decimal 32) respectively.

By default, a wide range of “whitespace” characters are treated as separators,
including space (0x0020), tab (0x0009), and the ideographic space (0x3000). It is
sometimes desirable to use other characters as separators. For example, if a unique

Version 8.42 MSORT 7 October 2007

– 14 –

ordering consisting of names is defined, it may be desirable to treat names with
components separated by spaces as multigraphs. In order to allow for this, you
would need to prevent spaces from being treated as separators. You can redefine
the separator characters by means of the -W flag. Its argument should be the name
of a file whose contents are the character or characters that you wish to use as
separators. This option must precede the -s flag for its key.

3.3.2.4. Hybrid Comparison

Hybrid comparison is like lexicographic comparison except for the fact that strings
of digits are treated as numbers. For example, the strings:

A13
A3
A235

will be sorted

A13
A235
A3

in ordinary lexicographic comparison, but

A3
A13
A235

in hybrid comparison.

The collation rules for the non-integer portions of the input are determined as
for lexicographic keys.

3.3.2.5. Comparison of Dates

msort will treat the key as a date if the argument of the –c option begins with d or
D . Dates consist of a numerical day specification (an integer ranging from 1 through
31), a numerical month specification (an integer ranging from 1 through 12), and a
numerical year specification (an integer), with the three components separated by
a designated separator, or of just year and day-of-year components separated by a
designated separator. Positive years are interpreted as years C.E. Dates B.C.E. may
be specified by making the year negative.

By default, the separators are slashes and the components are given in the order
year–month–day. The f option may be used to set the date format used. The
argument to this option should consist of the letters “y”, for year, “m”, for month,
and “d” for day in the desired order, separated by the desired separators. For
example, if the date 1999/1/3 is to be interpreted as January 3, 1999, the argument
would be y/m/d . If it is to be interpreted as March 1, 1999, the argument would
be y/d/m. If 12-3-1956 should be interpreted as December 3, 1956, the argument
should be m-d-y . Although in practice the two separators will usually be the same,

Version 8.42 MSORT 7 October 2007

– 15 –

msort allows them to be distinct. An argument of m;d,y would interpret a date of
12;3,1994 as December 3, 1994.

The default is the International Date Format, which is usual in Japan. It is
equivalent to an argument of y/m/d . The usual American format requires the
argument m/d/y . The format usual in most other western countries requires the
argument d/m/y .

The year, month, and day components may be integers in any supported number
system. The month component may also be a month name or abbreviation, specied
by the same means as independent month name keys.

3.3.2.6. Comparison of Times

msort will treat the key as a time if the argument of the –c option begins with t or
T .

Times must be of the form it HH:MM(.SS), or HH:MM:SS(.ss). Negative values,
hours outside the range 0-23, minutes outside the range 0-59, and seconds greater
than or equal to 60 are detected and reported as errors. The a.m./p.m notation is
not recognized: 24 hour “railroad time” is assumed.

Times may be followed by a timezone specification of the form defined by ISO
8601. Such a specification may consist of the letter ’Z’ (upper- or lower-case), in
which case the time is taken to be in Coordinated Universal Time (UTC), or it may
consist of an offset from UTC. An offset consists of a sign followed by a two-digit
hour, an optional colon, and an optional two-digit minute component, which we
may summarize as [+−]hh(:)(mm). A plus-sign indicates that the specified number
of hours and minutes must be subtracted from the time to convert it to UTC. A
minus-sign indicates that the specified number of hours and minutes must be added
to the time to convert it to UTC.

If no timezone specification is present, times are assumed to be in the local
timezone, that is to say, the time zone defined for the current process, and are
normalized to UTC. Note that this means that a time with no timezone specification
and a time with the ’Z’ specification are not the same, except in the special case
where the local time is UTC. The ’Z’ specification is, rather, equivalent to ’-00’ or
’+00’.

3.3.2.7. Comparison of ISO 8601 Date-Time

Combinations

msort will treat the key as a combined date and time in ISO 8601 format if the
argument of the –c option begins with i or I .

Such combined dates and times consist of a date in ISO8601 format, the upper
case letter T , and a time in international format. An ISO8601 date consists of a year
number followed by month number followed by day number, separated by optional
hyphens. A time in international format is a 24-hour time with hours preceding
minutes separated by an optional colon. Seconds optionally follow, separated from
minutes by a period. For example, 2005-04-25T14:11.33 represents 33 seconds past
2:11 p.m. on April 25th, 2005.

Version 8.42 MSORT 7 October 2007

– 16 –

Date-time combinations may be followed by a timezone specification as described
above. For example, 2007-08-25T14:11-08 represents 2:11 p.m. on August 25th,
2007 in Pacific Daylight Time, and is equivalent to 10:11 p.m. UTC.

3.3.2.8. Comparison of Month Names

If the argument to the –c option begins with m or M msort will treat the key as
the name of a month. If the –s option is also used with this key and its argument
is the name of a file, month names will be read from the file. The file should have
the same format as a sort order specification file. All entries on the same line will
be given the same sort rank. The sort rank will follow the order of the lines. This
approach permits the use of calendars with more than twelve months. It also allows
multiple abbreviations or names for the same month.

If the –s option is given and its argument is the name of a locale, the names
of the months and their abbreviations will be obtained from the system’s locale
information if the specified locale is available. The locale system only supports
calendars with twelve months and only allows for one name and one abbreviation
for each month. If the argument is current or locale, the current locale will be used.

If the –s option is not given for this key, the month names and abbreviations
will be obtained from the current locale.

If the system does not provide locale support and the month names are not
provided via the –s option with filename as argument, msort defaults to the English
month names and their standard three-letter abbreviations.

3.3.2.9. Comparison of Angles

If the argument of the –c option begins with a or A, msort will interpret the field
as an angle. The expected formats are: (-/+)DDD:MM:SS.sss and (-/+)DDD MM
SS.sss , where DDD is a degree value, MM is a minute value in the range [0,59], and
SS.sss is a fractional seconds value in the range [0,60). In the second format, the
components may be separated by any amount of whitespace. Angles whose absolute
value is greater than or equal to 360 are replaced by their residue mod 360. Negative
angles are converted to the corresponding positive angle by subtracting them from
360.

3.3.2.10. Comparison of Domain Names

When domain names are sorted lexicographically the result is often not what is de-
sired because the more specific components precede the more general. For example,
an ordinary lexicographic sort of the domain names:

www.sabi.co.uk
www.sami.co.uk
www.fsf.org
www.gnu.org
directory.fsf.org
ydli.org
freshmeat.net

Version 8.42 MSORT 7 October 2007

– 17 –

results in this ordering:

directory.fsf.org
freshmeat.net
www.fsf.org
www.gnu.org
www.sabi.co.uk
www.sami.co.uk
ydli.org

when for many purposes we would prefer something like this:

freshmeat.net
directory.fsf.org
www.fsf.org
www.gnu.org
ydli.org
www.sabi.co.uk
www.sami.co.uk

where subdomains of the same higher-level domain are grouped together. This type
of ordering is obtained if the domain name is parsed into its components and for
purposes of comparison the order of the components is reversed. In other words,
the domain names above are sorted as if they were:

uk.co.sabi.www
uk.co.sami.www
org.fsf.www
org.gnu.www
org.fsf.directory
org.ydli
net.freshmeat

This type of comparison is used if the argument of the –c option begins with D . In
addition to pure domain names, it also works for email addresses, in which the local
component (the part preceding the @-sign) is treated in essentially the same way as
the first component of a domain name. Except for the inversion of the component
order, domain name comparison is lexicographic and other options compatible with
lexicographic comparison may be used with domain name comparison.

3.3.2.11. Comparison of Sizes

If the argument of the –c option begins with s or S , msort will sort on the size of the
key. The size is the length of the key in characters, after preprocessing, including
multigraph compression and deletion of excluded characters. Keys compared for
size are treated exactly like lexicographic keys except that when comparisons are
finally done on them, the comparison is a numeric comparison of the length of the
key rather than a lexicographic comparison of the key as a string.

If you want multigraphs to be treated as single characters for the purpose of
size comparison (as you might if sorting by word length in phonemes, for example),

Version 8.42 MSORT 7 October 2007

– 18 –

provide a sort order definition for the key just as you would when sorting lexico-
graphically, using the -s flag. The sort order will be ignored, but the multigraph
definitions will be used.

3.3.2.12. Random Comparison

This option is used for randomizing data, not actually for sorting it. Its effect is that,
each time two records are compared on the specified key, the result of the comparison
is determined by a random number generator rather than by the contents of the key
fields. The records will be reported as comparing less-than, equal, or greater-than
with equal probability.

The random number generator is reseeded each time msort is run using the
current time as the seed. This means that different runs on the same data with the
same parameters will produce different orderings.

3.3.3. Case Sensitivity

Lexicographic, hybrid, and string length comparisons are by default case-sensitive,
meaning that characters differing only in case are treated as distinct. Comparisons
may be made insensitive to case in two ways. First, upper- and lower-case characters
may be assigned the same rank in the sort order specification. This is useful if for
some reason it is desired to ignore case distinctions on a character-by-character basis.
If, however, it is desired to ignore case distinctions in general, the case-folding option
-C will be found less burdensome.

The case-folding option maps characters to a canonical representation that elim-
inates case distinctions. For ASCII characters, this mapping consists of downcasing,
that is, replacing upper-case characters with their lower-case equivalents. Unicode
case-folding is more complex. A full explanation may be found in version 4.0 or later
of the Unicode standard or at: http://www.unicode.org/reports/tr21/tr21-5.html.

Msort implements full Unicode case-folding, meaning that case-folding is per-
formed for all characters that make case distinctions, even if the folded equivalent
of a character consists of multiple characters. This is why case-folding may affect
string length comparison. For example, the upper-case equivalent of the German
character eszet “sharp s” U+00DF is the sequence SS . If case-folding is used, each
token of eszet contributes two characters, whereas if case-folding is not used, each
contributes only one character.

By default the case-folding used is appropriate for languages other than certain
Turkic languages. The -z option causes two additional mappings to be performed.
Turkic case folding is appropriate for certain Turkic languages written in Roman
letters, in particular Turkish and Azerbaijani. It maps U+0049 (upper case I) to
U+0131 (lower case dotless I) and U+0130 (upper case I with dot) to U+0069 (lower
case I).

3.4. Writing Out the Sorted Records

Once msort has sorted the records using the keys it has extracted, it writes out the
records in the sorted order. If the command line option –I is given, it will write them

Version 8.42 MSORT 7 October 2007

– 19 –

out in reverse order. The effect of this option is the same as that of the key-specific
–i option except, of course, that it is global. Giving both the –i option and the –I
option for a sort on a single key therefore has no effect; the two options cancel each
other out.

On the other hand, using these two options is not the same as inverting the sort
order, which can be done by using a sort order specification file. For example, if you
put lines like:

z
y
x
w
. . .

into a sort order file, the effect is to invert the sort ranking of individual letters.
For example, z will now sort before y instead of after. Reranking individual letters
in this way does not affect the rule that nothing precedes something. Consider, for
example, the following data, which are in standard alphabetical order:

bad
badger
bag

If we use the –i option:

msort –l -w –i

we obtain the following, in which the order is strictly reversed:

bag
badger
bad

Using the –I option would have the same effect since we have only one key, and
using both will give us the original order. If, however, we put the inverted sort
order beginning with z and ending with a in a file called rev.ord and make this the
sort order for our single key thus:

msort -l -w -s rev.ord

we obtain the following output:

bag
bad
badger

The reason is that inverting the sort order causes g to sort before d , but bad still
precedes badger because it is a prefix.

Version 8.42 MSORT 7 October 2007

– 20 –

4. Exclusions

Sometimes it is desirable to exclude certain characters in the key field from consider-
ation in sorting. For example, a leading hyphen, used to indicate that a morpheme
must be preceded by a prefix, will generally be ignored so that bound and unbound
forms will sort together. Similarly, if numbers contain commas or other delimiters,
which most functions for converting textual representations of numbers to binary
do not accomodate, they can be sorted correctly by first stripping the delimiters.

In order to accomodate this need, msort provides an exclusion facility. For each
key, the user may specify a file, using the –x option, containing a list of characters to
ignore when sorting. In order to facilitate the use of exclusions when doing simple,
one-shot sorts, exclusions may also be specified directly on the command line, using
the –X option.

Typical exclusion facilities do not meet the full range of needs, since we typically
do not wish to ignore a character completely. To see why a simple exclusion facility,
one that allows certain characters to be ignored everywhere they occur, will not
suffice, consider the situations in which we may wish to ignore characters. First,
we often want to specify exclusion only in certain circumstances. For example, we
may want to consider word-internal hyphens but to ignore them at the beginning of
a stem, where they may be used to indicate that the stem must be preceded by a
prefix.

Second, we may not really wish to ignore a character entirely but rather to treat
it as white space. For example, if we want to treat hyphenated words as if the
hyphen were not there, so that word-internal and wordinternal are of the same sort
order, exclusion of hyphens will suffice, but we may wish to treat such hyphens as
spaces, so that word-internal has the same sort order as word internal. In this case
simple exclusion will not work, but replacement of word-internal hyphens will, as
will specification of hyphen and space as having the same rank in the sort order.

Consequently, the most general aproach to character exclusion is to use another
program to create a new key field, attach this stripped key field to each entry in
your database, and specify this field as the sort key.

For example, if you wish to ignore leading hyphens, you would convert an entry
like this:

P:-gan
G:arm

into one like this:

P:-gan
G:arm
K:gan

and specify the K: field as the sort key.

However, since the most typical situation is one in which we wish to distinguish
only between initial, medial, and final position, and since using another program like
AWK can be time-consuming, msort provides a simple context-sensitive exclusion

Version 8.42 MSORT 7 October 2007

– 21 –

facility. You may specify that a character is to be ignored in any combination of
field-initial, field-medial, or field-final position.

The exclusion file consists of one line per character excluded, with two fields,
separated by whitespace, on each line. The first field contains a specification of
the character to exclude, either as a single character or as a backslash escape. The
second field consists of one to three of the letters “i”, “f”, and “m” (upper- or lower-
case, in any order), indicating that the character is to be ignored in initial, final, or
medial position. For example, the exclusion file:

- if
’ i

will cause hyphens to be ignored in initial and final position, and apostrophes to be
ignored only in initial position.

Where the material that you wish to ignore is always at the beginning of a
tagged field, there is a simpler alternative, namely treating it as part of the tag and
making use of the fact that, using regular expressions, you may specify tags that are
disjunctive or contain optional material. For example, suppose that you wish to sort
on the field with tag ”P:” and that you wish to ignore leading hyphens. You can
do this by defining the tag as “P:–|P:”, that is, as the regular expression consisting
of “P:–” or “P:”. Whenever a leading hyphen is encountered it will be treated as
part of the tag and thereby stripped from the key proper. When there is no leading
hyphen, the second disjunct “P:” will match the tag specification. An alternative in
this case is to specify the tag as “P:–?”, where the question mark makes the hyphen
optional. If a field begins with “P:–”, the hyphen will be treated as part of the tag
and so effectively stripped from the content of the field. A field beginning with “P:”
not followed by a hyphen will also be recognized as the tag.

It is often not desirable to exclude a character completely. For example, if we
ignore a leading hyphen so as to sort on the first regular character, forms with
and without leading hyphens may be interspersed (depending on their order in the
input). If the input contains two tokens of ba and two of -ba, they may end up
ordered:

ba
-ba
ba
-ba

If, instead, we want the forms with leading hyphens to be grouped together, like
this:

ba
ba
-ba
-ba

we must take into account the hyphen. To obtain this effect, use the same key field
twice, in the primary key excluding leading hyphens, in the secondary key, including

Version 8.42 MSORT 7 October 2007

– 22 –

them, and defining the sort order so that they follow the alphabetic characters. On
the first key, the forms with and without leading hyphens will tie. The tie will be
broken on the second key, and the forms with hyphens will be made to follow those
without.

When exclusions are specified directly on the command line using the –X option,
the characters listed are excluded in all positions. If you wish to make the exclusion
context-sensitive, you must use the –x option instead.

If a key is present but becomes empty as a result of exclusions, it is treated just
as if the field had been missing from the outset.

5. Character Simplifications

Because it is often desired to treat “fancy” characters as equivalent to their
plain counterparts, several transformations of large groups of characters are offered.
These are specified by the command-line option –T , which takes as argument a
sequence of any one or more of the letters d , e, and s.

The argument d specifies that diacritics are to be stripped. Separately encoded
combining diacritics such as U+0301 COMBINING ACUTE ACCENT are removed.
Characters with diacritics represented bysingle codepoints are replaced with the
corresponding ASCII character without the diacritics, if there is one. For example,
U+00E9 LATIN SMALL LETTER E WITH ACUTE is replaced by U+0065 LATIN
SMALL LETTER E.

The argument e specifies that enclosed characters, that is, characters within cir-
cles or parentheses, are to be replaced with the corresponding plain ASCII character
if there is one. for example, U+24A0 PARENTHESIZED LATIN SMALL LETTER
E is replaced by U+0065 LATIN SMALL LETTER E.

The argument s specifies that characters in special styles are to be replaced with
the corresponding plain ASCII character if there is one. The special styles replaced
include: the small capitals (e.g. U+1D04), script forms (e.g. U+212C), black letter
forms (e.g. U+212D), Hebrew presentation forms (e.g. U+FB1D), Arabic pre-
sentation forms (e.g. U+FE81), fullwidth forms (e.g. U+FF01), halfwidth forms
(e.g. U+FF7B), and the mathematical alphanumeric symbols (e.g. U+1D400). For
example, U+1D07 LATIN LETTER SMALL CAPITAL E and U+FF45 FULL-
WIDTH LATIN SMALL LETTER E are both replaced by U+0065 LATIN SMALL
LETTER E.

6. Substitutions

The substitution mechanism allows you to define more-or-less arbitrary trans-
formations of keys. Each set of substitutions is specific to a particular key. Each
individual substitution consists of two parts: a regular expression and a fixed string.
Each portion of the original key that matches the regular expression is replaced by
the fixed string. In the simplest case a regular expression is itself a fixed string, so

Version 8.42 MSORT 7 October 2007

– 23 –

if you are not familiar with regular expressions you can still use this mechanism to
replace one fixed string with another. The regular expression notation is the same
as that used for matching tags. A link to a description of the notation will be found
on the Help menu.

A substitution file contains one substitution rule per line. Each line consists of
two fields separated by a tab. The first field is the regular expression; the second is
the string to be substituted for it. If the first character of a line is a crosshatch, the
line is treated as a comment and ignored.

Substitution has several uses. It provides a way to handle cases in which cer-
tain components of names are alphabetized as if they were written differently. For
example, in English the prefix Mc is supposed to sort as if it were spelled Mac (as
it sometimes is). “McArthur” should precede “MacCawley”, as if it were spelled
“MacArthur”. Similarly, it can be used to disregard components of names that are
supposed to be ignored in alphabetization, such as “de” and “van”.

This device can also be used to handle the rare cases in which a character is
supposed to sort as if it were a sequence of characters. An example is the German
letter 0x00DF, “eszet”, which is treated as if it were “ss” for purposes of sorting.

7. Overview of the Sorting Process

The overall process of sorting may usefully be schematized as follows:

Version 8.42 MSORT 7 October 2007

– 24 –

read configuration

read data to sort

parse into records

parse records into fields

identify and extract keys

mark missing optional keys

convert dates and times
to numeric

perform substitutions

exclude exclusions

(fold case/simplify)

transform multigraphs

(reverse key)
(length

to numeric)

sort

generate output

Key Transformations

The order of key transformations is as shown in the diagram. Substitutions are
performed first, then exclusions, then case-folding, then multigraph mapping and
finally key reversal.

Version 8.42 MSORT 7 October 2007

– 25 –

8. Backslash Escapes

The backslash escapes recognized by msort are as follows. A backslash followed by
one of the digits 0-3 followed by two of the digits in the range 0-7 is treated as an
octal number in the range 0-377 (0-255 decimal). The escapes \n for newline, \t
for tab, and \ space for space are also recognized. A sequence of two backslashes is
interpreted as a single backlash. Any other sequence beginning with a backslash is
treated literally. Examples:

\ t a tab
\\ a backslash
\\\\ two backslashes
\\\t a backslash followed by a tab
\a a backslash followed by an “a”
\n a newline
\011 octal 011 (decimal 9), the ASCII code for a tab
\411 the four characters backslash, “4”, “1”, “1”.
\\\011 a backslash followed by a tab

Take care to understand that this description of backslash escapes is in terms of what
msort is passed by the operating system. If the backslash character has special
meaning to your operating system or command interpreter, it may be necessary
to quote backslashes in order to present the desired input to msort . On a UNIX
system, you can put the argument within double quotes to prevent the shell from
interpreting the backslash.

9. The Command Line

There are two types of command line options; some apply to a particular key;
others are global. You will probably find it less confusing to group together options
pertaining to a particular key, but msort does not require you to do this; global
options may be interspersed among key-specific options.

msort interprets its command line from left to right. Whenever it encounters
one of the two options that specify keys, namely –n and –t , it terminates processing
of the previous key, if any, and begins constructing the specification for a new key.
All key-specific options are interpreted as pertaining to the current key.

For example, suppose that the command line options are:

–n 3 –l –c n –n 1 –d ; –c l

This tells msort to sort on two keys. The primary key will the third field in the
record. The secondary key will be the first field in the record. The primary key
is numeric. The second is lexicographic. Records consist of single lines, with fields
delimited by semi-colons.

msort knows that specification that sort is to be lexicographic applies to the
secondary key because it follows the field specifier for that key and no other field
specifier intervenes. In effect, msort parses the command line like this:

Version 8.42 MSORT 7 October 2007

– 26 –

[–n 3 –l –c n] [–n 1 –d ; –c l]

Any key specific-options within a group apply to that key. As a result, global options
may be placed anywhere, but key-specific options must be occur within the domain
of their field-specifier.

By default, input is read from the standard input and output is written to the
standard output. The input file may be specified either by using the -1 flag or by
mentioning it on the command line after all option flags. The output file may be
specified by using the -2 flag. If the input and output files are the same, the input
file will be overwritten on successful completion of the sort.

10. Examples

Here are a number of examples of the use of msort with a variety of inputs.

10.1. Example 1

Records consist of single lines with fields delimited by whitespace. A typical database
fragment looks like this:

datsan crow N
khuni word N

To sort on the second field we would give the following command:

msort –l –n 2 db.txt

No specification of the field delimiter is necessary since whitespace is the default
when records consist of single lines.

10.2. Example 2

Records consist of single lines with fields delimited by whitespace. A typical database
fragment looks like this:

datsan 21
khuni 18

To sort in numerical order on the second field, we would give the following command:

msort –l –n 2 –c n db.txt

10.3. Example 3

Records consist of single lines with fields delimited by colons. A typical database
fragment looks like this:

Version 8.42 MSORT 7 October 2007

– 27 –

datsan:crow:N
khuni:word:N

To sort on the second field we would give the following command:

msort –l –n 2 –d : db.txt

10.4. Example 4

Records consist of single lines with fields delimited by whitespace. Each field is
marked by a tag. A typical database fragment looks like this:

P:datsan G:crow C:N
P:khuni G:word C:N

To sort on the field with tag P: we would give the following command:

msort –l –t P: db.txt

10.5. Example 5

Records consist of blocks of text with each field a separate line. A typical database
fragment looks like this:

P:datsan
G:crow
C:N

P:khuni
G:word
C:N

To sort on the field with tag P: we would give the following command:

msort –b –t P: db.txt

10.6. Example 6 — Shoebox Format

The Summer Institute of Linguistics uses a format in its Shoebox program, its suc-
cessor Toolbox , and other software in which records consist of blocks of text. Each
field begins with a tag consisting of a backslash (\) immediately followed by a field
name of up to four characters, separated by a space from the content of the field.
A field may consist of more than one line as newline characters do not serve as
delimiters of fields. A typical database fragment looks like this:

\le datsan
\df crow

Version 8.42 MSORT 7 October 2007

– 28 –

\ps N

\le khuni
\df word
\ps N

From msort ’s perspective the fields of SIL-format databases are terminated by
the backslash that begins the tag. The field name and the space that separates it
from the content of the field must be treated as the tag. To sort on the field with
field name le, we would therefore use the following command on a UNIX system:

msort –b –t “le ” –d “\” db.txt

The quotes around the tag are necessary to include the space. Recall that the
space is, from msort ’s point of view, part of the tag.

If the field label is separated from the content of the field by arbitrary amounts
of whitespace, the regular expression facility allows this to be handled as follows:

msort –b –t “le[\040\011]+” –d “\” db.txt

Here the brackets after “le” contain the octal character codes for space and tab.
The + causes the regular expression to match one or more tokens of space or tab.

10.7. Example 7 — IP Addresses

IP addresses in the usual decimal dotted quad format, e.g. 158.130.16.184, do not
sort properly using standard sorting techniques because the components are allowed
to vary in length. For example, 158.130.16.184 should sort after 158.30.16.184 but
on a lexicographic sort will sort before it because 3 precedes 1. However, they sort
correctly using a hybrid sort as the periods have the effect of breaking the address
into separate

11. Logging

msort writes a record of its activity into a log file called msort.log . The information
written is information useful when something goes wrong. In particular, ill-formed
records are copied to the log file to make it easier for you to find them and repair
them. The result of running msort with command line options that produce infor-
mation about msort is also copied to the log file. The file is overwritten each time
msort is run.

12. Checking Whether the Input is Already Sorted

It is sometimes only necessary to find out whether the input is already sorted. This
can of course be done by comparing the output of a sort with the input, but it is
considerably more efficient to use the option provided by msort for this purpose.
It avoids creating a copy of the input file as well as the i/o necessary to create

Version 8.42 MSORT 7 October 2007

– 29 –

it, reduces the memory consumed during the run, and speeds up the run since it
is not necessary to allocate memory to store the records and the internal pointer
comparison that msort performs is much faster than any comparison of the data
itself.

The –Q flag is used to request a check of whether the input is already in order.
If it is, msort returns an exit status of 0. If it is not, msort returns an exit status
of 11. In addition, if the –q option is not used, a message is printed stating whether
or not the input is already in order.

13. Speed

The time required for a sort depends on a variety of factors: the speed of the
computer’s processor, the size of the file, the number of records, storage media, the
number and length of the keys, the complexity of the regular expressions defining
tags, the number of multigraphs defined, and whether the sort is lexical or numerical.

In most cases almost all (over 99%) of msort ’s run time is devoted to processing
records on input, that is, to parsing them and extracting keys. The actual sort takes
a small fraction of the time.

The only situation in which the actual sort takes a large fraction of the time
is when there are many keys that compare the same. In this case, providing an
additional key on which to break ties is likely to speed up the sort.

Contrary to naive intuition, using more sort keys does not necessarily add to the
time required for the sort. In fact, in some cases it can cut it considerably. When
there are many records that have the same sort rank, the sort takes a long time
because a lot of comparisons are made. In such a situation, adding another key that
will serve as a tie-braker reduces the number of comparisons made.

For example, sorting the list of 45,143 words found in /usr/share/dict/words
on most Unix systems by word length took 84 seconds on my laptop and required
119,265,582 comparisons. This is because there are only 22 different word lengths,
so thousands of words have the same length and compare as equal. When I added
a second key, namely the same field compared lexicographically, the time dropped
to less than one second because only 949,521 comparisons were made. Adding the
second key reduced the number of comparisons by two orders of magnitude.

14. Character Set and Encoding

All input and output is in UTF-8 Unicode. Field and record separators, tag regular
expressions, exclusions, and sort order specifications also expect UTF-8 Unicode.
Case-folding is implemented in its full Unicode form.

By default, input is normalized to Normalization Form C. The option is provided
of using Normalization Form D instead or of disabling normalization.

Since the first 128 codepoints in Unicode are identical to ASCII, ASCII input will
be treated just as in previous versions of msort . However, this version differs from

Version 8.42 MSORT 7 October 2007

– 30 –

versions up to version 7 in that input in single-byte encodings using codepoints
above 0x7F (127), such as the various ISO-8859 encodings (Latin-1 etc.) are no
longer acceptable as they conflict with UTF-8 Unicode. The great majority of such
encodings can readily be converted to Unicode.

If input is known to be restricted to the Basic Multilingual Plane (Plane 0), that
is, if no character code exceeds 0xFFFF, msort may be informed of this by means of
the -B command line option. This permits a significant reduction in memory usage.
Almost all of the symbols of writing systems in normal use are located within the
BMP. Ranges beyond the BMP are allocated to ancient and exotic writing systems
and various kinds of special symbols.

15. Limits

msort imposes the following limits. These may also be obtained by giving the
command line option –L.

maximum length of numeric key 256
number of multigraphs per key

Default 130,668
BMP only 6,400
Private Use areas reserved 2,048

16. Defaults

These are the default values of parameters that may be set via command line options.
These values may also be obtained by giving the command line option –D.

Field terminator characters
record = line whitespace
record = block newline

Key specification whole record
Initial maximum number of records 8192
Record type double-newline terminated block
Sense of sort forward
Unicode normalization NFC

The phrase “initial maximum number of records” requires some explanation. msort
imposes no intrinsic limit on the number of records it can handle; the only real limit
is available memory. However, it allocates space for a certain number of records and
then allocates more as necessary. The initial value used is the “initial maximum”.
It has the default value shown above and may be set from the command line using
the –M option. msort increases the maximum number of records by 50% each time
it finds that it has run out. This means that the time taken for storage allocation
and the sometimes necessary relocation of data in memory will be larger if you use

Version 8.42 MSORT 7 October 2007

– 31 –

a small initial maximum. On the other hand, using a large initial maximum and
thereby a large increment may cause msort to allocate more storage than it really
needs, conceivably using up memory needed for other purposes. If you know the
approximate number of records in your database, the best strategy is to set the
initial maximum a little bit larger than your estimate. If you have little idea how
many records there are in a new database and want to maximize the chance of fitting
into available memory, choose a small initial maximum and hence a small increment.
msort will then fit the storage fairly closely to that actually required, at the expense
of more time for repeated expansion of the record list. Most users should never need
to pay attention to this option. It is provided to allow fine-tuning in special cases.

17. Exit Status

msort returns the following status codes:

0 success
1 error opening file
2 input/output error
3 provided information and exited without sorting
4 limit exceeded
5 invalid command line option
6 invalid argument to command line option
7 ran out of memory
8 ill-formed record encountered
9 other error
11 input not already sorted

If msort is used with the -Q option to determine whether the input is already
sorted, the status code is 0 if the input is already sorted, 11 if it is not already
sorted.

Version 8.42 MSORT 7 October 2007

– 32 –

18. Summary of Command Line Options

General:
–a,– –algorithm 〈sort algorithm〉 I(nsertionsort), M(ergesort)

Q(uicksort), S(hellsort)

–b,– –block A record is terminated by 2+ end-of-line characters.
–l,– –line A record consists of a single line.
–r,– –record–separator 〈 separator〉 A record is terminated by separator.
–O,– –fixed–size–record–size 〈 bytes〉 A record consists of the specified number of bytes.
–d,– –field–separators 〈character〉+ Fields are delimited by the named character(s).

–n,– –position 〈field number〉 Sort on the specified field (counting from one).
–t,– –tag 〈tag regexp〉 Sort on the field with the specified tag.
–w,– –whole–record Sort on the entire text of the record.

–M,– –initial–maximum–records 〈records〉 Set initial maximum number of records.
–m,– –line–end–carriage–return In the input data end-of-line is marked by CR (0x000D).

–I,– –invert–globally Invert sense of comparisons globally.
–Q,– –check–only Check whether input is already sorted
–j,– –suppress–log Supress generation of the log file
–1,– –in 〈input file nane〉 Read input from the specified file
–2,– –out 〈output file nane〉 Write output into the specified file
–q,– –quiet Be quiet — do not chat while working.
–u,– –unicode–normalization 〈c|d|n〉 Select Unicode normalization mode

c Normalization Form C
d Normalization Form D
n no normalization

–D,– –defaults List defaults.
–F,– –general–options List general command line options.
–G,– –gnu-equivalences List msort equivalents for GNU sort command line options.
–H,– –informational–options List informational command line options.
–K,– –key–specific–options List key-specific command line options.
–L,– –limits List limits.

[These two options must precede the first -s option.]
–B,– –BMP The input contains no characters beyond Plane 0
–p,– –reserve–private–use–area Do not use the Private Use areas internally.

Version 8.42 MSORT 7 October 2007

– 33 –

Key Specific:

–C,– –fold–case Fold case
–c,– –comparison–type 〈key type〉 l(exicographic), n(umeric), N(umeric string),

h(ybrid), s(tring length) i(so8601 date/time),
t(ime), D(omain name), d(ate), m(onth),
a(ngle), r(andom)

–y,–==number–system 〈number system〉 Number system for numeric key
–f,– –date–format 〈date format〉 Permutation of ymd with separators (e.g. y/m/d)
–i,– –invert–locally Invert sense of comparisons on key.
–o,– –optional 〈comparison〉 Optional key: compare as (<, =, >) to

present key if absent
–R,– –reverse–key Reverse characters in key.
–s,– –sort–order 〈file name〉 Read the sort order from the named file.
–T,– –transformations 〈(d)(e)(s)〉 Apply the specified character simplifications.

d strip diacritics
e convert enclosed characters to plain
s convert special styles to plain

–x,– –exclusion–file 〈file name〉 Read the exclusions from the named file.
–X,– –exclude–characters 〈characters〉 Exclude the specified characters.
–z,– –turkic–case–folding

19. Command Line Equivalences With GNU sort

For those familiar with GNU sort , here are some useful equivalences.
GNU sort msort
-c –check -Q –check-only
-f –ignore-case -C –fold-case
-g –general-numeric-sort -c n –comparison-type n
-M –month-sort -c m –comparison-type m
-n –numeric-sort -c N –comparison-type N
-r –reverse -i –invert-locally
-s –stable -a I –algorithm I

-a M –algorithm M
-t 〈fs〉 –field-separator 〈fs〉 -d 〈fs〉 –field-separators 〈fs〉
-z –zero-terminated -r \000 –record-separator \000

Running msort with the -G flag prints a list of equivalences.

20. Copyright and License

This program is copyrighted by William J. Poser. It is released under the terms of
the GNU General Public License. (http://www.gnu.org/licenses/gpl.txt).

Version 8.42 MSORT 7 October 2007

