
The PLplot Plotting Library

Programmer’s Reference Manual

Maurice J. LeBrun

Geoff Furnish
University of Texas at Austin
Institute for Fusion Studies

The PLplot Plotting LibraryProgrammer’s Reference Manual

by Maurice J. LeBrun and Geoff Furnish

Copyright ľ 1994 Geoffrey Furnish, Maurice LeBrun

Copyright ľ 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Alan W. Irwin

Copyright ľ 1999, 2000, 2001, 2002, 2003, 2004 Rafael Laboissière

Copyright ľ 2003 Joao Cardoso

Copyright ľ 2004 Andrew Roach

Copyright ľ 2004,2008 Andrew Ross

Copyright ľ 2004 Arjen Markus

Copyright ľ 2005 Thomas J. Duck

Copyright ľ 2008, 2009 Hezekiah M. Carty

The PLplot Plotting Library

Redistribution and use in source (XML DocBook) and “compiled” forms (HTML, PDF, PostScript, DVI, TeXinfo and so

forth) with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice, this list of conditions and the

following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to HTML, PDF, PostScript, and other

formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE PLPLOT PROJECT “AS IS” AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE PLPLOT PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Release version: 5.9.9

Release date: 2011-10-12

Table of Contents
I. Introduction ... xv

1. Introduction.. 1

The PLplot Plotting Library.. 1

Getting a Copy of the PLplot Package .. 2

Installing and Using the PLplot Library.. 2

Organization of this Manual .. 3

Copyrights.. 3

Additional Copyrights ... 4

Credits.. 4

II. Programming.. 1

2. Simple Use of PLplot.. 3

Plotting a Simple Graph .. 3

Initializing PLplot .. 3

Defining Plot Scales and Axes ... 3

Labeling the Graph .. 4

Drawing the Graph .. 5

Drawing Points .. 5

Drawing Lines or Curves ... 6

Writing Text on a Graph... 6

Area Fills... 7

More Complex Graphs .. 7

Finishing Up .. 7

In Case of Error ... 7

3. Advanced Use of PLplot ... 9

Command Line Arguments .. 9

Output Devices .. 10

Driver Functions.. 11

PLplot Metafiles and Plrender .. 12

Family File Output.. 15

Interactive Output Devices.. 15

Specifying the Output Device.. 16

Adding FreeType Library Support to Bitmap Drivers... 18

Write a call back function to plot a single pixel .. 19

Initialise FreeType... 19

Add A Command to redraw text (interactive drivers only) 21

Add Function Prototypes .. 21

Add Closing functions ... 22

View Surfaces, (Sub-)Pages, Viewports and Windows... 22

Defining the Viewport ... 22

Defining the Window... 24

Annotating the Viewport .. 24

Setting up a Standard Window ... 25

Setting Line Attributes .. 26

Setting the Area Fill Pattern ... 26

Setting Color .. 27

iii

Color Map0.. 27

Color Map1.. 27

Setting Character Attributes ... 30

Hershey fonts... 30

Unicode fonts... 31

FCI .. 33

Escape sequences in text ... 33

Character size adjustment ... 35

Three Dimensional Surface Plots ... 35

Contour and Shade Plots ... 37

Contour Plots from C.. 37

Shade Plots from C ... 37

Contour Plots from the Fortran 95 interface ... 37

Shade Plots from the Fortran 95 interface .. 38

Contour Plots from the Fortran 77 interface ... 38

Shade Plots from the Fortran 77 interface .. 39

4. Deploying programs that use PLplot.. 41

5. The PLplot Display Driver Family ... 45

The Xwin Driver (X-Windows).. 45

The Tk Driver.. 45

The AquaTerm Driver (Mac OS X) ... 45

The wxWidgets Driver (Linux, Mac OS X, Windows) .. 45

wxWidgets Driver Basics... 45

6. The PLplot Output Driver Family ... 47

The GD Driver... 47

The PDF Driver... 47

The PostScript Driver .. 47

The TrueType PostScript Driver ... 48

The LaTeX PostScript Driver .. 48

The SVG Driver ... 49

III. Language Bindings .. 51

7. Ada Language ... 53

Overview .. 53

The Bindings.. 53

Thin Binding ... 53

The Thick Bindings ... 54

Standard Thick Binding Using Enhanced Names.. 54

Thick Binding Using Traditional Names ... 55

The Examples .. 55

Obtaining the Software .. 55

Obtaining an Ada compiler ... 55

Download and install PLplot... 56

Download the Ada bindings to PLplot .. 56

How to use the Ada bindings ... 56

Ada 95 versus Ada 2005 .. 56

GNAT versus non-GNAT .. 57

Sample command line project ... 57

iv

Unique Features of the Ada bindings ... 58

High-level features for simplified plotting.. 58

Foreground-background control .. 58

Draw_On_Black, Draw_On_White... 58

Simple Plotters ... 59

Multiplot_Pairs ... 59

Simple_Plot ... 59

Simple_Plot_Log_X... 59

Simple_Plot_Log_Y... 59

Simple_Plot_Log_XY .. 59

Simple_Plot_Pairs .. 59

Single_Plot .. 59

Simple_Contour... 59

Simple_Mesh_3D.. 59

Simple_Surface_3D... 59

Simple color map manipulations... 60

Integer Options Given Ada Names .. 60

One-offs ... 62

Parts That Retain a C Flavor.. 62

Map-drawing ... 63

Known Variances.. 63

Documentation .. 63

API.. 63

Compilation notes .. 63

Ada 95 Versus Ada 2005.. 63

GNAT Dependence.. 63

PLplot_Auxiliary.. 64

Notes for Apple Macintosh OS X users.. 64

Using Apple’s Xcode IDE.. 64

AquaTerm.. 64

X11 .. 64

GNAT for OS X .. 65

8. C Language... 67

9. A C++ Interface for PLplot ... 69

Motivation for the C++ Interface.. 69

Design of the PLplot C++ Interface.. 69

Stream/Object Identity ... 70

Namespace Management ... 70

Abstraction of Data Layout... 70

Collapsing the API .. 71

Specializing the PLplot C++ Interface.. 71

Status of the C++ Interface .. 72

10. Fortran 77 Language... 73

11. Fortran 95 Language... 77

12. OCaml Language .. 81

Overview .. 81

The Bindings.. 81

Core Binding ... 81

v

OCaml-specific variations to the core PLplot API .. 81

OCaml high level 2D plotting API.. 82

The Examples .. 82

Obtaining the Software .. 82

Obtaining the OCaml compiler ... 82

How to use the OCaml bindings .. 82

How to setup findlib for use with the OCaml bindings 83

Sample command line project (core API) ... 83

Sample command line project (OCaml-specific API) 84

Sample toplevel project ... 84

Known Issues ... 85

13. Using PLplot from Perl... 87

14. Using PLplot from Python ... 89

15. Using PLplot from Tcl .. 91

Motivation for the Tcl Interface to PLplot... 91

Overview of the Tcl Language Binding .. 92

The PLplot Tcl Matrix Extension.. 94

Using Tcl Matrices from Tcl .. 94

Using Tcl Matrices from C .. 96

Using Tcl Matrices from C++... 96

Extending the Tcl Matrix facility .. 97

Contouring and Shading from Tcl.. 98

Drawing a Contour Plot from Tcl ... 98

Drawing a Shaded Plot from Tcl ..100

Understanding the Performance Characteristics of Tcl ...100

16. Building an Extended WISH ...103

Introduction to Tcl..103

Motivation for Tcl ..103

Capabilities of Tcl ..103

Acquiring Tcl ..104

Introduction to Tk ..104

Introduction to [incr Tcl]...105

PLplot Extensions to Tcl ..106

Custom Extensions to Tcl ...106

WISH Construction ..107

WISH Linking ..108

WISH Programming...108

17. Embedding Plots in Graphical User Interfaces ..111

IV. Reference..113

18. Bibliography...115

References ...115

19. The Common API for PLplot ..117

pl_setcontlabelformat: Set format of numerical label for contours117

pl_setcontlabelparam: Set parameters of contour labelling other than format of

numerical label ...118

pladv: Advance the (sub-)page ..118

plarc: Draw a circular or elliptical arc..119

vi

plaxes: Draw a box with axes, etc. with arbitrary origin..119

plbin: Plot a histogram from binned data ..121

plbop: Begin a new page ...122

plbox: Draw a box with axes, etc ..122

plbox3: Draw a box with axes, etc, in 3-d...124

plcalc_world: Calculate world coordinates and corresponding window index from

relative device coordinates..126

plclear: Clear current (sub)page ..127

plcol0: Set color, map0...128

plcol1: Set color, map1...128

plcont: Contour plot ...128

plcpstrm: Copy state parameters from the reference stream to the current stream130

plend: End plotting session ...130

plend1: End plotting session for current stream..130

plenv0: Same as plenv but if in multiplot mode does not advance the subpage,

instead clears it. ...131

plenv: Set up standard window and draw box ..133

pleop: Eject current page ..135

plerrx: Draw x error bar...135

plerry: Draw y error bar...136

plfamadv: Advance to the next family file on the next new page136

plfill: Draw filled polygon...137

plfill3: Draw filled polygon in 3D ...137

plflush: Flushes the output stream ..138

plfont: Set character font ...138

plfontld: Load character font ...138

plgchr: Get character default height and current (scaled) height139

plgcol0: Returns 8-bit RGB values for given color from color map0139

plgcol0a: Returns 8-bit RGB values and double alpha value for given color from

color map0. ...140

plgcolbg: Returns the background color (cmap0[0]) by 8-bit RGB value140

plgcolbga: Returns the background color (cmap0[0]) by 8-bit RGB value and double

alpha value. ..141

plgcompression: Get the current device-compression setting141

plgdev: Get the current device (keyword) name ...141

plgdidev: Get parameters that define current device-space window142

plgdiori: Get plot orientation...142

plgdiplt: Get parameters that define current plot-space window...........................143

plgfam: Get family file parameters ..143

plgfci: Get FCI (font characterization integer) ..144

plgfnam: Get output file name...144

plgfont: Get family, style and weight of the current font144

plglevel: Get the (current) run level ..145

plgpage: Get page parameters ...145

plgra: Switch to graphics screen ...146

plgradient: Draw linear gradient inside polygon ..146

plgriddata: Grid data from irregularly sampled data ...147

plgspa: Get current subpage parameters...149

vii

plgstrm: Get current stream number...149

plgver: Get the current library version number ..149

plgvpd: Get viewport limits in normalized device coordinates150

plgvpw: Get viewport limits in world coordinates ...150

plgxax: Get x axis parameters...151

plgyax: Get y axis parameters...151

plgzax: Get z axis parameters ...152

plhist: Plot a histogram from unbinned data...152

plhlsrgb: Convert HLS color to RGB ...153

plimagefr: Plot a 2D matrix using color map1 ...154

plimage: Plot a 2D matrix using color map1 with automatic colour adjustment....155

plinit: Initialize PLplot..156

pljoin: Draw a line between two points..156

pllab: Simple routine to write labels ..156

pllegend: Plot legend using discretely annotated filled boxes, lines, and/or lines of

symbols...157

pllightsource: Sets the 3D position of the light source ..160

plline: Draw a line ...161

plline3: Draw a line in 3 space...161

pllsty: Select line style ...162

plmap: Plot continental outline in world coordinates...162

plmeridians: Plot latitude and longitude lines. ...163

plmesh: Plot surface mesh..164

plmeshc: Magnitude colored plot surface mesh with contour.165

plmkstrm: Creates a new stream and makes it the default166

plmtex: Write text relative to viewport boundaries...166

plmtex3: Write text relative to viewport boundaries in 3D plots.167

plot3d: Plot 3-d surface plot ...168

plot3dc: Magnitude colored plot surface with contour..169

plparseopts: Parse command-line arguments..170

plpat: Set area fill pattern ..171

plpath: Draw a line between two points, accounting for coordinate transforms.171

plpoin: Plot a glyph at the specified points ..172

plpoin3: Plot a glyph at the specified 3D points...172

plpoly3: Draw a polygon in 3 space ..173

plprec: Set precision in numeric labels ...174

plpsty: Select area fill pattern...174

plptex: Write text inside the viewport..175

plptex3: Write text inside the viewport of a 3D plot..176

plrandd: Random number generator returning a real random number in the range

[0,1]...177

plreplot: Replays contents of plot buffer to current device/file..............................177

plrgbhls: Convert RGB color to HLS ...177

plschr: Set character size ..178

plscmap0: Set color map0 colors by 8-bit RGB values...178

plscmap0a: Set color map0 colors by 8-bit RGB values and double alpha value.179

plscmap0n: Set number of colors in color map0 ...179

plscmap1: Set color map1 colors using 8-bit RGB values ..180

viii

plscmap1a: Set color map1 colors using 8-bit RGB values and double alpha values.180

plscmap1l: Set color map1 colors using a piece-wise linear relationship..................181

plscmap1la: Set color map1 colors using a piece-wise linear relationship182

plscmap1n: Set number of colors in color map1 ...183

plscol0: Set a given color from color map0 by 8 bit RGB value183

plscol0a: Set a given color from color map0 by 8 bit RGB value and double alpha

value. ..184

plscolbg: Set the background color by 8-bit RGB value...185

plscolbga: Set the background color by 8-bit RGB value and double alpha value. 185

plscolor: Used to globally turn color output on/off ...185

plscompression: Set device-compression level..186

plsdev: Set the device (keyword) name...186

plsdidev: Set parameters that define current device-space window187

plsdimap: Set up transformation from metafile coordinates187

plsdiori: Set plot orientation ...188

plsdiplt: Set parameters that define current plot-space window............................188

plsdiplz: Set parameters incrementally (zoom mode) that define current plot-space

window ...189

plseed: Set seed for internal random number generator..189

plsesc: Set the escape character for text strings...190

plsetopt: Set any command-line option ..190

plsfam: Set family file parameters ...191

plsfci: Set FCI (font characterization integer)...191

plsfnam: Set output file name..192

plsfont: Set family, style and weight of the current font ..192

plshades: Shade regions on the basis of value ...193

plshade: Shade individual region on the basis of value ...195

plshade1: Shade individual region on the basis of value..196

plslabelfunc: Assign a function to use for generating custom axis labels199

plsmaj: Set length of major ticks ..200

plsmem: Set the memory area to be plotted (RGB) ...200

plsmema: Set the memory area to be plotted (RGBA)...200

plsmin: Set length of minor ticks...201

plsori: Set orientation ..201

plspage: Set page parameters..202

plspal0: Set the colors for color table 0 from a cmap0 file202

plspal1: Set the colors for color table 1 from a cmap1 file203

plspause: Set the pause (on end-of-page) status ...203

plsstrm: Set current output stream...203

plssub: Set the number of subpages in x and y ..204

plssym: Set symbol size ...204

plstar: Initialization ...204

plstart: Initialization..205

plstransform: Set a global coordinate transform function206

plstring: Plot a glyph at the specified points...206

plstring3: Plot a glyph at the specified 3D points ...207

plstripa: Add a point to a stripchart ...207

plstripc: Create a 4-pen stripchart ..208

ix

plstripd: Deletes and releases memory used by a stripchart209

plstyl: Set line style ...210

plsurf3d: Plot shaded 3-d surface plot..210

plfsurf3d: Plot shaded 3-d surface plot ..211

plsvect: Set arrow style for vector plots ...213

plsvpa: Specify viewport in absolute coordinates..213

plsxax: Set x axis parameters ...214

plsyax: Set y axis parameters ...214

plsym: Plot a glyph at the specified points..215

plszax: Set z axis parameters..215

pltext: Switch to text screen ..216

pltimefmt: Set format for date / time labels ...216

plvasp: Specify viewport using aspect ratio only ..217

plvect: Vector plot ..217

plvpas: Specify viewport using coordinates and aspect ratio218

plvpor: Specify viewport using coordinates...218

plvsta: Select standard viewport ..219

plw3d: Set up window for 3-d plotting...219

plwid: Set pen width ...220

plwind: Specify world coordinates of viewport boundaries......................................221

plxormod: Enter or leave xor mode ..221

20. The Specialized C API for PLplot ...223

plabort: Error abort..223

plAlloc2dGrid: Allocate a block of memory for use as a 2-d grid of type PLFLT. .223

plClearOpts: Clear internal option table info structure...223

plexit: Error exit ..224

plFree2dGrid: Free the memory associated with a 2-d grid allocated using

plAlloc2dGrid. ..224

plGetCursor: Wait for graphics input event and translate to world coordinates.225

plgfile: Get output file handle...225

plMergeOpts: Merge use option table into internal info structure............................225

plMinMax2dGrid: Find the minimum and maximum of a 2d grid allocated using

plAlloc2dGrid. ..226

plOptUsage: Print usage and syntax message. ...226

plMergeOpts: Reset internal option table info structure. ...226

plsabort: Set abort handler ..227

plSetUsage: Set the strings used in usage and syntax messages.227

plsexit: Set exit handler...227

plsfile: Set output file handle..228

pltr0: Identity transformation for grid to world mapping228

pltr1: Linear interpolation for grid to world mapping using singly dimensioned coord

arrays..229

pltr2: Linear interpolation for grid to world mapping using doubly dimensioned

coord arrays (column dominant, as per normal C 2d arrays).........................229

PLGraphicsIn: PLplot Graphics Input structure ..230

PLOptionTable: PLplot command line options table structure231

21. The Specialized Fortran 95 API for PLplot ...233

plcont: Contour plot for Fortran 95..233

x

plshade: Shaded plot for Fortran 95..235

plshades: Continuously shaded plot for Fortran 95...235

plvect: Vector plot for Fortran 95...235

plmesh: Plot surface mesh for Fortran 95 ..235

plot3d: Plot 3-d surface plot for Fortran 95..235

plparseopts: parse arguments for Fortran 95..236

plsesc: Set the escape character for text strings for Fortran 95236

22. The Specialized Fortran 77 API for PLplot ...239

plcon0: Contour plot, identity mapping for Fortran 77...239

plcon1: Contour plot, general 1-d mapping for Fortran 77239

plcon2: Contour plot, general 2-d mapping for Fortran 77240

plcont: Contour plot, fixed linear mapping for Fortran 77241

plvec0: Vector plot, identity mapping for Fortran 77 ...241

plvec1: Vector plot, general 1-d mapping for Fortran 77 ..242

plvec2: Vector plot, general 2-d mapping for Fortran 77 ..242

plvect: Vector plot, fixed linear mapping for Fortran 77 ..243

plmesh: Plot surface mesh for Fortran 77 ..243

plot3d: Plot 3-d surface plot for Fortran 77..243

plparseopts: parse arguments for Fortran 77..244

plsesc: Set the escape character for text strings for Fortran 77244

23. API compatibility definition ..247

What is in the API?..247

Regression test for backwards compatibility ...251

24. Obsolete/Deprecated API for PLplot ..253

plclr: Eject current page ..253

plcol: Set color ...253

plhls: Set current color by HLS..253

plHLS_RGB: Convert HLS color to RGB ...253

plpage: Begin a new page..254

plrgb: Set line color by red, green...254

plrgb1: Set line color by 8-bit RGB values ...255

25. Internal C functions in PLplot...257

plP_checkdriverinit: Checks to see if any of the specified drivers have been

initialized..257

plP_getinitdriverlist: Get the initialized-driver list ...257

26. Notes for each Operating System that We Support...259

Linux/Unix Notes ...259

Linux/Unix Configure, Build, and Installation...259

Linux/Unix Building of C Programmes that Use the Installed PLplot Libraries

259

Windows Notes ...259

Windows Configure and Build..259

27. The PLplot Libraries ...261

Bindings Libraries ...261

The PLplot Core Library ..261

Enhancement Libraries ...261

The CSIRO Cubic Spline Approximation Library..262

The CSIRO Natural Neighbours Interpolation Library..................................262

xi

The QSAS Time Format Conversion Library...262

Device-driver Libraries ..263

xii

List of Tables
3-1. PLplot Terminal Output Devices ... 10

3-2. PLplot File Output Devices ... 11

3-3. FCI interpretation .. 33

3-4. Roman Characters Corresponding to Greek Characters .. 34

19-1. Bounds on coordinates...182

27-1. Bindings Libraries..261

xiii

xiv

I. Introduction

Chapter 1. Introduction

The PLplot Plotting Library

PLplot is a library of C functions that are useful for making scientific plots from programs written

in C, C++, Fortran77, Fortran95, Java, Octave, Perl, Python, and Tcl/Tk. The PLplot project

is being developed by a world-wide team who interact via the facilities provided by SourceForge

(http://sourceforge.net/projects/plplot)

The PLplot library can be used to create standard x-y plots, semi-log plots, log-log plots, contour

plots, 3D plots, shade (gray-scale and color) plots, mesh plots, bar charts and pie charts. Multiple

graphs (of the same or different sizes) may be placed on a single page with multiple lines in each

graph. Different line styles, widths and colors are supported. A virtually infinite number of distinct

area fill patterns may be used. There is full unicode support in the PLplot library, and most of

the display drivers are capable of displaying any of the millions(?) of characters in the unicode

standard. Those driver that are not unicode enabled can still display almost 1000 characters in

the extended character set. This includes four different fonts, the Greek alphabet and a host

of mathematical, musical, and other symbols. A variety of output devices and file formats are

supported including a metafile format which can be subsequently rendered to any device/file.

New devices and file formats can be easily added by writing a driver routine. For example, we

have recently added a postscript driver with TrueType font support (PSTTF), a SVG file driver

and a PDF file driver. A wxWidgets interactive driver is currently in development.

PLplot was originally developed by Sze Tan of the University of Auckland in Fortran-77. Many

of the underlying concepts used in the PLplot package are based on ideas used in Tim Pearson’s

PGPLOT package. Sze Tan writes:

I’m rather amazed how far PLPLOT has traveled given its origins etc. I first used PGPLOT on

the Starlink VAX computers while I was a graduate student at the Mullard Radio Astronomy

Observatory in Cambridge from 1983-1987. At the beginning of 1986, I was to give a seminar within

the department at which I wanted to have a computer graphics demonstration on an IBM PC which

was connected to a completely non-standard graphics card. Having about a week to do this and

not having any drivers for the card, I started from the back end and designed PLPLOT to be such

that one only needed to be able to draw a line or a dot on the screen in order to do arbitrary

graphics. The application programmer’s interface was made as similar as possible to PGPLOT so

that I could easily port my programs from the VAX to the PC. The kernel of PLPLOT was modeled

on PGPLOT but the code is not derived from it.

The C version of PLplot was developed by Tony Richardson on a Commodore Amiga. In the

process, several of the routines were rewritten to improve efficiency and some new features added.

The program structure was changed somewhat to make it easier to incorporate new devices.

Additional features were added to allow three-dimensional plotting and better access to low-level

routines.

PLplot 5.0 is a continuation of our work on PLplot 4.0, which never got widely distributed. It

became clear during the work on 4.0 that in order to support an interactive driver under Unix

(using Tcl/Tk), many additions to the basic capabilities of the package were needed. So without

stopping to fully document and bug-fix the 4.0 additions, work on 5.0 was begun. The result is

that a very capable PLplot-based widget for the Tk toolkit has been written. This widget can

manipulate the plot (zoom/pan, scale, orient, change colors), as well dump it to any supported

1

Chapter 1. Introduction

device. There are help menus and user customization options. These are still in the process of

being documented.

Other changes include the introduction of a new color palette (cmap1) for smooth color shaded

images (typically for 2d or 3d plots – in which color represents function intensity), support for

color fill plots, and lots more cool stuff. The manual has been rewritten in LaTeXinfo, so that

there is now a printed version and an online (info) version of the document. The manual is still

in a state of flux and will be fleshed out in more detail in later updates.

Some of the improvements in PLplot 5.0 include: the addition of several new routines to enhance

usage from Fortran and design of a portable C to Fortran interface. Additional support was added

for coordinate mappings in contour plots and some bugs fixed. New labeling options were added.

The font handling code was made more flexible and portable. A portable PLplot metafile driver

and renderer was developed, allowing one to create a generic graphics file and do the actual

rendering later (even on a different system). The ability to create family output files was added.

The internal code structure was dramatically reworked, with elimination of global variables (for

a more robust package), the drivers rewritten to improve consistency, and the ability to maintain

multiple output streams added. An XFig driver was added. Other contributions include Clair

Nielsen’s (LANL) X-window driver (very nice for high-speed color graphics) and tektronix file

viewer. At present, Maurice LeBrun and Geoff Furnish are the active developers and maintainers

of PLplot.

We have attempted to keep PLplot 5.0 backward compatible with previous versions of PLplot.

However, some functions are now obsolete, and many new ones have been added (e.g. new con-

touring functions, variable get/set routines, functions that affect label appearance). Codes written

in C that use PLplot must be recompiled including the new header file plplot.h before linking

to the new PLplot library.

PLplot is currently known to work on the following systems: Unix/Linux, Mac OS-X and Win-

dows XP. The Unix/Linux version is the best supported of these possibilities. The PLplot package

is freely distributable, but not in the public domain. See the Section called Copyrights for distri-

bution criteria.

We welcome suggestions on how to improve this code, especially in the form of user-contributed

enhancements or bug fixes. If PLplot is used in any published papers, please include an acknowl-

edgment or citation of our work, which will help us to continue improving PLplot. Please direct

all communication to the general PLplot mailing list, plplot-general@lists.sourceforge.net.

Getting a Copy of the PLplot Package

At present, the only mechanism we are providing for distribution of the PLplot is by

electronic transmission over the Internet. We encourage others to make it available to users

without Internet access. PLplot is a SourceForge project and may be obtained by the usual

SourceForge file release and anonymous cvs access that is made available from links at

http://sourceforge.net/projects/plplot.

Installing and Using the PLplot Library

The installation procedure is by necessity system specific; installation notes for each system are

provided in Chapter 26. The procedure requires that all of the routines be compiled and they are

2

Chapter 1. Introduction

then usually placed in a linkable library.

After the library has been created, you can write your main program to make the desired PLplot

calls. Example programs in C, C++, Fortran77, Fortran95 and Java are included as a guide.

Plots generated from the example programs are shown here3.

You will then need to compile your program and link it with the PLplot library(s). See Chapter

26 for more details).

You can also use Tcl/Tk, Perl and Python scripts to generate plots using the PLplot libraries.

Examples of these possibilities are also included as a guide.

Organization of this Manual

The PLplot library has been designed so that it is easy to write programs producing graphical

output without having to set up large numbers of parameters. However, more precise control

of the results may be necessary, and these are accommodated by providing lower-level routines

which change the system defaults. The manual first describes the overall process of producing a

graph using the high-level routines (see the Section called Plotting a Simple Graph in Chapter 2).

For a discussion of the underlying concepts of the plotting process and an introduction to some

of the more complex routines (see Chapter 3). An alphabetical list of the user-accessible PLplot

functions with detailed descriptions is given in the reference section of the manual (see Chapter

19).

Because the PLplot kernel is written in C, standard C syntax is used in the description of each

PLplot function. If you have difficulty interpreting the call syntax as described in this manual,

please refer to part III, Language Bindings. This manual includes: C (Chapter 8), C++ (Chapter

9), Fortran 95 (Chapter 11), Fortran 77 (Chapter 10), Java (???), Tcl (Chapter 15), Perl (Chapter

13) and Python (Chapter 14). Since PLplot has a long history, bindings to your language of choice

are probably available though not necessarily in the PLplot distribution. It is a good idea to ask

around and do a quick search before rolling your own.

The meaning of the function (subroutine) arguments is typically the same regardless of what

language you are using to call PLplot (but there are some exceptions to this). The arguments

for each function are usually specified in terms of PLBOOL, PLINT,and PLFLT—these are the

internal PLplot representations for logical, integer, and floating point, and are typically a zero

(false) or non-zero (true) contained in a long, a long, and a float (or a LOGICAL, INTEGER,

and a REAL, for Fortran programmers). See Chapter 8 for more detail.

Most of the output devices supported by PLplot are listed in Chapter 5 and Chapter 6, along with

description of the device driver--PLplot interface, metafile output, family files, and vt100/tek4010

emulators.

Copyrights

The PLplot package may be distributed under the following terms:

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Library General Public

License as published by the Free Software Foundation; either

version 2 of the License, or (at your option) any later version.

3

Chapter 1. Introduction

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Library General Public License for more details.

You should have received a copy of the GNU Library General Public

License along with this library; if not, write to the Free

Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The text of this license is given in the file COPYING.LIB in the distribution directory. Exceptions

are noted below.

The intent behind distributing PLplot under the LGPL is to ensure that it continues to evolve

in a positive way, while remaining freely distributable. Note in particular that either open-source

or proprietary code can be linked to LGPLed code such as PLplot, see the interpretation here4.

Full details of the LGPL are given here5.

Additional Copyrights

The startup code used in argument handling (utils/plrender.c and src/plargs.c) is partially

derived from xterm.c of the X11R5 distribution, and its copyright is reproduced here:

**

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard,

Massachusetts, and the Massachusetts Institute of Technology, Cambridge,

Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its

documentation for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that

both that copyright notice and this permission notice appear in

supporting documentation, and that the names of Digital or MIT not be

used in advertising or publicity pertaining to distribution of the

software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL

DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,

ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS

SOFTWARE.

**

Any file that is explicitly marked as "public domain" is free from any restriction on distribution.

Any file that has a explicit copyright notice may be distributed under the terms of both the

LGPL and whatever stated conditions accompany the copyright.

4

Chapter 1. Introduction

Credits

PLplot 5.0 was created through the effort of many individuals and funding agencies. We would

like to acknowledge the support (financial and otherwise) of the following institutions:

Ĺ The Institute for Fusion Studies, University of Texas at Austin

Ĺ The Scientific and Technology Agency of Japan

Ĺ Japan Atomic Energy Research Institute

Ĺ Duke University

Ĺ Universite de Nice

Ĺ National Energy Research Supercomputer Center

Ĺ Los Alamos National Labs

Thanks are also due to the many contributors to PLplot, including:

Ĺ Tony Richardson: Creator of PLplot 2.6b, 3.0

Ĺ Sam Paolucci (postscript driver)

Ĺ Sam Paolucci (postscript driver)

Ĺ Tom Rokicki (IFF driver and Amiga printer driver)

Finally, thanks to all those who submitted bug reports and other suggestions.

Notes
1. http://sourceforge.net/projects/plplot

2. http://sourceforge.net/projects/plplot

3. http://plplot.sourceforge.net/examples/index.html

4. http://www.gnu.org/philosophy/license-list.html

5. http://www.gnu.org/copyleft/lesser.html

5

Chapter 1. Introduction

6

II. Programming

Chapter 2. Simple Use of PLplot

Plotting a Simple Graph

We shall first consider plotting simple graphs showing the dependence of one variable upon

another. Such a graph may be composed of several elements:

Ĺ A box which defines the ranges of the variables, perhaps with axes and numeric labels along

its edges.

Ĺ A set of points or lines within the box showing the functional dependence.

Ĺ A set of labels for the variables and a title for the graph.

In order to draw such a graph, it is necessary to call at least four of the PLplot functions:

1. plinit, to initialize PLplot.

2. plenv, to define the range and scale of the graph, and draw labels, axes, etc.

3. One or more calls to plline or plpoin to draw lines or points as needed. Other more complex

routines include plbin and plhist to draw histograms, plerrx and plerry to draw error-bars.

4. plend, to close the plot.

More than one graph can be drawn on a single set of axes by making repeated calls to the routines

listed in item 3 above. PLplot only needs to be initialized once unless plotting to multiple output

devices.

Initializing PLplot

Before any actual plotting calls are made, a graphics program must call plinit, is the main

initialization routine for PLplot. It sets up all internal data structures necessary for plotting and

initializes the output device driver. If the output device has not already been specified when

plinit is called, a list of valid output devices is given and the user is prompted for a choice.

Either the device number or a device keyword is accepted.

There are several routines affecting the initialization that must be called before plinit, if they are

used. The function plsdev allows you to set the device explicitly. The function plsetopt allows

you to set any command-line option internally in your code. The function plssub may be called

to divide the output device plotting area into several subpages of equal size, each of which can

be used separately.

One advances to the next page (or screen) via pladv. If subpages are used, this can be used to

advance to the next subpage or to a particular subpage.

Defining Plot Scales and Axes

The function plenv is used to define the scales and axes for simple graphs. plenv starts a new

picture on the next subpage (or a new page if necessary), and defines the ranges of the variables

3

Chapter 2. Simple Use of PLplot

required. The routine will also draw a box, axes, and numeric labels if requested. The syntax for

plenv is:

plenv (xmin , xmax , ymin , ymax , just , axis);

xmin, xmax (PLFLT, input)

The left and right limits for the horizontal axis.

ymin, ymax (PLFLT, input)

The bottom and top limits for the vertical axis.

just (PLINT, input)

This should be zero or one. If just is one, the scales of the x-axis and y-axis will be the

same (in units per millimeter); otherwise the axes are scaled independently. This parameter

is useful for ensuring that objects such as circles have the correct aspect ratio in the final

plot.

axis (PLINT, input)

axis controls whether a box, tick marks, labels, axes, and/or a grid are drawn.

Ĺ axis = -2: No box or annotation.

Ĺ axis = -1: Draw box only.

Ĺ axis = 0: Draw box, labeled with coordinate values around edge.

Ĺ axis = 1: In addition to box and labels, draw the two axes X = 0 and Y = 0.

Ĺ axis = 2: Same as axis = 1, but also draw a grid at the major tick interval.

Ĺ axis = 10: Logarithmic X axis, linear Y axis.

Ĺ axis = 11: Logarithmic X axis, linear Y axis and draw line Y = 0.

Ĺ axis = 20: Linear X axis, logarithmic Y axis.

Ĺ axis = 21: Linear X axis, logarithmic Y axis and draw line X = 0.

Ĺ axis = 30: Logarithmic X and Y axes.

Note: Logarithmic axes only affect the appearance of the axes and their labels, so it is up to the

user to compute the logarithms prior to passing them to plenv and any of the other routines.

Thus, if a graph has a 3-cycle logarithmic axis from 1 to 1000, we need to set xmin = log
10
(1) =

0.0, and xmax = log
10
(1000) = 3.0.

For greater control over the size of the plots, axis labeling and tick intervals, more complex

graphs should make use of the functions plvpor, plvasp, plvpas, plwind, plbox, and routines for

manipulating axis labeling plgxax through plszax.

4

Chapter 2. Simple Use of PLplot

Labeling the Graph

The function pllab may be called after plenv to write labels on the x and y axes, and at the top

of the picture. All the variables are character variables or constants. Trailing spaces are removed

and the label is centered in the appropriate field. The syntax for pllab is:

pllab (xlbl , ylbl , toplbl);

xlbl (char *, input)

Pointer to string with label for the X-axis (bottom of graph).

ylbl (char *, input)

Pointer to string with label for the Y-axis (left of graph).

toplbl (char *, input)

Pointer to string with label for the plot (top of picture).}

More complex labels can be drawn using the function plmtex. For discussion of writing text in a

plot see the Section called Writing Text on a Graph, and for more detailed discussion about label

generation see the Section called Writing Text on a Graph.

Drawing the Graph

PLplot can draw graphs consisting of points with optional error bars, line segments or histograms.

Functions which perform each of these actions may be called after setting up the plotting envi-

ronment using plenv. All of the following functions draw within the box defined by plenv, and

any lines crossing the boundary are clipped. Functions are also provided for drawing surface

and contour representations of multi-dimensional functions. See Chapter 3 for discussion of finer

control of plot generation.

Drawing Points

plpoin and plsym mark out n points (x[i], y[i]) with the specified symbol. The routines differ

only in the interpretation of the symbol codes. plpoin uses an extended ASCII representation,

with the printable ASCII codes mapping to the respective characters in the current font, and the

codes from 0–31 mapping to various useful symbols. In plsym however, the code is a Hershey font

code number. Example programs are provided which display each of the symbols available using

these routines.

plpoin(n , x , y , code);

plsym (n , x , y , code);

5

Chapter 2. Simple Use of PLplot

n (PLINT, input)

The number of points to plot.

x, y (PLFLT *, input)

Pointers to arrays of the coordinates of the n points.

code (PLINT, input)

Code number of symbol to draw

Drawing Lines or Curves

PLplot provides two functions for drawing line graphs. All lines are drawn in the currently selected

color, style and width. See the Section called Setting Line Attributes in Chapter 3 for information

about changing these parameters.

plline draws a line or curve. The curve consists of n-1 line segments joining the n points in the

input arrays. For single line segments, pljoin is used to join two points.

plline (n , x , y);

n (PLINT, input)

The number of points.

x, y (PLFLT *, input)

Pointers to arrays with coordinates of the n points.

pljoin (x1 , y1 , x2 , y2);

x1, y1 (PLFLT, input)

Coordinates of the first point.

x2, y2 (PLFLT, input)

Coordinates of the second point.

Writing Text on a Graph

plptex allows text to be written within the limits set by plenv. The reference point of a text

string may be located anywhere along an imaginary horizontal line passing through the string at

half the height of a capital letter. The parameter just specifies where along this line the reference

point is located. The string is then rotated about the reference point through an angle specified

by the parameters dx and dy , so that the string becomes parallel to a line joining (x, y) to

(x+dx, y+dy).

plptex (x , y , dx , dy , just , text);

6

Chapter 2. Simple Use of PLplot

x, y (PLFLT, input)

Coordinates of the reference point.

dx, dy (PLFLT, input)

These specify the angle at which the text is to be printed. The text is written parallel to a

line joining the points (x, y) to (x+dx, y+dy) on the graph.

dx, dy (PLFLT, input)

These specify the angle at which the text is to be printed. The text is written parallel to a

line joining the points (x, y) to (x+dx, y+dy) on the graph.

just (PLFLT, input)

Determines justification of the string by specifying which point within the string is placed

at the reference point (x, y). This parameter is a fraction of the distance along the string.

Thus if just = 0.0, the reference point is at the left-hand edge of the string. If just = 0.5,

it is at the center and if just = 1.0, it is at the right-hand edge.

text (char *, input)

Pointer to the string of characters to be written.

Area Fills

Area fills are done in the currently selected color, line style, line width and pattern style.

plfill fills a polygon. The polygon consists of n vertices which define the polygon.

plfill (n , x , y);

n (PLINT, input)

The number of vertices.

x, y (PLFLT *, input)

Pointers to arrays with coordinates of the n vertices.

More Complex Graphs

Functions plbin and plhist are provided for drawing histograms, and functions plerrx and plerry

draw error bars about specified points. There are lots more too (see Chapter 19).

Finishing Up

Before the end of the program, always call plend to close any output plot files and to free up

resources. For devices that have separate graphics and text modes, plend resets the device to text

mode.

7

Chapter 2. Simple Use of PLplot

In Case of Error

If a fatal error is encountered during execution of a PLplot routine then plexit is called. This

routine prints an error message, does resource recovery, and then exits. The user may specify an

error handler via plsexit that gets called before anything else is done, allowing either the user

to abort the error termination, or clean up user-specific data structures before exit.

8

Chapter 3. Advanced Use of PLplot

In this chapter, we describe advanced use of PLplot.

Command Line Arguments

PLplot supports a large number of command line arguments, but it is up to the user to pass these

to PLplot for processing at the beginning of execution. plparseopts is responsible for parsing the

argument list, removing all that are recognized by PLplot, and taking the appropriate action

before returning. There are an extensive number of options available to affect this process. The

command line arguments recognized by PLplot are given by the -h option:

% x01c -h

Usage:

./x01c [options]

PLplot options:

-h Print out this message

-v Print out the PLplot library version number

-verbose Be more verbose than usual

-debug Print debugging info (implies -verbose)

-dev name Output device name

-o name Output filename

-display name X server to contact

-px number Plots per page in x

-py number Plots per page in y

-geometry geom Window size, in pixels (e.g. -geometry 400x300)

-wplt xl,yl,xr,yr Relative coordinates [0-1] of window into plot

-mar margin Margin space in relative coordinates (0 to 0.5, def 0)

-a aspect Page aspect ratio (def: same as output device)

-jx justx Page justification in x (-0.5 to 0.5, def 0)

-jy justy Page justification in y (-0.5 to 0.5, def 0)

-ori orient Plot orientation (0,2=landscape, 1,3=portrait)

-freeaspect Do not preserve aspect ratio on orientation swaps

-portrait Sets portrait mode (both orientation and aspect ratio)

-width width Sets pen width (1 <= width <= 10)

-bg color Background color (0=black, FFFFFF=white)

-ncol0 n Number of colors to allocate in cmap 0 (upper bound)

-ncol1 n Number of colors to allocate in cmap 1 (upper bound)

-fam Create a family of output files

-fsiz size[kKmMgG] Output family file size in MB (e.g. -fsiz 0.5G, def MB)

-fbeg number First family member number on output

-finc number Increment between family members

-fflen length Family member number minimum field width

-nopixmap Don’t use pixmaps in X-based drivers

-db Double buffer X window output

-np No pause between pages

-server_name name Main window name of PLplot server (tk driver)

-dpi dpi Resolution, in dots per inch (e.g. -dpi 360x360)

-compression num Sets compression level in supporting devices

-drvopt option[=value][,option[=value]]* Driver specific options

9

Chapter 3. Advanced Use of PLplot

-cmap0 name Sets PLplot color table 0 using the file name

-cmap1 name Sets PLplot color table 1 using the file name

The command-line options can also be set using the plsetopt function, if invoked before plinit.

Some options are may not be recognized by individual drivers. If an option is not recognized but

should be, please contact the driver author via the plplot mailing lists.

Many drivers have specific options that can be set using the -drvopt command line option or with

plsetopt. These options are documented in Chapter 5 and Chapter 6.

Output Devices

PLplot supports a variety of output devices, via a set of device drivers. Each driver is required

to emulate a small set of low-level graphics primitives such as initialization, line draw and page

advance, as well as be completely independent of the PLplot package as a whole. Thus a driver

may be very simple, as in the case of the many black and white file drivers (tektronix, etc.).

More complicated and/or color systems require a bit more effort by the driver, with the most

effort required by an output device with a graphical user interface, including menus for screen

dumps, palette manipulation, and so forth. At present only the tk driver does the latter on Unix

systems. At present we aren’t pursuing a Macintosh development effort due to a lack of time and

expertise, but will assist anyone wanting to volunteer for the job.

Note that if you always render to a PLplot metafile, you can always plrender them to new devices

as they become available.

The list of available devices presented when starting PLplot (via plstar) is determined at compile

time. When installing PLplot you may wish to exclude devices not available on your system in

order to reduce screen clutter. To include a specified device, simply define the appropriate macro

constant when building PLplot (see the installation instructions for your system).

The device drivers for PLplot terminal output at present are given in Table 3-1 while drivers for

file output are given in Table 3-2. The driver for OS/2 PM is available separately. See the section

on OS/2 in the Appendix for more details.

Table 3-1. PLplot Terminal Output Devices

Device keyword driver file

X-Window Screen xwin xwin.c

Tcl/Tk widget tk tk.c

Linux console VGA vga linuxvga.c

Xterm Window xterm tek.c

Tektronix Terminal (4010) tekt tek.c

Tektronix Terminal

(4105/4107)

tek4107t tek.c

MS-Kermit emulator mskermit tek.c

Versaterm vt100/tek emulator versaterm tek.c

10

Chapter 3. Advanced Use of PLplot

Device keyword driver file

VLT vt100/tek emulator vlt tek.c

Conex vt320/tek emulator conex tek.c

DG300 Terminal dg300 dg300.c

NeXT display (unsupported) nx next.c

Table 3-2. PLplot File Output Devices

Device keyword driver file

PLplot Native Meta-File plmeta plmeta.c

Tektronix File (4010) tekf tek.c

Tektronix File (4105/4107) tek4107f tek.c

PostScript File (monochrome) ps ps.c

PostScript File (color) psc ps.c

XFig file xfig xfig.c

LaserJet IIp Bitmap File ljiip ljiip.c

LaserJet II Bitmap File (150

dpi)

ljii ljii.c

HP 7470 Plotter File (HPGL

Cartridge Small Plotter)

hp7470 hpgl.c

HP 7580 Plotter File (Large

Plotter)

hp7580 hpgl.c

HP Laser Jet, HPGL file lj_hpgl hpgl.c

Impress File imp impress.c

Portable bitmap file pbm pbm.c

Null device null null.c

JPEG file jpeg gd.c

PNG file png gd.c

Computer Graphics Metafile cgm cgm.c

Driver Functions

A dispatch table is used to direct function calls to whatever driver is chosen at run-time. Below are

listed the names of each entry in the PLDispatchTable dispatch table struct defined in plcore.h.

The entries specific to each device (defined in drivers/*.c) are typically named similarly but with

“pl_” replaced by a string specific for that device (the logical order must be preserved, however).

The dispatch table entries are :

Ĺ pl_MenuStr: Pointer to string that is printed in device menu.

Ĺ pl_DevName: A short device "name" for device selection by name.

Ĺ pl_type: 0 for file-oriented device, 1 for interactive (the null driver uses -1 here).

11

Chapter 3. Advanced Use of PLplot

Ĺ pl_init: Initialize device. This routine may also prompt the user for certain device parameters

or open a graphics file (see Notes). Called only once to set things up. Certain options such as

familying and resolution (dots/mm) should be set up before calling this routine (note: some

drivers ignore these).

Ĺ pl_line: Draws a line between two points.

Ĺ pl_polyline: Draws a polyline (no broken segments).

Ĺ pl_eop: Finishes out current page (see Notes).

Ĺ pl_bop: Set up for plotting on a new page. May also open a new a new graphics file (see Notes).

Ĺ pl_tidy: Tidy up. May close graphics file (see Notes).

Ĺ pl_state: Handle change in PLStream state (color, pen width, fill attribute, etc).

Ĺ pl_esc: Escape function for driver-specific commands.

Notes: Most devices allow multi-page plots to be stored in a single graphics file, in which case the

graphics file should be opened in the pl_init() routine, closed in pl_tidy(), and page advances

done by calling pl_eop and pl_bop() in sequence. If multi-page plots need to be stored in different

files then pl_bop() should open the file and pl_eop() should close it. Do NOT open files in both

pl_init() and pl_bop() or close files in both pl_eop() and pl_tidy(). It is recommended that

when adding new functions to only a certain driver, the escape function be used. Otherwise it is

necessary to add a null routine to all the other drivers to handle the new function.

PLplot Metafiles and Plrender

The PLplot metafile is a way to store and transport your graphical data for rendering at a later

time or on a different system. A PLplot metafile is in binary format in order to speed access

and keep storage costs reasonable. All data is stored in device-independent format (written as

a stream of bytes); the resulting file is about as portable as a tektronix vector graphics file and

only slightly larger.

Each PLplot metafile begins with a header string that identifies it as such, as well as the version

number of the format since this may change in time. The utility for rendering the metafile,

plrender, verifies that the input file is indeed a valid PLplot metafile, and that it “understands”

the format the metafile is written in. plrender is part of the PLplot package and should be built

at the time of building PLplot, and then put into your search path. It is capable of high speed

rendering of the graphics file, especially if the output device can accept commands at a high rate

(e.g. X windows).

The commands as written by the metafile driver at present are as follows:

Ĺ INITIALIZE

Ĺ CLOSE

Ĺ SWITCH_TO_TEXT

Ĺ SWITCH_TO_GRAPH

Ĺ CLEAR

Ĺ PAGE

12

Chapter 3. Advanced Use of PLplot

Ĺ NEW_COLOR

Ĺ NEW_WIDTH

Ĺ LINE

Ĺ LINETO

Ĺ ESCAPE

Ĺ ADVANCE

Each command is written as a single byte, possibly followed by additional data bytes. The

NEW_COLOR and NEW_WIDTH commands each write 2 data bytes, the LINETO command writes 4 data

bytes, and the LINE command writes 8 data bytes. The most common instruction in the typical

metafile will be the LINETO command, which draws a continuation of the previous line to the given

point. This data encoding is not quite as efficient as the tektronix format, which uses 4 bytes

instead of 5 here (1 command + 4 data), however the PLplot encoding is far simpler to implement

and more robust. The ESCAPE function writes a second command character (opcode) followed by

an arbitrary number of data bytes depending on the value of the opcode. Note that any data

written must be in device independent form to maintain the transportability of the metafile so

floating point numbers are not allowed.

The short usage message for plrender is printed if one inputs insufficient or invalid arguments,

and is as follows:

% plrender

No filename specified.

Usage:

plrender [options] [files]

plrender options:

[-v] [-i name] [-b number] [-e number] [-p page]

PLplot options:

[-h] [-v] [-verbose] [-debug] [-dev name] [-o name] [-display name]

[-px number] [-py number] [-geometry geom] [-wplt xl,yl,xr,yr]

[-mar margin] [-a aspect] [-jx justx] [-jy justy] [-ori orient]

[-freeaspect] [-width width] [-bg color] [-ncol0 n] [-ncol1 n] [-fam]

[-fsiz size] [-fbeg number] [-finc number] [-fflen length] [-nopixmap]

[-db] [-np] [-server_name name] [-server_host name] [-server_port name]

[-user name]

Type plrender -h for a full description.

The longer usage message goes into more detail, and is as follows:

% plrender -h

13

Chapter 3. Advanced Use of PLplot

Usage:

plrender [options] [files]

plrender options:

-v Print out the plrender version number

-i name Input filename

-b number Beginning page number

-e number End page number

-p page Plot given page only

If the "-i" flag is omitted, unrecognized input will assumed to be filename

parameters. Specifying "-" for the input or output filename means use stdin

or stdout, respectively. See the manual for more detail.

PLplot options:

-h Print out this message

-v Print out the PLplot library version number

-verbose Be more verbose than usual

-debug Print debugging info (implies -verbose)

-dev name Output device name

-o name Output filename

-display name X server to contact

-px number Plots per page in x

-py number Plots per page in y

-geometry geom Window size, in pixels (e.g. -geometry 400x300)

-wplt xl,yl,xr,yr Relative coordinates [0-1] of window into plot

-mar margin Margin space in relative coordinates (0 to 0.5, def 0)

-a aspect Page aspect ratio (def: same as output device)

-jx justx Page justification in x (-0.5 to 0.5, def 0)

-jy justy Page justification in y (-0.5 to 0.5, def 0)

-ori orient Plot orientation (0,2=landscape, 1,3=portrait)

-freeaspect Do not preserve aspect ratio on orientation swaps

-portrait Sets portrait mode (both orientation and aspect ratio)

-width width Sets pen width (1 <= width <= 10)

-bg color Background color (0=black, FFFFFF=white)

-ncol0 n Number of colors to allocate in cmap 0 (upper bound)

-ncol1 n Number of colors to allocate in cmap 1 (upper bound)

-fam Create a family of output files

-fsiz size[kKmMgG] Output family file size in MB (e.g. -fsiz 0.5G, def MB)

-fbeg number First family member number on output

-finc number Increment between family members

-fflen length Family member number minimum field width

-nopixmap Don’t use pixmaps in X-based drivers

-db Double buffer X window output

-np No pause between pages

-server_name name Main window name of PLplot server (tk driver)

-dpi dpi Resolution, in dots per inch (e.g. -dpi 360x360)

-compression num Sets compression level in supporting devices

-drvopt option[=value][,option[=value]]* Driver specific options

14

Chapter 3. Advanced Use of PLplot

The options are generally self explanatory (family files are explained in the Section called Family

File Output). Most of these options have default values, and for those that don’t plrender will

prompt the user. The -px and -py options are not so useful at present, because everything is

scaled down by the specified factor --- resulting in labels that are too small (future versions of

plrender might allow changing the label size as well).

Additional options may be added in future releases.

Family File Output

When sending PLplot to a file, the user has the option of generating a “family” of output files for

most output file drivers. This can be valuable when generating a large amount of output, so as

to not strain network or printer facilities by processing extremely large single files. Each family

member file can be treated as a completely independent file. In addition, plrender has the ability

to process a set of family member files as a single logical file.

To create a family file, one must simply call plsfam with the familying flag fam set to 1, and the

desired maximum member size (in bytes) in bmax. plsfam also allows you to set the current family

file number. If the current output driver does not support familying, there will be no effect. This

call must be made before calling plstar or plstart.

If familying is enabled, the name given for the output file (on the command line, in response to

the plstar prompt, as a plstart argument, or as the result of a call to plsfnam) becomes the

name template for the family. Thus, if you request a plmeta output file with name test-%n.plm,

the files actually created will be test-1.plm, test-2.plm, and so on, where %n indicates where

the member number is replaced. If there is no %n, then the output file becomes the stem name

and the created files will be like test.plm.1, test.plm.2, and so on. A new file is automatically

started once the byte limit for the current file is passed, but not until the next page break. One

may insure a new file at every page break by making the byte limit small enough. Alternatively,

if the byte limit is large you can still insure a new file is automatically started after a page break

if you precede the call to pleop with a call to plfamadv.

If familying is not enabled, %n is dropped from the filename if that string appears anywhere in it.

The plgfam routine can be used from within the user program to find out more about the graphics

file being written. In particular, by periodically checking the number of the member file currently

being written to, one can detect when a new member file is started. This information might

be used in various ways; for example you could spawn a process to automatically plrender each

metafile after it is closed (perhaps during a long simulation run) and send it off to be printed.

plrender has several options for dealing with family files. It can process a single member file

(plrender test.plm.1) or the entire family if given only the stem name (plrender test.plm) It

can also create family files on output, rendering to any device that supports familying, including

another metafile if desired. The size of member files in this case is input through the argument

list, and defaults to 1MB if unspecified (this may be changed during the PLplot installation,

however). plrender can also create a single output file from a familied input metafile.

Interactive Output Devices

Here we shall discuss briefly some of the more common interactive output devices.

15

Chapter 3. Advanced Use of PLplot

Many popular terminals or terminal emulators at present have a facility for switching between

text and graphics “screens”. This includes the xterm emulator under X-windows, vt100’s with

Retrographics, and numerous emulators for microcomputers which have a dual vt100/tek4010

emulation capability. On these devices, it is possible to switch between the text and graphics

screens by surrounding your PLplot calls by calls to plgra and pltext. This will allow your

diagnostic and informational code output to not interfere with your graphical output.

At present, only the xterm driver supports switching between text and graphics screens. The

escape sequences as sent by the xterm driver are fairly standard, however, and have worked

correctly on most other popular vt100/tek4010 emulators we’ve tried.

When using the xterm driver, hitting a RETURN will advance and clear the page. If indeed

running from an xterm, you may resize, move, cover and uncover the window. The behavior of

the X-window driver is quite different, however. First, it is much faster, as there is no tty-like

handshaking going on. Second, a mouse click is used to advance and clear the page, rather than

a RETURN.

On a tektronix 4014 compatible device, you may preview tektronix output files via the pltek

utility. pltek will let you step through the file interactively, skipping backward or forward if

desired. The help message for pltek is as follows:

% pltek

Usage: pltek filename

At the prompt, the following replies are recognized:

h,? Give this help message.

q Quit program.

<n> Go to the specified page number.

-<n> Go back <n> pages.

+<n> Go forward <n> pages.

<Return> Go to the next page.

The output device is switched to text mode before the prompt is given, which causes the prompt

to go to the vt102 window under xterm and most vt100/tek4010 emulators.

Specifying the Output Device

The main initialization routine for PLplot is plinit, which sets up all internal data structures

necessary for plotting and initializes the output device driver. The output device can be a terminal,

disk file, window system, pipe, or socket. If the output device has not already been specified when

plinit is called, the output device will be taken from the value of the PLPLOT_DEV environment

variable. If this variable is not set (or is empty), a list of valid output devices is given and the

user is prompted for a choice. For example:

% x01c

Plotting Options:

< 1> xwin X-Window (Xlib)

< 2> tk Tcl/TK Window

< 3> xterm Xterm Window

< 4> tekt Tektronix Terminal (4010)

< 5> tek4107t Tektronix Terminal (4105/4107)

16

Chapter 3. Advanced Use of PLplot

< 6> mskermit MS-Kermit emulator

< 7> versaterm Versaterm vt100/tek emulator

< 8> vlt VLT vt100/tek emulator

< 9> plmeta PLPLOT Native Meta-File

<10> tekf Tektronix File (4010)

<11> tek4107f Tektronix File (4105/4107)

<12> ps PostScript File (monochrome)

<13> psc PostScript File (color)

<14> xfig Xfig file

<15> ljiip LaserJet IIp/deskjet compressed graphics

<16> ljii LaserJet II Bitmap File (150 dpi)

<17> null Null device

Enter device number or keyword:

Either the device number or a device keyword is accepted. Specifying the device by keyword is

preferable in aliases or scripts since the device number is dependent on the install procedure (the

installer can choose which device drivers to include). The device can be specified prior to the call

to plinit by:

Ĺ A call to plsdev.

Ĺ The -dev device command line argument, if the program’s command line arguments are being

passed to the PLplot function plparseopts.

Ĺ The value of the PLPLOT_DEV environment variable. Note that specifying the output device via

plsdev or the -dev command line argument will override the value given by the PLPLOT_DEV

environment variable.

Additional startup routines plstar and plstart are available but these are simply front-ends to

plinit, and should be avoided. It is preferable to call plinit directly, along with the appropriate

setup calls, for the greater amount of control this provides (see the example programs for more

info).

Before plinit is called, you may modify the number of subpages the output device is divided into

via a call to plssub. Subpages are useful for placing several graphs on a page, but all subpages are

constrained to be of the same size. For greater flexibility, viewports can be used (see the Section

called Defining the Viewport for more info on viewports). The routine pladv is used to advance

to a particular subpage or to the next subpage. The screen is cleared (or a new piece of paper

loaded) if a new subpage is requested when there are no subpages left on the current page. When

a page is divided into subpages, the default character, symbol and tick sizes are scaled inversely

as the square root of the number of subpages in the vertical direction. This is designed to improve

readability of plot labels as the plot size shrinks.

PLplot has the ability to write to multiple output streams. An output stream corresponds to a

single logical device to which one plots independent of all other streams. The function plsstrm

is used to switch between streams -- you may only write to one output stream at a time. At

present, an output stream is not limited by the type of device, however, it may not be wise to

attempt opening two terminal devices. An example usage for the creation of multiple streams is

as follows:

17

Chapter 3. Advanced Use of PLplot

#include "plplot.h"

main()

{

int nx = 2, ny = 2;

plssub(nx, ny);

plsdev("xwin");

plinit();

〈plots for stream 0〉

plsstrm(1);

plssub(nx, ny);

plsdev("plmeta");

plsfnam("tst.plm");

plinit();

〈plots for stream 1〉

plsstrm(0);

〈plots for stream 0〉

and so on, for sending output simultaneously to an X-window and a metafile. The default stream

corresponds to stream number zero. At present, the majority of output drivers can only be used by

a single stream (exceptions include the metafile driver and X-window driver). Also see example

program 14 (note: only the C version is available, although it can be done equally well from

Fortran).

At the end of a plotting program, it is important to close the plotting device by calling plend.

This flushes any internal buffers and frees any memory that may have been allocated, for all open

output streams. You may call plend1 to close the plotting device for the current output stream

only. Note that if PLplot is initialized more than once during a program to change the output

device, an automatic call to plend1 is made before the new device is opened for the given stream.

Adding FreeType Library Support to Bitmap Drivers

Any bitmap driver in the PLplot family should be able to use fonts (TrueType and others)

that are rendered by the FreeType library just as long as the device supports setting

an individual pixel. Note that drivers interact with FreeType using the support routines

plD_FreeType_init, plD_render_freetype_text, plD_FreeType_Destroy, pl_set_extended_cmap0,

and pl_RemakeFreeType_text_from_buffer that are coded in plfreetype.c.

The use of these support routines is exemplified by the gd.c driver. Here we make some notes

to accompany this driver which should make it easier to migrate other drivers to use the

FreeType library. Every code fragment we mention below should be surrounded with a #ifdef

HAVE_FREETYPE...#endif to quarantine these fragments for systems without the FreeType

18

Chapter 3. Advanced Use of PLplot

library. For interactive devices that need caching of text drawing, reference should also be made

to wingcc.c.

Write a call back function to plot a single pixel

First, write a call back function, of type plD_pixel_fp, which specifies how a single pixel is set in

the current colour. This can be of type static void. For example, in the gd.c driver it looks like

this:

void plD_pixel_gd (PLStream *pls, short x, short y)

{

png_Dev *dev=(png_Dev *)pls->dev;

gdImageSetPixel(dev->im_out, x, y,dev->colour);

}

Initialise FreeType

Next, we have to initialise the FreeType library. For the gd.c driver this is done via two separate

functions due to the order that dependent information is initialised in the driver.

The "level 1" initialisation of FreeType does two things: 1) calls plD_FreeType_init(pls), which

in turn allocates memory to the pls->FT structure; and 2) stores the location of the call back

routine.

void init_freetype_lv1 (PLStream *pls)

{

FT_Data *FT;

plD_FreeType_init(pls);

FT=(FT_Data *)pls->FT;

FT->pixel= (plD_pixel_fp)plD_pixel_gd;

}

This initialisation routine is called at the end of plD_init_png_Dev(PLStream *pls) in the gd.c

driver:

if (freetype)

{

pls->dev_text = 1; /* want to draw text */

init_freetype_lv1(pls);

FT=(FT_Data *)pls->FT;

FT->smooth_text=smooth_text;

}

19

Chapter 3. Advanced Use of PLplot

"freetype" is a local variable which is parsed through plParseDrvOpts to determine if the user

wanted FreeType text. In that case pls->dev_text is set to 1 to indicate the driver will be rendering

it’s own text. After that, we always use pls->dev_text to work out if we want FreeType or not.

Similarly, "smooth_text" is a local variable passed through plParseDrvOpts to find out if the user

wants smoothing. Since there is nothing in PLStream to track smoothing, we have to set the

FT->smooth_text flag as well at this time.

The "level 2" initialisation function initialises everything else required for using the FreeType

library but has to be called after the screen resolution and dpi have been set. Therefore, it is

called at the end of plD_init_png(), where it looks like:

if (pls->dev_text)

{

init_freetype_lv2(pls);

}

The actual function looks like this:

static void init_freetype_lv2 (PLStream *pls)

{

png_Dev *dev=(png_Dev *)pls->dev;

FT_Data *FT=(FT_Data *)pls->FT;

FT->scale=dev->scale;

FT->ymax=dev->pngy;

FT->invert_y=1;

if (FT->smooth_text==1)

{

FT->ncol0_org=pls->ncol0; /* save a copy of the original size of ncol0 */

FT->ncol0_xtra=NCOLOURS-(pls->ncol1+pls->ncol0); /* work out how many free slots we have */

FT->ncol0_width=FT->ncol0_xtra/(pls->ncol0-1); /* find out how many different shades of anti-aliasing we can do */

if (FT->ncol0_width>64) FT->ncol0_width=64; /* set a maximum number of shades */

plscmap0n(FT->ncol0_org+(FT->ncol0_width*pls->ncol0)); /* redefine the size of cmap0 */

/* the level manipulations are to turn off the plP_state(PLSTATE_CMAP0)

* call in plscmap0 which (a) leads to segfaults since the GD image is

* not defined at this point and (b) would be inefficient in any case since

* setcmap is always called later (see plD_bop_png) to update the driver

* color palette to be consistent with cmap0. */

{

PLINT level_save;

level_save = pls->level;

pls->level = 0;

pl_set_extended_cmap0(pls, FT->ncol0_width, FT->ncol0_org); /* call the function to add the extra cmap0 entries and calculate stuff */

pls->level = level_save;

}

}

}

20

Chapter 3. Advanced Use of PLplot

FT->scale is a scaling factor to convert coordinates. This is used by the gd.c and some other

drivers to scale back a larger virtual page and this eliminate the "hidden line removal bug". Set

it to 1 if your device driver doesn’t use any scaling.

Some coordinate systems have zero on the bottom, others have zero on the top. FreeType does

it one way, and most everything else does it the other. To make sure everything is working ok,

we have to "flip" the coordinates, and to do this we need to know how big in the Y dimension

the page is, and whether we have to invert the page or leave it alone.

Ĺ FT->ymax specifies the size of the page

Ĺ FT->invert_y=1 tells us to invert the y-coordinates, FT->invert_y=0 will not invert the

coordinates.

We also do some computational gymnastics to "expand" cmap0 if the user wants anti-aliased text.

Basically, you have to work out how many spare colours there are in the driver after cmap0 and

cmap1 are done, then set a few variables in FT to let the render know how many colours it’s going

to have at its disposal, and call plscmap0n to resize cmap0. The call to pl_set_extended_cmap0

does the remaining part of the work. Note it essential to protect that call by the pls->level

manipulations for the reasons stated.

Add A Command to redraw text (interactive drivers only)

Plplot only caches drawing commands, not text plotting commands, so for interactive devices

which refresh their display by replaying the plot buffer, a separate function has to be called

to redraw the text. plfreetype knows when buffering is being used by a device driver, and

will automatically start caching text when necessary. To redraw this cached text, a call to

pl_RemakeFreeType_text_from_buffer has to be added after the driver has called plRemakePlot.

The following example is from wingcc.c.

if (dev->waiting==1)

{

plRemakePlot(pls);

#ifdef HAVE_FREETYPE

pl_RemakeFreeType_text_from_buffer(pls);

#endif

}

Add Function Prototypes

Next, to the top of the drivers’ source file add the prototype definitions for the functions just

written.

static void plD_pixel_gd (PLStream *pls, short x, short y);

static void init_freetype_lv1 (PLStream *pls);

static void init_freetype_lv2 (PLStream *pls);

21

Chapter 3. Advanced Use of PLplot

Add Closing functions

Finally, add a plD_FreeType_Destroy(pls) entry to the device "tidy" function; this command

deallocates memory allocated to the FT entry in the stream, closes the FreeType library and any

open fonts. It is also a good idea to reset CMAP0 back to it’s original size here if anti-aliasing

was done. For example, in the gd.c driver, it looks like this:

void plD_tidy_png(PLStream *pls)

{

fclose(pls->OutFile);

#ifdef HAVE_FREETYPE

FT_Data *FT=(FT_Data *)pls->FT;

plscmap0n(FT->ncol0_org);

plD_FreeType_Destroy(pls);

#endif

free_mem(pls->dev);

}

View Surfaces, (Sub-)Pages, Viewports and Windows

There is a whole hierarchy of coordinate systems associated with any PLplot graph. At the lowest

level a device provides a view surface (coordinates in mm’s) which can be a terminal screen or

a sheet of paper in the output device. plinit or plstar (or plstart) makes that device view

surface accessible as a page or divided up into sub-pages (see plssub) which are accessed with

pladv. Before a graph can be drawn for a subpage, the program must call appropriate routines

in PLplot to define the viewport for the subpage and a window for the viewport. A viewport

is a rectangular region of the subpage which is specified in normalized subpage coordinates or

millimetres. A window is a rectangular region of world-coordinate space which is mapped directly

to its viewport. (When drawing a graph, the programmer usually wishes to specify the coordinates

of the points to be plotted in terms of the values of the variables involved. These coordinates are

called world coordinates, and may have any floating-point value representable by the computer.)

Although the usual choice is to have one viewport per subpage, and one window per viewport,

each subpage can have more than one (possibly overlapping) viewport defined, and each viewport

can have more than one window (more than one set of world coordinates) defined.

Defining the Viewport

After defining the view surface and subpage with the appropriate call to plinit or plstar (or

plstart) and a call to pladv it is necessary to define the portion of this subpage which is to be

22

Chapter 3. Advanced Use of PLplot

used for plotting the graph (the viewport). All lines and symbols (except for labels drawn by

plbox, plmtex and pllab) are clipped at the viewport boundaries.

Viewports are created within the current subpage. If the division of the output device into equally

sized subpages is inappropriate, it is best to specify only a single subpage which occupies the entire

output device (by using plinit or by setting nx = 1 and ny = 1 in plstar or plstart), and use

one of the viewport specification subroutines below to place the plot in the desired position on

the page.

There are four methods for specifying the viewport size, using the subroutines plvpor, plsvpa,

plvasp, and plvpas which are called like this:

plvpor(xmin, xmax, ymin, ymax);

plsvpa(xmin, xmax, ymin, ymax);

plvasp(aspect);

plvpas(xmin, xmax, ymin, ymax, aspect);

where in the case of plvpor and plvpas, the arguments are given in normalized subpage coordinates

which are defined to run from 0.0 to 1.0 along each edge of the subpage. Thus for example,

plvpor(0.0, 0.5, 0.5, 1.0);

uses the top left quarter of the current subpage.

In order to get a graph of known physical size, the routine plsvpa defines the viewport in terms

of absolute coordinates (millimeters) measured from the bottom left-hand corner of the current

subpage. This routine should only be used when the size of the view surface is known, and a

definite scaling is required.

The routine plvasp gives the largest viewport with the given aspect ratio that fits in the current

subpage (i.e. the ratio of the length of the y axis to that of the x axis is equal to aspect). It also

allocates space on the left and top of the viewport for labels.

The routine plvpas gives the largest viewport with the given aspect ratio that fits in the specified

region (specified with normalized subpage coordinates, as with plvpor). This routine is function-

ally equivalent to plvpor when a “natural” aspect ratio is chosen (done by setting aspect to 0.0).

Unlike plvasp, this routine reserves no extra space at the edges for labels.

To help the user call plsvpa correctly, the routine plgspa is provided which returns the positions

of the extremities of the current subpage measured in millimeters from the bottom left-hand

corner of the device. Thus, if to set up a viewport with a 10.0 mm margin around it within the

current subpage, the following sequence of calls may be used:

plgspa(xmin, xmax, ymin, ymax);

plsvpa(10.0, xmax-xmin-10.0, 10.0, ymax-ymin-10.0);

A further routine plvsta is available which sets up a standard viewport within the current subpage

with suitable margins on each side of the viewport. This may be used for simple graphs, as it

leaves enough room for axis labels and a title. This standard viewport is that used by plenv (See

the Section called Setting up a Standard Window).

23

Chapter 3. Advanced Use of PLplot

Another way to get a specified aspect ratio is via the routine plsasp [not!.. fix this], which sets

the global aspect ratio and must be called prior to plstar. An aspect ratio of 0.0 corresponds

to “natural” dimensions (i.e. fill the page); any positive value will give the specified aspect ratio.

This scaling of plots is actually done in the driver, and so may not work for all output devices

(note that plrender is capable of scaled aspect ratio plots to any device whether that device

supports scaling or not). In such scaled plots, absolute plotting is done in the scaled coordinate

system.

Defining the Window

The window must be defined after the viewport in order to map the world coordinate rectangle

into the viewport rectangle. The routine plwind is used to specify the rectangle in world-coordinate

space. For example, if we wish to plot a graph showing the collector current I
C
as a function of

the collector to emitter voltage V
CE

for a transistor where 0 ≤ I
C
≤ 10.0 mA and 0 ≤ V

CE
≤

12.0 V, we would call the function plwind as follows:

plwind(0.0, 12.0, 0.0, 10.0);

Note that each of the arguments is a floating point number, and so the decimal points are required.

If the order of either the X limits or Y limits is reversed, the corresponding axis will point in the

opposite sense, (i.e., right to left for X and top to bottom for Y). The window must be defined

before any calls to the routines which actually draw the data points. Note however that plwind

may also be called to change the window at any time. This will affect the appearance of objects

drawn later in the program, and is useful for drawing two or more graphs with different axes on

the same piece of paper.

Annotating the Viewport

The routine plbox is used to specify whether a frame is drawn around the viewport and to control

the positions of the axis subdivisions and numeric labels. For our simple graph of the transistor

characteristics, we may wish to draw a frame consisting of lines on all four sides of the viewport,

and to place numeric labels along the bottom and left hand side. We can also tell PLplot to

choose a suitable tick interval and the number of subticks between the major divisions based

upon the data range specified to plwind. This is done using the following statement

plbox("bcnst", 0.0, 0, "bcnstv", 0.0, 0);

The lengths of major and minor ticks on the axes are set up by the routines plsmaj and plsmin.

Another routine pllab provides for text labels for the bottom, left hand side and top of the

viewport. These labels are not clipped, even though they lie outside the viewport (but they are

clipped at the subpage boundaries). pllab actually calls the more general routine plmtex which

can be used for plotting labels at any point relative to the viewport. For our example, we may

use

pllab("V#dCE#u (Volts)", "I#dC#u (mA)", "TRANSISTOR CHARACTERISTICS");

24

Chapter 3. Advanced Use of PLplot

Note that #d and #u are escape sequences (see the Section called Escape sequences in text) which

allow subscripts and superscripts to be used in text. They are described more fully later in this

chapter.

The appearance of axis labels may be further altered by auxiliary calls to plprec, plschr, plsxax,

plsyax, and plszax. The routine plprec is used to set the number of decimal places precision for

axis labels, while plschr modifies the heights of characters used for the axis and graph labels.

Routines plsxax, plsyax, and plszax are used to modify the digmax setting for each axis, which

affects how floating point labels are formatted.

The digmax variable represents the maximum field width for the numeric labels on an axis (ignored

if less than one). If the numeric labels as generated by PLplot exceed this width, then PLplot

automatically switches to floating point representation. In this case the exponent will be placed

at the top left for a vertical axis on the left, top right for a vertical axis on the right, and bottom

right for a horizontal axis.

For example, let’s suppose that we have set digmax = 5 via plsyax, and for our plot a label is

generated at y = 0.0000478. In this case the actual field width is longer than digmax, so PLplot

switches to floating point. In this representation, the label is printed as simply 4.78 with the 10-5

exponent placed separately.

The determination of maximum length (i.e. digmax) for fixed point quantities is complicated by

the fact that long fixed point representations look much worse than the same sized floating point

representation. Further, a fixed point number with magnitude much less than one will actually

gain in precision when written as floating point. There is some compensation for this effect

built into PLplot, thus the internal representation for number of digits kept (digfix) may not

always match the user’s specification (via digmax). However, it will always be true that digfix ≤
digmax. The PLplot defaults are set up such that good results are usually obtained without user

intervention.

Finally, after the call to plbox, the user may call routines plgxax, plgyax, or plgzax to obtain

information about the window just drawn. This can be helpful when deciding where to put

captions. For example, a typical usage would be to call plgyax to get the value of digits, then

offset the y axis caption by that amount (plus a bit more) so that the caption “floats” just to the

outside of the numeric labels. Note that the digits value for each axis for the current plot is not

correct until after the call to plbox is complete.

Setting up a Standard Window

Having to call pladv, plvpor, plwind and plbox is excessively cumbersome for drawing simple

graphs. Subroutine plenv combines all four of these in one subroutine, using the standard view-

port, and a limited subset of the capabilities of plbox. For example, the graph described above

could be initiated by the call:

plenv(0.0, 12.0, 0.0, 10.0, 0, 0);

which is equivalent to the following series of calls:

pladv(0);

plvsta();

plwind(0.0, 12.0, 0.0, 10.0);

25

Chapter 3. Advanced Use of PLplot

plbox("bcnst", 0.0, 0, "bcnstv", 0.0, 0);

Setting Line Attributes

The graph drawing routines may be freely mixed with those described in this section, allowing

the user to control line color, width and styles. The attributes set up by these routines apply

modally, i.e, all subsequent objects (lines, characters and symbols) plotted until the next change

in attributes are affected in the same way. The only exception to this rule is that characters and

symbols are not affected by a change in the line style, but are always drawn using a continuous

line.

Line color is set using the routine plcol0. The argument is ignored for devices which can only

plot in one color, although some terminals support line erasure by plotting in color zero.

Line width is set using plwid. This option is not supported by all devices.

Line style is set using the routine plstyl or pllsty. A broken line is specified in terms of a repeated

pattern consisting of marks (pen down) and spaces (pen up). The arguments to this routine are

the number of elements in the line, followed by two pointers to integer arrays specifying the mark

and space lengths in micrometers. Thus a line consisting of long and short dashes of lengths 4 mm

and 2 mm, separated by spaces of length 1.5 mm is specified by:

mark[0] = 4000;

mark[1] = 2000;

space[0] = 1500;

space[1] = 1500;

plstyl(2, mark, space);

To return to a continuous line, just call plstyl with first argument set to zero. You can use pllsty

to choose between 8 different predefined styles.

Setting the Area Fill Pattern

The routine plpat can be used to set the area fill pattern. The pattern consists of 1 or 2 sets

of parallel lines with specified inclinations and spacings. The arguments to this routine are the

number of sets to use (1 or 2) followed by two pointers to integer arrays (of 1 or 2 elements)

specifying the inclinations in tenths of a degree and the spacing in micrometers (the inclination

should be between -900 and 900). Thus to specify an area fill pattern consisting of horizontal

lines spaced 2 mm apart use:

*inc = 0;

*del = 2000;

plpat(1, inc, del);

To set up a symmetrical crosshatch pattern with lines directed 30 degrees above and below the

horizontal and spaced 1.5 mm apart use:

26

Chapter 3. Advanced Use of PLplot

*inc = 300;

*(inc+1) = -300;

*del = 1500;

*(del+1) = 1500;

plpat(2, inc, del);

The routine plpsty can be used to select from 1 of 8 predefined patterns.

The area fill routines also use the current line style, width and colors to give a virtually infinite

number of different patterns.

Setting Color

Normally, color is used for all drivers and devices that support it within PLplot subject to the

condition that the user has the option of globally turning off the color (and subsequently turning

it on again if so desired) using plscolor.

The PLplot color model utilizes two color maps which can be used interchangeably. However,

color map0 (discussed in the Section called Color Map0) has discrete colors with no particular

order and is most suited to coloring the background, axes, lines, and labels, and color map1

(discussed in the Section called Color Map1) has continuously changing colors and is most suited

to plots (see the Section called Contour and Shade Plots) in which data values are represented

by colors.

Color Map0

Color map0 is most suited to coloring the background, axes, lines, and labels. Generally, the

default color map0 palette of 16 colors is used. (examples/c/x02c.c illustrates these colors.) The

default background color is taken from the index 0 color which is black by default. The default

foreground color is red.

There are a number of options for changing the default red on black colors. The user may set

the index 0 background color using the command-line bg parameter or by calling plscolbg (or

plscol0 with a 0 index) before plinit. During the course of the plot, the user can change the

foreground color as often as desired using plcol0 to select the index of the desired color.

For more advanced use it is possible to define an arbitrary map0 palette of colors. The user may

set the number of colors in the map0 palette using the command-line ncol0 parameter or by

calling plscmap0n. plscol0 sets the RGB value of the given index which must be less than the

maximum number of colors (which is set by default, by command line, by plscmap0n, or even by

plscmap0). Alternatively, plscmap0 sets up the entire map0 color palette. For all these ways of

defining the map0 palette any number of colors are allowed in any order, but it is not guaranteed

that the individual drivers will actually be able to use more than 16 colors.

Color Map1

Color map1 is most suited to plots (see the Section called Contour and Shade Plots) in which

data values are represented by colors. The data are scaled to the input map1 range of floating

point numbers between 0. and 1. which in turn are mapped (using plcol1) to colors using a

27

Chapter 3. Advanced Use of PLplot

default or user-specified map1 color transformation. Thus, there are calls to plcol1 from within

the code for plshade (see src/plshade.c) and plsurf3d (see src/plot3d.c) to give a continuous

range of color corresponding to the data being plotted. In addition plcol1 can be used to specify

the foreground color using the map1 continuous color palette (see the commented out section

of examples/c/x12c.c which gives an example of this for a histogram), but normally plcol0 is

a better tool for this job (see the Section called Color Map0) since discrete colors often give a

better-looking result.

For more advanced use it is possible to define an arbitrary map1 palette of colors. The user

may set the number of colors in this palette using the command-line ncol1 parameter or by

calling plscmap1n. Furthermore, plscmap1l can be used to set the map1 color palette using linear

interpolation between control points specified in either RGB or HLS space.

There is a one-to-one correspondence between RGB and HLS color spaces. RGB space is charac-

terized by three 8-bit unsigned integers corresponding to the intensity of the red, green, and blue

colors. Thus, in hexidecimal notation with the 3 bytes concatanated together the RGB values of

FF0000, FFFF00, 00FF00, 00FFFF, 0000FF, FF00FF, 000000, and FFFFFF correspond to red,

yellow, green, cyan, blue, magenta, black, and white.

HLS (hue, lightness, and saturation) space is often conceptually easier to use than RGB space.

One useful way to visualize HLS space is as a volume made up by two cones with their bases

joined at the “equator”. A given RGB point corresponds to HLS point somewhere on or inside

the double cones, and vice versa. The hue corresponds to the “longitude” of the point with 0, 60,

120, 180, 240, and 300 degrees corresponding to red, yellow, green, cyan, blue, and magenta. The

lightness corresponds to the distance along the axis of the figure of a perpendicular dropped from

the HLS point to the axis. This values ranges from 0 at the “south pole” to 1 at the “north pole”.

The saturation corresponds to the distance of the HLS point from the axis with the on-axis value

being 0 and the surface value being 1. Full saturation corresponds to full color while reducing

the saturation (moving toward the axis of the HLS figure) mixes more gray into the color until

at zero saturation on the axis of the figure you have only shades of gray with the variation of

lightness along the axis corresponding to a gray scale.

Here are some C-code fragments which use plscmap1l to set the map1 color palette. This first

example illustrates how to set up a gray-scale pallette using linear interpolation in RGB space.

i[0] = 0.;

i[1] = 1.;

/* RGB are rescaled to the range from 0 to 1. for input to plscmap1l.*/

r[0] = 0.;

r[1] = 1.;

g[0] = 0.;

g[1] = 1.;

b[0] = 0.;

b[1] = 1.;

plscmap1l(1, 2, i, r, g, b, NULL);

This second example illustrates doing the same thing in HLS space.

i[0] = 0.;

i[1] = 1.;

/* Hue does not matter for zero saturation.*/

h[0] = 0.;

28

Chapter 3. Advanced Use of PLplot

h[1] = 0.;

/* Lightness varies through its full range.*/

l[0] = 0.;

l[1] = 1.;

/* Saturation is zero for a gray scale.*/

s[0] = 0.;

s[1] = 0.;

/* Note the first argument which specifies HLS space.*/

plscmap1l(0, 2, i, h, l, s, NULL);

This final example using plscmap1l illustrates how the default map1 color pallette is set with just

4 control points (taken from src/plctrl.c).

/*--*\

* plcmap1_def()

*

* Initializes color map 1.

*

* The default initialization uses 4 control points in HLS space, the two

* inner ones being very close to one of the vertices of the HLS double

* cone. The vertex used (black or white) is chosen to be the closer to

* the background color. If you don’t like these settings you can always

* initialize it yourself.

--/

static void

plcmap1_def(void)

{

PLFLT i[4], h[4], l[4], s[4], vertex = 0.;

/* Positions of control points */

i[0] = 0; /* left boundary */

i[1] = 0.45; /* just before center */

i[2] = 0.55; /* just after center */

i[3] = 1; /* right boundary */

/* For center control points, pick black or white, whichever is closer to bg */

/* Be carefult to pick just short of top or bottom else hue info is lost */

if (plsc->cmap0 != NULL)

vertex = ((float) plsc->cmap0[0].r +

(float) plsc->cmap0[0].g +

(float) plsc->cmap0[0].b) / 3. / 255.;

if (vertex < 0.5)

vertex = 0.01;

else

vertex = 0.99;

/* Set hue */

29

Chapter 3. Advanced Use of PLplot

h[0] = 260; /* low: blue-violet */

h[1] = 260; /* only change as we go over vertex */

h[2] = 0; /* high: red */

h[3] = 0; /* keep fixed */

/* Set lightness */

l[0] = 0.5; /* low */

l[1] = vertex; /* bg */

l[2] = vertex; /* bg */

l[3] = 0.5; /* high */

/* Set saturation -- keep at maximum */

s[0] = 1;

s[1] = 1;

s[2] = 1;

s[3] = 1;

c_plscmap1l(0, 4, i, h, l, s, NULL);

}

Finally, plscmap1 is an additional method of setting the map1 color palette directly using RGB

space. No interpolation is used with plscmap1 so it is the programmer’s responsibility to make sure

that the colors vary smoothly. Here is an example of the method taken from examples/c/x08c.c

which sets (yet again) the gray-scale color pallette.

for (i=0;i<n_col;i++)

rr[i] = gg[i] = bb[i] = i*256/n_col;

plscmap1(rr,gg,bb,n_col);

Setting Character Attributes

Plplot uses two separate font systems to display characters. The traditional system uses Hershey

fonts which are available for all device drivers, while the recently introduced unicode system is

currently available only for the ps, psc, png, jpeg, and gif devices. For details on how to enable

the unicode font system for additional device drivers using the FreeType library, see the Section

called Adding FreeType Library Support to Bitmap Drivers.

Hershey fonts

There are two Hershey font character sets included with PLplot. These are known as the standard

and extended character sets. The standard character set is a subset of the extended set. It contains

177 characters including the ascii characters in a normal style font, the Greek alphabet and several

plotter symbols. The extended character set contains almost 1000 characters, including four font

styles, and several math, musical and plotter symbols.

30

Chapter 3. Advanced Use of PLplot

The extended character set is loaded into memory automatically when plstar or plstart is called.

The standard character set is loaded by calling plfontld. The extended character set requires

about 50 KBytes of memory, versus about 5 KBytes for the standard set. plfontld can be used

to switch between the extended and standard sets (one set is unloaded before the next is loaded).

plfontld can be called before plstar.

When the extended character set is loaded there are four different font styles to choose from. In

this case, the routine plfont sets up the default Hershey font for all character strings. It may be

overridden for any portion of a string by using an escape sequence within the text, as described

below. This routine has no effect when the standard font set is loaded. The default font (1) is

simple and fastest to draw; the others are useful for presentation plots on a high-resolution device.

The font codes are interpreted as follows:

Ĺ font = 1: normal (sans-serif) font

Ĺ font = 2: roman (serif) font

Ĺ font = 3: italic font

Ĺ font = 4: script font

Unicode fonts

The advantages of the unicode fonts over the more traditional PLplot Hershey fonts are the

availability of many additional glyphs (including mathematical symbols and glyphs from other

than western-European languages) and much better display of characters on computer screens

using anti-aliasing and hinting. Unicode fonts are obtained by specifying a command-line option

of -drvopt text for the devices (currently ps, psc, png, jpeg, gif, and wingcc) where it has been

implemented.

For the ps and psc devices, there is a fixed relationship between the FCI (font characterization

integer, see the Section called FCI) and the actual Type 1 fonts that are being used. This fixed

relationship is specified in the Type1Lookup array in include/plfci.h. This array maps the font-

family attributes of sans-serif, serif, monotype, script, and symbol to the standard postscript font

families called Helvetica, Times-Roman, Courier, Times-Roman, and Symbol. (There is no script

font family amongst the 35 standard Type 1 postscript fonts so that is why we map the font-

family attribute of script to Times-Roman.) Similarly, this array maps the font-style attributes

of upright, italic or oblique and the font-weight attributes of medium or bold to the appropriate

variety of the Helvetica, Times-Roman, Courier, and Symbol font families that are part of the

35 standard Type 1 postscript fonts. These standard postscript fonts are normally installed on a

user’s system using the gsfonts package.

For the devices handled by the FreeType library (currently png, jpeg, and gif) there is a config-

urable relationship between the FCI (font characterization integer, see the Section called FCI)

and the TrueType fonts that are actually used.

On Unix/Linux systems, the TrueType fonts corresponding to the 30 possible valid FCIs can be

specified using ./configure options. (Use ./configure --help to see the possibilities and also the

default values for the fonts.) These ./configure defaults for the 30 possibilites are taken from

fonts available from the ttf-freefont font package. We recommend this font package because it

31

Chapter 3. Advanced Use of PLplot

has a rather complete set of glyphs for most unicode blocks. (We also recommend the gucharmap

application for determining other unicode font possibilities on your system that are available via

the FreeType library.)

On Windows systems, the fixed default TrueType fonts are specified in the include/plfci.h file.

(NOT PROGRAMMED YET, so this statement will probably NEED REVISION.)

For all systems, the 30 possible TrueType fonts can be specified at run time using the following

environment variables:

Ĺ PLPLOT_FREETYPE_SANS_FONT

Ĺ PLPLOT_FREETYPE_SERIF_FONT

Ĺ PLPLOT_FREETYPE_MONO_FONT

Ĺ PLPLOT_FREETYPE_SCRIPT_FONT

Ĺ PLPLOT_FREETYPE_SYMBOL_FONT

Ĺ PLPLOT_FREETYPE_SANS_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SERIF_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_MONO_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SCRIPT_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SYMBOL_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SANS_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_SERIF_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_MONO_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_SCRIPT_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_SYMBOL_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_SANS_BOLD_FONT

Ĺ PLPLOT_FREETYPE_SERIF_BOLD_FONT

Ĺ PLPLOT_FREETYPE_MONO_BOLD_FONT

Ĺ PLPLOT_FREETYPE_SCRIPT_BOLD_FONT

Ĺ PLPLOT_FREETYPE_SYMBOL_BOLD_FONT

Ĺ PLPLOT_FREETYPE_SANS_BOLD_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SERIF_BOLD_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_MONO_BOLD_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SCRIPT_BOLD_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SYMBOL_BOLD_ITALIC_FONT

Ĺ PLPLOT_FREETYPE_SANS_BOLD_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_SERIF_BOLD_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_MONO_BOLD_OBLIQUE_FONT

32

Chapter 3. Advanced Use of PLplot

Ĺ PLPLOT_FREETYPE_SCRIPT_BOLD_OBLIQUE_FONT

Ĺ PLPLOT_FREETYPE_SYMBOL_BOLD_OBLIQUE_FONT

On Unix/Linux systems if these environment variables are not specified with an absolute path

starting with "/", then the absolute path is specified by the configured default (see ./configure

--help) or at run time with the environment variable PLPLOT_FREETYPE_FONT_DIR.

FCI

We specify the properties of unicode fonts with the FCI (font characterization integer). The FCI

is a 32-bit unsigned integer whose most significant hexadecimal digit is marked with an 0x8

(0x80000000 is ORed with the FCI value to mark it) to distinguish it from a unicode (UCS4)

integer (whose maximum value 0x7fffffff). Users obtain the current FCI by calling plgfci and

store a new FCI to be used at the start of each subsequent string using plsfci. Independent

hexadecimal values within the FCI are characterized by the hexdigit and hexpower. The hexpower

is defined as the power of 16 or number of hexadecimal places to the left of the "decimal place"

in the FCI where the hexdigit is stored. The interpretation of the hexdigit and hexpower values

in the FCI are given in Table 3-3.

Table 3-3. FCI interpretation

hexdigit --> 0 1 2 3 4

Font

attribute

hexpower

font-family 0 sans-serif serif monospace script symbol

font-style 1 upright italic oblique

font-weight 2 medium bold

Note the maximum value of hexdigit is 7 and the maximum value of hexpower is 6 so there

is substantial room for expansion of this scheme. On the other hand, since each font attribute

is independent of the rest, what is implemented now gives us a maximum of 30 different font

possibilities which is probably more than enough for most plotting purposes.

Escape sequences in text

The routines which draw text all allow you to include escape sequences in the text to be plotted.

These are character sequences that are interpreted as instructions to change fonts, draw super-

scripts and subscripts, draw non-ASCII (e.g. Greek), and so on. All escape sequences start with

a number symbol (#) by default. Some language interfaces have the capability of changing this

default, but we will assume (#) in the remaining documentation of the escape sequences.

The following escape sequences are defined:

Ĺ #u: move up to the superscript position (ended with #d)

Ĺ #d: move down to subscript position (ended with #u)

Ĺ #b: backspace (to allow overprinting)

33

Chapter 3. Advanced Use of PLplot

Ĺ ##: number symbol

Ĺ #+: toggle overline mode

Ĺ #-: toggle underline mode

Ĺ #gx: Greek letter corresponding to Roman letter x (see below)

Ĺ #fn: switch to normal (sans-serif) font

Ĺ #fr: switch to Roman (serif) font

Ĺ #fi: switch to italic font

Ĺ #fs: switch to script font

Ĺ #(nnn): Hershey character nnn (1 to 4 decimal digits)

Ĺ #[nnn]: unicode character nnn (nnn can be decimal or hexadecimal [e.g., starting with 0x])

(UNICODE ONLY).

Ĺ #<0x8nnnnnnn>: absolute FCI to be used to change fonts in mid-string. (nnnnnnn must be exactly

7 digits). (UNICODE ONLY).

Ĺ #<0xmn>: change just one attribute of the FCI in mid-string where m is the hexdigit and n is

the hexpower. If more than two digits are given (so long as the eighth digit does not mark this

as an absolute FCI, see above) they are ignored. (UNICODE ONLY).

Ĺ #<FCI COMMAND STRING/>: the FCI COMMAND STRING is currently one of "sans-serif", "serif",

"monospace", "script", "symbol", "upright", "italic", "oblique" "medium", or "bold" (without

the surrounding quotes). These FCI COMMAND STRINGS change one attribute of the FCI

according to their name. (UNICODE ONLY).

Sections of text can have an underline or overline appended. For example, the string S(freq) is

obtained by specifying "#+S#+(#-freq#-)".

Greek letters are obtained by #g followed by a Roman letter. Table 3-4 shows how these letters

map into Greek characters.

Table 3-4. Roman Characters Corresponding to Greek Characters

Roman A B G D E Z Y H I K L M

Greek A B ` ´ E Z E ˆ I K ˜ M

Roman N C O P R S T U F X Q W

Greek N ¨ O ˝ R ˚ T ˇ ˘ C ¯ ˙

Roman a b g d e z y h i k l m

Greek α β γ δ ε ζ η θ ι κ λ µ

Roman n c o p r s t u f x q w

Greek ν ξ o π ρ σ τ υ φ χ ψ ω

The escape sequences #fn, #fr, #fi, #fs, and #(nnn) are designed for the four Hershey fonts, but

an effort has been made to allow some limited forward compatibility so these escape sequences

have a reasonable result when unicode fonts are being used. However, for maximum flexibility

when using unicode fonts, these 5 escape sequences should be replaced by using the 4 escape

34

Chapter 3. Advanced Use of PLplot

sequences #[nnn], #<0x8nnnnnnn>, #<0xmn>, or #<FCI COMMAND STRING/> as appropriate.

Character size adjustment

The routine plschr is used to set up the size of subsequent characters drawn. The actual height of

a character is the product of the default character size and a scaling factor. If no call is made to

plschr, the default character size is set up depending on the number of subpages defined in the call

to plstar or plstart, and the scale is set to 1.0. Under normal circumstances, it is recommended

that the user does not alter the default height, but simply use the scale parameter. This can be

done by calling plschr with def = 0.0 and scale set to the desired multiple of the default height.

If the default height is to be changed, def is set to the new default height in millimeters, and the

new character height is again set to def multiplied by scale.

The routine plssym sets up the size of all subsequent characters drawn by calls to plpoin and

plsym. It operates analogously to plschr as described above.

Three Dimensional Surface Plots

PLplot includes routines that will represent a single-valued function of two variables as a surface.

In this section, we shall assume that the function to be plotted is Z[X][Y], where Z represents the

dependent variable and X and Y represent the independent variables.

As usual, we would like to refer to a three dimensional point (X, Y, Z) in terms of some meaningful

user-specified coordinate system. These are called three-dimensional world coordinates. We need

to specify the ranges of these coordinates, so that the entire surface is contained within the

cuboid defined by xmin < x < xmax, ymin < y < ymax, and zmin < z < zmax. Typically, we shall

want to view the surface from a variety of angles, and to facilitate this, a two-stage mapping of

the enclosing cuboid is performed. Firstly, it is mapped into another cuboid called the normalized

box whose size must also be specified by the user, and secondly this normalized box is viewed

from a particular azimuth and elevation so that it can be projected onto the two-dimensional

window.

This two-stage transformation process allows considerable flexibility in specifying how the surface

is depicted. The lengths of the sides of the normalized box are independent of the world coordinate

ranges of each of the variables, making it possible to use “reasonable” viewing angles even if the

ranges of the world coordinates on the axes are very different. The size of the normalized box is

determined essentially by the size of the two-dimensional window into which it is to be mapped.

The normalized box is centered about the origin in the x and y directions, but rests on the plane

z = 0. It is viewed by an observer located at altitude alt and azimuth az, where both angles are

measured in degrees. The altitude should be restricted to the range zero to ninety degrees for

proper operation, and represents the viewing angle above the xy plane. The azimuth is defined

so that when az = 0, the observer sees the xz plane face on, and as the angle is increased, the

observer moves clockwise around the box as viewed from above the xy plane. The azimuth can

take on any value.

The first step in drawing a surface plot is to decide on the size of the two-dimensional window

and the normalized box. For example, we could choose the normalized box to have sides of length

basex = 2.0;

basey = 4.0;

35

Chapter 3. Advanced Use of PLplot

height = 3.0;

A reasonable range for the x coordinate of the two-dimensional window is -2.5 to +2.5, since the

length of the diagonal across the base of the normalized box is sqrt(22+42) = 2 sqrt(5), which

fits into this coordinate range. A reasonable range for the y coordinate of the two dimensional

window in this case is -2.5 to +4, as the the projection of the normalized box lies in this range

for the allowed range of viewing angles.

The routine plwind or plenv is used in the usual way to establish the size of the two-dimensional

window. The routine plw3d must then be called to establish the range of the three dimensional

world coordinates, the size of the normalized box and the viewing angles. After calling plw3d, the

actual surface is drawn by a call to plot3d.

For example, if the three-dimensional world-coordinate ranges are -10.0 ≤ x ≤ 10.0, -3.0 ≤ y ≤
+7.0, and 0.0 ≤ z ≤ 8.0, we could use the following statements:

xmin2d = -2.5;

xmax2d = 2.5;

ymin2d = -2.5;

ymax2d = 4.0;

plenv(xmin2d, xmax2d, ymin2d, ymax2d, 0, -2);

basex = 2.0;

basey = 4.0;

height = 3.0;

xmin = -10.0;

xmax = 10.0;

ymin = -3.0;

ymax = 7.0;

zmin = 0.0;

zmax = 8.0;

alt = 45.0;

az = 30.0;

side = 1;

plw3d(basex, basey, height, xmin, xmax, ymin, ymax, zmin, zmax, alt, az);

plot3d(x, y, z, nx, ny, opt, side);

The values of the function are stored in a two-dimensional array z[][] where the array element

z[i][j] contains the value of the function at the point x
i
, y

j
. (The two-dimensional array z is a

vectored array instead of a fixed size array. z points to an array of pointers which each point to

a row of the matrix.) Note that the values of the independent variables x
i
and y

j
do not need to

be equally spaced, but they must lie on a rectangular grid. Thus two further arrays x[nx] and

y[ny] are required as arguments to plot3d to specify the values of the independent variables.

The values in the arrays x and y must be strictly increasing with the index. The argument opt

specifies how the surface is outlined. If opt = 1, a line is drawn representing z as a function of x

for each value of y, if opt = 2, a line is drawn representing z as a function of y for each value of

x, and if opt = 3, a net of lines is drawn. The first two options may be preferable if one of the

independent variables is to be regarded as a parameter, whilst the third is better for getting an

overall picture of the surface. If side is equal to one then sides are drawn on the figure so that

the graph doesn’t appear to float.

36

Chapter 3. Advanced Use of PLplot

The routine plmesh is similar to plot3d, except that it is used for drawing mesh plots. Mesh plots

allow you to see both the top and bottom sides of a surface mesh, while 3D plots allow you to

see the top side only (like looking at a solid object). The side option is not available with plmesh.

Labeling a three-dimensional or mesh plot is somewhat more complicated than a two dimensional

plot due to the need for skewing the characters in the label so that they are parallel to the

coordinate axes. The routine plbox3 thus combines the functions of box drawing and labeling.

Contour and Shade Plots

Several routines are available in PLplot which perform a contour or shade plot of data stored in

a two-dimensional array. The contourer uses a contour following algorithm so that it is possible

to use non-continuous line styles. Further, one may specify arbitrary coordinate mappings from

array indices to world coordinates, such as for contours in a polar coordinate system. In this case

it is best to draw the distinction between the C, Fortran 95, and Fortran 77 interfaces so these

are handled in turn.

Contour Plots from C

plcont is the routine callable from C for plotting contours. This routine has the form:

plcont (z , nx , ny , kx , lx , ky , ly , clevel , nlevel , pltr , pltr_data);

where z is the two-dimensional array of size nx by ny containing samples of the function to be

contoured. (z is a vectored two-dimensional array as described in the previous section. It is not a

fixed-size two-dimensional array.) The parameters kx, lx, ky and ly specify the portion of z that

is to be considered. The array clevel of length nlevel is a list of the desired contour levels.

The path of each contour is initially computed in terms of the values of the array indices which

range from 0 to nx-1 in the first index and from 0 to ny-1 in the second index. Before these can

be drawn in the current window (see the Section called Defining the Window), it is necessary to

convert from these array indices into world coordinates. This is done by passing a pointer pltr

to a user-defined transformation function to plcont. For C use of plcont (and plshade, see next

subsection) we have included directly in the PLplot library the following transformation routines:

pltr0 (identity transformation or you can enter a NULL argument to get the same effect); pltr1

(linear interpolation in singly dimensioned coordinate arrays); and pltr2 (linear interpolation in

doubly dimensioned coordinate arrays). Examples of the use of these transformation routines

are given in examples/c/x09c.c, examples/c/x14c.c, and examples/c/x16c.c. These same three

examples also demonstrate a user-defined transformation function mypltr which is capable of

arbitrary translation, rotation, and/or shear. By defining other transformation subroutines, it is

possible to draw contours wrapped around polar grids etc.

Shade Plots from C

NEEDS DOCUMENTATION. Follow the plshade and plshades usage in examples/c/x??c.c.

37

Chapter 3. Advanced Use of PLplot

Contour Plots from the Fortran 95 interface

NEEDS DOCUMENTATION. Follow the plcont usage (with a variety of overloaded forms avail-

able with different arguments) in examples/f95/x??f.f90.

Shade Plots from the Fortran 95 interface

NEEDS DOCUMENTATION. Follow the plshade and plshades usage (with a variety of over-

loaded forms available with different arguments) in examples/f95/x??f.f90.

Contour Plots from the Fortran 77 interface

The routines mentioned above are not recommended for use directly from Fortran 77 due to the

need to pass a function pointer. That is, the transformation function is written in C and can not

generally be changed by the user. The call for routine plcontfortran77 from Fortran 77 is then:

call plcont (z , nx , ny , kx , lx , ky , ly , clevel , nlevel);

When called from Fortran 77, this routine has the same effect as when invoked from C. The

interpretation of all parameters (see plcont) is also the same except there is no transformation

function supplied as the last parameter. Instead, a 6-element array specifying coefficients to use

in the transformation is supplied via the named common block plplot (see code). Since this

approach is somewhat inflexible, the user is recommended to call either of plcon0, plcon1, or

plcon2 instead for Fortran 77.

The three routines recommended for use from Fortran 77 are plcon0, plcon1, and plcon2. These

routines are similar to existing commercial plot package contour plotters in that they offer suc-

cessively higher complexity, with plcon0 utilizing no transformation arrays, while those used by

plcon1 and plcon2 are one and two dimensional, respectively. The call syntax for each is

call plcon0 (z , nx , ny , kx , lx , ky , ly , clevel , nlevel);

call plcon1 (z , nx , ny , kx , lx , ky , ly , clevel , nlevel , xg1 , yg1);

call plcon2 (z , nx , ny , kx , lx , ky , ly , clevel , nlevel , xg2 , yg2);

The plcon0 routine is implemented via a call to plcont with a very simple (identity) transformation

function, while plcon1 and plcon2 use interpolating transformation functions as well as a call to

plcont.

The transformation arrays are used by these routines to specify a mapping between the com-

putational coordinate system and the physical one. For example, the transformation to polar

coordinates might look like:

do i = 1, NX

38

Chapter 3. Advanced Use of PLplot

do j = 1, NY

xg(i, j) = r(i) * cos(theta(j))

yg(i, j) = r(i) * sin(theta(j))

enddo

enddo

assuming the user had already set up arrays r and theta to specify the (r, θ) values at the

gridpoints in his system. For this example, it is recommended that the user add an additional

cell in theta such that xg(i, NY+1) = xg(i, 1) and yg(i, NY+1) = yg(i, 1) so that the contours

show the proper periodic behavior in θ (see also example program 9).

The transformation function not only specifies the transformation at grid points, but also at

intermediate locations, via linear interpolation. For example, in the pltr1 transformation function

used by plcon1, the 1-d interpolation to get tx as a function of x looks like (in C):

ul = (PLINT)x;

ur = ul + 1;

du = x - ul;

xl = *(xg+ul);

xr = *(xg+ur);

*tx = xl * (1-du) + xr * du;

while in Fortran 77 this might look like:

lxl = x

lxr = lxl + 1

dx = x - lxl

xl = xg(lxl)

xr = xg(lxr)

tx = xl * (1-dx) + xr * dx

Shade Plots from the Fortran 77 interface

NEEDS DOCUMENTATION. Follow the plshade* and plshades* usage in examples/f77/x??f.f.

39

Chapter 3. Advanced Use of PLplot

40

Chapter 4. Deploying programs that use

PLplot

This chapter provides some information on the issue of delivering programs that use PLplot: what

files should be installed and where, what environment variables are involved and related matters.

The scenario is this: You have created one or more programs that run successfully on your

development machine and now you need to install them on the machine of a user.

One solution is to provide him or her with the full development environment that you use, but

that is in general only an option if your user is comfortable with making programs themselves.

A more common situation is that your user just wants the executable programs and wants to

get using them rightaway. We will focus on this particular solution, as there are a few non-trivial

issues.

To be absolutely clear about what we are describing, here is a summary:

Ĺ Your program must run on a machine that does not have PLplot installed from the sources.

Ĺ There is no development environment that you can rely on.

Ĺ The program should be installed in a self-contained directory structure (which can be

/usr/local or c:\program files or whatever, but need not be so).

Under Linux, the easiest way to install a binary version of PLplot on a user’s machine is to use

PLplot deb binary packages for the Debian1 distribution, and PLplot rpm binary packages for

rpm-based distributions. (See the Resources area2 of the PLplot web site for locations of debs

and rpms.) Build the application on the build machine using the results of the plplot-config

--cflags --libs command, and copy the resulting executable(s) to the users’ machines.

Under Unix (and also under Linux if you would prefer to use a newer version of PLplot than is

available in the debs or rpms), a good way to deploy binary PLplot and applications that depend

on that binary PLplot on users’ machines is as follows:

Ĺ Use the ./configure option --prefix=/usr/local/plplot (or some other unique but consistent

directory that is available on the build machine and all users’ machines).

Ĺ Build and install as normal on the build machine.

Ĺ Copy the installed PLplot tree, /usr/local/plplot, into a tarball.

Ĺ Unpack that tarball on all users’ machines in the same location /usr/local/plplot.

Ĺ Build the application(s) on the build machine using the results of the plplot-config --cflags

--libs command, and copy the resulting executable(s) to the users’ machines. Since the PLplot

install location is consistent on all machines, the application should work the same way on all

machines.

41

Chapter 4. Deploying programs that use PLplot

On Windows, and also those rare Linux/Unix cases where you cannot install the PLplot install

tree in a consistent location on users’ machines, then there are some additional options you need

to consider.

There are three situations depending on how you configure and build the PLplot libraries:

1. You use the static versions of the PLplot libraries and devices which are not dynamically

loaded. 3

2. You use the shared versions of the PLplot libraries and devices which are not dynamically

loaded.

3. You use the shared versions of the PLplot library and devices which are dynamically loaded.

This combination is the default option under Unix/Linux.

In the first case the program will contain all the code it needs to work, but to run successfully, it

needs to find the font files, plstnd5.fnt and plxtnd5.fnt. The mechanism used in PLplot to find

these files is fairly simple:

Ĺ It looks at a number of built-in places, determined at the time the PLplot library itself was

installed and built. For deployment these places are irrelevant in general.

Ĺ It looks at the environment variables PLPLOT_LIB and PLPLOT_HOME. (Actually,

this happens only, if the corresponding compiler macros PLPLOT_LIB_ENV and

PLPLOT_HOME_ENV were defined at compile time.)

Ĺ (TODO: remark about Mac)

Note: This is also the place to put the geographical map files, if you happen to use them.

The environment variables should point to the directory holding the two font files or the one

above (one variable is enough though):

Ĺ PLPLOT_LIB should point to the directory actually holding these files

Ĺ PLPLOT_HOME should point to the directory that holds a subdirectory “lib” which in turn

holds these files.

If it can find these, PLplot can do its job.

Note: This is the case for instance when you use the static PLplot library on Windows (see the

directory sys\win32\msdev\plplib).

In the second case the font and map files are found as in the first case. In addition, you also

require another environment variable so the PLplot shared libraries can be found at run time by

the run-time loader. The details depend on the system you are working on, but here are some

common platforms:

42

Chapter 4. Deploying programs that use PLplot

Ĺ Most UNIX, BSD and Linux systems use an environment variable LD_LIBRARY_PATH

which indicates directories where shared libraries can be found. Some use SHLIB_PATH, like

HPUX.

Ĺ On Windows the PATH variable is used to find the DLLs, but beware: Windows uses a number

of places to find the DLLs a program needs and the ordering seems to depend on some intricate

details. It seems easiest and safest to put the DLLs in the same directory as your program.

Ĺ On MacOSX, ... TODO

In the third (default) case, the PLplot fonts and maps are found as in the first case, and the

shared libraries are found as in the second case, but in addition the separated dynamic devices

have to be found as well.

When PLplot uses dynamic devices, it first builds up a list of them, by examining a directory

which contains files describing those devices: the *.driver_info files. Each of these files indicates

what the relevant properties for the device or devices. Then when the device is actually needed, the

corresponding shared object (or plug-in or DLL depending on your terminology) is dynamically

loaded.

The directory that contains all these files (the device descriptions as well as the actual libraries and

the description files that libtool uses) is a directory determined at the time you configured PLplot

which is typically something like /usr/local/plplot/lib/plplot5.3.1/driversd. This directory

must be pointed to by the PLPLOT_DRV_DIR environment variable. Again for deployment,

only the environment variable is of real interest.

To summarise the case where you don’t have a deb or rpm option, and you must use inconsistent

install locations on your users’ machines:

Ĺ The following environment variables are important:

� PLPLOT_HOME or PLPLOT_LIB to indicate the position of font files (and also of the

various geographic maps)

� LD_LIBRARY_PATH, SHLIB_PATH or PATH to find the dynamic/shared libraries

� PLPLOT_DRV_DIR to find the device descriptions

Ĺ The following files being part of PLplot must be distributed along with your program:

� The font files (plstnd5.fnt and plxtnd5.fnt) and, possibly, if you use them, the geographic

map files.

� The PLplot shared libraries

� The device description files and the device shared object files

All the environment variables, except LD_LIBRARY_PATH and equivalents, can be set within

the program (by using a small configuration file or by determining the position of the files relative

to the program’s location). They just have be set before PLplot is initialised.

43

Chapter 4. Deploying programs that use PLplot

Notes
1. http://www.debian.org

2. http://plplot.sourceforge.net/resources/index.html

3. UNIX-like systems libraries can be static or shared, the first type becoming part of the

program, the second existing as a separate file. On Windows the terms are respectively static

and dynamic (the latter type is also known as DLL).

44

Chapter 5. The PLplot Display Driver Family

Drivers that provide screen displays are described in this chapter. Each of the drivers has a list

of options, and these may be set as outlined in the Section called Command Line Arguments in

Chapter 3.

The Xwin Driver (X-Windows)

The Xwin driver draws plots in an X-window. Although some of the newer features are not

supported, it remains the reference driver for PLplot.

Plots are displayed one page at a time. The pager is advanced by pressing the Enter key, and

may only be advanced in the foreward direction.

Anti-aliasing is not supported, and the Xwin driver is not unicode-enabled.

The available driver options are:

Ĺ sync: Synchronized X server operation (0|1)

Ĺ nobuffered: Sets unbuffered operation (0|1)

Ĺ noinitcolors: Sets cmap0 allocation (0|1)

Ĺ defvis: Use the Default Visual (0|1)

Ĺ usepth: Use pthreads (0|1)

The Tk Driver

is the prototype of a whole new interaction paradigm. See next chapter.

The AquaTerm Driver (Mac OS X)

The AquaTerm driver is a Mac OS X specific driver that is used with the AquaTerm Graphics

Terminal. It is unicode enabled. Text, lines and shades are anti-aliased.

There are no options...

The wxWidgets Driver (Linux, Mac OS X, Windows)

The basic wxWidgets driver’s features and user interface are described in the section called

’Driver Basics’. The file drivers/README.wxwidgets describes how you can use the PLplot

library within your wxWidgets application.

wxWidgets Driver Basics

The wxWidgets driver plots in a Frame provided by the wxWidgets library. The driver is quite

complete but lacks many of the GUI features of the TK driver. All plots are available at once

45

Chapter 5. The PLplot Display Driver Family

an one can switch between all plots by pressing Alt-n. The application can be quit with Alt-x.

These functions are also available in the menu. After the last plot one will advance again to the

first plot. Anti-aliasing is supported and and the wxWidgets driver is unicode enabled. It is also

possible to address the wxWidgets driver from within a wxWidgets application - this is described

in the next section.

The available driver options (used with the - drvopt command-line argument) are:

Ĺ text: Use TrueType fonts (0|1); default 1

Ĺ smooth: switch on/off anti-aliasing (0|1); default 1

The text option toggles between TrueType and Hershey fonts. The Hershey fonts provide a

reference implementation for text representation in PLplot.

The smooth option will turn on or off text smoothing for True Type fonts. This will increase the

time for a plot considerably.

46

Chapter 6. The PLplot Output Driver Family

Drivers which produce output files are described in this chapter. Each of the drivers has a list

of options, and these may be set as outlined in the Section called Command Line Arguments in

Chapter 3.

The GD Driver

The GD driver produces png, jpeg, and gif images, using devices by the same name. The GD

driver is unicode enabled. Text is anti-aliased, but lines and shades are not.

The available driver options are:

Ĺ optimise: Optimise PNG palette when possible

Ĺ def_black15: Define idx 15 as black. If the background is "whiteish" (from "-bg" option), force

index 15 (traditionally white) to be "black"

Ĺ swp_red15: Swap index 1 (usually red) and 1 (usually white); always done after "black15";

quite useful for quick changes to web pages

Ĺ 8bit: Palette (8 bit) mode

Ĺ 24bit: Truecolor (24 bit) mode

Ĺ text: Use driver text (FreeType)

Ĺ smooth: Turn text smoothing on (1) or off (0)

The PDF Driver

A basic version of a pdf driver has been added to PLplot. This driver is based on the libharu

library see: http://libharu.sourceforge.net/1. At present only the hershey fonts are used and

there is no support for pdf or ttf fonts. Compression of the pdf output is not enabled and the

paper size can’t be chosen. All these issues will be addressed in later releases.

Options?

The PostScript Driver

The PostScript driver produces publication-quality PostScript output. The driver provides two

devices: the ps device for black-and-white plots, and the psc device for color plots.

This driver is unicode enabled, and PostScript Type I fonts are used. Type I fonts do not have all

of the available unicode symbols represented. For this reason, Hershey fonts are used for drawing

symbols by default, unless specified otherwise using the driver options.

The available driver options are:

Ĺ text: Use PostScript text (0|1); default 1

47

Chapter 6. The PLplot Output Driver Family

Ĺ color: Use color (0|1); default 1

Ĺ hrshsym: Use Hershey fonts for symbols (0|1); default 1

The TrueType PostScript Driver

This is a PostScript driver that supports TrueType fonts. This allows access to a far greater range

of fonts and characters than is possible using Type 1 PostScript fonts (see the Section called The

PostScript Driver). It is the driver to use for generating publication quality output using PLplot.

The driver provides two devices: the ps-ttf device for black-and-white plots and the ps-ttfc device

for color plots.

The driver requires the LASi (v1.0.5), pango and pangoft2 libraries to work. The pango and pan-

goft2 libraries are widely distributed with most Linux distributions and give the psttf driver full

complex text layout (CTL) capability (see http://plplot.sourceforge.net/examples/demo24.php2

for an example of this capability). The LASi library is not part of most distributions at this time.

The source code can be downloaded from http://www.unifont.org/lasi/. The library is small

and easy to build and install. Make sure you use LASi-1.0.5. The psttf device driver uses new

capabilities in this version of LASi and no longer works with LASi-1.0.4.

The available driver options are:

Ĺ text: Use TrueType fonts for text (0|1); default 1

Ĺ color: Use color (0|1); default 1

Ĺ hrshsym: Use Hershey fonts for symbols (0|1); default 0

The LaTeX PostScript Driver

This is a PostScript device driver that writes out its results in two files. (1) The encapsulated

postscript (EPS) file contains all the postscript commands for rendering the plot without charac-

ters, and (2) the LaTeX file contains a fragment of LaTeX that reads in the EPS file and renders

the plot characters using LaTeX commands (and LaTeX fonts!) in alignment with the EPS file

to produce a combined result.

Suppose you create the EPS and LaTeX files with the following command: ./x01c -dev pstex -o

x01c.eps. The EPS file is then stored in x01c.eps and the LaTeX fragment is stored in x01c.eps_t.

Then you may use the generated files with the x01c.tex LaTeX code that follows:

\documentclass{article}

\usepackage[dvips]{graphicx}

\begin{document}

\input{x01c.eps_t}

\end{document}

48

Chapter 6. The PLplot Output Driver Family

and generate PostScript results using the LaTeX fonts with the following command: latex

x01c.tex; dvips -f <x01c.dvi >x01c.ps . The results look good (aside from an obvious

bounding-box problem that still needs to be fixed with this device) and should be useful for

LaTeX enthusiasts.

There are no available driver options.

The SVG Driver

The SVG driver produces Scalable Vector Graphics files that are compliant with the SVG 1.1

specification as defined here: http://www.w3.org/Graphics/SVG/. The driver is unicode enabled

and both text and lines are anti-aliased. As SVG is just an XML based graphics language, the

visual quality of the resulting plot will depend on the SVG rendering engine that is used and

what fonts that are available to it.

Notes
1. http://libharu.sourceforge.net/

2. http://plplot.sourceforge.net/examples/demo24.php

49

Chapter 6. The PLplot Output Driver Family

50

III. Language Bindings

Chapter 7. Ada Language

This document describes the Ada bindings to the PLplot technical plotting software, how to

obtain the necessary software components, and how to use them together.

Overview

The Ada bindings for PLplot provide a way for Ada programmers to access the powerful PLplot

technical plotting facilities directly from Ada programs while working completely in Ada; the Ada

programmer never needs to know or worry that PLplot itself is written in another language.

There are a thin binding and two thick bindings provided. The thin binding presents the appli-

cation programming interface (API) in a form very similar to the C API, although in 100% Ada.

The thick bindings present the API in a form to which Ada programmers will be more accustomed

and add some ease-of-use features. It is expected that the thick bindings will be preferred.

The Bindings

The bindings are a re-expression and extension of the C-language API and as such are a kind of

abstract layer between the user’s code and the PLplot binary library. Additionally, there are a

few capabilities not in the official API but nonetheless which are available to the C programmer

which are included in the bindings and thus are directly available to the Ada programmer.

The thin binding is a layer between the thick bindings and the underlying C code. It is mainly

a programming convenience for the developer of the bindings; this is a common implementation

for foreign language bindings and for the most part, the user can ignore it.

There are two thick bindings provided for the convenience of the user. Either may be used and

they both provide exactly the same functionality. The thick bindings are the user’s main concern

with programming for PLplot.

Thin Binding

The thin binding, in the files plplotthin.ads and plplotthin.adb, is mostly a direct and obvious

mapping of the C application programming interface (API) to Ada. Thus, for example, where

a C program such as plcol0 requires a single integer argument, there is a corresponding Ada

program also called plcol0 which also requires a single integer argument. (plcol0 happens to set

the drawing color using a number which is associated with a set of colors.) Various constants

from the C API are also included here. Numeric types as defined in PLplot are associated with

numeric types in Ada in the thin binding by use of Ada’s type system. Thus, the thin binding

refers to the PLplot-centric type PLFLT for floating-point types while the thick binding uses the

usual Ada type Long_Float.

Many of the comments from the C source header file (similar in purpose to an Ada specification

file) have been retained in the thin binding, even when they are no longer sensical. These might

be pruned at some point to facilitate reading the Ada source.

Also included in the thin binding are some other declarations which help the Ada binding to mesh

well with C by emulating certain data structures which are needed in some rather specialized

usages as well as providing certain subprogram pointer types.

53

Chapter 7. Ada Language

The Ada programmer working with either of the thick bindings will have to refer to the thin

binding relatively rarely, if ever, and mainly to examine the subroutine pointer declarations and

the several variant record types which are used mostly for contour and three-dimensional plots.

However, some of these have been subtype-ed or renames-ed in the thick bindings so even less

reference to the thin binding will be necessary. The goal is to put everything of interest to the

user in the thick bindings and the user need not bother with the thin binding.

The Thick Bindings

The thick bindings provide most of the information that the Ada programmer needs. Normally,

only one of the two thick bindings would be used per user program but it should be possible to

include both but that scenario would be unusual.

There are three main aspects of the thick bindings: providing an alternative access to the PLplot

API, extending the PLplot functionality with some easy-to-use features, and overlaying Ada data

structures and types.

In the first aspect, the thick bindings provide a fully Ada interface to the entire PLplot library.

Packages are with-ed and use-d as normal Ada code. Ada arrays can be passed as usual, not

requiring the array length or start or end indices to be passed separately. All necessary Ada types

are made to match the underlying C types exactly.

The second aspect of the thick bindings is to provide some simplified ways to get a lot of plotting

done with only one or two subroutine calls. For example, a single call to Simple_Plot can display

from one to five "y ’s" as a function of a single "x" with default plot appearances chosen to

suit many situations. Other simple plotters are available for three-dimensional and contour plots.

Manipulating PLplot’s colors is similarly made easy and some default color schemes are provided.

The third main aspect of the thick binding is to use Ada data structures and Ada’s type sys-

tem extensively to reduce the chances of inappropriate actions. For example, Ada arrays are

used throughout (as opposed to C’s pointer-plus-offset-while-carrying-along-the-size-separately

approach). Quantities which have natural range limits are subtype-d to reflect those constraints.

The hope is that program errors will result in more-familiar Ada compilation or run-time errors

rather than error reports from the PLplot library or no reports at all. However, there remain a

few instances where the typing could be improved and PLplot errors will still be reported from

time to time.

Both the specification and body for the standard thick (and thin) binding contain the C subrou-

tine name as a comment line immediately above the Ada procedure declaration; this should help in

making the associations between "Ada" names and "PLplot" names. Also, the subroutine-specific

comments from the C API have been retained verbatim.

Standard Thick Binding Using Enhanced Names

The distinguishing feature of this thick binding (the "standard" binding) is to provide more

descriptive names for PLplot subroutines, variables, constants, arguments, and other objects.

Most Ada programmers will be more comfortable using these names. For example, in the C API

as well as the thin Ada binding and the other thick Ada binding, the procedure plcol0(1) sets the

drawing color to red. In the standard thick binding, the same thing is accomplished by writing

Set_Pen_Color(Red). The Ada program may just as well write Set_Pen_Color(1) since the binding

merely sets a constant Red to be equal to the integer 1. Many such numeric constants from the

54

Chapter 7. Ada Language

C API are given names in this thick binding. These renamed integers are discussed more fully in

Section 7.2.

The disadvantage of this renaming is that it makes referring to the PLplot documentation some-

what awkward. There might be, at some time, a utility for easing this problem by providing an

HTML file with links so that a "normal" PLplot name can be linked to the "Ada" name along

with the appropriate entry in the Ada specification, as well as another HTML file with links from

the "Ada" name directly to the PLplot web page that documents that name. It might also be

possible to provide an alternate version of the documentation with the enhanced names used.

(The developer of the bindings has a sed file prepared which makes most of the subroutine-name

substitutions.) However, this thick binding retains the original C subprogram names as comments

immediately above the function or procedure name in the code listing so it is relatively easy to

locate the relevant item in the PLplot documentation.

One simple rule applies in reading the PLplot API documentation: the argument names are in

the same order in Ada as in the PLplot documentation (the names are different) except that all

array lengths are eliminated. The PLplot documentation, for each subroutine, shows a "redacted"

version which should be correct for Ada as well as other languages which have proper arrays.

The standard bindings are in the Ada files plplot.ads and plplot.adb.

Thick Binding Using Traditional Names

This thick binding provides exactly the same functionality as the standard thick binding but

retains the original names as used in the C code and the PLplot documentation.

The traditional bindings are in the Ada files plplot_traditional.ads and plplot_traditional.adb.

The Examples

An important part of the Ada bindings is the examples, some 30 of which demonstrate how

to use many of the features of the PLplot package. These examples also serve as a testbed for

the bindings in Ada and other languages by checking the Postscript files that are generated by

each example against those generated by the C versions. These examples have been completely

re-written in Ada (but retain a C flavor in the names that are given to objects). All of the Ada

examples generate exactly the same Postscript as the C versions, Examples 14 and 17 excepted

since those operate interactively and don’t (normally) make Postscript. Two versions of each

example are available, one calling the standard binding and the other the traditional binding. (In

development, a sed script does almost all of the conversion automatically.)

Obtaining the Software

There are three software components that you will need: an Ada compiler, the PLplot library,

and the Ada bindings.

Obtaining an Ada compiler

You will need an Ada compiler in order to use the Ada PLplot bindings. There are several

compilers available. Here, we will focus on the free, open source compiler that is included with

55

Chapter 7. Ada Language

the GNU Compiler Collection, (gcc) which is at the center of much of the open source software

movement. The gcc Ada compiler is known as GNAT, for GNU NYU Ada Translator, where

NYU stands for New York University. (Although GNAT was originally developed at NYU, it has

for many years been developed and supported commercially by AdaCore with academic and pro

versions available.)

Your computer may already have GNAT installed, or you can download it from gcc.gnu.org1.

Another route to obtaining GNAT is from the AdaCore page, libre2.adacore.com2. There are

versions for many operating systems and processors including Apple’s OS X or its open source

version Darwin, Linux, and Windows. The gcc and AdaCore versions differ in their licenses.

Download the version that you need and follow the installation instructions.

Download and install PLplot

PLplot can be downloaded from the PLplot project page at sourceforge.net3. Follow the instal-

lation instructions after downloading. The installation process requires that your computer has

CMake installed. OS X users can try installing PLplot in its entirety from MacPorts but that

activity is not officially supported by the PLplot developers. The advantage of using MacPorts is

that all installation dependencies are automatically installed for you.

Download the Ada bindings to PLplot

The third major software component is the bindings themselves. Since they are currently included

with the PLplot software itself, there is no need to download them from another place.

The bindings themselves are six Ada source files named (using GNAT filename extensions)

plplot.ads, plplot.adb, plplot_traditional.ads, plplot_traditional.adb, plplothin.ads, and

plplotthin.adb. There are two additional files, plplot_auxiliary.ads and plplot_auxililary.adb

which will be discussed later, in Section 9. These can be stored somewhere on your system’s

search paths for easy access.

How to use the Ada bindings

Ada 95 versus Ada 2005

The bindings will work for either Ada 95 or Ada 2005 but there is a slightly subtle point regarding

the use and declaration of vectors and matrices. The package PLplot_Auxiliary declares the types

type Real_Vector is array (Integer range <>) of Long_Float;

type Real_Matrix is array (Integer range <>, Integer range <>) of Long_Float;

These declarations mimic exactly the declarations described in Annex G.3, Vector and Matrix

Manipulation, of the Ada 2005 reference manual when the generic package therein described is

specialized for Long_Float. The reason for this approach is to avoid requiring the user program

to with Ada.Numerics.Long_Real_Arrays simply to gain access to these types and in the process

require linking to the BLAS and LAPACK numerics libraries.

For users who wish to either attain compatibility with Ada 2005 Annex G.3 or to access its

features which actually depend on BLAS and LAPACK, there are two routes. One is to build

56

Chapter 7. Ada Language

PLpot normally and then to edit PLplot_Auxiliary.ads as is indicated in that file. This is a very

simple process requiring commenting two lines and uncommenting three lines. Then recompile

only the Ada bindings and use the newly-created compiled files in the user project. The other

way is to type-convert the Real_Vector and Real_Matrix objects in the user program so that they

are compatible with the declarations of Annex G.3 when accessing the numerics functionality in

that annex. (In GNAT, the relevant file is a-nlrear.ads.)

This policy was changed in SVN version 11153. Before this, the type of compiler (Ada 95 or Ada

2005) had to be specified at the time that PLplot was built, and in the case of Ada 2005, the

BLAS and LAPACK libraries had to be present and were subsequently linked.

GNAT versus non-GNAT

The bindings were made using the GNAT compiler and there is a slight dependence on that

compiler. Specifically, the Unrestricted_Access attribute of GNAT was used in making the

function Matrix_To_Pointers in plplotthin.adb and in a few callbacks. Matrix_To_Pointers is

called whenever an Ada matrix (2D array) is passed to a PLplot subroutine. For more about

Unrestricted_Access attribute, see Implementation Defined Attributes in the GNAT Reference

Manual. This dependency shouldn’t be difficult to remove by either incorporating the GNAT

code which implements it, by following the TO-DO comment near the function definition in

plplotthin.adb, or by providing the proper aliasing.

Another GNAT dependency is used to parse command line arguments in a C-like way.

Pragma Warnings (Off, "some text") and Pragma Warnings (On, "some text") are used in the

bindings to suppress warnings about a particular method used to intereface with C code. These

pragmas are also used in Ada Exaamples 21 to suppress a particular warning. Pragma Warnings

is a GNAT extension. Non-GNAT usage could simply remove these pragmas with the resulting

warnings ignored as they are benign.

Most of the GNAT dependencies can be found by searching the source code for "GNAT",

"Unrestricted_Access and Pragma Warnings."

The GNAT dependence, though slight, will no doubt frustrate users of other Ada compilers. We

welcome comments from those users, especially comments with specific suggestions on how to

remove any GNAT-specific usages.

Sample command line project

It is instructive to present a simple example that can be compiled and run from the command

line. Although this example is specific to one installation, it should be fairly straightforward to

adapt it to another installation. Toward that end, it is helpful to understand the PLplot lingo of

"build directory" and "installation directory."

Here is a simple program that will generate a plot of part of a parabola.

with

PLplot_Auxiliary,

PLplot;

use

PLplot_Auxiliary,

PLplot;

57

Chapter 7. Ada Language

procedure Simple_Example is

x, y : Real_Vector(-10 .. 10);

begin

for i in x’range loop

x(i) := Long_Float(i);

y(i) := x(i)**2;

end loop;

Initialize_PLplot; -- Call this only once.

Simple_Plot(x, y); -- Make the plot.

End_PLplot; -- Call this only once.

end Simple_Example;

Next is a bash script that will compile, bind, and link it. It is installation-specific in that paths to

the GNAT compiler, PLplot libraries, and BLAS (Basic Linear Algebra System) and LAPACK

(Linear Algebra Package) are hard-coded. You will have to adjust the paths to fit your installation.

Some Linux installations which have GNAT 4.3 or later (Ada 2005) pre-installed might have

already set the paths to the BLAS and LAPACK libraries.

(Note that the G.3 Annex of Ada 2005, in the GNAT version, depends heavily on BLAS and

LAPACK. These packages are tried-and-true packages that are available from several places in

either C or Fortran versions. The present example is specific to OS X which has both C and

Fortran versions pre-installed.)

#!/bin/bash

/usr/local/ada-4.3/bin/gnatmake simple_example.adb \

-aI/usr/local/plplot_build_dir/bindings/ada \

-aL/usr/local/plplot_build_dir/bindings/ada/CMakeFiles/plplotadad.dir \

-largs \

/usr/local/plplot/lib/libplplotd.dylib \

/Developer/SDKs/MacOSX10.4u.sdk/usr/lib/libblas.dylib \

/Developer/SDKs/MacOSX10.4u.sdk/usr/lib/liblapack.dylib

The resulting binary program can be run by typing ./simple_example

Unique Features of the Ada bindings

The Ada bindings have been augmented with a number of features which are intended to simplify

the use of PLplot. They include high-level features for simplified plotting (such as easy foreground-

background control, a collection of "simple plotters," and easy color map manipulations), integer

options which have been given meaningful names, and a few other focused additions. Many users

will find that they can do most of their work using the "simple plotters".

High-level features for simplified plotting

Foreground-background control

Draw_On_Black, Draw_On_White

The default for PLplot is to draw its graphics on a black background. A white background can be

used instead with Draw_On_White or reset to the original mode with Draw_On_Black. Each of these

58

Chapter 7. Ada Language

manipulates color map 0 by swapping black and white so that e.g.with Draw_On_White, formerly

white lines on a black background autotmatically become black lines on a white background.

Simple Plotters

Several high-level but flexible plotters are available and more might be added in the future. It is

expected that many users will find that these high-level routines are adequate for most of their

day-to-day plotting.

Multiplot_Pairs

Plot up to five x-y pairs with easy labeling, coloring, line width and styles, justification, and

zooming.

Simple_Plot

Plot up to five y ’s against a single x with easy labeling and automatic line colors and styles.

Simple_Plot_Log_X

Same as Simple_Plot but with logarithmic x -axis.

Simple_Plot_Log_Y

Same as Simple_Plot but with logarithmic y-axis.

Simple_Plot_Log_XY

Same as Simple_Plot but with logarithmic x - and y-axes.

Simple_Plot_Pairs

Plot up to five x -y pairs with easy labeling and automatic line colors and styles.

Single_Plot

Plot a single x -y pair with flexible labels, axis styles, colors, line width and style, justification,

and zooming.

Simple_Contour

Make a contour plot with labels

Simple_Mesh_3D

Easy 3D mesh plot with labels, zooming, and perspective controls

59

Chapter 7. Ada Language

Simple_Surface_3D

Easy 3D surface plot with labels, zooming, and perspective controls

Simple color map manipulations

PLplot provides extensive manipulation and control of two separate color maps, color map 0

and color map 1. The Ada binding makes basic manipulations easier and also adds facilities for

making snapshots of color map 0 so that any state of the map can easlily be restored later. An

initial snapshot is taken when the package is initialized so that the default color settings can

always be restored after having been changed.

Another set of features lets the user reset the 16 individual colors in color map 0 after a color

definition has been changed. It is important to note that while Set_Pen_Color(Red) (plcol0 in the

traditional binding) normally does what it says, Red simply has the value 1. If the user changes

the color map so that 1 corresponds to another color, then Set_Pen_Color(Red) will draw in

that color instead of red. To always assure that red is drawn even if the color map has been

changed for integer 1, use Set_Pen_Color(Reset_Red) instead. These 16 "reset" functions return

the appropriate default integer for the specified color but also reset that slot in the color table so

that a subsequent call such as Set_Pen_Color(Red) will also cause drawing in red.

Color map 1 also gets a easy-to-use makeover for Ada users. There are several pre-built color

themes that are useful for quickly making surface and mesh plots, Color_Themes_For_Map_1_Type.

These color themes can be quickly applied with Quick_Set_Color_Map_1.

Miscellaneous other Ada features include a pre-built mask function for Shade_Regions that does

no masking; perhaps the most useful purpose is to provide a template for writing mask functions

that do mask. And there is a handy function for calculating the contour levels for making contour

plots.

Ĺ Color table snapshots

Make_Snapshot_Of_Color_Map_0

Restore_Snapshot_Of_Color_Map_0

Restore_Default_Snapshot_Of_Color_Map_0

Ĺ Color resetting functions for the 16 colors of color map 0

Reset_Black, Reset_Red, ..., Reset_White

Ĺ Easy manipulation of color map 1

Pre-built color themes for color map 1: Color_Themes_For_Map_1_Type

Quick application of pre-built color themes: Quick_Set_Color_Map_1

Ĺ Other features

A pre-built mask function for Shade_Regions that does no masking: Mask_Function_No_Mask

An easy way to calculate an array of contour levels for contour plots: Calculate_Contour_Levels

60

Chapter 7. Ada Language

Integer Options Given Ada Names

The C version of PLplot uses a number of integers to mean specific things. Unfortunately, the

meaning is lost when it it consigned to being a mere integer with no name. The Ada binding

partially rectifies this situation by giving names to these integer constants. The integer can still

be used if desired. (A more complete and safer rectification would use enumerated types.)

Below is a listing of at least the contexts in which these "re-namings" have been applied. In some

cases the entire range of values is listed, but if there are more than about four such values for

each context, only a sampling is given.

Instances

Ĺ Colors: Plot_Color_Type

0 is Black, 1 is Red, etc

Ĺ Justification for plots: Justification_Type

User_Justified

Not_Justified

Justified

Justified_Square_Box

Ĺ Axis styles: Axis_Style_Type

Linear_Major_Grid

Linear_Minor_Grid

etc.

Ĺ Font styles: Font_Style_Type

Normal_Font

Roman_Font

Italic_Font

Script_Font

Ĺ Character sets: Character_Set_Type

Standard_Character_Set

Extended_Character_Set

Ĺ Plot orientation: Orientation_Type

Landscape

Portrait

Ĺ Modes for parsing command line arguments: Parse_Mode_Type

E.g. PL_PARSE_PARTIAL

Ĺ Descriptions of map outlines (continents, states, etc.): Map_Type

Continents

61

Chapter 7. Ada Language

USA_and_States

Continents_and_Countries

USA_States_and_Continents

Ĺ Various style and view options for 3D and surface plots

E.g. Lines_Parallel_To_X

Ĺ Kind of gridding algorithm for interpolating 2D data to a grid: Gridding_Algorithm_Type

E.g. Grid_Bivariate_Cubic_Spline_Approximation

Ĺ Flags for histogram style

E.g. Histogram_Default

Ĺ Flags for histogram binning

E.g. Bin_Default

Ĺ Names for color space models

Hue, Lightness, Saturation: HLS

Red, Green, Blue: RGB

One-offs

To provide convenient string handling in a fashion that is familiar to Ada programmers, function

versions which return a String type are provided of Get_Device_Name, Get_Version_Number, and

Get_Output_File_Name (plgdev, plgver, and plgfnam in the traditional binding). These functions

replace the procedure-style subprograms that are described in the C API documentation.

Overloaded Set_Line_Style (plstyl in the traditional binding) with a version that takes a single

argument, Default_Continuous_Line. This replaces the awkward situation of calling the normal

versions of these procedures with unused arguments simply to set the line style to the default,

continuous, line.

The contour plotter Contour_Plot_Irregular_Data (plfcont in the traditional binding) is provided

for making contour plots from irregularly spaced data. This feature is not documented in the

PLplot API documentation.

The custom label function Set_Custom_Label (plslabelfunc in the traditional binding) can be

called with null arguments to revert to using the default labeling scheme. Alternately, an Ada-only

procedure with no arguments, Use_Default_Labels, is provided. See Ada example 19 (x19a.adb or

xthick19a.adb) for a usage example.

The custom coordinate transform setter, Set_Custom_Coordinate_Transform, (plstransform in the

traditional binding) can be called with null arguments to clear any previous custom coordinate

transforms that the user has set, thus reverting to the default coordinate transform. Alternately,

an Ada-only procdure with no arguments, Clear_Custom_Coordinate_Transform, is provided. See

Ada example 19 (x19a.adb or xthick19a.adb) for a usage example.

62

Chapter 7. Ada Language

Parts That Retain a C Flavor

There remains at least one area in the Ada bindings which is still affected by the C underpinnings.

This might be cleaned up in future versions. There might be other residual C influence as well.

Map-drawing

plmapform as called by Draw_Latitude_Longitude (plmap) and Draw_Latitude_Longitude

(plmeridians)

This is the only place in the PLplot bindings where a C subprogram calls an Ada subprogram

while passing an array. If the array is unconstrained, there is no guarantee that it will work

because C has no way of telling Ada what offset to use for the beginning of the array. But passing

a constrained array is acceptable with the downside that the array size must be fixed within

the bindings as being large enough to handle any situation; currently, it is sized as 0 .. 2000.

See Example 19 for how this is handled in by the user program. The constrained array is called

Map_Form_Constrained_Array.

Known Variances

Documentation

In numerous places in the documentation, a feature is listed or described as "C only." Many

of these features are actually available in Ada. For example, in Contour_Plot (plcont in the

traditional binding), the transformation from array indices to world coordinates is mentioned as

"C only" but is actually available in Ada.

API

The C documentation for plscmap1l, (Set_Color_Map_1_Piecewise in the thick binding) and

plscmap1la (Set_Color_Map_1_Piecewise_And_Alpha in the thick binding) states that if the last

argument is a null pointer, the behavior is as though a proper-length array of all False values

was passed. In Ada, these procedures are overloaded to allow a last argument that can be either

an array of Boolean or a value of the enumerated type (Reverse_Hue_None, Reverse_Hue_All).

Compilation notes

Ada 95 Versus Ada 2005

As discussed in Section 6.1, the bindings are made to work with Ada 95 and Ada 2005, but special

steps need to be taken in order to access the numerics capabilities of Ada 2005 to the extent that

vectors and arrays of the type defined in the Ada Reference Manual Annex G.3 are required to

be passed to PLplot routines.

63

Chapter 7. Ada Language

GNAT Dependence

There is a slight but significant dependence on the GNAT version of Ada. This is discussed more

fully in Section 6.2

PLplot_Auxiliary

The bindings include files PLplot_Auxiliary.ads and PLplot_Auxiliary.adb. These files are cur-

rently used to provide a few convenience subprograms that are used in the examples. However,

they are also associated with the above-mentioned facility to easily accommodate acessing the

G.3 Annex vector-matrix manipulation facilities. If not for the desire for this easy "switching"

ability, the PLplot_Auxiliary package could be removed from the with parts of the other binding

files. Even so, it could be still removed with minor modifications to the with portions of the

other binding files. But due to the other functions provided therein, they would still need to be

referenced by most of the Ada examples.

Notes for Apple Macintosh OS X users

The following comments apply to users of Apple Macintosh computers which run OS X. OS

X users may use Apple’s free integrated development environment (IDE) or may prefer other

methods such as using a favorite editor and building from the command line.

OS X users should be aware that an excellent graphical terminal program is available and is

highly recommended. It is called AquaTerm and is a full Cocoa program with window control.

Performing a cut operation places a PDF of the front window on the clipboard, a convenience

when working with other graphics or word processing programs.

Using Apple’s Xcode IDE

The Macintosh Ada community has made a plug-in for Apple’s free Xcode integrated development

environment (IDE) that makes programming Ada in Xcode possible. The plug-in is included with

the compiler that is available at www.macada.org4. Since Xcode is based on gcc, it is possible to

work in the various gcc languages as well as to incorporate binaries such as the PLplot library.

In order to make an Xcode project, drag-and-drop source files and the PLplot library file to the

Groups & Files pane of an Ada project. There are a few idiosyncrasies that you may encounter so

make sure to contact the very friendly Macintosh Ada mailing list at www.macada.org5 or study

the FAQ at that same site if you have any difficulties.

AquaTerm

AquaTerm is a display option available on Macintosh computers using OS X and is supported

by PLplot. It is a native Cocoa graphics "terminal" that is highly recommended. All output is

antialiased and is easily cut-and-pasted in OS X’s native PDF format. Get it here6. It can also

be installed from either the Fink7 or MacPorts8 projects.

64

Chapter 7. Ada Language

X11

Apple supplies the X11 windowing system that is popular on some other Unix and Linux opera-

tions systems as part of the Developer Tools. All PLplot programs made with the Ada bindings

will run on X11. In fact, some types of interactivity such as Examples 14 and 17 will not run on

Apple’s X11 (as of OS X 10.4 at least) and must be run on X11 (or some other output device

such as TCL/TK).

GNAT for OS X

Apple Macintosh users will benefit from a pre-built version of GNAT that comes packaged using

the usual Apple software installer and is strongly recommended. This compiler is available for both

PowerPC and Intel Macintoshes at www.macada.org9. This site is traditionally rather confusing

but the mailing list is extremely helpful. The installer also includes an Ada-specific plug-in for

Apple’s Xcode IDE which is strongly recommended if you plan to work on this platform. Xcode

is part of the Developer Tools and is available on the Apple system disks that also contain the

operating system or it can be downloaded for free from here10.

Notes
1. http://gcc.gnu.org/

2. https://libre2.adacore.com/

3. http://sourceforge.net/projects/plplot

4. http://www.macada.org/

5. http://www.macada.org/

6. http://sourceforge.net/project/showfiles.php?group_id=39915

7. http://www.finkproject.org/

8. http://www.macports.org/projects.

9. http://www.macada.org/macada/Welcome.html.

10. http://developer.apple.com/tools/xcode/

65

Chapter 7. Ada Language

66

Chapter 8. C Language

(OLD, NEEDS DOCUMENTATION UPDATING) The argument types given in this manual

(PLFLT and PLINT) are typedefs for the actual argument type. A PLINT is actually a type

long and should not be changed. A PLFLT can be either a float or double; this choice is made

when the package is installed and on a Unix system (for example) may result in a PLplot library

named libplplot.a in single precision and libplplotd.a in double precision.

These and other constants used by PLplot are defined in the main header file plplot.h, which

must be included by the user program. This file also contains all of the function prototypes,

machine dependent defines, and redefinition of the C-language bindings that conflict with the

Fortran names (more on this later). plplot.h obtains its values for PLFLT, PLINT, and PLARGS

(a macro for conditionally generating prototype argument lists) from FLOAT (typedef), INT

(typedef), and PROTO (macro), respectively. The latter are defined in the file chdr.h. The user

is encouraged to use FLOAT, INT, and PROTO in his/her own code, and modify chdr.h according

to taste. It is not actually necessary to declare variables as FLOAT and INT except when they

are pointers, as automatic conversion to the right type will otherwise occur (if using a Standard

C compiler; else K&R style automatic promotion will occur). The only code in plplot.h that

directly depends on these settings is as follows:

#include "plplot/chdr.h"

/* change from chdr.h conventions to plplot ones */

typedef FLOAT PLFLT;

typedef INT PLINT;

#define PLARGS(a) PROTO(a)

PLplot is capable of being compiled with Standard C (ANSI) mode on or off. This is toggled via

the macro PLSTDC, and set automatically if __STDC__ is defined. If PLSTDC is defined, all

functions are prototyped as allowed under Standard C, and arguments passed exactly as specified

in the prototype. If PLSTDC is not defined, however, function prototypes are turned off and K&R

automatic argument promotion will occur, e.g. float → double, int → long. There is

no middle ground! A PLplot library built with PLSTDC defined will not work (in general) with a

program built with PLSTDC undefined, and vice versa. It is possible in principle to build a library

that will work under both Standard C and K&R compilers simultaneously (i.e. by duplicating

the K&R promotion with the Standard C prototype), but this seems to violate the spirit of the

C standard and can be confusing. Eventually we will drop support for non-standard C compilers

but for now have adopted this compromise.

In summary, PLplot will work using either a Standard or non-standard C compiler, provided that

you :

Ĺ Include the PLplot main header file plplot.h.

Ĺ Make sure all pointer arguments are of the correct type (the compiler should warn you if you

forget, so don’t worry, be happy).

67

Chapter 8. C Language

Ĺ Do not link a code compiled with PLSTDC defined to a PLplot library compiled with PLSTDC

undefined, or vice versa.

Ĺ Use prototypes whenever possible to reduce type errors.

Note that some Standard C compilers will give warnings when converting a constant function

argument to whatever is required by the prototype. These warnings can be ignored.

The one additional complicating factor concerns the use of stub routines to interface with Fortran

(see the following section for more explanation). On some systems, the Fortran and C namespaces

are set up to clobber each other. More reasonable (from our viewpoint) is to agree on a standard

map between namespaces, such as the appending of an underscore to Fortran routine names as is

common on many Unix-like systems. The only case where the shared Fortran/C namespaces do

any good is when passing a pointer to a like data type, which represents only a small fraction of

the cases that need to be handled (which includes constant values passed on the stack, strings,

and two-dimensional arrays).

There are several ways to deal with this situation, but the least messy from a user’s perspective is

to redefine those PLplot C function names which conflict with the Fortran-interface stub routines.

The actual function names are the same as those described in this document, but with a “c_”

prepended. These macro definitions appear in the plplot.h header file and are otherwise harmless.

Therefore you can (and should) forget that most of the names are being redefined to avoid the

conflict and simply adhere to the bindings as described in this manual. Codes written under old

versions of PLplot (previous to 5.0) will require a recompile, however.

For more information on calling PLplot from C, please see the example C programs (x01c.c

through x19c.c) distributed with PLplot.

68

Chapter 9. A C++ Interface for PLplot

PLplot has long had C and Fortran bindings, presenting a fairly conventional API to the ap-

plications programmer. Recently (1994 onwards) PLplot has been growing interfaces (language

bindings) to a variety of other languages. In this chapter we discuss the PLplot C++ support

provided in the PLplot distribution. Of course many other approaches are possible, perhaps even

in use by PLplot users around the world. The purpose of this chapter then is to explain the

rationale and intended usage for the bundled C++ language support.

Motivation for the C++ Interface

PLplot has a fairly complex C API. There are lots of functions, and several facilities have multiple

entry points with similar names but different argument lists. (Think contouring, shading). Often

these differing argument lists are to accommodate a variety of data storage paradigms, one of

which you are expected to be using!

Especially in the case of the 2-d API’s for contouring and shading, sophisticated C++ users may

feel a special sense of exasperation with the data layout prescriptions, since they are extremely

primitive, pointer rich, and prone to a wide class of memory leaks and other sorts of programming

errors. Many C++ users know good and well that better ways exist (templated matrix classes,

etc), but historically have not been able to use these more sophisticated techniques if the contained

data ever needed to get plotted.

Besides the 2-d API functions, there is also the multiple output stream capability of PLplot.

Anyone who knows C++ well, and who has used multiple output streams in PLplot, has probably

noticed striking similarities between the PLplot PLStream pointer and the C++ this pointer.

Although multiple output streams have not been widely used in PLplot applications in the past,

the availability of the plframe Tk widget, and the extended wish concept, is making it much more

attractive to use multiple output streams.

Unfortunately, if you do write a Tk extended wish application, and endow your interface with

multiple plframes, the event driven character of X applications makes it difficult to ensure that

PLplot output shows up in the right plframe window. If a plot is generated to one plframe, the

PLplot PLStream pointer is directed to that stream. If a user then pushes a Tk button which

should generate a plot to a different plframe, the plot goes to the old plframe instead! Schemes

for controlling this can be imagined, but the logic can be complex, especially in the face of the

ability to /also/ make plots to the same plframe from either Tcl or C++.

Beyond this, the C API is downright "ugly" for a significant number of the functions, particu-

larly those which return values by accepting pointers to variables in their argument lists, and

then changing them in that way. Sophisticated C++ users generally take considerable pride in

banishing the offensive bare pointer from their code, and consider it disgusting to have to insert

&’s just in order to make a call to an API function.

In order to address these issues (and more), I have begun constructing a C++ interface to PLplot.

The purpose of this missive is to describe its architecture and usage.

69

Chapter 9. A C++ Interface for PLplot

Design of the PLplot C++ Interface

Stream/Object Identity

A C++ class named plstream has been introduced. It’s central purpose is provide a specific,

object based encapsulation of the concept of a PLplot output stream. Any output produced using

a plstream object, will go to the PLplot output stream associated with that object, regardless of

what stream may have been active before.

In order to write a multiple output stream PLplot application, a C++ program can declare

plstream objects, and invoke drawing methods on those objects, without regard to ordering

considerations or other coherency considerations. Although this has obvious simplification benefit

even for simple programs, the full benefit is most easily appreciated in the context of Tk extended

wish applications in which a plstream can be associated with each plframe.

Namespace Management

The PLplot C API is composed of a set of drawing functions, all prefixed with "pl", in an

effort to prevent namespace collision. However, the prefix "pl" is gratuitous, and in particular

is unnecessary in a C++ context. The plstream class mirrors most of the PLplot C API, but

does so by dropping the "pl" prefix. The plstream class thus serves to collect the PLplot drawing

functions into a scope in which collisions with other similarly named functions is not a concern.

So, where a C programmer might write:

plsstrm(1);

plenv(...);

plline(...);

The C++ programmer can write:

plstream p(...);

p.env(...);

p.line(...);

Is that an important benefit? The utility varies with the number of output streams in use in the

program.

plmkstrm() is replaced by object declaration. plsstrm() is replaced by method invocation on the

desired output stream object. plgstrm() is rendered irrelevant.

The skeptic may say, "But you have to type the same number of characters! You’ve replaced ’pl’

with ’p.’, except it could be worse for a longer object name." True. BUT, in this new scheme,

most plots will not be generated by invoking methods on a specific stream object, but rather

by deriving from plstream, and invoking methods of "this" object. See the section on derivation

below.

Abstraction of Data Layout

The plstream class will provide an abstract interface to the 2-d drawing functions. Instead of

forcing the C++ user to organize data in one of a small set of generally braindead data layouts

with poor memory management properties, potentially forcing the C++ user to not use a superior

70

Chapter 9. A C++ Interface for PLplot

method, or to copy data computed in one layout format to another for plotting (with consequent

bug production), the plstream 2-d plotting functions will accept an abstract layout specification.

The only thing which is important to the 2-d drawing functions is that the data be "indexable".

They should not care about data layout.

Consequently, an abstract class, "Contourable_Data" is provided. This class provides a pure

virtual method which accepts indexes, and is to be made to produce a function value for the

user’s 2-d data field. It is of no concern to PLplot how the user does this. Any mapping between

index and data which the user wishes to use, may be used.

This methodology allows the C++ user to compute data using whatever storage mechanism he

wants. Then, by deriving a class from PLplot’s Contourable_Data abstract class, he can provide

a mapping to his own data layout.

Note that this does /not/ mean that the C++ user’s internal data layout must be derived from

PLplot’s Contourable_Data class. Suppose for example that the user data is stored in a C++

"matrix" class. To make this data contourable, the user may define a class which specializes the

indexing concept of the PLplot Contourable_Data class to his matrix class. For example:

class Matrix { ... };

class Contourable_Matrix : public Contourable_Data {

Matrix& m;

public:

Contourable_Matrix(Matrix& _m) : m(_m) {}

PLFLT operator()(int i, int j) const { return m(i,j); }

};

plstream p(...);

Matrix m;

// Code to fill m with data

Contourable_Matrix cm(m);

p.shade(cm, ...);

In this way the C++ user is completely freed from the tyranny of moronic data layout constraints

imposed by PLplot’s C or Fortran API.

Collapsing the API

Use of abstraction as in C) above will allow a single method in plstream to perform the services

of multiple functions in the C API. In those cases where multiple functions were provided with

different data layout specifications, but similar functionality, these can all be collapsed into one,

through the use of the abstract interface technique described above. Moreover, function name

overloading can be used to simplify the namespace for those cases where multiple functions were

used to get variations on a basic capability. For example, a single name such as contour or shade

can be used for multiple methods taking different argument sets, so that for example, one can

make simple plots of rectangular data sets, or more complex generalized coordinate mappings.

71

Chapter 9. A C++ Interface for PLplot

Specializing the PLplot C++ Interface

The plstream class is an ideal candidate for derivation. By inheriting from plstream, the user can

construct a new class which is automatically endowed with the ability to plot to a specific PLplot

output stream in a coherent manner without having to worry about interplay with other plstream

(or derived type) objects. Moreover, new, higher level, plotting functionality can be constructed

to provide even more simplicity and ease of use than the PLplot API.

The PLplot maintainers (Geoff and Maurice) expect to introduce a class plxstream in the future

which provides superior support for constructing graphics with multiple plots per page, easier

specification of plot adornments, etc. This should significantly ease one aspect of PLplot usage

which we regard as being clumsy at this time.

Beyond that, users may find it useful to derive from plstream (or later plxstream whenever it

finally makes its appearance) for the purpose of making "application specific" output streams. For

example, a C++ program will normally have a variety of objects which constitute the fundamental

entities in the code. These could all be made to be "atomically plotted" by providing suitable

methods. For example:

class Cat { ... };

class Dog { ... };

class Bear { ... };

class Fish { ... };

class zoostream : public plstream {

public:

void plot(const Cat& c) { ... }

void plot(const Dog& d) { ... }

void plot(const Bear& b) { ... }

void plot(const Fish& f) { ... }

};

Presumably the PLplot user community can think of even more imaginative uses... :-).

Status of the C++ Interface

The class plstream (and the other abstraction classes in plstream.h) provided in PLplot 4.99j

(alpha) are to be considered as works in progress. By the standards outlined above, the work has

barely begun. At this time, plstream is mostly a one to one mirror of the C API, which is to say,

it is still far from the goals of simplification and abstraction outlined above. As such, it can be

expected to change radically over the course of time. (We don’t quote schedules--how long have

you been waiting for 5.0? :-).

In any event, we would welcome improvement submissions along the lines of those above, but we

would strongly discourage people from using plstream if they are expecting it to be rock solid. It

will be changing, to become more like the design goals elucidated above.

So, if you like the ideas described above, and are willing to accept the burden of "upgrading"

your code as the class plstream evolves, then feel free to use it. Just don’t whine when I fix some

of the methods to take references instead of pointers, when I eliminate some of the redundant

methods to use the collapsed form, etc.

72

Chapter 10. Fortran 77 Language

As discussed in the preceding section, PLplot’s integer representation is a PLINT and its floating

point representation is a PLFLT. To the Fortran 77 user, this most commonly translates to a

type integer and type real, respectively. This is somewhat system dependent (and up to the

installer of the package) so you should check the release notes to be sure, or just try it and see

what happens.

Because the PLplot kernel is written in C, standard C syntax is used in the description of each

PLplot function. Thus to understand this manual it is helpful to know a little about C, but

fortunately the translation is very easy and can be summarized here. As an example, the routine

plline call from C would look like:

plline(n,x,y);

while from Fortran 77 it would look like:

call plline(n,x,y)

typically with n declared as type integer and x, y declared as type real (arrays in this case).

Each C language type used in the text translates roughly as follows:

PLFLT real

PLINT integer

char * character

PLFLT * real or real array

PLFLT ** real array

"string" ’string’

array[0] array(1)

In C there are two ways to pass a variable --- by value (the default) or by reference (pointer),

whereas only the latter is used by Fortran 77. Therefore when you see references in the text

to either an ordinary argument or a pointer argument (e.g. *data), you simply use an ordinary

Fortran 77 variable or array name.

The PLplot library comes with a set of Fortran 77 interface routines that allow the exact same

call syntax (usually) regardless of whether calling from C or Fortran 77. In some cases, this

means the subroutine name exceeds 8 characters in length. Nearly every Fortran 77 compiler

available today allows subroutine names longer than 8 characters, so this should not be a problem

(although if it ever is, in principle a truncated name could be defined for that platform).

These “stub” routines handle transforming the data from the normal Fortran 77 representation

to that typically used in C. This includes:

Ĺ Variables passed by value instead of by reference.

Fortran 77 passes all subroutine arguments by reference, i.e., a pointer to the argument value

is pushed on the stack. In C all values, except for arrays (including char arrays), are passed

by value, i.e., the argument value itself is pushed on the stack. The stub routine converts the

Fortran 77 call by reference to a call by value. As an example, here is how the plpoin stub

73

Chapter 10. Fortran 77 Language

routine works. In your Fortran 77 program you might have a call to plpoin that looks something

like

call plpoin(6,x,y,9)

where x and y are arrays with 6 elements and you want to plot symbol 9. As strange as it seems

(at least to C programmers) the constants 6 and 9 are passed by reference. This will actually

call the following C stub routine (included in entirety)

#include "plplot/plstubs.h"

void

PLPOIN(n, x, y, code)

PLINT *n, *code;

PLFLT *x, *y;

{

c_plpoin(*n, x, y, *code);

}

All this stub routine does is convert the number of points (*n and the symbol *code to call by

value (i.e. pushes their value on the stack) and then calls the C plpoin library routine.

Ĺ Get mapping between Fortran 77 and C namespace right (system dependent).

The external symbols (i.e. function and subroutine names) as you see them in your program

often appear differently to the linker. For example, the Fortran 77 routine names may be

converted to uppercase or lowercase, and/or have an underscore appended or prepended. This

translation is handled entirely via redefinition of the stub routine names, which are macros.

There are several options for compiling PLplot that simplify getting the name translation

right (NEEDS DOCUMENTATION IF THESE STILL EXIST). In any case, once the name

translation is established during installation, name translation is completely transparent to the

user.

Ĺ Translation of character string format from Fortran 77 to C.

Fortran 77 character strings are passed differently than other quantities, in that a string de-

scriptor is pushed on the stack along with the string address. C doesn’t want the descriptor,

it wants a NULL terminated string. For routines that handle strings two stub routines are

necessary, one written in Fortran 77 and one written in C. Your Fortran 77 program calls

the Fortran 77 stub routine first. This stub converts the character string to a null terminated

integer array and then calls the C stub routine. The C stub routine converts the integer array

(type long) to the usual C string representation (which may be different, depending on whether

your machine uses a big endian or little endian byte ordering; in any case the way it is done in

PLplot is portable). See the plmtex stubs for an example of this.

Note that the portion of a Fortran 77 character string that exceeds 299 characters will not be

plotted by the text routines (plmtex and plptex).

Ĺ Multidimensional array arguments are changed from row-dominant to column-dominant order-

ing through use of a temporary array.

In Fortran 77, arrays are always stored so that the first index increases most rapidly as one steps

through memory. This is called “row-dominant” storage. In C, on the other hand, the first index

increases least rapidly, i.e. “column-dominant” ordering. Thus, two dimensional arrays (e.g. as

74

Chapter 10. Fortran 77 Language

passed to the contour or surface plotting routines) passed into PLplot must be transposed in

order to get the proper two-dimensional relationship to the world coordinates. This is handled

in the C stub routines by dynamic memory allocation of a temporary array. This is then set

equal to the transpose of the passed in array and passed to the appropriate PLplot routine.

The overhead associated with this is normally not important but could be a factor if you are

using very large 2d arrays.

This all seems a little messy, but is very user friendly. Fortran 77 and C programmers can use

the same basic interface to the library, which is a powerful plus for this method. The fact that

stub routines are being used is completely transparent to the Fortran 77 programmer.

For more information on calling PLplot from Fortran 77, please see the example Fortran 77

programs (/examples/f77/x??f.f) through distributed with PLplot.

75

Chapter 10. Fortran 77 Language

76

Chapter 11. Fortran 95 Language

As discussed in the preceding section, PLplot’s integer representation is a PLINT and its floating

point representation is a PLFLT. To the Fortran 95 user, this most commonly translates to a

type integer and type real, respectively. This is somewhat system dependent (and up to the

installer of the package) so you should check the release notes to be sure, or just try it and see

what happens.

Because the PLplot kernel is written in C, standard C syntax is used in the description of each

PLplot function. Thus to understand this manual it is helpful to know a little about C, but

fortunately the translation is very easy and can be summarized here. As an example, the routine

plline call from C would look like:

plline(n,x,y);

The argument n is the number of points that make up the line and the arguments x and y are

arrays of floating-point numbers containing the x- and y-coordinates of the points.

In C you need to specify the array dimensions explicitly, whereas in Fortran 95 the array dimension

can be implicit, which leads to less mistakes. The interface to plline would ideally look like this:

interface

subroutine plline(x,y)

real, dimension(:) :: x, y

end subroutine plline

end interface

This is the way of calling PLplot routines in Fortran 95 - it is less error-prone than the Fortran

77 way (see the chapter on Fortran 77). 1

There is one slight complication: PLplot can be compiled with either single-precision reals or

double-precision reals. It is very important to keep the variables that are passed to PLplot in the

same precision. Fortunately, Fortran 95 provides the KIND mechanism for this.

The actual interface to plline therefore looks like:

interface

subroutine plline(x,y)

real(kind=plflt), dimension(:) :: x, y

end subroutine plline

end interface

The parameter plflt is defined in the PLplot module and should be used consistently with all

real variables that you pass to PLplot routines.

Here is a short overview of how C data types correspond to Fortran 95 data types:

PLFLT real(kind=plflt)

PLINT integer

char * character

PLFLT * real(kind=plflt) or real(kind=plflt),

dimension(:)

77

Chapter 11. Fortran 95 Language

PLFLT ** real(kind=plflt), dimension(:,:)

"string" ’string’

array[0] array(1)

In C there are two ways to pass a variable --- by value (the default) or by reference (pointer),

whereas only the latter is used by Fortran 95. Therefore when you see references in the text

to either an ordinary argument or a pointer argument (e.g. *data), you simply use an ordinary

Fortran 95 variable or array name (the interfacing routines take care of any transformations that

may be necessary).

The PLplot library comes with a set of Fortran 95 interface routines that allow the same call

semantics (usually) regardless of whether calling from C or Fortran 95. In some cases, the Fortran

95 interface uses implicit array dimensions, so that it has fewer arguments than the C counterpart.

These “stub” routines handle transforming the data from the normal Fortran 95 representation

to that typically used in C. This includes:

Ĺ Variables passed by value instead of by reference.

Fortran 95 passes all subroutine arguments by reference, i.e., a pointer to the argument value

is pushed on the stack. In C all values, except for arrays (including char arrays), are passed

by value, i.e., the argument value itself is pushed on the stack. The stub routine converts the

Fortran 95 call by reference to a call by value. As an example, here is how the plpoin stub

routine works. In your Fortran 95 program you might have a call to plpoin that looks something

like

real(kind=pllft), dimension(6) :: x, y

x = ...

y = ...

call plpoin(x,y,9)

where x and y are arrays with 6 elements and you want to plot symbol 9. The routine plpoin

calls the underlying routine plpoinf77:

subroutine plpoin(x, y, code)

integer :: code

real(kind=plflt), dimension(:) :: x, y

call plpoinf77(size(x), x, y, code)

end subroutine plpoin

This takes care of the size of the arrays - it is not possible to transfer this information to C in

an implicit way.

The routine plpoinf77 is implemented in C to take care of the question pass by value or pass

by reference: 2

#include "plplot/plstubs.h"

void

PLPOIN(n, x, y, code)

PLINT *n, *code;

PLFLT *x, *y;

78

Chapter 11. Fortran 95 Language

{

c_plpoin(*n, x, y, *code);

}

All this stub routine does is convert the number of points (*n and the symbol *code to call by

value (i.e. pushes their value on the stack) and then calls the C plpoin library routine.

Ĺ Get mapping between Fortran 95 and C namespace right (system dependent).

The external symbols (i.e. function and subroutine names) as you see them in your program

often appear differently to the linker. For example, the Fortran 95 routine names may be

converted to uppercase or lowercase, and/or have an underscore appended or prepended. This

translation is handled entirely via redefinition of the stub routine names, which are macros.

During the build process, the properties of the build environment are detected and the correct

compiler options are used.

Once the name translation is established during installation, name translation is completely

transparent to the user.

Ĺ Translation of character string format from Fortran 95 to C.

Fortran 95 character strings are passed differently than other quantities, in that a string de-

scriptor is pushed on the stack along with the string address. C doesn’t want the descriptor,

it wants a NULL terminated string. For routines that handle strings two stub routines are

necessary, one written in Fortran 95 and one written in C. Your Fortran 95 program calls

the Fortran 95 stub routine first. This stub converts the character string to a null terminated

integer array and then calls the C stub routine. The C stub routine converts the integer array

(type long) to the usual C string representation (which may be different, depending on whether

your machine uses a big endian or little endian byte ordering; in any case the way it is done in

PLplot is portable). See the plmtex stubs for an example of this.

Note that the portion of a Fortran 95 character string that exceeds 299 characters will not be

plotted by the text routines (plmtex and plptex).

Ĺ Multidimensional array arguments are changed from row-dominant to column-dominant order-

ing through use of a temporary array.

In Fortran 95, arrays are always stored so that the first index increases most rapidly as one steps

through memory. This is called “row-dominant” storage. In C, on the other hand, the first index

increases least rapidly, i.e. “column-dominant” ordering. Thus, two dimensional arrays (e.g. as

passed to the contour or surface plotting routines) passed into PLplot must be transposed in

order to get the proper two-dimensional relationship to the world coordinates. This is handled

in the C stub routines by dynamic memory allocation of a temporary array. This is then set

equal to the transpose of the passed in array and passed to the appropriate PLplot routine.

The overhead associated with this is normally not important but could be a factor if you are

using very large 2d arrays.

This all seems a little messy, but is very user friendly. Fortran 95 and C programmers can use

the same basic interface to the library, which is a powerful plus for this method. The fact that

stub routines are being used is completely transparent to the Fortran 95 programmer.

For more information on calling PLplot from Fortran 95, please see the example Fortran 95

programs (/examples/f95/x??f.f) distributed with PLplot.

79

Chapter 11. Fortran 95 Language

Notes
1. The Fortran 77 way is still available: you can call the routine pllinef77 that has the same

argument list as the Fortran 77 routine plline. This is not documented, however, other than

by this note.

2. PLPOIN is a macro that get translated into the correct name for this routine - various Fortran

compilers use different conventions, such as adding an underscore or translating the name

into capitals.

80

Chapter 12. OCaml Language

This document describes the OCaml bindings to the PLplot technical plotting software, how to

obtain the necessary software components and how to use them together.

Overview

The OCaml bindings for PLplot provide a way for OCaml programmers to access the powerful

PLplot technical plotting facilities directly from OCaml programs while working completely in

OCaml—the OCaml programmer never needs to know or worry that PLplot itself is written in

another language.

The Bindings

The OCaml bindings for PLplot provide an interface to the PLplot C API. In addition to providing

access to the core functions of the C API, the OCaml PLplot interface also includes a set of higher-

level plotting functions which, while built on top of the core PLplot API, retain more of an OCaml

flavor.

The OCaml PLplot API is defined within the Plplot module. In general, it is suggested to in-

clude the line open Plplot in OCaml code using PLplot. The function and constant definitions

are named such that they should avoid namespace collisions with other libraries. Core PLplot

functions have a pl prefix, while constant constructors/variant types have a PL_ prefix.

The core binding provides a close to direct mapping to the underlying C library. It follows the C

API very closely, with the exception of a few parameters which become redundant under OCaml

(ex. array lengths are determined automatically by OCaml and function callbacks which are

handled slightly differently than in C). An OCaml user of PLplot does not need to worry about

memory management issues as they are handled automatically by the bindings.

There are also a selection of functions which provide support for operations outside of the base

C API. These higher level functions are defined within the Plplot.Plot and Plplot.Quick_plot

modules.

Core Binding

The core binding is mostly a direct and obvious mapping of the C application programming

interface (API) to OCaml. Thus, for example, where a C function such as plcol0 requires a single

integer argument, there is a corresponding OCaml function also called plcol0 which also requires

a single integer argument. (plcol0 happens to set the drawing color using a number which is

associated with a set of colors). Various constants from the C API are also included here as

OCaml variant types with a PL_ prefix to avoid namespace clashes when the Plplot module is

opened. For example, where the C PLplot API uses GRID_* to select between the data gridding

methods, the OCaml API uses PL_GRID_*.

81

Chapter 12. OCaml Language

OCaml-specific variations to the core PLplot API

Several of the PLplot core functions allow the user to provide a transformation callback function

to adjust the location of the plotted data. This is handled differently in the OCaml bindings

than in order to keep the interface between C and OCaml as simple as possible. Rather than

passing transformation functions directly to each PLplot function which supports a coordinate

transformation, the coordinate transform functions are set globally using the plset_pltr and

plset_mapform functions. Similarly, the functions plunset_pltr and plunset_mapform can be used

to clear the globally defined coordinate transformation function. Note that the transform functions

are only used in the functions which support them in the C API (ex. plmap)- they are not

automatically applied to plotted data in other function calls (ex. plline). For demonstrations of

their use, see OCaml PLplot examples 16 and 20 for plset_pltr and example 19 for plset_mapform.

OCaml high level 2D plotting API

In addition to the core PLplot API, the OCaml bindings provide two modules which provide a

more OCaml-like interface: Plplot.Plot and Plplot.Quick_plot. Plplot.Plot provides a simplified

naming scheme for plotting functions, as well as the means to more easily track multiple plot

streams at once. Plplot.Quick_plot provides functions to quickly plot points, lines, data arrays

(images) and functions without the need for any plot setup or boilerplate.

The Examples

An important part of the OCaml bindings is the examples, some 31 of which demonstrate how

to use many of the features of the PLplot package. These examples also serve as a testbed for the

bindings in OCaml and other languages by checking the Postscript files that are generated by

each example against those generated by the C versions. These examples have been completely

re-written in OCaml (but retain a C flavor in their structure and the names that are given to

objects). All of the OCaml examples generate exactly the same Postscript as the C versions.

Obtaining the Software

There are three software components that you will need: the OCaml compiler, the PLplot library,

and the camlidl stub code generator for OCaml bindings to C libraries.

Obtaining the OCaml compiler

You will need the OCaml compiler in order to build and use the OCaml PLplot bindings. OCaml

includes both a bytecode compiler (ocamlc) and a native code compiler (ocamlopt). Both of these

are supported by PLplot.

Your computer may already have OCaml installed, or you can download it from caml.inria.fr1.

Several Linux distributions including Debian, Ubuntu and Fedora have OCaml binary packages

available. Another route to obtaining OCaml is by using GODI, a source-based distribution of

OCaml and a number of OCaml libraries. GODI can be retrieved from godi.camlcity.org2. GODI

has support for building and installing under Linux, Apple’s OS X and MS Windows.

82

Chapter 12. OCaml Language

How to use the OCaml bindings

The three examples provided below illustrate the available methods for generating plots with

PLplot from OCaml. They proceed in order from lowest-level to highest-level.

How to setup findlib for use with the OCaml bindings

The following examples require that findlib 3 and its associated tools (ie., ocamlfind) are installed

in in your $PATH.

If PLplot was installed under a non-standard prefix, or any prefix where findlib does not check

automatically for OCaml libraries, then the following environment variables can be set to tell

findlib where to look for PLplot:

export OCAMLPATH=$PLPLOT_INSTALL_PREFIX/lib/ocaml:$OCAMLPATH

export LD_LIBRARY_PATH=$PLPLOT_INSTALL_PREFIX/lib/ocaml/stublibs:$LD_LIBRARY_PATH

Sample command line project (core API)

Here is a simple example that can be compiled and run from the command line. The result will

be a program that generates a plot of part of a parabola using only the core PLplot API.

(* Open the Plplot module to give access to all of the PLplot

values without the need to add the "Plplot." prefix. *)

open Plplot

let simple_example () =

(* Sample at 20 points, ranging from -10.0 to 10.0 *)

let xs = Array.init 21 (fun xi -> float xi -. 10.0) in

let ys = Array.map (fun x -> x**2.0) xs in

(* Initialize PLplot *)

plinit ();

(* Draw the plot window axes *)

plenv (-10.0) 10.0 0.0 100.0 0 0;

(* Draw the parabola points as a series of line segments *)

plline xs ys;

(* End the plotting session *)

plend ();

()

let () = simple_example ()

Save this code as simple_example_core.ml. The following command can then be used to build the

example:

ocamlfind opt -package plplot -linkpkg -o simple_example_core simple_example_core.ml

The resulting binary program can be run by typing ./simple_example_core

83

Chapter 12. OCaml Language

Sample command line project (OCaml-specific API)

Here is another example that can be compiled and run from the command line. The result will

be a program that generates a plot of part of a parabola similar to the above example, but now

using the OCaml-specific PLplot API rather than the core PLplot API.

(* Open the Plplot module to give access to all of the PLplot

values without the need to add the "Plplot." prefix.

Aliasing the module P to the module Plot will save some typing

without further namespace pollution. *)

open Plplot

module P = Plot

let simple_example () =

(* Initialize a new plot, using the windowed Cairo device

("xcairo") *)

let p =

P.init (-10.0, 0.0) (10.0, 100.0) P.Greedy (P.Window P.Cairo)

in

(* Draw the parabola *)

P.plot ~stream:p [P.func P.Blue (fun x -> x ** 2.0) (-10.0, 10.0)];

(* Draw the plot axes and close up the plot stream using the default

spacing between tick marks. *)

P.finish ~stream:p ();

()

let () = simple_example ()

Save this code as simple_example_ocaml.ml. The following command can then be used to build

the example:

ocamlfind opt -package plplot -linkpkg -o simple_example_ocaml simple_example_ocaml.ml

The resulting binary program can be run by typing ./simple_example_ocaml

Sample toplevel project

The OCaml interactive toplevel (ocaml) provides a very useful tool for code testing, development

and interactive data analysis.

The Quick_plot module provides a set of functions for producing quick, simple two-dimensional

plots from both the toplevel and stand-alone OCaml programs. Here is a set of commands which

can be used in a toplevel session to produce a plot of a portion of a parabola, similar to the

compiled examples above.

#use "topfind";;

#require "plplot";;

open Plplot;;

Quick_plot.func ~names:["Parabola"] [(fun x -> x ** 2.0)] (-10.0, 10.0);;

Conversely, the above ocaml session could be expressed in a compiled OCaml program:

84

Chapter 12. OCaml Language

Plplot.Quick_plot.func ~names:["Parabola"] [(fun x -> x ** 2.0)] (-10.0, 10.0)

Save this code as simple_example_quick.ml. The following command can then be used to build

the example:

ocamlfind opt -package plplot -linkpkg -o simple_example_quick simple_example_quick.ml

The resulting binary program can be run by typing ./simple_example_quick

Known Issues

There are currently no known issues with the OCaml PLplot bindings. If you discover any prob-

lems with PLplot or the OCaml bindings, please report them to the PLplot development mailing

list.

Notes
1. http://caml.inria.fr/

2. http://godi.camlcity.org/

3. http://projects.camlcity.org/projects/findlib.html

85

Chapter 12. OCaml Language

86

Chapter 13. Using PLplot from Perl

There are no proper bindings for the Perl language delivered with the PLplot sources. However,

a PLplot interface has been added to the Perl Data Language (PDL) since version 2.4.0. If the

PLplot library is installed in the system, it is automatically detected by the PDL configuration

script, such that PLplot support for PDL should work out of the box. For further information

see the PDL homepage1.

The PDL PLplot interface (PDL::Graphics::PLplot) can interact with PLplot in two ways: (1) A

low level mapping one to one mapping of perl functions to PLplot API functions and (2) A high

level object oriented wrapper that simplifies generating 2D plots. The PLplot source distribution

contains multiple examples of how to use the low level interface (see examples/perl). A key thing

to note is that, due to the architecture of PDL, all the array arguments to a function come first,

followed by the scalars. This means that the argument order for some of the functions in the

PLplot API is different when called from PDL.

Here is an usage example comparing the low level and the object oriented interfaces to PLplot.

use PDL;

use PDL::Graphics::PLplot;

my $x = pdl (0..5);

my $y = $x ** 2;

low level interface

plsdev ("xwin");

plinit ();

plcol0 (1);

plenv (-0.5, 5.5, -1, 26, 0, 0);

plline ($x, $y);

plend ();

OO interface

my $pl = PDL::Graphics::PLplot->new (DEV => "xwin",);

$pl->xyplot($x, $y, TITLE => ’X vs. Y’);

$pl->close;

There is also a Perl PLplot interface on CPAN2 which is not dependent on PDL. The Perl module

is called Graphics::PLplot3 and is appropriate for small data arrays. The API is very similar to

the C API except that if the number of elements in an array is required by the C function the

perl interface calculates it automatically. Also, return values are returned and not supplied as

arguments. Here is the PDL example above translated to Graphics::PLplot:

use Graphics::PLplot qw/ :all /;

87

Chapter 13. Using PLplot from Perl

@x = (0..5);

@y = map {$_ * $_} @x;

plsdev ("xwin");

plinit ();

plcol0 (1);

plenv (-0.5, 5.5, -1, 26, 0, 0);

plline (\@x, \@y);

plend ();

Notes
1. http://pdl.perl.org

2. http://www.cpan.org

3. http://search.cpan.org/%7Etjenness/

88

Chapter 14. Using PLplot from Python

NEEDS DOCUMENTATION, but here is the short story. We currently (February, 2001) have

switched to dynamic loading of plplot following the generic method given in the python docu-

mentation. Most (???) of the PLplot common API has been implemented. (For a complete list

see plmodules.c and plmodules2.c). With this dynamic method all the xw??.py examples work

fine and should be consulted for the best way to use PLplot from python. You may have to set

PYTHONPATH to the path where plmodule.so is located (or eventually installed). For more

information see examples/python/README

pytkdemo and the x??.py examples it loads use the plframe widget. Thus, this method does not

currently work under dynamic loading. They have only worked in the past using the static method

with much hacking and rebuilding of python itself. We plan to try dynamic loading of all of PLplot

(not just the plmodule.c and plmodule2.c wrappers) including plframe (or a python-variant of

this widget) into python at some future date to see whether it is possible to get pytkdemo and the

x??.py examples working under dynamic loading, but only the individual stand-alone xw??.py

demos work at the moment.

89

Chapter 14. Using PLplot from Python

90

Chapter 15. Using PLplot from Tcl

PLplot has historically had C and Fortran language bindings. PLplot version 5.0 introduces

a plethora of new programming options including C++ (described earlier) and several script

language bindings. The Tcl interface to PLplot (which the PLplot maintainers regard as the

“primary” script language binding) is described in this chapter, with further discussion of Tcl

related issues following in additional chapters. But Tcl is certainly not the only script language

option. Bindings to Perl, Python, and Scheme (which is actually another compiled language, but

still has some of the flavor of a VHLL) are in various stages of completion, and are described in

separate chapters. Use the one that suits you best--or try them all!

Motivation for the Tcl Interface to PLplot

The recent emergence of several high quality VHLL script languages such as Tcl, Perl, Python

and arguably even some Lisp variants, is having a profound effect upon the art of computer

programming. Tasks which have traditionally been handled by C or Fortran, are beginning to be

seen in a new light. With relatively fast processors now widely available, many programming jobs

are no longer bound by execution time, but by “human time”. Rapidity of initial development and

continued maintenance, for a surprisingly wide class of applications, is far more important than

execution time. Result: in a very short period of time, say from 1993 to 1995, script languages

have exploded onto the scene, becoming essential tools for any serious programmer.

Moreover, the entire concept of “speed of execution” needs revising in the face of the gains made

in computer hardware in recent years. Saying that script language processing is slower than

compiled language processing may be undeniable and simultaneously irrelevant. If the script

language processing is fast enough, then it is fast enough. Increasingly, computational researchers

are finding that script based tools are indeed fast enough. And if their run time is fast enough,

and their development and maintenance time is much much better, then why indeed should they

not be used?

Even in a field with several high visibility players, Tcl has distinguished itself as a leading con-

tender. There are many reasons for this, but perhaps the most important, at least as it relates

to the PLplot user community, is that Tcl was designed to be extensible and embeddable. The

whole purpose of Tcl, as it name (Tool Command Language) indicates, is to be a command lan-

guage for other tools. In other words, the fact that Tcl is capable of being a standalone shell is

interesting, even useful, but nonetheless incidental. The real attraction of Tcl is that it can be the

shell language for your code. Tcl can easily be embedded into your code, endowing it immediately

with a full featured, consistent and well documented script programming language, providing all

the core features you need in a programming language: variables, procedures, control structures,

error trapping and recovery, tracing, etc. But that is only the beginning! After that, you can

easily extend Tcl by adding commands to the core language, which invoke the capabilities of your

tool. It is in this sense that Tcl is a tool command language. It is a command language which

you can augment to provide access to the facilities of your tool.

But Tcl is more than just an embeddable, extensible script language for personal use. Tcl is

an industry, an internet phenomenon. There are currently at least two high quality books, with

more on the way. There is an industry of service providers and educators. Furthermore, literally

hundreds of Tcl extensions exist, and are readily available over the net. Perhaps the most notable

extension, Tk, provides a fantastic interface to X Windows widget programming, permitting the

91

Chapter 15. Using PLplot from Tcl

construction of Motif like user interfaces, with none of the hassles of actually using Motif. Some

of these extensions endow Tcl with object oriented facilities philosophically similar to C++ or

other object oriented languages. Other extensions provide script level access to system services.

Others provide a script interface to sockets, RPC, and other network programming protocols.

The list goes on and on. Dive into the Tcl archive, and see what it has for you!

So, the answer to the question “Why do we want a Tcl interface to PLplot?” is very simple.

“Because we we are using Tcl anyway, as the command language for our project, and would like

to be able to do plotting in the command language just as we do so many other things.”

But there is more than just the aesthetics of integration to consider. There are also significant

pragmatic considerations. If you generate your PLplot output via function calls from a compiled

language, then in order to add new diagnostics to your code, or to refine or embellish existing

ones, you have to edit the source, recompile, relink, and rerun the code. If many iterations are

required to get the plot right, significant time can be wasted. This can be especially true in the

case of C++ code making heavy use of templates, for which many C++ compilers will have

program link times measured in minutes rather than seconds, even for trivial program changes.

In contrast, if the diagnostic plot is generated from Tcl, the development cycle looks more like:

start the shell (command line or windowing), source a Tcl script, issue the command to generate

the plot, notice a bug, edit the Tcl script, resource the script, and regenerate the plot. Notice

that compiling, linking, and restarting the program, have all been dropped from the development

cycle. The time savings from such a development cycle can be amazing!

Overview of the Tcl Language Binding

Each of the PLplot calls available to the C or Fortran programmer are also available from Tcl,

with the same name and generally the same arguments. Thus for instance, whereas in C you can

write:

plenv(0., 1., 0., 1., 0, 0);

pllab("(x)", "(y)", "The title of the graph");

you can now write in Tcl:

plenv 0 1 0 1 0 0

pllab "(x)" "(y)" "The title of the graph"

All the normal Tcl rules apply, there is nothing special about the PLplot extension commands.

So, you could write the above as:

set xmin 0; set xmax 1; set ymin 0; set ymax 1

set just 0; set axis 0

set xlab (x)

set ylab (y)

set title "The title of the graph"

plenv $xmin $xmax $ymin $ymax $just $axis

pllab $xlab $ylab $title

for example. Not that there is any reason to be loquacious for its own sake, of course. The point

is that you might have things like the plot bounds or axis labels stored in Tcl variables for some

92

Chapter 15. Using PLplot from Tcl

other reason (tied to a Tk entry widget maybe, or provided as the result of one of your application

specific Tcl extension commands, etc), and just want to use standard Tcl substitution to make

the PLplot calls.

Go ahead and try it! Enter pltcl to start up the PLplot extended Tcl shell, and type (or paste) in

the commands. Or put them in a file and source it. By this point it should be clear how incredibly

easy it is to use the PLplot Tcl language binding.

In order to accommodate the ubiquitous requirement for matrix oriented data in scientific appli-

cations, and in the PLplot API in particular, PLplot 5.0 includes a Tcl extension for manipulating

matrices in Tcl. This Tcl Matrix Extension provides a straightforward and direct means of repre-

senting one and two dimensional matrices in Tcl. The Tcl Matrix Extension is described in detail

in the next section, but we mention its existence now just so that we can show how the PLplot

Tcl API works. Many of the PLplot Tcl API functions accept Tcl matrices as arguments. For

instance, in C you might write:

float x[100], y[100];

/* code to initialize x and y */

plline(100, x, y);

In Tcl you can write:

matrix x f 100

matrix y f 100

code to initialize x and y

plline 100 x y

Some of the PLplot C function calls use pointer arguments to allow retrieval of PLplot settings.

These are implemented in Tcl by changing the value of the variable whose name you provide. For

example:

pltcl> plgxax

wrong # args: should be "plgxax digmax digits "

pltcl> set digmax 0

0

pltcl> set digits 0

0

pltcl> plgxax digmax digits

pltcl> puts "digmax=$digmax digits=$digits"

digmax=4 digits=0

This example shows that each PLplot Tcl command is designed to issue an error if you invoke it

incorrectly, which in this case was used to remind us of the correct arguments. We then create

two Tcl variables to hold the results. Then we invoke the PLplot plgxax function to obtain the

label formatting information for the x axis. And finally we print the results.

People familiar with Tcl culture may wonder why the plg* series functions don’t just pack their

results into the standard Tcl result string. The reason is that the user would then have to extract

93

Chapter 15. Using PLplot from Tcl

the desired field with either lindex or regexp, which seems messy. So instead, we designed the

PLplot Tcl API to look and feel as much like the C API as could reasonably be managed.

In general then, you can assume that each C function is provided in Tcl with the same name and

same arguments (and one or two dimensional arrays in C are replaced by Tcl matrices). There

are only a few exceptions to this rule, generally resulting from the complexity of the argument

types which are passed to some functions in the C API. Those exceptional functions are described

below, all others work in the obvious way (analogous to the examples above).

See the Tcl example programs for extensive demonstrations of the usage of the PLplot Tcl API.

To run the Tcl demos:

% pltcl

pltcl> source tcldemos.tcl

pltcl> 1

pltcl> 2

Alternatively, you can run plserver and source tkdemos.tcl.

In any event, the Tcl demos provide very good coverage of the Tcl API, and consequently serve

as excellent examples of usage. For the most part they draw the same plots as their C counter-

part. Moreover, many of them were constructed by literally inserting the C code into the Tcl

source file, and performing fairly mechanical transformations on the source. This should provide

encouragement to anyone used to using PLplot through one of the compiled interfaces, that they

can easily and rapidly become productive with PLplot in Tcl.

The PLplot Tcl Matrix Extension

Tcl does many things well, but handling collections of numbers is not one of them. You could

make lists, but for data sets of sizes relevant to scientific graphics which is the primary domain

of applicability for PLplot, the extraction time is excessive and burdensome. You could use Tcl

arrays, but the storage overhead is astronomical and the lookup time, while better than list

manipulation, is still prohibitive.

To cope with this, a Tcl Matrix extension was created for the purpose of making it feasible to

work with large collections of numbers in Tcl, in a way which is storage efficient, reasonably

efficient for accesses from Tcl, and reasonably compatible with practices used in compiled code.

Using Tcl Matrices from Tcl

Much like the Tk widget creation commands, the Tcl matrix command considers its first argument

to be the name of a new command to be created, and the rest of the arguments to be modifiers.

After the name, the next argument can be float or int or contractions thereof. Next follow a

variable number of size arguments which determine the size of the matrix in each of its dimensions.

For example:

matrix x f 100

matrix y i 64 64

constructs two matrices. x is a float matrix, with one dimension and 100 elements. y is an integer

matrix, and has 2 dimensions each of size 64.

94

Chapter 15. Using PLplot from Tcl

Additionally, an initializer may be specified, with a syntax familiar from C. For example:

matrix x f 4 = { 1.5, 2.5, 3.5, 4.5 }

A Tcl matrix is a command, and as longtime Tcl users know, Tcl commands are globally accessible.

The PLplot Tcl Matrix extension attempts to lessen the impact of this by registering a variable

in the local scope, and tracing it for insets, and deleting the actual matrix command when the

variable goes out of scope. In this way, a Tcl matrix appears to work sort of like a variable. It is,

however, just an illusion, so you have to keep this in mind. In particular, you may want the matrix

to outlive the scope in which it was created. For example, you may want to create a matrix, load

it with data, and then pass it off to a Tk megawidget for display in a spreadsheet like form. The

proc which launches the Tk megawidget will complete, but the megawidget, and the associated

Tcl matrix are supposed to hang around until they are explicitly destroyed. To achieve this effect,

create the Tcl matrix with the -persist flag. If present (can be anywhere on the line), the matrix

is not automatically deleted when the scope of the current proc (method) ends. Instead, you

must explicitly clean up by using either the ’delete’ matrix command or renaming the matrix

command name to {}. Now works correctly from within [incr Tcl].

As mentioned above, the result of creating a matrix is that a new command of the given name is

added to the interpreter. You can then evaluate the command, providing indices as arguments,

to extract the data. For example:

pltcl> matrix x f = {1.5, 2.5, 3.5, 4.5}

insufficient dimensions given for Matrix operator "x"

pltcl> matrix x f 4 = {1.5, 2.5, 3.5, 4.5}

pltcl> x 0

1.500000

pltcl> x 1

2.500000

pltcl> x 3

4.500000

pltcl> x *

1.500000 2.500000 3.500000 4.500000

pltcl> puts "x\[1\]=[x 1]"

x[1]=2.500000

pltcl> puts "x\[*\] = :[x *]:"

x[*] = :1.500000 2.500000 3.500000 4.500000:

pltcl> foreach v [x *] { puts $v }

1.500000

2.500000

3.500000

4.500000

pltcl> for {set i 0} {$i < 4} {incr i} {

if {[x $i] < 3} {puts [x $i]} }

1.500000

2.500000

Note from the above that the output of evaluating a matrix indexing operation is suitable for use

in condition processing, list processing, etc.

You can assign to matrix locations in a similar way:

pltcl> x 2 = 7

95

Chapter 15. Using PLplot from Tcl

pltcl> puts ":[x *]:"

:1.500000 2.500000 7.000000 4.500000:

pltcl> x * = 3

pltcl> puts ":[x *]:"

Note that the * provides a means of obtaining an index range, and that it must be separated

from the = by a space. Future versions of the Tcl Matrix extension may allow alternative ways

of specifying index ranges and may assign the obvious meaning to an expression of the form:

x *= 3

However this has not been implemented yet...

In any event, the matrix command also supports an info subcommand which reports the number

of elements in each dimension:

pltcl> x info

4

pltcl> matrix y i 8 10

pltcl> y info

8 10

Using Tcl Matrices from C

Normally you will create a matrix in Tcl, and then want to pass it to C in order to have the

data filled in, or existing data to be used in a computation, etc. To do this, pass the name of

the matrix command as an argument to your C Tcl command procedure. The C code should

include tclMatrix.h, which has a definition for the tclMatrix structure. You fetch a pointer to

the tclMatrix structure using the Tcl_GetMatrixPtr function.

For example, in Tcl:

matrix x f 100

wacky x

and in C:

int wackyCmd(ClientData clientData, Tcl_Interp *interp,

int argc, char *argv[])

{

tclMatrix *w;

w = Tcl_GetMatrixPtr(interp, argv[1]);

...

To learn about what else you can do with the matrix once inside compiled code, read tclMatrix.h

to learn the definition of the tclMatrix structure, and see the examples in files like tclAPI.c which

show many various uses of the Tcl matrix.

96

Chapter 15. Using PLplot from Tcl

Using Tcl Matrices from C++

Using a Tcl matrix from C++ is very much like using it from C, except that tclMatrix.h contains

some C++ wrapper classes which are somewhat more convenient than using the indexing macros

which one has to use in C. For example, here is a tiny snippet from one of the authors codes in

which Tcl matrices are passed in from Tcl to a C++ routine which is supposed to fill them in

with values from some matrices used in the compiled side of the code:

...

if (item == "vertex_coords") {

tclMatrix *matxg = Tcl_GetMatrixPtr(interp, argv[1]);

tclMatrix *matyg = Tcl_GetMatrixPtr(interp, argv[2]);

Mat2<float> xg(ncu, ncv), yg(ncu, ncv);

cg->Get_Vertex_Coords(xg, yg);

TclMatFloat txg(matxg), tyg(matyg);

for(i=0; i < ncu; i++)

for(j=0; j < ncv; j++) {

txg(i,j) = xg(i,j);

tyg(i,j) = yg(i,j);

}

There are other things you can do too, see the definitions of the TclMatFloat and TclMatInt classes

in tclMatrix.h.

Extending the Tcl Matrix facility

The Tcl matrix facility provides creation, indexing, and information gathering facilities. However,

considering the scientifically inclined PLplot user base, it is clear that some users will demand

more. Consequently there is a mechanism for augmenting the Tcl matrix facility with your own,

user defined, extension subcommands. Consider xtk04.c. In this extended wish, we want to be

able to determine the minimum and maximum values stored in a matrix. Doing this in Tcl would

involve nested loops, which in Tcl would be prohibitively slow. We could register a Tcl extension

command to do it, but since the only sensible data for such a command would be a Tcl matrix, it

seems nice to provide this facility as an actual subcommand of the matrix. However, the PLplot

maintainers cannot foresee every need, so a mechanism is provided to register subcommands for

use with matrix objects.

The way to register matrix extension subcommands is to call Tcl_MatrixInstallXtnsn:

typedef int (*tclMatrixXtnsnProc) (tclMatrix *pm, Tcl_Interp *interp,

int argc, char *argv[]);

int Tcl_MatrixInstallXtnsn(char *cmd, tclMatrixXtnsnProc proc);

In other words, make a function for handling the matrix extension subcommand, with the same

function signature (prototype) as tclMatrixXtnsnProc, and register the subcommand name along

with the function pointer. For example, xtk04.c has:

int mat_max(tclMatrix *pm, Tcl_Interp *interp,

97

Chapter 15. Using PLplot from Tcl

int argc, char *argv[])

{

float max = pm->fdata[0];

int i;

for(i=1; i < pm->len; i++)

if (pm->fdata[i] > max)

max = pm->fdata[i];

sprintf(interp->result, "%f", max);

return TCL_OK;

}

int mat_min(tclMatrix *pm, Tcl_Interp *interp,

int argc, char *argv[])

{

float min = pm->fdata[0];

int i;

for(i=1; i < pm->len; i++)

if (pm->fdata[i] < min)

min = pm->fdata[i];

sprintf(interp->result, "%f", min);

return TCL_OK;

}

Then, inside the application initialization function (Tcl_AppInit() to long time Tcl users):

Tcl_MatrixInstallXtnsn("max", mat_max);

Tcl_MatrixInstallXtnsn("min", mat_min);

Then we can do things like:

dino 65: xtk04

% matrix x f 4 = {1, 2, 3, 1.5}

% x min

1.000000

% x max

3.000000

Your imagination is your only limit for what you can do with this. You could add an FFT

subcommand, matrix math, BLAS, whatever.

Contouring and Shading from Tcl

Contouring and shading has traditionally been one of the messier things to do in PLplot. The C

API has many parameters, with complex setup and tear down properties. Of special concern is

that some of the parameters do not have a natural representation in script languages like Tcl. In

this section we describe how the Tcl interface to these facilities is provided, and how to use it.

98

Chapter 15. Using PLplot from Tcl

Drawing a Contour Plot from Tcl

By way of reference, the primary C function call for contouring is:

void plcont(PLFLT **f, PLINT nx, PLINT ny, PLINT kx, PLINT lx,

PLINT ky, PLINT ly, PLFLT *clevel, PLINT nlevel,

void (*pltr) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer),

PLPointer pltr_data);

This is a fairly complex argument list, and so for this function (and for plshade, described below)

we dispense with trying to exactly mirror the C API, and just concentrate on capturing the

functionality within a Tcl context. To begin with, the data is provided through a 2-d Tcl matrix.

The Tcl matrix carries along its size information with it, so nx and ny are no longer needed. The

kx, lx, ky and ly variables are potentially still useful for plotting a subdomain of the full data set,

so they may be specified in the natural way, but we make this optional since they are frequently

not used to convey anything more than what could be inferred from nx and ny. However, to

simplify processing, they must be supplied or omitted as a set (all of them, or none of them).

clevel is supplied as a 1-d Tcl matrix, and so nlevel can be omitted.

Finally, we have no way to support function pointers from Tcl, so instead we provide token based

support for accessing the three coordinate transformation routines which are provided by PLplot,

and which many PLplot users use. There are thus three courses of action:

Ĺ Provide no pltr specification. In this case, pltr0 is used by default.

Ĺ Specify pltr1 x y where x and y are 1-d Tcl matrices. In this case pltr1 will be used, and the

1-d arrays which it needs will be supplied from the Tcl matrices x and y.

Ĺ Specify pltr2 x y where x and y are 2-d Tcl matrices. In this case pltr2 will be used, and the

2-d arrays which it needs will be supplied from the Tcl matrices x and y.

Now, there can be no question that this is both more concise and less powerful than what you could

get in C. The loss of the ability to provide a user specified transformation function is regrettable.

If you really do need that functionality, you will have to implement your own Tcl extension

command to do pretty much the same thing as the provided Tcl extension command plcont

(which is in tclAPI.c in function plcontCmd()), except specify the C transformation function of

your choice.

However, that having been said, we recognize that one common use for this capability is to provide

a special version of pltr2 which knows how to implement a periodic boundary condition, so that

polar plots, for example, can be implemented cleanly. That is, if you want to draw contours of

a polar data set defined on a 64 x 64 grid, ensuring that contour lines would actually go all the

way around the origin rather than breaking off like a silly pacman figure, then you had basically

two choices in C. You could copy the data to a 65 x 64 grid, and replicate one row of data into

the spare slot, and then plot the larger data set (taking care to replicate the coordinate arrays

you passed to pltr2 in the same way), or you could make a special version of pltr2 which would

understand that one of the coordinates was wrapped, and perform transformations accordingly

without actually making you replicate the data.

Since the former option is ugly in general, and hard to do in Tcl in particular, and since the

second option is even more difficult to do in Tcl (requiring you do make a special Tcl extension

99

Chapter 15. Using PLplot from Tcl

command as described above), we provide special, explicit support for this common activity. This

is provided through the use of a new, optional parameter wrap which may be specified as the last

parameter to the Tcl command, only if you are using pltr2. Supplying 1 will wrap in the first

coordinate, 2 will wrap in the second coordinate.

The resultant Tcl command is:

plcont f [kx lx ky ly] clev [pltr x y] [wrap]

Note that the brackets here are used to signify optional arguments, not to represent Tcl command

substitution!

The Tcl demo x09.tcl provides examples of all the capabilities of this interface to contouring from

Tcl. Note in particular, x09_polar which does a polar contour without doing anything complicated

in the way of setup, and without getting a pacman as the output.

Drawing a Shaded Plot from Tcl

The Tcl interface to shading works very much like the one for contouring. The command is:

plshade z xmin xmax ymin ymax \

sh_min sh_max sh_cmap sh_color sh_width \

min_col min_wid max_col max_wid \

rect [pltr x y] [wrap]

where nx and ny were dropped since they are inferred from the Tcl matrix z, defined was dropped

since it isn’t supported anyway, and plfill was dropped since it was the only valid choice anyway.

The pltr spec and wrap work exactly as described for the Tcl plcont described above.

The Tcl demo x16.tcl contains extensive demonstrations of use, including a shaded polar plot

which connects in the desirable way without requiring special data preparation, again just like

for plcont described previously.

Understanding the Performance Characteristics of Tcl

Newcomers to Tcl, and detractors (read, “proponents of other paradigms”) often do not have a

clear (newcomers) or truthful (detractors) perspective on Tcl performance. In this section we try

to convey a little orientation which may be helpful in working with the PLplot Tcl interface.

“Tcl is slow!” “Yeah, so what?”

Debates of this form frequently completely miss the point. Yes, Tcl is definitely slow. It is fun-

damentally a string processing language, is interpreted, and must perform substitutions and so

forth on a continual basis. All of that takes time. Think milliseconds instead of microseconds for

comparing Tcl code to equivalent C code. On the other hand, this does not have to be prob-

lematic, even for time critical (interactive) applications, if the division of labor is done correctly.

Even in an interactive program, you can use Tcl fairly extensively for high level control type op-

erations, as long as you do the real work in a compiled Tcl command procedure. If the high level

control code is slow, so what? So it takes 100 milliseconds over the life the process, as compared

to the 100 microseconds it could have taken if it were in C. Big deal. On an absolute time scale,

measured in units meaningful to humans, it’s just not a lot of time.

100

Chapter 15. Using PLplot from Tcl

The problem comes when you try to do too much in Tcl. For instance, an interactive process

should not be trying to evaluate a mathematical expression inside a doubly nested loop structure,

if performance is going to be a concern.

Case in point: Compare x16.tcl to x16c.c. The code looks very similar, and the output looks

very similar. What is not so similar is the execution time. The Tcl code, which sets up the data

entirely in Tcl, takes a while to do so. On the other hand, the actual plotting of the data proceeds

at a rate which is effectively indistinguishable from that of the compiled example. On human

time scales, the difference is not meaningful. Conclusion: If the computation of the data arrays

could be moved to compiled code, the two programs would have performance close enough to

identical that it really wouldn’t be an issue. We left the Tcl demos coded in Tcl for two reasons.

First because they provide some examples and tests of the use of the Tcl Matrix extension, and

secondly because they allow the Tcl demos to be coded entirely in Tcl, without requiring special

customized extended shells for each one of them. They are not, however, a good example of you

should do things in practice.

Now look at tk04 and xtk04.c, you will see that if the data is computed in compiled code, and

shuffled into the Tcl matrix and then plotted from Tcl, the performance is fine. Almost all the time

is spent in plshade, in compiled code. The time taken to do the small amount of Tcl processing

involved with plotting is dwarfed by the time spent doing the actual drawing in C. So using Tcl

cost almost nothing in this case.

So, the point is, do your heavy numerics in a compiled language, and feel free to use Tcl for the

plotting, if you want to. You can of course mix it up so that some plotting is done from Tcl and

some from a compiled language.

101

Chapter 15. Using PLplot from Tcl

102

Chapter 16. Building an Extended WISH

Beginning with PLplot 5.0, a new and powerful paradigm for interaction with PLplot is in-

troduced. This new paradigm consists of an integration of PLplot with a powerful scripting

language (Tcl), and extensions to that language to support X Windows interface development

(Tk) and object oriented programming ([incr Tcl]). Taken together, these four software systems

(Tcl/Tk/itcl/PLplot) comprise a powerful environment for the rapid prototyping and develop-

ment of sophisticated, flexible, X Windows applications with access to the PLplot API. Yet that

is only the beginning—Tcl was born to be extended. The true power of this paradigm is achieved

when you add your own, powerful, application specific extensions to the above quartet, thus cre-

ating an environment for the development of wholly new applications with only a few keystrokes

of shell programming ...

Introduction to Tcl

The Tool Command Language, or just Tcl (pronounced “tickle”) is an embeddable script language

which can be used to control a wide variety of applications. Designed by John Ousterhout of UC

Berkeley, Tcl is freely available under the standard Berkeley copyright. Tcl and Tk (described

below) are extensively documented in a new book published by Addison Wesley, entitled “Tcl and

the Tk toolkit” by John Ousterhout. This book is a must have for those interested in developing

powerful extensible applications with high quality X Windows user interfaces. The discussion in

this chapter cannot hope to approach the level of introduction provided by that book. Rather

we will concentrate on trying to convey some of the excitement, and show the nuts and bolts of

using Tcl and some extensions to provide a powerful and flexible interface to the PLplot library

within your application.

Motivation for Tcl

The central observation which led Ousterhout to create Tcl was the realization that many appli-

cations require the use of some sort of a special purpose, application specific, embedded “macro

language”. Application programmers cobble these “tiny languages” into their codes in order to

provide flexibility and some modicum of high level control. But the end result is frequently a

quirky and fragile language. And each application has a different “tiny language” associated with

it. The idea behind Tcl, then, was to create a single “core language” which could be easily embed-

ded into a wide variety of applications. Further, it should be easily extensible so that individual

applications can easily provide application specific capabilities available in the macro language

itself, while still providing a robust, uniform syntax across a variety of applications. To say that

Tcl satisfies these requirements would be a spectacular understatement.

Capabilities of Tcl

The mechanics of using Tcl are very straightforward. Basically you just have to include the file

tcl.h, issue some API calls to create a Tcl interpreter, and then evaluate a script file or perform

other operations supported by the Tcl API. Then just link against libtcl.a and off you go.

Having done this, you have essentially created a shell. That is, your program can now execute

shell scripts in the Tcl language. Tcl provides support for basic control flow, variable substitution

103

Chapter 16. Building an Extended WISH

file i/o and subroutines. In addition to the builtin Tcl commands, you can define your own

subroutines as Tcl procedures which effectively become new keywords.

But the real power of this approach is to add new commands to the interpreter which are realized

by compiled C code in your application. Tcl provides a straightforward API call which allows you

to register a function in your code to be called whenever the interpreter comes across a specific

keyword of your choosing in the shell scripts it executes.

This facility allows you with tremendous ease, to endow your application with a powerful, ro-

bust and full featured macro language, trivially extend that macro language with new keywords

which trigger execution of compiled application specific commands, and thereby raise the level

of interaction with your code to one of essentially shell programming via script editing.

Acquiring Tcl

There are several important sources of info and code for Tcl. Definitely get the book mentioned

above. The Tcl and Tk toolkits are distributed by anonymous ftp at sprite.berkeley.edu:/tcl1.

There are several files in there corresponding to Tcl, Tk, and various forms of documentation. At

the time of this writing, the current versions of Tcl and Tk are 7.3 and 3.6 respectively. Retrieve

those files, and install using the instructions provided therein.

The other major anonymous ftp site for Tcl is harbor.ecn.purdue.edu:/pub/tcl2. Harbor contains

a mirror of sprite as well as innumerable extensions, Tcl/Tk packages, tutorials, documentation,

etc. The level of excitement in the Tcl community is extraordinarily high, and this is reflected by

the great plethora of available, high quality, packages and extensions available for use with Tcl

and Tk. Explore—there is definitely something for everyone.

Additionally there is a newsgroup, comp.lang.tcl which is well read, and an excellent place for

people to get oriented, find help, etc. Highly recommended.

In any event, in order to use the Tk driver in PLplot, you will need Tcl-8.2 and Tk-8.2 (or higher

versions). Additionally, in order to use the extended WISH paradigm (described below) you will

need iTcl-3.1 (or a higher version).

However, you will quite likely find Tcl/Tk to be very addictive, and the great plethora of add-ons

available at harbor will undoubtedly attract no small amount of your attention. It has been our

experience that all of these extensions fit together very well. You will find that there are large

sectors of the Tcl user community which create so-called “MegaWishes” which combine many of

the available extensions into a single, heavily embellished, shell interpreter. The benefits of this

approach will become apparent as you gain experience with Tcl and Tk.

Introduction to Tk

As mentioned above, Tcl is designed to be extensible. The first and most basic Tcl extension is

Tk, an X11 toolkit. Tk provides the same basic facilities that you may be familiar with from

other X11 toolkits such as Athena and Motif, except that they are provided in the context of

the Tcl language. There are C bindings too, but these are seldom needed—the vast majority of

useful Tk applications can be coded using Tcl scripts.

If it has not become obvious already, it is worth noting at this point that Tcl is one example of a

family of languages known generally as “Very High Level Languages”, or VHLL’s. Essentially a

104

Chapter 16. Building an Extended WISH

VHLL raises the level of programming to a very high level, allowing very short token streams to

accomplish as much as would be required by many scores of the more primitive actions available

in a basic HLL. Consider, for example, the basic “Hello World!” application written in Tcl/Tk.

#!/usr/local/bin/wish -f

button .hello -text "Hello World!" -command "destroy ."

pack .hello

That’s it! That’s all there is to it. If you have ever programmed X using a traditional toolkit

such as Athena or Motif, you can appreciate how amazingly much more convenient this is. If not,

you can either take our word for it that this is 20 times less code than you would need to use a

standard toolkit, or you can go write the same program in one of the usual toolkits and see for

yourself...

We cannot hope to provide a thorough introduction to Tk programming in this section. Instead,

we will just say that immensely complex applications can be constructed merely by programming

in exactly the way shown in the above script. By writing more complex scripts, and by utilizing the

additional widgets provided by Tk, one can create beautiful, extensive user interfaces. Moreover,

this can be done in a tiny fraction of the time it takes to do the same work in a conventional

toolkit. Literally minutes versus days.

Tk provides widgets for labels, buttons, radio buttons, frames with or without borders, menubars,

pull downs, toplevels, canvases, edit boxes, scroll bars, etc.

A look at the interface provided by the PLplot Tk driver should help give you a better idea of

what you can do with this paradigm. Also check out some of the contributed Tcl/Tk packages

available at harbor. There are high quality Tk interfaces to a great many familiar Unix utilities

ranging from mail to info, to SQL, to news, etc. The list is endless and growing fast...

Introduction to [incr Tcl]

Another extremely powerful and popular extension to Tcl is [incr Tcl]. [incr Tcl] is to Tcl what

C++ is to C. The analogy is very extensive. Itcl provides an object oriented extension to Tcl

supporting clustering of procedures and data into what is called an itcl_class. An itcl_class

can have methods as well as instance data. And they support inheritance. Essentially if you

know how C++ relates to C, and if you know Tcl, then you understand the programming model

provided by Itcl.

In particular, you can use Itcl to implement new widgets which are composed of more basic

Tk widgets. A file selector is an example. Using Tk, one can build up a very nice file selector

comprised of more basic Tk widgets such as entries, listboxes, scrollbars, etc.

But what if you need two file selectors? You have to do it all again. Or what if you need two

different kinds of file selectors, you get to do it again and add some incremental code.

This is exactly the sort of thing object orientation is intended to assist. Using Itcl you can create

an itcl_class FileSelector and then you can instantiate them freely as easily as:

FileSelector .fs1

.fs1 -dir . -find "*.cc"

105

Chapter 16. Building an Extended WISH

and so forth.

These high level widgets composed of smaller Tk widgets, are known as “megawidgets”. There is

a developing subculture of the Tcl/Tk community for designing and implementing megawidgets,

and [incr Tcl] is the most popular enabling technology.

In particular, it is the enabling technology which is employed for the construction of the PLplot

Tcl extensions, described below.

PLplot Extensions to Tcl

Following the paradigm described above, PLplot provides extensions to Tcl as well, designed

to allow the use of PLplot from Tcl/Tk programs. Essentially the idea here is to allow PLplot

programmers to achieve two goals:

Ĺ To access PLplot facilities from their own extended WISH and/or Tcl/Tk user interface scripts.

Ĺ To have PLplot display its output in a window integrated directly into the rest of their Tcl/Tk

interface.

For instance, prior to PLplot 5.0, if a programmer wanted to use PLplot in a Tcl/Tk application,

the best he could manage was to call the PLplot C API from compiled C code, and get the output

via the Xwin driver, which would display in it’s own toplevel window. In other words, there was

no integration, and the result was pretty sloppy.

With PLplot 5.0, there is now a supported Tcl interface to PLplot functionality. This is provided

through a “family” of PLplot megawidgets implemented in [incr Tcl]. Using this interface, a

programmer can get a PLplot window/widget into a Tk interface as easily as:

PLWin .plw

pack .plw

Actually, there’s the update/init business—need to clear that up.

The PLWin class then mirrors much of the PLplot C API, so that a user can generate plots in the

PLplot widget entirely from Tcl. This is demonstrated in the tk02 demo,

Custom Extensions to Tcl

By this point, you should have a pretty decent understanding of the underlying philosophy of

Tcl and Tk, and the whole concept of extensions, of which [incr Tcl] and PLplot are examples.

These alone are enough to allow the rapid prototyping and development of powerful, flexible

graphical applications. Normally the programmer simply writes a shell script to be executed by

the Tk windowing shell, wish. It is in vogue for each Tcl/Tk extension package to build it’s

own “extended WISH”. There are many examples of this, and indeed even PLplot’s plserver

program, described in an earlier chapter, could just as easily have been called plwish.

In any event, as exciting and useful as these standalone, extended windowing shells may be,

they are ultimately only the beginning of what you can do. The real benefit of this approach is

106

Chapter 16. Building an Extended WISH

realized when you make your own “extended WISH”, comprised of Tcl, Tk, any of the standard

extensions you like, and finally embellished with a smattering of application specific extensions

designed to support your own application domain. In this section we give a detailed introduction

to the process of constructing your own WISH. After that, you’re on your own...

WISH Construction

The standard way to make your own WISH, as supported by the Tcl/Tk system, is to take a

boilerplate file, tkAppInit.c, edit to reflect the Tcl/Tk extensions you will be requiring, add some

commands to the interpreter, and link it all together.

Here for example is the important part of the tk02 demo, extracted from the file xtk02.c, which is

effectively the extended WISH definition file for the tk02 demo. Comments and other miscellany

are omitted.

#include "tk.h"

#include "itcl.h"

/* ... */

int myplotCmd (ClientData, Tcl_Interp *, int, char **);

int

Tcl_AppInit(interp)

Tcl_Interp *interp; /* Interpreter for application. */

{

int plFrameCmd (ClientData, Tcl_Interp *, int, char **);

Tk_Window main;

main = Tk_MainWindow(interp);

/*

* Call the init procedures for included packages. Each call should

* look like this:

*

* if (Mod_Init(interp) == TCL_ERROR) {

* return TCL_ERROR;

* }

*

* where "Mod" is the name of the module.

*/

if (Tcl_Init(interp) == TCL_ERROR) {

return TCL_ERROR;

}

if (Tk_Init(interp) == TCL_ERROR) {

return TCL_ERROR;

}

if (Itcl_Init(interp) == TCL_ERROR) {

return TCL_ERROR;

}

if (Pltk_Init(interp) == TCL_ERROR) {

107

Chapter 16. Building an Extended WISH

return TCL_ERROR;

}

/*

* Call Tcl_CreateCommand for application-specific commands, if

* they weren’t already created by the init procedures called above.

*/

Tcl_CreateCommand(interp, "myplot", myplotCmd,

(ClientData) main, (void (*)(ClientData)) NULL);

/*

* Specify a user-specific startup file to invoke if the

* application is run interactively. Typically the startup

* file is "~/.apprc" where "app" is the name of the application.

* If this line is deleted then no user-specific startup file

* will be run under any conditions.

*/

tcl_RcFileName = "~/.wishrc";

return TCL_OK;

}

/* ... myPlotCmd, etc ... */

The calls to Tcl_Init() and Tk_Init() are in every WISH. To make an extended WISH, you add

calls to the initialization routines for any extension packages you want to use, in this [incr Tcl]

(Itcl_Init()) and PLplot (Pltk_Init()). Finally you add keywords to the interpreter, associating

them with functions in your code using Tcl_CreateCommand() as shown.

In particular, PLplot has a number of [incr Tcl] classes in its Tcl library. If you want to be able

to use those in your WISH, you need to include the initialization of [incr Tcl].

WISH Linking

Having constructed your Tcl_AppInit() function, you now merely need to link this file with your

own private files to provide the code for any functions you registered via Tcl_CreateCommand()

(and any they depend on), against the Tcl, Tk and extension libraries you are using.

cc -c tkAppInit.c

cc -c mycommands.c

cc -o my_wish tkAppInit.o mycommands.o

-lplplotftk -ltcl -ltk -litcl -lX11 -lm

Add any needed -L options as needed.

Voila! You have made a wish.

108

Chapter 16. Building an Extended WISH

WISH Programming

Now you are ready to put the genie to work. The basic plan here is to write shell scripts which

use your new application specific windowing shell as their interpreter, to implement X Windows

user interfaces to control and utilize the facilities made available in your extensions.

Effectively this just comes down to writing Tcl/Tk code, embellished as appropriate with calls

to the extension commands you registered. Additionally, since this wish includes the PLplot

extensions, you can instantiate any of the PLplot family of [incr Tcl] classes, and invoke methods

on those objects to effect the drawing of graphs. Similarly, you may have your extension commands

(which are coded in C) call the PLplot C programmers API to draw into the widget. In this way

you can have the best of both worlds. Use compiled C code when the computational demands

require the speed of compiled code, or use Tcl when your programming convenience is more

important than raw speed.

Notes
1. ftp://sprite.berkeley.edu/tcl

2. ftp://harbor.ecn.purdue.edu/pub/tcl

109

Chapter 16. Building an Extended WISH

110

Chapter 17. Embedding Plots in Graphical

User Interfaces

This chapter should describe how to embed plots in graphical user interfaces. Chapter 16 does

that for Tk, but embedding plots in GTK+ and Qt GUI’s NEEDS DOCUMENTATION. Un-

til that GTK+ and QT4 documentation is prepared, look at examples/c/README.cairo and

examples/c++/README.qt_example for some proof-of-concept examples.

111

Chapter 17. Embedding Plots in Graphical User Interfaces

112

IV. Reference

Chapter 18. Bibliography

These articles are descriptions of PLplot itself or else scientific publications whose figures were

generated with PLplot.

References

Furnish G., “Das Graphikpaket PLplot (in German) (http://www.linux-

magazin.de/ausgabe/1996/12/Plplot/plplot.html)”, Linux Magazin, 1996

December

Furnish G., Horton W., Kishimoto Y., LeBrun M., Tajima T., “Global Gyrokinetic Simulation

of Tokamak Transport”, Physics of Plasmas, 6, 1, 1999

Irwin A.W., Fukushima T., “A Numerical Time Ephemeris of the Earth”, Astronomy and

Astrophysics, 348, 642, 1999

LeBrun M.J., Tajima T., Gray M., Furnish G., Horton W., “Toroidal Effects on Drift-Wave

Turbulence”, Physics of Fluids, B5, 752, 1993

115

Chapter 18. Bibliography

116

Chapter 19. The Common API for PLplot

The purpose of this chapter is to document the API for every PLplot function that should be

available across all PLplot language bindings. This common API between the various languages

constitutes the most important part of the PLplot API that programmers need to know. Note

that in C, these common API routines have a special “c_” prefix name assigned to them in

plplot.h.

What follows is a list of all common API functions of the current CVS HEAD with their argu-

ments except for obsolete/deprecated API functions which are listed in Chapter 24. The following

information is provided for each function:

1. The function name and a brief description.

2. The function as it would be called from C.

3. A complete description of the function.

4. A description of each argument that the function takes.

5. The redacted argument form of the function, currently used by the programming languages

Fortran95, Python, Java and Perl, as well as any language specific variations that might

occur on the general calling scheme described in the following paragraph.

6. A list of PLplot examples that demonstrate how to use the function.

Additional PLplot API specialized for each language binding is documented in Chapter 20 and

subsequent chapters.

The general calling scheme for the other languages supported by PLplot is as follows, using the

function plline as an example.

Ĺ C: plline(n,x,y)

Ĺ F77: plline(n,x,y)

Ĺ F95: plline(x,y)

Ĺ C++: pls->line(n,x,y)

Ĺ Java: pls.line(x,y)

Ĺ Perl/PDL: plline($x,$y)

Ĺ Python: plline(x,y)

Ĺ Tcl/Tk: $w cmd plline $n x y

Note that in some languages the argument n (which specifies the length of the arrays x and y) is

not necessary, this is what we refer to above as the “redacted argument form” of the function.

pl_setcontlabelformat: Set format of numerical label for contours

pl_setcontlabelformat (lexp , sigdig);

117

Chapter 19. The Common API for PLplot

Set format of numerical label for contours.

lexp (PLINT, input)

If the contour numerical label is greater than 10^(lexp) or less than 10^(-lexp), then the

exponential format is used. Default value of lexp is 4.

sigdig (PLINT, input)

Number of significant digits. Default value is 2.

Redacted form: pl_setcontlabelformat(lexp, sigdig)

This function is used example 9.

pl_setcontlabelparam: Set parameters of contour labelling other than format of

numerical label

pl_setcontlabelparam (offset , size , spacing , active);

Set parameters of contour labelling other than those handled by pl_setcontlabelformat.

offset (PLFLT, input)

Offset of label from contour line (if set to 0.0, labels are printed on the lines). Default value

is 0.006.

size (PLFLT, input)

Font height for contour labels (normalized). Default value is 0.3.

spacing (PLFLT, input)

Spacing parameter for contour labels. Default value is 0.1.

active (PLINT, input)

Activate labels. Set to 1 if you want contour labels on. Default is off (0).

Redacted form: pl_setcontlabelparam(offset, size, spacing, active)

This function is used in example 9.

pladv: Advance the (sub-)page

pladv (sub);

Advances to the next subpage if sub=0, performing a page advance if there are no remaining

subpages on the current page. If subpages aren’t being used, pladv(0) will always advance the

page. If sub>0, PLplot switches to the specified subpage. Note that this allows you to overwrite

a plot on the specified subpage; if this is not what you intended, use pleop followed by plbop to

118

Chapter 19. The Common API for PLplot

first advance the page. This routine is called automatically (with sub=0) by plenv, but if plenv is

not used, pladv must be called after initializing PLplot but before defining the viewport.

sub (PLINT, input)

Specifies the subpage number (starting from 1 in the top left corner and increasing along the

rows) to which to advance. Set to zero to advance to the next subpage.

Redacted form: pladv(sub)

This function is used in examples 1,2,4,6-12,14-18,20,21,23-27,29,31.

plarc: Draw a circular or elliptical arc

plarc (x , y , a , b , angle1 , angle2 , rotate , fill);

Draw a possibly filled arc centered at x , y with semimajor axis a and semiminor axis b , starting

at angle1 and ending at angle2 .

x (PLFLT, input)

X coordinate of arc center.

y (PLFLT, input)

Y coordinate of arc center.

a (PLFLT, input)

Length of the semimajor axis of the arc.

b (PLFLT, input)

Length of the semiminor axis of the arc.

angle1 (PLFLT, input)

Starting angle of the arc relative to the semimajor axis.

angle2 (PLFLT, input)

Ending angle of the arc relative to the semimajor axis.

rotate (PLFLT, input)

Angle of the semimajor axis relative to the X-axis.

fill (PLBOOL, input)

Draw a filled arc.

Redacted form:

Ĺ General: plarc(x, y, a, b, angle1, angle2, rotate, fill)

This function is used in examples 3 and 27.

119

Chapter 19. The Common API for PLplot

plaxes: Draw a box with axes, etc. with arbitrary origin

plaxes (x0 , y0 , xopt , xtick , nxsub , yopt , ytick , nysub);

Draws a box around the currently defined viewport with arbitrary world-coordinate origin spec-

ified by x0 and y0 and labels it with world coordinate values appropriate to the window. Thus

plaxes should only be called after defining both viewport and window. The character strings xopt

and yopt specify how the box should be drawn as described below. If ticks and/or subticks are

to be drawn for a particular axis, the tick intervals and number of subintervals may be specified

explicitly, or they may be defaulted by setting the appropriate arguments to zero.

x0 (PLFLT, input)

World X coordinate of origin.

y0 (PLFLT, input)

World Y coordinate of origin.

xopt (const char *, input)

Pointer to character string specifying options for horizontal axis. The string can include any

combination of the following letters (upper or lower case) in any order:

Ĺ a: Draws axis, X-axis is horizontal line (y=0), and Y-axis is vertical line (x=0).

Ĺ b: Draws bottom (X) or left (Y) edge of frame.

Ĺ c: Draws top (X) or right (Y) edge of frame.

Ĺ d: Plot labels as date / time. Values are assumed to be seconds since the epoch (as used

by gmtime).

Ĺ f: Always use fixed point numeric labels.

Ĺ g: Draws a grid at the major tick interval.

Ĺ h: Draws a grid at the minor tick interval.

Ĺ i: Inverts tick marks, so they are drawn outwards, rather than inwards.

Ĺ l: Labels axis logarithmically. This only affects the labels, not the data, and so it is

necessary to compute the logarithms of data points before passing them to any of the

drawing routines.

Ĺ m: Writes numeric labels at major tick intervals in the unconventional location (above box

for X, right of box for Y).

Ĺ n: Writes numeric labels at major tick intervals in the conventional location (below box

for X, left of box for Y).

Ĺ o: Use custom labeling function to generate axis label text. The custom labeling function

can be defined with the plslabelfuncplslabelfunc; command.

Ĺ s: Enables subticks between major ticks, only valid if t is also specified.

Ĺ t: Draws major ticks.

120

Chapter 19. The Common API for PLplot

xtick (PLFLT, input)

World coordinate interval between major ticks on the x axis. If it is set to zero, PLplot

automatically generates a suitable tick interval.

nxsub (PLINT, input)

Number of subintervals between major x axis ticks for minor ticks. If it is set to zero, PLplot

automatically generates a suitable minor tick interval.

yopt (const char *, input)

Pointer to character string specifying options for vertical axis. The string can include any

combination of the letters defined above for xopt , and in addition may contain:

Ĺ v: Write numeric labels for vertical axis parallel to the base of the graph, rather than

parallel to the axis.

ytick (PLFLT, input)

World coordinate interval between major ticks on the y axis. If it is set to zero, PLplot

automatically generates a suitable tick interval.

nysub (PLINT, input)

Number of subintervals between major y axis ticks for minor ticks. If it is set to zero, PLplot

automatically generates a suitable minor tick interval.

Redacted form:

Ĺ General: plaxes(x0, y0, xopt, xtick, nxsub, yopt, ytick, nysub)

Ĺ Perl/PDL: plaxes(x0, y0, xtick, nxsub, ytick, nysub, xopt, yopt)

This function is not used in any examples.

plbin: Plot a histogram from binned data

plbin (nbin , x , y , opt);

Plots a histogram consisting of nbin bins. The value associated with the i’th bin is placed in

x[i], and the number of points in the bin is placed in y[i]. For proper operation, the values in

x[i] must form a strictly increasing sequence. By default, x[i] is the left-hand edge of the i’th

bin. If opt=PL_BIN_CENTRED is used, the bin boundaries are placed midway between the values in

the x array. Also see plhist for drawing histograms from unbinned data.

nbin (PLINT, input)

Number of bins (i.e., number of values in x and y arrays.)

x (PLFLT *, input)

Pointer to array containing values associated with bins. These must form a strictly increasing

sequence.

121

Chapter 19. The Common API for PLplot

y (PLFLT *, input)

Pointer to array containing number of points in bin. This is a PLFLT (instead of PLINT) array

so as to allow histograms of probabilities, etc.

opt (PLINT, input)

Is a combination of several flags:

Ĺ opt=PL_BIN_DEFAULT: The x represent the lower bin boundaries, the outer bins are expanded

to fill up the entire x-axis and bins of zero height are simply drawn.

Ĺ opt=PL_BIN_CENTRED|...: The bin boundaries are to be midway between the x values. If

the values in x are equally spaced, the values are the center values of the bins.

Ĺ opt=PL_BIN_NOEXPAND|...: The outer bins are drawn with equal size as the ones inside.

Ĺ opt=PL_BIN_NOEMPTY|...: Bins with zero height are not drawn (there is a gap for such bins).

Redacted form:

Ĺ General: plbin(x, y, opt)

Ĺ Perl/PDL: plbin(nbin, x, y, opt)

Ĺ Python: plbin(nbin, x, y, opt)

This function is not used in any examples.

plbop: Begin a new page

plbop ();

Begins a new page. For a file driver, the output file is opened if necessary. Advancing the page

via pleop and plbop is useful when a page break is desired at a particular point when plotting

to subpages. Another use for pleop and plbop is when plotting pages to different files, since you

can manually set the file name by calling plsfnam after the call to pleop. (In fact some drivers

may only support a single page per file, making this a necessity.) One way to handle this case

automatically is to page advance via pladv, but enable familying (see plsfam) with a small limit

on the file size so that a new family member file will be created on each page break.

Redacted form: plbop()

This function is used in examples 2,20.

plbox: Draw a box with axes, etc

plbox (xopt , xtick , nxsub , yopt , ytick , nysub);

122

Chapter 19. The Common API for PLplot

Draws a box around the currently defined viewport, and labels it with world coordinate values

appropriate to the window. Thus plbox should only be called after defining both viewport and

window. The character strings xopt and yopt specify how the box should be drawn as described

below. If ticks and/or subticks are to be drawn for a particular axis, the tick intervals and number

of subintervals may be specified explicitly, or they may be defaulted by setting the appropriate

arguments to zero.

xopt (const char *, input)

Pointer to character string specifying options for horizontal axis. The string can include any

combination of the following letters (upper or lower case) in any order:

Ĺ a: Draws axis, X-axis is horizontal line (y=0), and Y-axis is vertical line (x=0).

Ĺ b: Draws bottom (X) or left (Y) edge of frame.

Ĺ c: Draws top (X) or right (Y) edge of frame.

Ĺ d: Plot labels as date / time. Values are assumed to be seconds since the epoch (as used

by gmtime).

Ĺ f: Always use fixed point numeric labels.

Ĺ g: Draws a grid at the major tick interval.

Ĺ h: Draws a grid at the minor tick interval.

Ĺ i: Inverts tick marks, so they are drawn outwards, rather than inwards.

Ĺ l: Labels axis logarithmically. This only affects the labels, not the data, and so it is

necessary to compute the logarithms of data points before passing them to any of the

drawing routines.

Ĺ m: Writes numeric labels at major tick intervals in the unconventional location (above box

for X, right of box for Y).

Ĺ n: Writes numeric labels at major tick intervals in the conventional location (below box

for X, left of box for Y).

Ĺ o: Use custom labeling function to generate axis label text. The custom labeling function

can be defined with the plslabelfuncplslabelfunc; command.

Ĺ s: Enables subticks between major ticks, only valid if t is also specified.

Ĺ t: Draws major ticks.

Ĺ u: Exactly like "b" except don’t draw edge line.

Ĺ w: Exactly like "c" except don’t draw edge line.

xtick (PLFLT, input)

World coordinate interval between major ticks on the x axis. If it is set to zero, PLplot

automatically generates a suitable tick interval.

nxsub (PLINT, input)

Number of subintervals between major x axis ticks for minor ticks. If it is set to zero, PLplot

automatically generates a suitable minor tick interval.

123

Chapter 19. The Common API for PLplot

yopt (const char *, input)

Pointer to character string specifying options for vertical axis. The string can include any

combination of the letters defined above for xopt , and in addition may contain:

Ĺ v: Write numeric labels for vertical axis parallel to the base of the graph, rather than

parallel to the axis.

ytick (PLFLT, input)

World coordinate interval between major ticks on the y axis. If it is set to zero, PLplot

automatically generates a suitable tick interval.

nysub (PLINT, input)

Number of subintervals between major y axis ticks for minor ticks. If it is set to zero, PLplot

automatically generates a suitable minor tick interval.

Redacted form:

Ĺ General: plbox(xopt, xtick, nxsub, yopt, ytick, nysub)

Ĺ Perl/PDL: plbox(xtick, nxsub, ytick, nysub, xopt, yopt)

This function is used in examples 1,2,4,6,6-12,14-18,21,23-26,29.

plbox3: Draw a box with axes, etc, in 3-d

plbox3 (xopt , xlabel , xtick , nxsub , yopt , ylabel , ytick , nysub , zopt ,

zlabel , ztick , nzsub);

Draws axes, numeric and text labels for a three-dimensional surface plot. For a more complete

description of three-dimensional plotting see the Section called Three Dimensional Surface Plots

in Chapter 3.

xopt (const char *, input)

Pointer to character string specifying options for the x axis. The string can include any

combination of the following letters (upper or lower case) in any order:

Ĺ b: Draws axis at base, at height z=zmin where zmin is defined by call to plw3d. This character

must be specified in order to use any of the other options.

Ĺ f: Always use fixed point numeric labels.

Ĺ i: Inverts tick marks, so they are drawn downwards, rather than upwards.

Ĺ l: Labels axis logarithmically. This only affects the labels, not the data, and so it is

necessary to compute the logarithms of data points before passing them to any of the

drawing routines.

Ĺ n: Writes numeric labels at major tick intervals.

124

Chapter 19. The Common API for PLplot

Ĺ o: Use custom labeling function to generate axis label text. The custom labeling function

can be defined with the plslabelfuncplslabelfunc; command.

Ĺ s: Enables subticks between major ticks, only valid if t is also specified.

Ĺ t: Draws major ticks.

Ĺ u: If this is specified, the text label for the axis is written under the axis.

xlabel (const char *, input)

Pointer to character string specifying text label for the x axis. It is only drawn if u is in the

xopt string.

xtick (PLFLT, input)

World coordinate interval between major ticks on the x axis. If it is set to zero, PLplot

automatically generates a suitable tick interval.

nxsub (PLINT, input)

Number of subintervals between major x axis ticks for minor ticks. If it is set to zero, PLplot

automatically generates a suitable minor tick interval.

yopt (const char *, input)

Pointer to character string specifying options for the y axis. The string is interpreted in the

same way as xopt .

ylabel (const char *, input)

Pointer to character string specifying text label for the y axis. It is only drawn if u is in the

yopt string.

ytick (PLFLT, input)

World coordinate interval between major ticks on the y axis. If it is set to zero, PLplot

automatically generates a suitable tick interval.

nysub (PLINT, input)

Number of subintervals between major y axis ticks for minor ticks. If it is set to zero, PLplot

automatically generates a suitable minor tick interval.

zopt (const char *, input)

Pointer to character string specifying options for the z axis. The string can include any

combination of the following letters (upper or lower case) in any order:

Ĺ b: Draws z axis to the left of the surface plot.

Ĺ c: Draws z axis to the right of the surface plot.

Ĺ d: Draws grid lines parallel to the x-y plane behind the figure. These lines are not drawn

until after plot3d or plmesh are called because of the need for hidden line removal.

Ĺ f: Always use fixed point numeric labels.

Ĺ i: Inverts tick marks, so they are drawn away from the center.

Ĺ l: Labels axis logarithmically. This only affects the labels, not the data, and so it is

necessary to compute the logarithms of data points before passing them to any of the

drawing routines.

125

Chapter 19. The Common API for PLplot

Ĺ m: Writes numeric labels at major tick intervals on the right-hand vertical axis.

Ĺ n: Writes numeric labels at major tick intervals on the left-hand vertical axis.

Ĺ o: Use custom labeling function to generate axis label text. The custom labeling function

can be defined with the plslabelfuncplslabelfunc; command.

Ĺ s: Enables subticks between major ticks, only valid if t is also specified.

Ĺ t: Draws major ticks.

Ĺ u: If this is specified, the text label is written beside the left-hand axis.

Ĺ v: If this is specified, the text label is written beside the right-hand axis.

zlabel (const char *, input)

Pointer to character string specifying text label for the z axis. It is only drawn if u or v are

in the zopt string.

ztick (PLFLT, input)

World coordinate interval between major ticks on the z axis. If it is set to zero, PLplot

automatically generates a suitable tick interval.

nzsub (PLINT, input)

Number of subintervals between major z axis ticks for minor ticks. If it is set to zero, PLplot

automatically generates a suitable minor tick interval.

Redacted form:

Ĺ General: plbox3(xopt, xlabel, xtick, nxsub, yopt, ylabel, ytick, nysub, zopt, zlabel,

ztick, nzsub)

Ĺ Perl/PDL: plbox3(xtick, nxsub, ytick, nysub, ztick, nzsub, xopt, xlabel, yopt, ylabel,

zopt, zlabel)

This function is used in examples 8,11,18,21.

plcalc_world: Calculate world coordinates and corresponding window index from

relative device coordinates

plcalc_world (rx , ry , wx , wy , window);

Calculate world coordinates, wx and wy , and corresponding window index from relative device

coordinates, rx and ry .

rx (PLFLT, input)

Input relative device coordinate (ranging from 0. to 1.) for the x coordinate.

ry (PLFLT, input)

Input relative device coordinate (ranging from 0. to 1.) for the y coordinate.

126

Chapter 19. The Common API for PLplot

wx (PLFLT *, output)

Pointer to the returned world coordinate for x corresponding to the relative device coordi-

nates rx and ry .

wy (PLFLT *, output)

Pointer to the returned world coordinate for y corresponding to the relative device coordi-

nates rx and ry .

window (PLINT *, output)

Pointer to the returned last defined window index that corresponds to the input relative

device coordinates (and the returned world coordinates). To give some background on the

window index, for each page the initial window index is set to zero, and each time plwind

is called within the page, world and device coordinates are stored for the window and the

window index is incremented. Thus, for a simple page layout with non-overlapping view-

ports and one window per viewport, window corresponds to the viewport index (in the order

which the viewport/windows were created) of the only viewport/window corresponding to

rx and ry . However, for more complicated layouts with potentially overlapping viewports

and possibly more than one window (set of world coordinates) per viewport, window and the

corresponding output world coordinates corresponds to the last window created that fulfils

the criterion that the relative device coordinates are inside it. Finally, in all cases where the

input relative device coordinates are not inside any viewport/window, then window is set to

-1.

Redacted form:

Ĺ General: plcalc_world(rx, ry, wx, wy, window)

Ĺ Perl/PDL: Not available?

This function is used in example 31.

plclear: Clear current (sub)page

plclear ();

Clears the current page, effectively erasing everything that have been drawn. This command only

works with interactive drivers; if the driver does not support this, the page is filled with the

background color in use. If the current page is divided into subpages, only the current subpage

is erased. The nth subpage can be selected with pladv(n).

Redacted form:

Ĺ General: plclear()

Ĺ Perl/PDL: Not available?

127

Chapter 19. The Common API for PLplot

This function is not used in any examples.

plcol0: Set color, map0

plcol0 (color);

Sets the color for color map0 (see the Section called Color Map0 in Chapter 3).

color (PLINT, input)

Integer representing the color. The defaults at present are (these may change):
0 black (default background)
1 red (default foreground)
2 yellow
3 green
4 aquamarine
5 pink
6 wheat
7 grey
8 brown
9 blue
10 BlueViolet
11 cyan
12 turquoise
13 magenta
14 salmon
15 white

Use plscmap0 to change the entire map0 color palette and plscol0 to change an individual color

in the map0 color palette.

Redacted form: plcol0(color)

This function is used in examples 1-9,11-16,18-27,29.

plcol1: Set color, map1

plcol1 (col1);

Sets the color for color map1 (see the Section called Color Map1 in Chapter 3).

col1 (PLFLT, input)

This value must be in the range from 0. to 1. and is mapped to color using the continuous

map1 color palette which by default ranges from blue to the background color to red. The

map1 palette can also be straightforwardly changed by the user with plscmap1 or plscmap1l.

Redacted form: plcol1(col1)

This function is used in example 12.

128

Chapter 19. The Common API for PLplot

plcont: Contour plot

plcont (z , nx , ny , kx , lx , ky , ly , clevel , nlevel , pltr , pltr_data);

Draws a contour plot of the data in z[nx][ny], using the nlevel contour levels specified by clevel .

Only the region of the array from kx to lx and from ky to ly is plotted out. A transformation

routine pointed to by pltr with a pointer pltr_data for additional data required by the transfor-

mation routine is used to map indices within the array to the world coordinates. See the following

discussion of the arguments and the Section called Contour and Shade Plots in Chapter 3 for

more information.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array containing data to be contoured.

nx, ny (PLINT, input)

Physical dimensions of array z .

kx, lx (PLINT, input)

Range of x indices to consider.

ky, ly (PLINT, input)

Range of y indices to consider.

clevel (PLFLT *, input)

Pointer to array specifying levels at which to draw contours.

nlevel (PLINT, input)

Number of contour levels to draw.

pltr (void (*) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer) , input)

Pointer to function that defines transformation between indices in array z and the world

coordinates (C only). Transformation functions are provided in the PLplot library: pltr0 for

identity mapping, and pltr1 and pltr2 for arbitrary mappings respectively defined by one-

and two-dimensional arrays. In addition, user-supplied routines for the transformation can

be used as well. Examples of all of these approaches are given in the Section called Contour

Plots from C in Chapter 3. The transformation function should have the form given by

any of pltr0, pltr1, or pltr2. Note that unlike plshades and similar PLplot functions which

have a pltr argument, plcont requires that a transformation function be provided in the C

interface. Leaving pltr NULL will result in an error.

pltr_data (PLPointer, input)

Extra parameter to help pass information to pltr0, pltr1, pltr2, or whatever routine that

is externally supplied.

Redacted form: [PLEASE UPDATE! ONLY PERL INFO IS LIKELY CORRECT!]

Ĺ F95: plcont(z, kx, lx, ky, ly, clevel, tr?) or plcont(z, kx, lx, ky, ly, clevel, xgrid,

ygrid)

129

Chapter 19. The Common API for PLplot

Ĺ Java: pls.cont(z, kx, lx, ky, ly, clevel, xgrid, ygrid)

Ĺ Perl/PDL: plcont(z, kx, lx, ky, ly, clevel, pltr, pltr_data)

Ĺ Python: plcont2(z, kx, lx, ky, ly, clevel)

This function is used in examples 9,14,16,22.

plcpstrm: Copy state parameters from the reference stream to the current stream

plcpstrm (iplsr , flags);

Copies state parameters from the reference stream to the current stream. Tell driver interface to

map device coordinates unless flags == 1.

This function is used for making save files of selected plots (e.g. from the TK driver). After

initializing, you can get a copy of the current plot to the specified device by switching to this

stream and issuing a plcpstrm and a plreplot, with calls to plbop and pleop as appropriate. The

plot buffer must have previously been enabled (done automatically by some display drivers, such

as X).

iplsr (PLINT, input)

Number of reference stream.

flags (PLBOOL, input)

If flags is set to true the device coordinates are not copied from the reference to current

stream.

Redacted form: plcpstrm(iplsr, flags)

This function is used in example 1,20.

plend: End plotting session

plend ();

Ends a plotting session, tidies up all the output files, switches interactive devices back into text

mode and frees up any memory that was allocated. Must be called before end of program.

By default, PLplot’s interactive devices (Xwin, TK, etc.) go into a wait state after a call to plend

or other functions which trigger the end of a plot page. To avoid this, use the plspause function.

Redacted form: plend()

This function is used in all of the examples.

130

Chapter 19. The Common API for PLplot

plend1: End plotting session for current stream

plend1 ();

Ends a plotting session for the current output stream only. See plsstrm for more info.

Redacted form: plend1()

This function is used in examples 1,20.

plenv0: Same as plenv but if in multiplot mode does not advance the subpage,

instead clears it.

plenv0 (xmin , xmax , ymin , ymax , just , axis);

Sets up plotter environment for simple graphs by calling pladv and setting up viewport and

window to sensible default values. plenv0 leaves enough room around most graphs for axis labels

and a title. When these defaults are not suitable, use the individual routines plvpas, plvpor, or

plvasp for setting up the viewport, plwind for defining the window, and plbox for drawing the

box.

xmin (PLFLT, input)

Value of x at left-hand edge of window (in world coordinates).

xmax (PLFLT, input)

Value of x at right-hand edge of window (in world coordinates).

ymin (PLFLT, input)

Value of y at bottom edge of window (in world coordinates).

ymax (PLFLT, input)

Value of y at top edge of window (in world coordinates).

just (PLINT, input)

Controls how the axes will be scaled:

Ĺ -1: the scales will not be set, the user must set up the scale before calling plenv0 using

plsvpa, plvasp or other.

Ĺ 0: the x and y axes are scaled independently to use as much of the screen as possible.

Ĺ 1: the scales of the x and y axes are made equal.

Ĺ 2: the axis of the x and y axes are made equal, and the plot box will be square.

axis (PLINT, input)

Controls drawing of the box around the plot:

Ĺ -2: draw no box, no tick marks, no numeric tick labels, no axes.

131

Chapter 19. The Common API for PLplot

Ĺ -1: draw box only.

Ĺ 0: draw box, ticks, and numeric tick labels.

Ĺ 1: also draw coordinate axes at x=0 and y=0.

Ĺ 2: also draw a grid at major tick positions in both coordinates.

Ĺ 3: also draw a grid at minor tick positions in both coordinates.

Ĺ 10: same as 0 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 11: same as 1 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 12: same as 2 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 13: same as 3 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 20: same as 0 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 21: same as 1 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 22: same as 2 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 23: same as 3 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 30: same as 0 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 31: same as 1 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 32: same as 2 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 33: same as 3 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 40: same as 0 except date / time x labels.

Ĺ 41: same as 1 except date / time x labels.

Ĺ 42: same as 2 except date / time x labels.

Ĺ 43: same as 3 except date / time x labels.

Ĺ 50: same as 0 except date / time y labels.

Ĺ 51: same as 1 except date / time y labels.

Ĺ 52: same as 2 except date / time y labels.

Ĺ 53: same as 3 except date / time y labels.

Ĺ 60: same as 0 except date / time x and y labels.

132

Chapter 19. The Common API for PLplot

Ĺ 61: same as 1 except date / time x and y labels.

Ĺ 62: same as 2 except date / time x and y labels.

Ĺ 63: same as 3 except date / time x and y labels.

Ĺ 70: same as 0 except custom x and y labels.

Ĺ 71: same as 1 except custom x and y labels.

Ĺ 72: same as 2 except custom x and y labels.

Ĺ 73: same as 3 except custom x and y labels.

Redacted form: plenv0(xmin, xmax, ymin, ymax, just, axis)

This function is used in example 21.

plenv: Set up standard window and draw box

plenv (xmin , xmax , ymin , ymax , just , axis);

Sets up plotter environment for simple graphs by calling pladv and setting up viewport and

window to sensible default values. plenv leaves enough room around most graphs for axis labels

and a title. When these defaults are not suitable, use the individual routines plvpas, plvpor, or

plvasp for setting up the viewport, plwind for defining the window, and plbox for drawing the

box.

xmin (PLFLT, input)

Value of x at left-hand edge of window (in world coordinates).

xmax (PLFLT, input)

Value of x at right-hand edge of window (in world coordinates).

ymin (PLFLT, input)

Value of y at bottom edge of window (in world coordinates).

ymax (PLFLT, input)

Value of y at top edge of window (in world coordinates).

just (PLINT, input)

Controls how the axes will be scaled:

Ĺ -1: the scales will not be set, the user must set up the scale before calling plenv using

plsvpa, plvasp or other.

Ĺ 0: the x and y axes are scaled independently to use as much of the screen as possible.

Ĺ 1: the scales of the x and y axes are made equal.

Ĺ 2: the axis of the x and y axes are made equal, and the plot box will be square.

133

Chapter 19. The Common API for PLplot

axis (PLINT, input)

Controls drawing of the box around the plot:

Ĺ -2: draw no box, no tick marks, no numeric tick labels, no axes.

Ĺ -1: draw box only.

Ĺ 0: draw box, ticks, and numeric tick labels.

Ĺ 1: also draw coordinate axes at x=0 and y=0.

Ĺ 2: also draw a grid at major tick positions in both coordinates.

Ĺ 3: also draw a grid at minor tick positions in both coordinates.

Ĺ 10: same as 0 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 11: same as 1 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 12: same as 2 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 13: same as 3 except logarithmic x tick marks. (The x data have to be converted to

logarithms separately.)

Ĺ 20: same as 0 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 21: same as 1 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 22: same as 2 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 23: same as 3 except logarithmic y tick marks. (The y data have to be converted to

logarithms separately.)

Ĺ 30: same as 0 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 31: same as 1 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 32: same as 2 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 33: same as 3 except logarithmic x and y tick marks. (The x and y data have to be converted

to logarithms separately.)

Ĺ 40: same as 0 except date / time x labels.

Ĺ 41: same as 1 except date / time x labels.

Ĺ 42: same as 2 except date / time x labels.

Ĺ 43: same as 3 except date / time x labels.

Ĺ 50: same as 0 except date / time y labels.

Ĺ 51: same as 1 except date / time y labels.

134

Chapter 19. The Common API for PLplot

Ĺ 52: same as 2 except date / time y labels.

Ĺ 53: same as 3 except date / time y labels.

Ĺ 60: same as 0 except date / time x and y labels.

Ĺ 61: same as 1 except date / time x and y labels.

Ĺ 62: same as 2 except date / time x and y labels.

Ĺ 63: same as 3 except date / time x and y labels.

Ĺ 70: same as 0 except custom x and y labels.

Ĺ 71: same as 1 except custom x and y labels.

Ĺ 72: same as 2 except custom x and y labels.

Ĺ 73: same as 3 except custom x and y labels.

Redacted form: plenv(xmin, xmax, ymin, ymax, just, axis)

This function is used in example 1,3,9,13,14,19-22,29.

pleop: Eject current page

pleop ();

Clears the graphics screen of an interactive device, or ejects a page on a plotter. See plbop for

more information.

Redacted form: pleop()

This function is used in example 2,14.

plerrx: Draw x error bar

plerrx (n , xmin , xmax , y);

Draws a set of n horizontal error bars, the i’th error bar extending from xmin[i] to xmax[i] at

y coordinate y[i]. The terminals of the error bar are of length equal to the minor tick length

(settable using plsmin).

n (PLINT, input)

Number of error bars to draw.

xmin (PLFLT *, input)

Pointer to array with x coordinates of left-hand endpoint of error bars.

xmax (PLFLT *, input)

Pointer to array with x coordinates of right-hand endpoint of error bars.

135

Chapter 19. The Common API for PLplot

y (PLFLT *, input)

Pointer to array with y coordinates of error bar.

Redacted form:

Ĺ General: plerrx(xmin, ymax, y)

Ĺ Perl/PDL: plerrx(n, xmin, xmax, y)

This function is used in example 29.

plerry: Draw y error bar

plerry (n , x , ymin , ymax);

Draws a set of n vertical error bars, the i’th error bar extending from ymin[i] to ymax[i] at

x coordinate x[i]. The terminals of the error bar are of length equal to the minor tick length

(settable using plsmin).

n (PLINT, input)

Number of error bars to draw.

x (PLFLT *, input)

Pointer to array with x coordinates of error bars.

ymin (PLFLT *, input)

Pointer to array with y coordinates of lower endpoint of error bars.

ymax (PLFLT *, input)

Pointer to array with y coordinate of upper endpoint of error bar.

Redacted form:

Ĺ General: plerry(x, ymin, ymax)

Ĺ Perl/PDL: plerry(n, x, ymin, ymax)

This function is used in example 29.

plfamadv: Advance to the next family file on the next new page

plfamadv ();

Advance to the next family file on the next new page.

136

Chapter 19. The Common API for PLplot

Redacted form: plfamadv()

This function is not used in any examples.

plfill: Draw filled polygon

plfill (n , x , y);

Fills the polygon defined by the n points (x[i], y[i]) using the pattern defined by plpsty or

plpat. The routine will automatically close the polygon between the last and first vertices. If

multiple closed polygons are passed in x and y then plfill will fill in between them.

n (PLINT, input)

Number of vertices in polygon.

x (PLFLT *, input)

Pointer to array with x coordinates of vertices.

y (PLFLT *, input)

Pointer to array with y coordinates of vertices.

Redacted form: plfill(x,y)

This function is used in examples 12,13,15,16,21,24,25.

plfill3: Draw filled polygon in 3D

plfill3 (n , x , y , z);

Fills the 3D polygon defined by the n points in the x , y , and z arrays using the pattern defined

by plpsty or plpat. The routine will automatically close the polygon between the last and first

vertices. If multiple closed polygons are passed in x , y , and z then plfill3 will fill in between

them.

n (PLINT, input)

Number of vertices in polygon.

x (PLFLT *, input)

Pointer to array with x coordinates of vertices.

y (PLFLT *, input)

Pointer to array with y coordinates of vertices.

137

Chapter 19. The Common API for PLplot

z (PLFLT *, input)

Pointer to array with z coordinates of vertices.

Redacted form:

Ĺ General: plfill3(x, y, z)

Ĺ Perl/PDL: plfill3(n, x, y, z)

This function is used in example 15.

plflush: Flushes the output stream

plflush ();

Flushes the output stream. Use sparingly, if at all.

Redacted form: plflush()

This function is used in examples 1,14.

plfont: Set character font

plfont (font);

Sets the default character font for subsequent character drawing. Also affects symbols produced

by plpoin. This routine has no effect unless the extended character set is loaded (see plfontld).

font (PLINT, input)

Specifies the font:

Ĺ 1: Normal font (simplest and fastest)

Ĺ 2: Roman font

Ĺ 3: Italic font

Ĺ 4: Script font

Redacted form: plfont(font)

This function is used in examples 1,2,4,7,13,24,26.

plfontld: Load character font

plfontld (set);

138

Chapter 19. The Common API for PLplot

Sets the character set to use for subsequent character drawing. May be called before initializing

PLplot.

set (PLINT, input)

Specifies the character set to load:

Ĺ 0: Standard character set

Ĺ 1: Extended character set

Redacted form: plfontld(set)

This function is used in examples 1,7.

plgchr: Get character default height and current (scaled) height

plgchr (p_def , p_ht);

Get character default height and current (scaled) height.

p_def (PLFLT *, output)

Pointer to default character height (mm).

p_ht (PLFLT *, output)

Pointer to current (scaled) character height (mm).

Redacted form: plgchr(p_def, p_ht)

This function is used in example 23.

plgcol0: Returns 8-bit RGB values for given color from color map0

plgcol0 (icol0 , r , g , b);

Returns 8-bit RGB values (0-255) for given color from color map0 (see the Section called Color

Map0 in Chapter 3). Values are negative if an invalid color id is given.

icol0 (PLINT, input)

Index of desired cmap0 color.

r (PLINT *, output)

Pointer to 8-bit red value.

g (PLINT *, output)

Pointer to 8-bit green value.

139

Chapter 19. The Common API for PLplot

b (PLINT *, output)

Pointer to 8-bit blue value.

Redacted form: plgcol0(icol0, r, g, b)

This function is used in example 2.

plgcol0a: Returns 8-bit RGB values and double alpha value for given color from

color map0.

plgcol0a (icol0 , r , g , b , a);

Returns 8-bit RGB values (0-255) and double alpha value (0.0 - 1.0) for given color from color

map0 (see the Section called Color Map0 in Chapter 3). Values are negative if an invalid color

id is given.

icol0 (PLINT, input)

Index of desired cmap0 color.

r (PLINT *, output)

Pointer to 8-bit red value.

g (PLINT *, output)

Pointer to 8-bit green value.

b (PLINT *, output)

Pointer to 8-bit blue value.

a (PLFLT *, output)

Pointer to PLFLT alpha value.

This function is used in example 30.

plgcolbg: Returns the background color (cmap0[0]) by 8-bit RGB value

plgcolbg (r , g , b);

Returns the background color (cmap0[0]) by 8-bit RGB value.

r (PLINT *, output)

Pointer to an unsigned 8-bit integer (0-255) representing the degree of red in the color.

g (PLINT *, output)

Pointer to an unsigned 8-bit integer (0-255) representing the degree of green in the color.

140

Chapter 19. The Common API for PLplot

b (PLINT *, output)

Pointer to an unsigned 8-bit integer (0-255) representing the degree of blue in the color.

Redacted form: plgcolbg(r, g, b)

This function is used in example 31.

plgcolbga: Returns the background color (cmap0[0]) by 8-bit RGB value and

double alpha value.

plgcolbga (r , g , b , a);

Returns the background color (cmap0[0]) by 8-bit RGB value and double alpha value.

r (PLINT *, output)

Pointer to an unsigned 8-bit integer (0-255) representing the degree of red in the color.

g (PLINT *, output)

Pointer to an unsigned 8-bit integer (0-255) representing the degree of green in the color.

b (PLINT *, output)

Pointer to an unsigned 8-bit integer (0-255) representing the degree of blue in the color.

a (PLFLT *, output)

Pointer to PLFLT alpha value.

This function is used in example 31.

plgcompression: Get the current device-compression setting

plgcompression (compression);

Get the current device-compression setting. This parameter is only used for drivers that provide

compression.

compression (PLINT *, output)

Pointer to a variable to be filled with the current device-compression setting.

Redacted form: plgcompression(compression)

This function is used in example 31.

141

Chapter 19. The Common API for PLplot

plgdev: Get the current device (keyword) name

plgdev (p_dev);

Get the current device (keyword) name. Note: you must have allocated space for this (80 char-

acters is safe).

p_dev (char *, output)

Pointer to device (keyword) name string.

Redacted form: plgdev(p_dev)

This function is used in example 14.

plgdidev: Get parameters that define current device-space window

plgdidev (p_mar , p_aspect , p_jx , p_jy);

Get relative margin width, aspect ratio, and relative justification that define current device-space

window. If plsdidev has not been called the default values pointed to by p_mar , p_aspect , p_jx ,

and p_jy will all be 0.

p_mar (PLFLT *, output)

Pointer to relative margin width.

p_aspect (PLFLT *, output)

Pointer to aspect ratio.

p_jx (PLFLT *, output)

Pointer to relative justification in x.

p_jy (PLFLT *, output)

Pointer to relative justification in y.

Redacted form: plgdidev(p_mar, p_aspect, p_jx, p_jy)

This function is used in example 31.

plgdiori: Get plot orientation

plgdiori (p_rot);

Get plot orientation parameter which is multiplied by 90� to obtain the angle of rotation. Note,

arbitrary rotation parameters such as 0.2 (corresponding to 18�) are possible, but the usual

values for the rotation parameter are 0., 1., 2., and 3. corresponding to 0� (landscape mode), 90�

142

Chapter 19. The Common API for PLplot

(portrait mode), 180� (seascape mode), and 270� (upside-down mode). If plsdiori has not been

called the default value pointed to by p_rot will be 0.

p_rot (PLFLT *, output)

Pointer to orientation parameter.

Redacted form: plgdiori(p_rot)

This function is not used in any examples.

plgdiplt: Get parameters that define current plot-space window

plgdiplt (p_xmin , p_ymin , p_xmax , p_ymax);

Get relative minima and maxima that define current plot-space window. If plsdiplt has not been

called the default values pointed to by p_xmin , p_ymin , p_xmax , and p_ymax will be 0., 0., 1., and 1.

p_xmin (PLFLT *, output)

Pointer to relative minimum in x.

p_ymin (PLFLT *, output)

Pointer to relative minimum in y.

p_xmax (PLFLT *, output)

Pointer to relative maximum in x.

p_ymax (PLFLT *, output)

Pointer to relative maximum in y.

Redacted form: plgdiplt(p_xmin, p_ymin, p_xmax, p_ymax)

This function is used in example 31.

plgfam: Get family file parameters

plgfam (fam , num , bmax);

Gets information about current family file, if familying is enabled. See the Section called Family

File Output in Chapter 3 for more information.

fam (PLINT *, output)

Pointer to variable with the Boolean family flag value. If nonzero, familying is enabled.

num (PLINT *, output)

Pointer to variable with the current family file number.

143

Chapter 19. The Common API for PLplot

bmax (PLINT *, output)

Pointer to variable with the maximum file size (in bytes) for a family file.

Redacted form: plgfam(fam, num, bmax)

This function is used in examples 14,31.

plgfci: Get FCI (font characterization integer)

plgfci (fci);

Gets information about the current font using the FCI approach. See the Section called FCI in

Chapter 3 for more information.

fci (PLUNICODE *, output)

Pointer to PLUNICODE (unsigned 32-bit integer) variable which is updated with current

FCI value.

Redacted form: plgfci(fci)

This function is used in example 23.

plgfnam: Get output file name

plgfnam (fnam);

Gets the current output file name, if applicable.

fnam (char *, output)

Pointer to file name string (a preallocated string of 80 characters or more).

Redacted form: plgfnam(fnam)

This function is used in example 31.

plgfont: Get family, style and weight of the current font

plgfont (p_family , p_style , p_weight);

Gets information about current font. See the Section called FCI in Chapter 3 for more information

on font selection.

144

Chapter 19. The Common API for PLplot

p_family (PLINT *, output)

Pointer to variable with the current font family. The available values are given by the

PL_FCI_* constants in plplot.h. Current options are PL_FCI_SANS, PL_FCI_SERIF,

PL_FCI_MONO, PL_FCI_SCRIPT and PL_FCI_SYMBOL. If p_family is NULL then

the font family is not returned.

p_style (PLINT *, output)

Pointer to variable with the current font style. The available values are given by

the PL_FCI_* constants in plplot.h. Current options are PL_FCI_UPRIGHT,

PL_FCI_ITALIC and PL_FCI_OBLIQUE. If p_style is NULL then the font style is not

returned.

p_weight (PLINT *, output)

Pointer to variable with the current font weight. The available values are given by

the PL_FCI_* constants in plplot.h. Current options are PL_FCI_MEDIUM and

PL_FCI_BOLD. If p_weight is NULL then the font weight is not returned.

Redacted form: plgfont(p_family, p_style, p_weight)

This function is used in example 23.

plglevel: Get the (current) run level

plglevel (p_level);

Get the (current) run level. Valid settings are:

Ĺ 0, uninitialized

Ĺ 1, initialized

Ĺ 2, viewport defined

Ĺ 3, world coordinates defined

p_level (PLINT *, output)

Pointer to the run level.

Redacted form: plglevel(p_level)

This function is used in example 31.

plgpage: Get page parameters

plgpage (xp , yp , xleng , yleng , xoff , yoff);

145

Chapter 19. The Common API for PLplot

Gets the current page configuration. The length and offset values are expressed in units that are

specific to the current driver. For instance: screen drivers will usually interpret them as number

of pixels, whereas printer drivers will usually use mm.

xp (PLFLT *, output)

Pointer to number of pixels/inch (DPI), x.

yp (PLFLT *, output)

Pointer to number of pixels/inch (DPI) in y.

xleng (PLINT *, output)

Pointer to x page length value.

yleng (PLINT *, output)

Pointer to y page length value.

xoff (PLINT *, output)

Pointer to x page offset.

yoff (PLINT *, output)

Pointer to y page offset.

Redacted form: plgpage(xp, yp, xleng, yleng, xoff, yoff)

This function is used in examples 14 and 31.

plgra: Switch to graphics screen

plgra ();

Sets an interactive device to graphics mode, used in conjunction with pltext to allow graphics

and text to be interspersed. On a device which supports separate text and graphics windows, this

command causes control to be switched to the graphics window. If already in graphics mode, this

command is ignored. It is also ignored on devices which only support a single window or use a

different method for shifting focus. See also pltext.

Redacted form: plgra()

This function is used in example 1.

plgradient: Draw linear gradient inside polygon

plgradient (n , x , y , angle);

Draw a linear gradient using colour map 1 inside the polygon defined by the n points (x[i],

y[i]). Interpretation of the polygon is the same as for plfill. The polygon coordinates and

the gradient angle are all expressed in world coordinates. The angle from the x axis for both

146

Chapter 19. The Common API for PLplot

the rotated coordinate system and the gradient vector is specified by angle . The magnitude of

the gradient vector is the difference between the maximum and minimum values of x for the

vertices in the rotated coordinate system. The origin of the gradient vector can be interpreted

as being anywhere on the line corresponding to the minimum x value for the vertices in the

rotated coordinate system. The distance along the gradient vector is linearly transformed to the

independent variable of colour map 1 which ranges from 0. at the tail of the gradient vector to

1. at the head of the gradient vector. What is drawn is the RGBA colour corresponding to the

independent variable of colour map 1. For more information about colour map 1 (see the Section

called Color Map1 in Chapter 3).

n (PLINT, input)

Number of vertices in polygon.

x (PLFLT *, input)

Pointer to array with x coordinates of vertices.

y (PLFLT *, input)

Pointer to array with y coordinates of vertices.

angle (PLFLT, input)

Angle (degrees) of gradient vector from x axis.

Redacted form: plgradient(x,y,angle)

This function is used in examples 25,30.

plgriddata: Grid data from irregularly sampled data

plggriddata (x , y , z , npts , xg , nptsx , yg , nptsy , zg , type , data);

Real world data is frequently irregularly sampled, but all PLplot 3D plots require data placed

in a uniform grid. This function takes irregularly sampled data from three input arrays x[npts],

y[npts], and z[npts], reads the desired grid location from input arrays xg[nptsx] and yg[nptsy],

and returns the gridded data into output array zg[nptsx][nptsy]. The algorithm used to grid the

data is specified with the argument type which can have one parameter specified in argument

data.

x (PLFLT *, input)

The input x array.

y (PLFLT *, input)

The input y array.

z (PLFLT *, input)

The input z array. Each triple x[i], y[i], z[i] represents one data sample coordinate.

npts (PLINT, input)

The number of data samples in the x, y and z arrays.

147

Chapter 19. The Common API for PLplot

xg (PLFLT *, input)

The input array that specifies the grid spacing in the x direction. Usually xg has nptsx equally

spaced values from the minimum to the maximum values of the x input array.

nptsx (PLINT, input)

The number of points in the xg array.

yg (PLFLT *, input)

The input array that specifies the grid spacing in the y direction. Similar to the xg parameter.

nptsy (PLINT, input)

The number of points in the yg array.

zg (PLFLT **, output)

The output array, where data lies in the regular grid specified by xg and yg. the zg array must

exist or be allocated by the user prior to the call, and must have dimension zg[nptsx][nptsy].

type (PLINT, input)

The type of gridding algorithm to use, which can be:

Ĺ GRID_CSA: Bivariate Cubic Spline approximation

Ĺ GRID_DTLI: Delaunay Triangulation Linear Interpolation

Ĺ GRID_NNI: Natural Neighbors Interpolation

Ĺ GRID_NNIDW: Nearest Neighbors Inverse Distance Weighted

Ĺ GRID_NNLI: Nearest Neighbors Linear Interpolation

Ĺ GRID_NNAIDW: Nearest Neighbors Around Inverse Distance Weighted

For details of the algorithms read the source file plgridd.c.

data (PLFLT, input)

Some gridding algorithms require extra data, which can be specified through this argument.

Currently, for algorithm:

Ĺ GRID_NNIDW, data specifies the number of neighbors to use, the lower the value, the noisier

(more local) the approximation is.

Ĺ GRID_NNLI, data specifies what a thin triangle is, in the range [1. .. 2.]. High values en-

able the usage of very thin triangles for interpolation, possibly resulting in error in the

approximation.

Ĺ GRID_NNI, only weights greater than data will be accepted. If 0, all weights will be accepted.

Redacted form:

Ĺ General: plgriddata(x, y, z, xg, yg, zg, type, data)

Ĺ Perl/PDL: Not available?

This function is used in example 21.

148

Chapter 19. The Common API for PLplot

plgspa: Get current subpage parameters

plgspa (xmin , xmax , ymin , ymax);

Gets the size of the current subpage in millimeters measured from the bottom left hand corner

of the output device page or screen. Can be used in conjunction with plsvpa for setting the size

of a viewport in absolute coordinates (millimeters).

xmin (PLFLT *, output)

Pointer to variable with position of left hand edge of subpage in millimeters.

xmax (PLFLT *, output)

Pointer to variable with position of right hand edge of subpage in millimeters.

ymin (PLFLT *, output)

Pointer to variable with position of bottom edge of subpage in millimeters.

ymax (PLFLT *, output)

Pointer to variable with position of top edge of subpage in millimeters.

Redacted form: plgspa(xmin, xmax, ymin, ymax)

This function is used in example 23.

plgstrm: Get current stream number

plgstrm (strm);

Gets the number of the current output stream. See also plsstrm.

strm (PLINT *, output)

Pointer to current stream value.

Redacted form: plgstrm(strm)

This function is used in example 1,20.

plgver: Get the current library version number

plgver (p_ver);

Get the current library version number. Note: you must have allocated space for this (80 charac-

ters is safe).

149

Chapter 19. The Common API for PLplot

p_ver (char *, output)

Pointer to the current library version number.

Redacted form: plgver(p_ver)

This function is used in example 1.

plgvpd: Get viewport limits in normalized device coordinates

plgvpd (p_xmin , p_xmax , p_ymin , p_ymax);

Get viewport limits in normalized device coordinates.

p_xmin (PLFLT *, output)

Lower viewport limit of the normalized device coordinate in x.

p_xmax (PLFLT *, output)

Upper viewport limit of the normalized device coordinate in x.

p_ymin (PLFLT *, output)

Lower viewport limit of the normalized device coordinate in y.

p_ymax (PLFLT *, output)

Upper viewport limit of the normalized device coordinate in y.

Redacted form:

Ĺ General: plgvpd(p_xmin, p_xmax, p_ymin, p_ymax)

Ĺ Perl/PDL: Not available?

This function is used in example 31.

plgvpw: Get viewport limits in world coordinates

plgvpw (p_xmin , p_xmax , p_ymin , p_ymax);

Get viewport limits in world coordinates.

p_xmin (PLFLT *, output)

Lower viewport limit of the world coordinate in x.

p_xmax (PLFLT *, output)

Upper viewport limit of the world coordinate in x.

150

Chapter 19. The Common API for PLplot

p_ymin (PLFLT *, output)

Lower viewport limit of the world coordinate in y.

p_ymax (PLFLT *, output)

Upper viewport limit of the world coordinate in y.

Redacted form:

Ĺ General: plgvpw(p_xmin, p_xmax, p_ymin, p_ymax)

Ĺ Perl/PDL: Not available?

This function is used in example 31.

plgxax: Get x axis parameters

plgxax (digmax , digits);

Returns current values of the digmax and digits flags for the x axis. digits is updated after the

plot is drawn, so this routine should only be called after the call to plbox (or plbox3) is complete.

See the Section called Annotating the Viewport in Chapter 3 for more information.

digmax (PLINT *, output)

Pointer to variable with the maximum number of digits for the x axis. If nonzero, the printed

label has been switched to a floating point representation when the number of digits exceeds

digmax .

digits (PLINT *, output)

Pointer to variable with the actual number of digits for the numeric labels (x axis) from the

last plot.

Redacted form: plgxax(digmax, digits)

This function is used in example 31.

plgyax: Get y axis parameters

plgyax (digmax , digits);

Identical to plgxax, except that arguments are flags for y axis. See the description of plgxax for

more detail.

151

Chapter 19. The Common API for PLplot

digmax (PLINT *, output)

Pointer to variable with the maximum number of digits for the y axis. If nonzero, the printed

label has been switched to a floating point representation when the number of digits exceeds

digmax .

digits (PLINT *, output)

Pointer to variable with the actual number of digits for the numeric labels (y axis) from the

last plot.

Redacted form: plgyax(digmax, digits)

This function is used in example 31.

plgzax: Get z axis parameters

plgzax (digmax , digits);

Identical to plgxax, except that arguments are flags for z axis. See the description of plgxax for

more detail.

digmax (PLINT *, output)

Pointer to variable with the maximum number of digits for the z axis. If nonzero, the printed

label has been switched to a floating point representation when the number of digits exceeds

digmax .

digits (PLINT *, output)

Pointer to variable with the actual number of digits for the numeric labels (z axis) from the

last plot.

Redacted form: plgzax(digmax, digits)

This function is used in example 31.

plhist: Plot a histogram from unbinned data

plhist (n , data , datmin , datmax , nbin , opt);

Plots a histogram from n data points stored in the array data . This routine bins the data into nbin

bins equally spaced between datmin and datmax , and calls plbin to draw the resulting histogram.

Parameter opt allows, among other things, the histogram either to be plotted in an existing

window or causes plhist to call plenv with suitable limits before plotting the histogram.

n (PLINT, input)

Number of data points.

152

Chapter 19. The Common API for PLplot

data (PLFLT *, input)

Pointer to array with values of the n data points.

datmin (PLFLT, input)

Left-hand edge of lowest-valued bin.

datmax (PLFLT, input)

Right-hand edge of highest-valued bin.

nbin (PLINT, input)

Number of (equal-sized) bins into which to divide the interval xmin to xmax .

opt (PLINT, input)

Is a combination of several flags:

Ĺ opt=PL_HIST_DEFAULT: The axes are automatically rescaled to fit the histogram data, the

outer bins are expanded to fill up the entire x-axis, data outside the given extremes are

assigned to the outer bins and bins of zero height are simply drawn.

Ĺ opt=PL_HIST_NOSCALING|...: The existing axes are not rescaled to fit the histogram data,

without this flag, plenv is called to set the world coordinates.

Ĺ opt=PL_HIST_IGNORE_OUTLIERS|...: Data outside the given extremes are not taken into

account. This option should probably be combined with opt=PL_HIST_NOEXPAND|..., so as

to properly present the data.

Ĺ opt=PL_HIST_NOEXPAND|...: The outer bins are drawn with equal size as the ones inside.

Ĺ opt=PL_HIST_NOEMPTY|...: Bins with zero height are not drawn (there is a gap for such

bins).

Redacted form: plhist(data, datmin, datmax, nbin, opt)

This function is used in example 5.

plhlsrgb: Convert HLS color to RGB

plhlsrgb (h , l , s , p_r , p_g , p_b);

Convert HLS color coordinates to RGB.

h (PLFLT, input)

Hue, in degrees on the colour cone (0.0-360.0)

l (PLFLT, input)

Lightness, expressed as a fraction of the axis of the colour cone (0.0-1.0)

s (PLFLT, input)

Saturation, expressed as a fraction of the radius of the colour cone (0.0-1.0)

153

Chapter 19. The Common API for PLplot

p_r (PLFLT *, output)

Pointer to red intensity (0.0-1.0) of the colour

p_g (PLFLT *, output)

Pointer to green intensity (0.0-1.0) of the colour

p_b (PLFLT *, output)

Pointer to blue intensity (0.0-1.0) of the colour

Redacted form:

Ĺ General: plhlsrgb(h, l, s, p_r, p_g, p_b)

Ĺ Perl/PDL: Not available? Implemented as plhls?

This function is used in example 2.

plimagefr: Plot a 2D matrix using color map1

plimagefr (idata , nx , ny , xmin , xmax , ymin , ymax , zmin , zmax , valuemin ,

valuemax , pltr , pltr_data);

Plot a 2D matrix using color map1.

idata (PLFLT**, input)

A 2D array of values (intensities) to plot. Should have dimensions idata[nx][ny].

nx, ny (PLINT, input)

Dimensions of idata

xmin, xmax, ymin, ymax (PLFLT, input)

Stretch image data to these Plot coordinates. idata[0][0] corresponds to (xmin, ymin) and

idata[nx - 1][ny - 1] corresponds to (xmax, ymax).

zmin, zmax (PLFLT, input)

Only data between zmin and zmax (inclusive) will be plotted.

valuemin, valuemax (PLFLT, input)

The minimum and maximum data values to use for value to color mappings. A datum equal

to or less than valuemin will be plotted with color 0.0, while a datum equal to or greater

than valuemax will be plotted with color 1.0. Data between valuemin and valuemax map

linearly to colors between 0.0 and 1.0.

pltr (void (*) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer) , input)

Pointer to function that defines a transformation between the data in the array idata and

world coordinates. An input coordinate of (0, 0) corresponds to the "top-left" corner of

idata while (nx, ny) corresponds to the "bottom-right" corner of idata . Some transformation

154

Chapter 19. The Common API for PLplot

functions are provided in the PLplot library: pltr0 for identity mapping, and pltr1 and

pltr2 for arbitrary mappings respectively defined by one- and two-dimensional arrays. In

addition, user-supplied routines for the transformation can be used as well. Examples of all

of these approaches are given in the Section called Contour Plots from C in Chapter 3. The

transformation function should have the form given by any of pltr0, pltr1, or pltr2.

pltr_data (PLPointer, input)

Extra parameter to help pass information to pltr0, pltr1, pltr2, or whatever routine is

externally supplied.

Redacted form:

Ĺ General: plimagefr(idata, xmin, xmax, ymin, ymax, zmin, zmax, valuemin, valuemax,

pltr, pltr_data)

This function is used in example 20.

plimage: Plot a 2D matrix using color map1 with automatic colour adjustment

plimage (idata , nx , ny , xmin , xmax , ymin , ymax , zmin , zmax , Dxmin , Dxmax ,

Dymin , Dymax);

Plot a 2D matrix using color palette 1. The color scale is automatically adjusted to use the

maximum and minimum values in idata as valuemin and valuemax in a call to plimagefr.

idata (PLFLT**, input)

A 2D array of values (intensities) to plot. Should have dimensions idata[nx][ny].

nx, ny (PLINT, input)

Dimensions of idata

xmin, xmax, ymin, ymax (PLFLT, input)

Plot coordinates to strecth the image data to. idata[0][0] corresponds to (xmin, ymin) and

idata[nx - 1][ny - 1] corresponds to (xmax, ymax).

zmin, zmax (PLFLT, input)

Only data between zmin and zmax (inclusive) will be plotted.

Dxmin, Dxmax, Dymin, Dymax (PLFLT, input)

Plot only the window of points whose plot coordinates fall inside the window of (Dxmin,

Dymin) to (Dxmax, Dymax).

Redacted form:

Ĺ General: plimage(idata, xmin, xmax, ymin, ymax, zmin, zmax, Dxmin, Dxmax, Dymin,

Dymax)

155

Chapter 19. The Common API for PLplot

This function is used in example 20.

plinit: Initialize PLplot

plinit ();

Initializing the plotting package. The program prompts for the device keyword or number of the

desired output device. Hitting a RETURN in response to the prompt is the same as selecting

the first device. plinit will issue no prompt if either the device was specified previously (via

command line flag, the plsetopt function, or the plsdev function), or if only one device is enabled

when PLplot is installed. If subpages have been specified, the output device is divided into nx

by ny subpages, each of which may be used independently. If plinit is called again during a

program, the previously opened file will be closed. The subroutine pladv is used to advance from

one subpage to the next.

Redacted form: plinit()

This function is used in all of the examples.

pljoin: Draw a line between two points

pljoin (x1 , y1 , x2 , y2);

Joins the point (x1, y1) to (x2, y2).

x1 (PLFLT, input)

x coordinate of first point.

y1 (PLFLT, input)

y coordinate of first point.

x2 (PLFLT, input)

x coordinate of second point.

y2 (PLFLT, input)

y coordinate of second point.

Redacted form: pljoin(x1,y1,x2,y2)

This function is used in examples 3,14.

156

Chapter 19. The Common API for PLplot

pllab: Simple routine to write labels

pllab (xlabel , ylabel , tlabel);

Routine for writing simple labels. Use plmtex for more complex labels.

xlabel (const char *, input)

Label for horizontal axis.

ylabel (const char *, input)

Label for vertical axis.

tlabel (const char *, input)

Title of graph.

Redacted form: pllab(xlabel, ylabel, tlabel)

This function is used in examples 1,5,9,12,14-16,20-22,29.

pllegend: Plot legend using discretely annotated filled boxes, lines, and/or lines of

symbols

pllegend (p_legend_width , p_legend_height , position , opt , x , y , plot_width ,

bg_color , bb_color , bb_style , nrow , ncolumn , nlegend , opt_array ,

text_offset , text_scale , text_spacing , test_justification , text_colors ,

text , box_colors , box_patterns , box_scales , box_line_widths , line_colors ,

line_styles , line_widths , symbol_colors , symbol_scales , symbol_numbers ,

symbols);

Routine for creating a discrete plot legend with a plotted filled box, line, and/or line of symbols

for each annotated legend entry. The arguments of pllegend provide control over the location and

size of the legend as well as the location and characteristics of the elements (most of which are

optional) within that legend. The resulting legend is clipped at the boundaries of the current

subpage. (N.B. the adopted coordinate system used for some of the parameters is defined in the

documentation of the position parameter.)

p_legend_width (PLFLT *, output)

Pointer to a location which contains (after the call) the legend width in adopted coordinates.

This quantity is calculated from plot_width , text_offset , ncolumn (possibly modified inside

the routine depending on nlegend and nrow), and the length (calculated internally) of the

longest text string.

p_legend_height (PLFLT *, output)

Pointer to a location which contains (after the call) the legend height in adopted coordinates.

This quantity is calculated from text_scale , text_spacing , and nrow (possibly modified inside

the routine depending on nlegend and nrow).

157

Chapter 19. The Common API for PLplot

position (PLINT, input)

position contains bits controlling the overall position of the legend and the definition of

the adopted coordinates used for positions. The combination of the PL_POSITION_LEFT,

PL_POSITION_RIGHT, PL_POSITION_TOP, PL_POSITION_BOTTOM, PL_POSITION_INSIDE, and

PL_POSITION_OUTSIDE bits specifies one of the 16 possible standard positions (the 4

corners and 4 side centers for both the inside and outside cases) of the legend relative

to the adopted coordinate system. The adopted coordinates are normalized viewport

coordinates if the PL_POSITION_VIEWPORT bit is set or normalized subpage coordinates if

the PL_POSITION_SUBPAGE bit is set. Default position bits: If none of PL_POSITION_LEFT,

PL_POSITION_RIGHT, PL_POSITION_TOP, or PL_POSITION_BOTTOM are set, then use the

combination of PL_POSITION_RIGHT and PL_POSITION_TOP. If neither of PL_POSITION_INSIDE or

PL_POSITION_OUTSIDE is set, use PL_POSITION_INSIDE. If neither of PL_POSITION_VIEWPORT or

PL_POSITION_SUBPAGE is set, use PL_POSITION_VIEWPORT.

opt (PLINT, input)

opt contains bits controlling the overall legend. If the PL_LEGEND_TEXT_LEFT bit is set, put the

text area on the left of the legend and the plotted area on the right. Otherwise, put the text

area on the right of the legend and the plotted area on the left. If the PL_LEGEND_BACKGROUND

bit is set, plot a (semi-transparent) background for the legend. If the PL_LEGEND_BOUNDING_BOX

bit is set, plot a bounding box for the legend. If the PL_LEGEND_ROW_MAJOR bit is set and (both

of the possibly internally transformed) nrow > 1 and ncolumn > 1, then plot the resulting

array of legend entries in row-major order. Otherwise, plot the legend entries in column-major

order.

x (PLFLT, input)

X offset of the legend position in adopted coordinates from the specified standard position

of the legend. For positive x, the direction of motion away from the standard position is

inward/outward from the standard corner positions or standard left or right positions if

the PL_POSITION_INSIDE/PL_POSITION_OUTSIDE bit is set in position . For the standard top or

bottom positions, the direction of motion is toward positive X.

y (PLFLT, input)

Y offset of the legend position in adopted coordinates from the specified standard position

of the legend. For positive y, the direction of motion away from the standard position is

inward/outward from the standard corner positions or standard top or bottom positions if

the PL_POSITION_INSIDE/PL_POSITION_OUTSIDE bit is set in position . For the standard left or

right positions, the direction of motion is toward positive Y.

plot_width (PLFLT, input)

Horizontal width in adopted coordinates of the plot area (where the colored boxes, lines,

and/or lines of symbols are drawn) of the legend.

bg_color (PLINT, input)

The cmap0 index of the background color for the legend (PL_LEGEND_BACKGROUND).

bb_color (PLINT, input)

The cmap0 index of the color of the bounding-box line for the legend

(PL_LEGEND_BOUNDING_BOX).

158

Chapter 19. The Common API for PLplot

bb_style (PLINT, input)

The cmap0 index of the background color for the legend (PL_LEGEND_BACKGROUND).

nrow (PLINT, input)

The cmap0 index of the background color for the legend (PL_LEGEND_BACKGROUND).

ncolumn (PLINT, input)

The cmap0 index of the background color for the legend (PL_LEGEND_BACKGROUND).

nlegend (PLINT, input)

Number of legend entries. N.B. The total vertical height of the legend in adopted coordinates

is calculated internally from nlegend , text_scale (see below), and text_spacing (see below).

opt_array (const PLINT *, input)

Array of nlegend values of options to control each individual plotted area corresponding to

a legend entry. If the PL_LEGEND_NONE bit is set, then nothing is plotted in the plotted area.

If the PL_LEGEND_COLOR_BOX , PL_LEGEND_LINE , and/or PL_LEGEND_SYMBOL bits are set, the area

corresponding to a legend entry is plotted with a colored box; a line; and/or a line of symbols.

text_offset (PLFLT, input)

Offset of the text area from the plot area in units of character width. N.B. The total horizontal

width of the legend in adopted coordinates is calculated internally from plot_width (see

above), text_offset , and length (calculated internally) of the longest text string.

text_scale (PLFLT, input)

Character height scale for text annotations. N.B. The total vertical height of the legend

in adopted coordinates is calculated internally from nlegend (see above), text_scale , and

text_spacing (see below).

text_spacing (PLFLT, input)

Vertical spacing in units of the character height from one legend entry to the next. N.B.

The total vertical height of the legend in adopted coordinates is calculated internally from

nlegend (see above), text_scale (see above), and text_spacing .

text_justification (PLFLT, input)

Justification parameter used for text justification. The most common values of

text_justification are 0., 0.5, or 1. corresponding to a text that is left justified, centred, or

right justified within the text area, but other values are allowed as well.

text_colors (const PLINT *, input)

Array of nlegend text colors (cmap0 indices).

text (const char **, input)

Array of nlegend text string annotations.

box_colors (const PLINT *, input)

Array of nlegend colors (cmap0 indices) for the discrete colored boxes (PL_LEGEND_COLOR_BOX).

159

Chapter 19. The Common API for PLplot

box_patterns (const PLINT *, input)

Array of nlegend patterns (plpsty indices) for the discrete colored boxes

(PL_LEGEND_COLOR_BOX).

box_scales (const PLFLT *, input)

Array of nlegend scales (units of fraction of character height) for the height of the discrete

colored boxes (PL_LEGEND_COLOR_BOX).

box_line_widths (const PLINT *, input)

Array of nlegend scales (units of fraction of character height) for the height of the discrete

colored boxes (PL_LEGEND_COLOR_BOX).

line_colors (const PLINT *, input)

Array of nlegend line colors (cmap0 indices) (PL_LEGEND_LINE).

line_styles (const PLINT *, input)

Array of nlegend line styles (plsty indices) (PL_LEGEND_LINE).

line_widths (const PLINT *, input)

Array of nlegend line widths (PL_LEGEND_LINE).

symbol_colors (const PLINT *, input)

Array of nlegend symbol colors (cmap0 indices) (PL_LEGEND_SYMBOL).

symbol_scales (const PLFLT *, input)

Array of nlegend scale values for the symbol height (PL_LEGEND_SYMBOL).

symbol_numbers (const PLINT *, input)

Array of nlegend numbers of symbols to be drawn across the width of the plotted area

(PL_LEGEND_SYMBOL).

symbols (const char **, input)

Array of nlegend symbols (plpoin indices) (PL_LEGEND_SYMBOL).

Redacted form: pllegend(opt, x, y, plot_width, bg_color, opt_array, text_offset,

text_scale, text_spacing, test_justification, text_colors, text, box_colors,

box_patterns, box_scales, line_colors, line_styles, line_widths, symbol_colors,

symbol_scales, symbol_numbers, symbols)

This function is used in examples 4 and 26.

pllightsource: Sets the 3D position of the light source

pllightsource (x , y , z);

Sets the 3D position of the light source for use with plsurf3d.

160

Chapter 19. The Common API for PLplot

x (PLFLT, input)

X-coordinate of the light source.

y (PLFLT, input)

Y-coordinate of the light source.

z (PLFLT, input)

Z-coordinate of the light source.

Redacted form: pllightsource(x, y, z)

This function is used in example 8.

plline: Draw a line

plline (n , x , y);

Draws line defined by n points in x and y .

n (PLINT, input)

Number of points defining line.

x (PLFLT *, input)

Pointer to array with x coordinates of points.

y (PLFLT *, input)

Pointer to array with y coordinates of points.

Redacted form: plline(x, y)

This function is used in examples 1,3,4,9,12-14,16,18,20,22,25-27,29.

plline3: Draw a line in 3 space

plline3 (n , x , y , z);

Draws line in 3 space defined by n points in x , y , and z . You must first set up the viewport, the

2d viewing window (in world coordinates), and the 3d normalized coordinate box. See x18c.c for

more info.

n (PLINT, input)

Number of points defining line.

x (PLFLT *, input)

Pointer to array with x coordinates of points.

161

Chapter 19. The Common API for PLplot

y (PLFLT *, input)

Pointer to array with y coordinates of points.

z (PLFLT *, input)

Pointer to array with z coordinates of points.

Redacted form: plline3(x, y, z)

This function is used in example 18.

pllsty: Select line style

pllsty (n);

This sets the line style according to one of eight predefined patterns (also see plstyl).

n (PLINT, input)

Integer value between 1 and 8. Line style 1 is a continuous line, line style 2 is a line with

short dashes and gaps, line style 3 is a line with long dashes and gaps, line style 4 has long

dashes and short gaps and so on.

Redacted form: pllsty(n)

This function is used in examples 9,12,22,25.

plmap: Plot continental outline in world coordinates.

plmap (mapform , type , minlong , maxlong , minlat , maxlat);

Plots continental outlines in world coordinates. examples/c/x19c demonstrates how to use this

function to create different projections.

mapform (void (*) (PLINT, PLFLT *, PLFLT *), input)

A user supplied function to transform the coordinate longitudes and latitudes to a plot coor-

dinate system. By using this transform, we can change from a longitude, latitude coordinate

to a polar stereographic project, for example. Initially, x[0]..[n-1] are the longitudes and

y[0]..y[n-1] are the corresponding latitudes. After the call to mapform(), x[] and y[] should

be replaced by the corresponding plot coordinates. If no transform is desired, mapform can

be replaced by NULL.

type (char *, input)

type is a character string. The value of this parameter determines the type of background.

The possible values are:

Ĺ "globe" -- continental outlines

Ĺ "usa" -- USA and state boundaries

162

Chapter 19. The Common API for PLplot

Ĺ "cglobe" -- continental outlines and countries

Ĺ "usaglobe" -- USA, state boundaries and continental outlines

minlong (PLFLT, input)

The value of the longitude on the left side of the plot. The value of minlong must be less

than the value of maxlong, and the quantity maxlong-minlong must be less than or equal to

360.

maxlong (PLFLT, input)

The value of the longitude on the right side of the plot.

minlat (PLFLT, input)

The minimum latitude to be plotted on the background. One can always use -90.0 as the

boundary outside the plot window will be automatically eliminated. However, the program

will be faster if one can reduce the size of the background plotted.

maxlat (PLFLT, input)

The maximum latitudes to be plotted on the background. One can always use 90.0 as the

boundary outside the plot window will be automatically eliminated.

Redacted form:

Ĺ General: plmap(mapform, type, minlong, maxlong, minlat, maxlat)

Ĺ F95, Java, Perl/PDL, Python: Not implemented?

This function is used in example 19.

plmeridians: Plot latitude and longitude lines.

plmeridians (mapform , dlong , dlat , minlong , maxlong , minlat , maxlat);

Displays latitude and longitude on the current plot. The lines are plotted in the current color

and line style.

mapform (void (*) (PLINT, PLFLT *, PLFLT *), input)

A user supplied function to transform the coordinate longitudes and latitudes to a plot coor-

dinate system. By using this transform, we can change from a longitude, latitude coordinate

to a polar stereographic project, for example. Initially, x[0]..[n-1] are the longitudes and

y[0]..y[n-1] are the corresponding latitudes. After the call to mapform(), x[] and y[] should

be replaced by the corresponding plot coordinates. If no transform is desired, mapform can

be replaced by NULL.

dlong (PLFLT, input)

The interval in degrees at which the longitude lines are to be plotted.

163

Chapter 19. The Common API for PLplot

dlat (PLFLT, input)

The interval in degrees at which the latitude lines are to be plotted.

minlong (PLFLT, input)

The value of the longitude on the left side of the plot. The value of minlong must be less

than the value of maxlong, and the quantity maxlong-minlong must be less than or equal to

360.

maxlong (PLFLT, input)

The value of the longitude on the right side of the plot.

minlat (PLFLT, input)

The minimum latitude to be plotted on the background. One can always use -90.0 as the

boundary outside the plot window will be automatically eliminated. However, the program

will be faster if one can reduce the size of the background plotted.

maxlat (PLFLT, input)

The maximum latitudes to be plotted on the background. One can always use 90.0 as the

boundary outside the plot window will be automatically eliminated.

Redacted form:

Ĺ General: plmeridians(mapform, dlong, dlat, minlong, maxlong, minlat, maxlat)

Ĺ F95, Java, Perl/PDL, Python: Not implemented?

This function is used in example 19.

plmesh: Plot surface mesh

plmesh (x , y , z , nx , ny , opt);

Plots a surface mesh within the environment set up by plw3d. The surface is defined by the two-

dimensional array z[nx][ny], the point z[i][j] being the value of the function at (x[i], y[j]).

Note that the points in arrays x and y do not need to be equally spaced, but must be stored

in ascending order. The parameter opt controls the way in which the surface is displayed. For

further details see the Section called Three Dimensional Surface Plots in Chapter 3.

x (PLFLT *, input)

Pointer to set of x coordinate values at which the function is evaluated.

y (PLFLT *, input)

Pointer to set of y coordinate values at which the function is evaluated.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array with set of function values.

164

Chapter 19. The Common API for PLplot

nx (PLINT, input)

Number of x values at which function is evaluated.

ny (PLINT, input)

Number of y values at which function is evaluated.

opt (PLINT, input)

Determines the way in which the surface is represented:

Ĺ opt=DRAW_LINEX: Lines are drawn showing z as a function of x for each value of y[j].

Ĺ opt=DRAW_LINEY: Lines are drawn showing z as a function of y for each value of x[i].

Ĺ opt=DRAW_LINEXY: Network of lines is drawn connecting points at which function is defined.

Redacted form: plmesh(x, y, z, opt)

This function is used in example 11.

plmeshc: Magnitude colored plot surface mesh with contour.

plmeshc (x , y , z , nx , ny , opt , clevel , nlevel);

Identical to plmesh but with extra functionalities: the surface mesh can be colored accordingly

to the current z value being plotted, a contour plot can be drawn at the base XY plane, and a

curtain can be drawn between the plotted function border and the base XY plane.

x (PLFLT *, input)

Pointer to set of x coordinate values at which the function is evaluated.

y (PLFLT *, input)

Pointer to set of y coordinate values at which the function is evaluated.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array with set of function values.

nx (PLINT, input)

Number of x values at which function is evaluated.

ny (PLINT, input)

Number of y values at which function is evaluated.

opt (PLINT, input)

Determines the way in which the surface is represented. To specify more than one option

just add the options, e.g. DRAW_LINEXY + MAG_COLOR

Ĺ opt=DRAW_LINEX: Lines are drawn showing z as a function of x for each value of y[j].

Ĺ opt=DRAW_LINEY: Lines are drawn showing z as a function of y for each value of x[i].

Ĺ opt=DRAW_LINEXY: Network of lines is drawn connecting points at which function is defined.

165

Chapter 19. The Common API for PLplot

Ĺ opt=MAG_COLOR: Each line in the mesh is colored according to the z value being plotted.

The color is used from the current colormap 1.

Ĺ opt=BASE_CONT: A contour plot is drawn at the base XY plane using parameters nlevel

and clevel .

Ĺ opt=DRAW_SIDES: draws a curtain between the base XY plane and the borders of the plotted

function.

clevel (PLFLT *, input)

Pointer to the array that defines the contour level spacing.

nlevel (PLINT, input)

Number of elements in the clevel array.

Redacted form: plmeshc(x, y, z, opt, clevel)

This function is used in example 11.

plmkstrm: Creates a new stream and makes it the default

plmkstrm (p_strm);

Creates a new stream and makes it the default. Differs from using plsstrm, in that a free stream

number is found, and returned. Unfortunately, I have to start at stream 1 and work upward, since

stream 0 is preallocated. One of the big flaws in the PLplot API is that no initial, library-opening

call is required. So stream 0 must be preallocated, and there is no simple way of determining

whether it is already in use or not.

p_strm (PLINT *, output)

Pointer to stream number of the created stream.

Redacted form: plmkstrm(p_strm)

This function is used in examples 1,20.

plmtex: Write text relative to viewport boundaries

plmtex (side , disp , pos , just , text);

Writes text at a specified position relative to the viewport boundaries. Text may be written inside

or outside the viewport, but is clipped at the subpage boundaries. The reference point of a string

lies along a line passing through the string at half the height of a capital letter. The position of

the reference point along this line is determined by just , and the position of the reference point

relative to the viewport is set by disp and pos .

166

Chapter 19. The Common API for PLplot

side (const char *, input)

Specifies the side of the viewport along which the text is to be written. The string must be

one of:

Ĺ b: Bottom of viewport, text written parallel to edge.

Ĺ bv: Bottom of viewport, text written at right angles to edge.

Ĺ l: Left of viewport, text written parallel to edge.

Ĺ lv: Left of viewport, text written at right angles to edge.

Ĺ r: Right of viewport, text written parallel to edge.

Ĺ rv: Right of viewport, text written at right angles to edge.

Ĺ t: Top of viewport, text written parallel to edge.

Ĺ tv: Top of viewport, text written at right angles to edge.

disp (PLFLT, input)

Position of the reference point of string, measured outwards from the specified viewport edge

in units of the current character height. Use negative disp to write within the viewport.

pos (PLFLT, input)

Position of the reference point of string along the specified edge, expressed as a fraction of

the length of the edge.

just (PLFLT, input)

Specifies the position of the string relative to its reference point. If just=0., the reference

point is at the left and if just=1., it is at the right of the string. Other values of just give

intermediate justifications.

text (const char *, input)

The string to be written out.

Redacted form:

Ĺ General: plmtex(side, disp, pos, just, text)

Ĺ Perl/PDL: plmtex(disp, pos, just, side, text)

This function is used in examples 3,4,6-8,11,12,14,18,23,26.

plmtex3: Write text relative to viewport boundaries in 3D plots.

plmtex3 (side , disp , pos , just , text);

Writes text at a specified position relative to the viewport boundaries. Text may be written inside

or outside the viewport, but is clipped at the subpage boundaries. The reference point of a string

lies along a line passing through the string at half the height of a capital letter. The position of

167

Chapter 19. The Common API for PLplot

the reference point along this line is determined by just , and the position of the reference point

relative to the viewport is set by disp and pos .

side (const char *, input)

Specifies the side of the viewport along which the text is to be written. The string should

contain one or more of the following characters: [xyz][ps][v]. Only one label is drawn at a

time, i.e. xyp will only label the X axis, not both the X and Y axes.

Ĺ x: Label the X axis.

Ĺ y: Label the Y axis.

Ĺ z: Label the Z axis.

Ĺ p: Label the “primary” axis. For Z this is the leftmost Z axis. For X it is the axis that

starts at y-min. For Y it is the axis that starts at x-min.

Ĺ s: Label the “secondary” axis.

Ĺ v: Draw the text perpendicular to the axis.

disp (PLFLT, input)

Position of the reference point of string, measured outwards from the specified viewport edge

in units of the current character height. Use negative disp to write within the viewport.

pos (PLFLT, input)

Position of the reference point of string along the specified edge, expressed as a fraction of

the length of the edge.

just (PLFLT, input)

Specifies the position of the string relative to its reference point. If just=0., the reference

point is at the left and if just=1., it is at the right of the string. Other values of just give

intermediate justifications.

text (const char *, input)

The string to be written out.

Redacted form: plmtex3(side, disp, pos, just, text)

This function is used in example 28.

plot3d: Plot 3-d surface plot

plot3d (x , y , z , nx , ny , opt , side);

Plots a three dimensional surface plot within the environment set up by plw3d. The surface is

defined by the two-dimensional array z[nx][ny], the point z[i][j] being the value of the function

at (x[i], y[j]). Note that the points in arrays x and y do not need to be equally spaced, but

must be stored in ascending order. The parameter opt controls the way in which the surface is

displayed. For further details see the Section called Three Dimensional Surface Plots in Chapter

168

Chapter 19. The Common API for PLplot

3. The only difference between plmesh and plot3d is that plmesh draws the bottom side of the

surface, while plot3d only draws the surface as viewed from the top.

x (PLFLT *, input)

Pointer to set of x coordinate values at which the function is evaluated.

y (PLFLT *, input)

Pointer to set of y coordinate values at which the function is evaluated.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array with set of function values.

nx (PLINT, input)

Number of x values at which function is evaluated.

ny (PLINT, input)

Number of y values at which function is evaluated.

opt (PLINT, input)

Determines the way in which the surface is represented:

Ĺ opt=DRAW_LINEX: Lines are drawn showing z as a function of x for each value of y[j].

Ĺ opt=DRAW_LINEY: Lines are drawn showing z as a function of y for each value of x[i].

Ĺ opt=DRAW_LINEXY: Network of lines is drawn connecting points at which function is defined.

side (PLBOOL, input)

Flag to indicate whether or not “sides” should be draw on the figure. If side is true sides are

drawn, otherwise no sides are drawn.

Redacted form: plot3d(x, y, z, opt, side)

This function is used in examples 11,21.

plot3dc: Magnitude colored plot surface with contour.

plot3dc (x , y , z , nx , ny , opt , clevel , nlevel);

Identical to plot3d but with extra functionalities: the surface mesh can be colored accordingly

to the current z value being plotted, a contour plot can be drawn at the base XY plane, and a

curtain can be drawn between the plotted function border and the base XY plane. The arguments

are identical to plmeshc. The only difference between plmeshc and plot3dc is that plmeshc draws

the bottom side of the surface, while plot3dc only draws the surface as viewed from the top.

Redacted form:

Ĺ General: plot3dc(x, y, z, opt, clevel)

Ĺ Perl/PDL: Not available?

169

Chapter 19. The Common API for PLplot

This function is used in example 21.

plparseopts: Parse command-line arguments

int plparseopts (p_argc , argv , mode);

Parse command-line arguments.

p_argc (int *, input)

pointer to number of arguments.

argv (char **, input)

Pointer to character array containing *p_argc command-line arguments.

mode (PLINT, input)

Parsing mode with the following possibilities:

Ĺ PL_PARSE_FULL (1) -- Full parsing of command line and all error messages enabled,

including program exit when an error occurs. Anything on the command line that isn’t

recognized as a valid option or option argument is flagged as an error.

Ĺ PL_PARSE_QUIET (2) -- Turns off all output except in the case of errors.

Ĺ PL_PARSE_NODELETE (4) -- Turns off deletion of processed arguments.

Ĺ PL_PARSE_SHOWALL (8) -- Show invisible options

Ĺ PL_PARSE_NOPROGRAM (32) -- Specified if argv[0] is NOT a pointer to the program

name.

Ĺ PL_PARSE_NODASH (64) -- Set if leading dash is NOT required.

Ĺ PL_PARSE_SKIP (128) -- Set to quietly skip over any unrecognized arguments.

plparseopts removes all recognized flags (decreasing argc accordingly), so that invalid input

may be readily detected. It can also be used to process user command line flags. The user can

merge an option table of type PLOptionTable into the internal option table info structure using

plMergeOpts. Or, the user can specify that ONLY the external table(s) be parsed by calling

plClearOpts before plMergeOpts.

The default action taken by plparseopts is as follows:

Returns with an error if an unrecognized option or badly formed option-value pair are encountered.
Returns immediately (return code 0) when the first non-option command line argument is found.
Returns with the return code of the option handler, if one was called.
Deletes command line arguments from argv list as they are found, and decrements argc accordingly.
Does not show "invisible" options in usage or help messages.
Assumes the program name is contained in argv[0].

These behaviors may be controlled through the mode argument.

170

Chapter 19. The Common API for PLplot

Redacted form:

Ĺ General: plparseopts(argv, mode)

Ĺ Perl/PDL: Not available?

This function is used in all of the examples.

plpat: Set area fill pattern

plpat (nlin , inc , del);

Sets the area fill pattern. The pattern consists of 1 or 2 sets of parallel lines with specified

inclinations and spacings. The arguments to this routine are the number of sets to use (1 or 2)

followed by two pointers to integer arrays (of 1 or 2 elements) specifying the inclinations in tenths

of a degree and the spacing in micrometers. (also see plpsty)

nlin (PLINT, input)

Number of sets of lines making up the pattern, either 1 or 2.

inc (PLINT *, input)

Pointer to array with nlin elements. Specifies the line inclination in tenths of a degree.

(Should be between -900 and 900).

del (PLINT *, input)

Pointer to array with nlin elements. Specifies the spacing in micrometers between the lines

making up the pattern.

Redacted form:

Ĺ General: plpat(inc, del)

Ĺ Perl/PDL: plpat(nlin, inc, del)

This function is used in example 15.

plpath: Draw a line between two points, accounting for coordinate transforms.

plpath (n , x1 , y1 , x2 , y2);

Joins the point (x1, y1) to (x2, y2). If a global coordinate transform is defined then the line

is broken in to n segments to approximate the path. If no transform is defined then this simply

acts like a call to pljoin.

171

Chapter 19. The Common API for PLplot

n (PLINT, input)

number of points to use to approximate the path.

x1 (PLFLT, input)

x coordinate of first point.

y1 (PLFLT, input)

y coordinate of first point.

x2 (PLFLT, input)

x coordinate of second point.

y2 (PLFLT, input)

y coordinate of second point.

Redacted form: plpath(n,x1,y1,x2,y2)

This function is not used in any examples.

plpoin: Plot a glyph at the specified points

plpoin (n , x , y , code);

Plot a glyph at the specified points. (This function is largely superseded by plstring which gives

access to many[!] more glyphs.) code=-1 means try to just draw a point. Right now it’s just a

move and a draw at the same place. Not ideal, since a sufficiently intelligent output device may

optimize it away, or there may be faster ways of doing it. This is OK for now, though, and offers a

4X speedup over drawing a Hershey font "point" (which is actually diamond shaped and therefore

takes 4 strokes to draw). If 0 < code < 32, then a useful (but small subset) of Hershey symbols

is plotted. If 32 <= code <= 127 the corresponding printable ASCII character is plotted.

n (PLINT, input)

Number of points in the x and y arrays.

x (PLFLT *, input)

Pointer to an array with X coordinates of points.

y (PLFLT *, input)

Pointer to an array with Y coordinates of points.

code (PLINT, input)

Hershey symbol code (in "ascii-indexed" form with -1 <= code <= 127) corresponding to a

glyph to be plotted at each of the n points.

Redacted form: plpoin(x, y, code)

This function is used in examples 1,6,14,21,29.

172

Chapter 19. The Common API for PLplot

plpoin3: Plot a glyph at the specified 3D points

plpoin3 (n , x , y , z , code);

Plot a glyph at the specified 3D points. (This function is largely superseded by plstring3 which

gives access to many[!] more glyphs.) Set up the call to this function similar to what is done

for plline3. code=-1 means try to just draw a point. Right now it’s just a move and a draw at

the same place. Not ideal, since a sufficiently intelligent output device may optimize it away, or

there may be faster ways of doing it. This is OK for now, though, and offers a 4X speedup over

drawing a Hershey font "point" (which is actually diamond shaped and therefore takes 4 strokes

to draw). If 0 < code < 32, then a useful (but small subset) of Hershey symbols is plotted. If 32

<= code <= 127 the corresponding printable ASCII character is plotted.

n (PLINT, input)

Number of points in the x and y arrays.

x (PLFLT *, input)

Pointer to an array with X coordinates of points.

y (PLFLT *, input)

Pointer to an array with Y coordinates of points.

z (PLFLT *, input)

Pointer to an array with Z coordinates of points.

code (PLINT, input)

Hershey symbol code (in "ascii-indexed" form with -1 <= code <= 127) corresponding to a

glyph to be plotted at each of the n points.

Redacted form: plpoin3(x, y, z, code)

This function is not used in any example.

plpoly3: Draw a polygon in 3 space

plpoly3 (n , x , y , z , draw , ifcc);

Draws a polygon in 3 space defined by n points in x , y , and z . Setup like plline3, but differs

from that function in that plpoly3 attempts to determine if the polygon is viewable depending

on the order of the points within the arrays and the value of ifcc . If the back of polygon is facing

the viewer, then it isn’t drawn. If this isn’t what you want, then use plline3 instead.

The points are assumed to be in a plane, and the directionality of the plane is determined from

the first three points. Additional points do not have to lie on the plane defined by the first three,

but if they do not, then the determination of visibility obviously can’t be 100% accurate... So if

you’re 3 space polygons are too far from planar, consider breaking them into smaller polygons.

“3 points define a plane” :-).

173

Chapter 19. The Common API for PLplot

Bugs: If one of the first two segments is of zero length, or if they are co-linear, the calculation of

visibility has a 50/50 chance of being correct. Avoid such situations :-). See x18c.c for an example

of this problem. (Search for “20.1”).

n (PLINT, input)

Number of points defining line.

x (PLFLT *, input)

Pointer to array with x coordinates of points.

y (PLFLT *, input)

Pointer to array with y coordinates of points.

z (PLFLT *, input)

Pointer to array with z coordinates of points.

draw (PLBOOL *, input)

Pointer to array which controls drawing the segments of the polygon. If draw[i] is true, then

the polygon segment from index [i] to [i+1] is drawn, otherwise, not.

ifcc (PLBOOL, input)

If ifcc is true the directionality of the polygon is determined by assuming the points are laid

out in a counter-clockwise order. Otherwise, the directionality of the polygon is determined

by assuming the points are laid out in a clockwise order.

Redacted form: plpoly3(x, y, z, code)

This function is used in example 18.

plprec: Set precision in numeric labels

plprec (set , prec);

Sets the number of places after the decimal point in numeric labels.

set (PLINT, input)

If set is equal to 0 then PLplot automatically determines the number of places to use after

the decimal point in numeric labels (like those used to label axes). If set is 1 then prec sets

the number of places.

prec (PLINT, input)

The number of characters to draw after the decimal point in numeric labels.

Redacted form: plprec(set, prec)

This function is used in example 29.

174

Chapter 19. The Common API for PLplot

plpsty: Select area fill pattern

plpsty (n);

Select one of eight predefined area fill patterns to use (also see plpat).

n (PLINT, input)

The desired pattern. Pattern 1 consists of horizontal lines, pattern 2 consists of vertical lines,

pattern 3 consists of lines at 45 degrees angle (upward), and so on.

Redacted form: plpsty(n)

This function is used in examples 12,13,15,16,25.

plptex: Write text inside the viewport

plptex (x , y , dx , dy , just , text);

Writes text at a specified position and inclination within the viewport. Text is clipped at the

viewport boundaries. The reference point of a string lies along a line passing through the string at

half the height of a capital letter. The position of the reference point along this line is determined

by just , the reference point is placed at world coordinates (x, y) within the viewport. The

inclination of the string is specified in terms of differences of world coordinates making it easy to

write text parallel to a line in a graph.

x (PLFLT, input)

x coordinate of reference point of string.

y (PLFLT, input)

y coordinate of reference point of string.

dx (PLFLT, input)

Together with dy , this specifies the inclination of the string. The baseline of the string is

parallel to a line joining (x, y) to (x+dx, y+dy).

dy (PLFLT, input)

Together with dx , this specifies the inclination of the string.

just (PLFLT, input)

Specifies the position of the string relative to its reference point. If just=0., the reference

point is at the left and if just=1., it is at the right of the string. Other values of just give

intermediate justifications.

text (const char *, input)

The string to be written out.

Redacted form: plptex(x, y, dx, dy, just, text)

175

Chapter 19. The Common API for PLplot

This function is used in example 2-4,10,12-14,20,23,24,26.

plptex3: Write text inside the viewport of a 3D plot.

plptex3 (x , y , z , dx , dy , dz , sx , sy , sz , just , text);

Writes text at a specified position and inclination and with a specified shear within the viewport.

Text is clipped at the viewport boundaries. The reference point of a string lies along a line passing

through the string at half the height of a capital letter. The position of the reference point along

this line is determined by just , and the reference point is placed at world coordinates (x, y, z)

within the viewport. The inclination and shear of the string is specified in terms of differences of

world coordinates making it easy to write text parallel to a line in a graph.

x (PLFLT, input)

x coordinate of reference point of string.

y (PLFLT, input)

y coordinate of reference point of string.

z (PLFLT, input)

z coordinate of reference point of string.

dx (PLFLT, input)

Together with dy and dz , this specifies the inclination of the string. The baseline of the

string is parallel to a line joining (x, y, z) to (x+dx, y+dy, z+dz).

dy (PLFLT, input)

Together with dx and dz , this specifies the inclination of the string.

dz (PLFLT, input)

Together with dx and dy , this specifies the inclination of the string.

sx (PLFLT, input)

Together with sy and sz , this specifies the shear of the string. The string is sheared so that

the characters are vertically parallel to a line joining (x, y, z) to (x+sx, y+sy, z+sz).

If sx = sy = sz = 0.) then the text is not sheared.

sy (PLFLT, input)

Together with sx and sz , this specifies shear of the string.

sz (PLFLT, input)

Together with sx and sy , this specifies shear of the string.

just (PLFLT, input)

Specifies the position of the string relative to its reference point. If just=0., the reference

point is at the left and if just=1., it is at the right of the string. Other values of just give

intermediate justifications.

176

Chapter 19. The Common API for PLplot

text (const char *, input)

The string to be written out.

Redacted form: plptex3(x, y, z, dx, dy, dz, sx, sy, sz, just, text)

This function is used in example 28.

plrandd: Random number generator returning a real random number in the range

[0,1].

plrandd ();

Random number generator returning a real random number in the range [0,1]. The generator is

based on the Mersenne Twister. Most languages / compilers provide their own random number

generator, and so this is provided purely for convenience and to give a consistent random number

generator across all languages supported by PLplot. This is particularly useful for comparing

results from the test suite of examples.

Redacted form: plrandd()

This function is used in examples 17,21.

plreplot: Replays contents of plot buffer to current device/file

plreplot ();

Replays contents of plot buffer to current device/file.

Redacted form: plreplot()

This function is used in example 1,20.

plrgbhls: Convert RGB color to HLS

plrgbhls (r , g , b , p_h , p_l , p_s);

Convert RGB color coordinates to HLS

r (PLFLT, input)

Red intensity (0.0-1.0) of the colour

g (PLFLT, input)

Green intensity (0.0-1.0) of the colour

177

Chapter 19. The Common API for PLplot

b (PLFLT, input)

Blue intensity (0.0-1.0) of the colour

p_h (PLFLT *, output)

Pointer to hue, in degrees on the colour cone (0.0-360.0)

p_l (PLFLT *, output)

Pointer to lightness, expressed as a fraction of the axis of the colour cone (0.0-1.0)

p_s (PLFLT *, output)

Pointer to saturation, expressed as a fraction of the radius of the colour cone (0.0-1.0)

Redacted form:

Ĺ General: plrgbhls(r, g, b, p_h, p_l, p_s)

Ĺ Perl/PDL: Not available? Implemented as plrgb/plrgb1?

This function is used in example 2.

plschr: Set character size

plschr (def , scale);

This sets up the size of all subsequent characters drawn. The actual height of a character is the

product of the default character size and a scaling factor.

def (PLFLT, input)

The default height of a character in millimeters, should be set to zero if the default height

is to remain unchanged.

scale (PLFLT, input)

Scale factor to be applied to default to get actual character height.

Redacted form: plschr(def, scale)

This function is used in example 2,13,23,24.

plscmap0: Set color map0 colors by 8-bit RGB values

plscmap0 (r , g , b , ncol0);

Set color map0 colors using 8-bit RGB values (see the Section called Color Map0 in Chapter 3).

This sets the entire color map – only as many colors as specified will be allocated.

178

Chapter 19. The Common API for PLplot

r (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of red in

the color.

g (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of green

in the color.

b (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of blue

in the color.

ncol0 (PLINT, input)

Number of items in the r , g , and b arrays.

Redacted form: plscmap0(r, g, b, ncol0)

This function is used in examples 2,24.

plscmap0a: Set color map0 colors by 8-bit RGB values and double alpha value.

plscmap0a (r , g , b , a , ncol0);

Set color map0 colors using 8-bit RGB values (see the Section called Color Map0 in Chapter 3)

and floating point alpha value. This sets the entire color map – only as many colors as specified

will be allocated.

r (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of red in

the color.

g (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of green

in the color.

b (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of blue

in the color.

a (PLFLT *, input)

Pointer to array with set of PLFLT values (0.0 - 1.0) representing the transparency of the

color.

ncol0 (PLINT, input)

Number of items in the r , g , b , and a arrays.

This function is used in examples 30.

179

Chapter 19. The Common API for PLplot

plscmap0n: Set number of colors in color map0

plscmap0n (ncol0);

Set number of colors in color map0 (see the Section called Color Map0 in Chapter 3). Allocate

(or reallocate) color map0, and fill with default values for those colors not previously allocated.

The first 16 default colors are given in the plcol0 documentation. For larger indices the default

color is red.

The drivers are not guaranteed to support more than 16 colors.

ncol0 (PLINT, input)

Number of colors that will be allocated in the map0 palette. If this number is zero or less,

then the value from the previous call to plscmap0n is used and if there is no previous call,

then a default value is used.

Redacted form: plscmap0n(ncol0)

This function is used in examples 15,16,24.

plscmap1: Set color map1 colors using 8-bit RGB values

plscmap1 (r , g , b , ncol1);

Set color map1 colors using 8-bit RGB values (see the Section called Color Map1 in Chapter 3).

This also sets the number of colors.

r (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of red in

the color.

g (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of green

in the color.

b (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of blue

in the color.

ncol1 (PLINT, input)

Number of items in the r , g , and b arrays.

Redacted form: plscmap1(r, g, b, ncol1)

This function is used in example 31.

180

Chapter 19. The Common API for PLplot

plscmap1a: Set color map1 colors using 8-bit RGB values and double alpha values.

plscmap1a (r , g , b , a , ncol1);

Set color map1 colors using 8-bit RGB values (see the Section called Color Map1 in Chapter 3)

and double alpha values. This also sets the number of colors.

r (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of red in

the color.

g (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of green

in the color.

b (PLINT *, input)

Pointer to array with set of unsigned 8-bit integers (0-255) representing the degree of blue

in the color.

a (PLFLT *, input)

Pointer to array with set of double values (0.0-1.0) representing the alpha value of the color.

ncol1 (PLINT, input)

Number of items in the r , g , b , and a arrays.

This function is used in example 31.

plscmap1l: Set color map1 colors using a piece-wise linear relationship

plscmap1l (itype , npts , pos , coord1 , coord2 , coord3 , rev);

Set color map1 colors using a piece-wise linear relationship between position in the color map

(from 0 to 1) and position in HLS or RGB color space (see the Section called Color Map1 in

Chapter 3). May be called at any time.

The idea here is to specify a number of control points that define the mapping between palette

1 input positions (intensities) and HLS (or RGB). Between these points, linear interpolation is

used which gives a smooth variation of color with input position. Any number of control points

may be specified, located at arbitrary positions, although typically 2 - 4 are enough. Another

way of stating this is that we are traversing a given number of lines through HLS (or RGB)

space as we move through color map1 entries. The control points at the minimum and maximum

position (0 and 1) must always be specified. By adding more control points you can get more

variation. One good technique for plotting functions that vary about some expected average is to

use an additional 2 control points in the center (position ~= 0.5) that are the same lightness as

the background (typically white for paper output, black for crt), and same hue as the boundary

control points. This allows the highs and lows to be very easily distinguished.

181

Chapter 19. The Common API for PLplot

Each control point must specify the position in color map1 as well as three coordinates in HLS

or RGB space. The first point must correspond to position = 0, and the last to position = 1.

The hue is interpolated around the "front" of the color wheel (red<->green<->blue<->red)

unless the "rev" flag is set to true, in which case interpolation (between the i and i + 1 control

point for rev[i]) proceeds around the back (reverse) side. Specifying rev=NULL is equivalent to

setting rev[]= false for every control point.

Table 19-1. Bounds on coordinates

RGB R [0, 1] magnitude

RGB G [0, 1] magnitude

RGB B [0, 1] magnitude

HLS hue [0, 360] degrees

HLS lightness [0, 1] magnitude

HLS saturation [0, 1] magnitude

itype (PLBOOL, input)

true: RGB, false: HLS.

npts (PLINT, input)

number of control points

pos (PLFLT *, input)

position for each control point (between 0.0 and 1.0, in ascending order)

coord1 (PLFLT *, input)

first coordinate (H or R) for each control point

coord2 (PLFLT *, input)

second coordinate (L or G) for each control point

coord3 (PLFLT *, input)

third coordinate (S or B) for each control point

rev (PLBOOL: *, input)

reverse flag for each control point. (rev[i] refers to the interpolation interval between the i

and i + 1 control points).

Redacted form: plscmap1l(itype, pos, coord1, coord2, coord3, rev)

This function is used in examples 8,11,12,15,20,21.

plscmap1la: Set color map1 colors using a piece-wise linear relationship

plscmap1la (itype , npts , pos , coord1 , coord2 , coord3 , coord4 , rev);

182

Chapter 19. The Common API for PLplot

This is a version of plscmap1l that supports alpha transparency. It sets color map1 colors using

a piece-wise linear relationship between position in the color map (from 0 to 1) and position in

HLS or RGB color space (see the Section called Color Map1 in Chapter 3) with alpha value (0.0

- 1.0). It may be called at any time.

itype (PLBOOL, input)

true: RGB, false: HLS.

npts (PLINT, input)

number of control points

pos (PLFLT *, input)

position for each control point (between 0.0 and 1.0, in ascending order)

coord1 (PLFLT *, input)

first coordinate (H or R) for each control point

coord2 (PLFLT *, input)

second coordinate (L or G) for each control point

coord3 (PLFLT *, input)

third coordinate (S or B) for each control point

coord4 (PLFLT *, input)

fourth coordinate, the alpha value for each control point

rev (PLBOOL: *, input)

reverse flag for each control point. (rev[i] refers to the interpolation interval between the i

and i + 1 control points).

This function is used in example 30.

plscmap1n: Set number of colors in color map1

plscmap1n (ncol1);

Set number of colors in color map1, (re-)allocate color map1, and set default values if this is the

first allocation (see the Section called Color Map1 in Chapter 3).

ncol1 (PLINT, input)

Number of colors that will be allocated in the map1 palette. If this number is zero or less,

then the value from the previous call to plscmap1n is used and if there is no previous call,

then a default value is used.

Redacted form: plscmap1n(ncol1)

This function is used in examples 8,11,20,21.

183

Chapter 19. The Common API for PLplot

plscol0: Set a given color from color map0 by 8 bit RGB value

plscol0 (icol0 , r , g , b);

Set a given color by 8-bit RGB value for color map0 (see the Section called Color Map0 in

Chapter 3). Overwrites the previous color value for the given index and, thus, does not result in

any additional allocation of space for colors.

icol0 (PLINT, input)

Color index. Must be less than the maximum number of colors (which is set by default, by

plscmap0n, or even by plscmap0).

r (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of red in the color.

g (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of green in the color.

b (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of blue in the color.

Redacted form: plscol0(icol0, r, g, b)

This function is not used in any examples.

plscol0a: Set a given color from color map0 by 8 bit RGB value and double alpha

value.

plscol0a (icol0 , r , g , b , a);

Set a given color by 8-bit RGB value and double alpha value for color map0 (see the Section

called Color Map0 in Chapter 3). Overwrites the previous color value for the given index and,

thus, does not result in any additional allocation of space for colors.

icol0 (PLINT, input)

Color index. Must be less than the maximum number of colors (which is set by default, by

plscmap0n, or even by plscmap0).

r (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of red in the color.

g (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of green in the color.

b (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of blue in the color.

184

Chapter 19. The Common API for PLplot

a (PLFLT, input)

double value (0.0-1.0) representing the alpha value of the color.

This function is used in example 30.

plscolbg: Set the background color by 8-bit RGB value

plscolbg (r , g , b);

Set the background color (color 0 in color map 0) by 8-bit RGB value (see the Section called

Color Map0 in Chapter 3).

r (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of red in the color.

g (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of green in the color.

b (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of blue in the color.

Redacted form: plscolbg(r, g, b)

This function is used in examples 15,31.

plscolbga: Set the background color by 8-bit RGB value and double alpha value.

plscolbga (r , g , b , a);

Set the background color (color 0 in color map 0) by 8-bit RGB value (see the Section called

Color Map0 in Chapter 3) and double alpha value.

r (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of red in the color.

g (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of green in the color.

b (PLINT, input)

Unsigned 8-bit integer (0-255) representing the degree of blue in the color.

a (PLFLT, input)

double value (0.0-1.0) representing the alpha value of the color.

This function is used in example 31.

185

Chapter 19. The Common API for PLplot

plscolor: Used to globally turn color output on/off

plscolor (color);

Used to globally turn color output on/off for those drivers/devices that support it.

color (PLINT, input)

Color flag (Boolean). If zero, color is turned off. If non-zero, color is turned on.

Redacted form: plscolor(color)

This function is used in example 31.

plscompression: Set device-compression level

plscompression (compression);

Set device-compression level. Only used for drivers that provide compression. This function, if

used, should be invoked before a call to plinit.

compression (PLINT, input)

The desired compression level. This is a device-dependent value. Currently only the jpeg and

png devices use these values. For jpeg value is the jpeg quality which should normally be in

the range 0-95. Higher values denote higher quality and hence larger image sizes. For png

values are in the range -1 to 99. Values of 0-9 are taken as the compression level for zlib. A

value of -1 denotes the default zlib compression level. Values in the range 10-99 are divided

by 10 and then used as the zlib compression level. Higher compression levels correspond to

greater compression and small file sizes at the expense of more computation.

Redacted form: plscompression(compression)

This function is used in example 31.

plsdev: Set the device (keyword) name

plsdev (devname);

Set the device (keyword) name.

devname (const char *, input)

Pointer to device (keyword) name string.

Redacted form: plsdev(devname)

This function is used in examples 1,14,20.

186

Chapter 19. The Common API for PLplot

plsdidev: Set parameters that define current device-space window

plsdidev (mar , aspect , jx , jy);

Set relative margin width, aspect ratio, and relative justification that define current device-space

window. If you want to just use the previous value for any of these, just pass in the magic value

PL_NOTSET. It is unlikely that one should ever need to change the aspect ratio but it’s in there

for completeness. If plsdidev is not called the default values of mar , jx , and jy are all 0. aspect is

set to a device-specific value.

mar (PLFLT, input)

Relative margin width.

aspect (PLFLT, input)

Aspect ratio.

jx (PLFLT, input)

Relative justification in x. Value must lie in the range -0.5 to 0.5.

jy (PLFLT, input)

Relative justification in y. Value must lie in the range -0.5 to 0.5.

Redacted form: plsdidev(mar, aspect, jx, jy)

This function is used in example 31.

plsdimap: Set up transformation from metafile coordinates

plsdimap (dimxmin , dimxmax , dimymin , dimymax , dimxpmm , dimypmm);

Set up transformation from metafile coordinates. The size of the plot is scaled so as to preserve

aspect ratio. This isn’t intended to be a general-purpose facility just yet (not sure why the user

would need it, for one).

dimxmin (PLINT, input)

NEEDS DOCUMENTATION

dimxmax (PLINT, input)

NEEDS DOCUMENTATION

dimymin (PLINT, input)

NEEDS DOCUMENTATION

dimymax (PLINT, input)

NEEDS DOCUMENTATION

187

Chapter 19. The Common API for PLplot

dimxpmm (PLFLT, input)

NEEDS DOCUMENTATION

dimypmm (PLFLT, input)

NEEDS DOCUMENTATION

Redacted form: plsdimap(dimxmin, dimxmax, dimymin, dimymax, dimxpmm, dimypmm)

This function is not used in any examples.

plsdiori: Set plot orientation

plsdiori (rot);

Set plot orientation parameter which is multiplied by 90� to obtain the angle of rotation. Note,

arbitrary rotation parameters such as 0.2 (corresponding to 18�) are possible, but the usual

values for the rotation parameter are 0., 1., 2., and 3. corresponding to 0� (landscape mode), 90�

(portrait mode), 180� (seascape mode), and 270� (upside-down mode). If plsdiori is not called

the default value of rot is 0.

N.B. aspect ratio is unaffected by calls to plsdiori. So you will probably want to change the

aspect ratio to a value suitable for the plot orientation using a call to plsdidev or the command-

line options - a or - freeaspect . For more documentation of those options see the Section called

Command Line Arguments in Chapter 3. Such command-line options can be set internally using

plsetopt or set directly using the command line and parsed using a call to plparseopts.

rot (PLFLT, input)

Plot orientation parameter.

Redacted form: plsdiori(rot)

This function is not used in any examples.

plsdiplt: Set parameters that define current plot-space window

plsdiplt (xmin , ymin , xmax , ymax);

Set relative minima and maxima that define the current plot-space window. If plsdiplt is not

called the default values of xmin , ymin , xmax , and ymax are 0., 0., 1., and 1.

xmin (PLFLT, input)

Relative minimum in x.

ymin (PLFLT, input)

Relative minimum in y.

188

Chapter 19. The Common API for PLplot

xmax (PLFLT, input)

Relative maximum in x.

ymax (PLFLT, input)

Relative maximum in y.

Redacted form: plsdiplt(xmin, ymin, xmax, ymax)

This function is used in example 31.

plsdiplz: Set parameters incrementally (zoom mode) that define current plot-space

window

plsdiplz (xmin , ymin , xmax , ymax);

Set relative minima and maxima incrementally (zoom mode) that define the current plot-space

window. This function has the same effect as plsdiplt if that function has not been previously

called. Otherwise, this function implements zoom mode using the transformation min_used =

old_min + old_length*min and max_used = old_min + old_length*max for each axis. For exam-

ple, if min = 0.05 and max = 0.95 for each axis, repeated calls to plsdiplz will zoom in by 10 per

cent for each call.

xmin (PLFLT, input)

Relative (incremental) minimum in x.

ymin (PLFLT, input)

Relative (incremental) minimum in y.

xmax (PLFLT, input)

Relative (incremental) maximum in x.

ymax (PLFLT, input)

Relative (incremental) maximum in y.

Redacted form: plsdiplz(xmin, ymin, xmax, ymax)

This function is used in example 31.

plseed: Set seed for internal random number generator.

plseed (seed);

Set the seed for the internal random number generator. See plrandd for further details.

189

Chapter 19. The Common API for PLplot

seed (unsigned int, input)

Seed for random number generator.

Redacted form: plseed(seed)

This function is used in example 21.

plsesc: Set the escape character for text strings

plsesc (esc);

Set the escape character for text strings. From C (in contrast to Fortran 77, see plsescfortran77)

you pass esc as a character. Only selected characters are allowed to prevent the user from shooting

himself in the foot (For example, a “\” isn’t allowed since it conflicts with C’s use of backslash

as a character escape). Here are the allowed escape characters and their corresponding decimal

ASCII values:

Ĺ “!”, ASCII 33

Ĺ “#”, ASCII 35

Ĺ “$”, ASCII 36

Ĺ “%”, ASCII 37

Ĺ “&”, ASCII 38

Ĺ “*”, ASCII 42

Ĺ “@”, ASCII 64

Ĺ “^”, ASCII 94

Ĺ “~”, ASCII 126

esc (char, input)

Escape character.

Redacted form:

Ĺ General: plsesc(esc)

Ĺ Perl/PDL: Not available?

This function is used in example 29.

190

Chapter 19. The Common API for PLplot

plsetopt: Set any command-line option

int plsetopt (opt , optarg);

Set any command-line option internally from a program before it invokes plinit. opt is the name

of the command-line option and optarg is the corresponding command-line option argument.

opt (const char *, input)

Pointer to string containing the command-line option.

optarg (const char *, input)

Pointer to string containing the argument of the command-line option.

This function returns 0 on success.

Redacted form: plsetopt(opt, optarg)

This function is used in example 14.

plsfam: Set family file parameters

plsfam (fam , num , bmax);

Sets variables dealing with output file familying. Does nothing if familying not supported by the

driver. This routine, if used, must be called before initializing PLplot. See the Section called

Family File Output in Chapter 3 for more information.

fam (PLINT, input)

Family flag (Boolean). If nonzero, familying is enabled.

num (PLINT, input)

Current family file number.

bmax (PLINT, input)

Maximum file size (in bytes) for a family file.

Redacted form: plsfam(fam, num, bmax)

This function is used in examples 14,31.

plsfci: Set FCI (font characterization integer)

plsfci (fci);

191

Chapter 19. The Common API for PLplot

Sets font characteristics to be used at the start of the next string using the FCI approach. See

the Section called FCI in Chapter 3 for more information.

fci (PLUNICODE, input)

PLUNICODE (unsigned 32-bit integer) value of FCI.

Redacted form:

Ĺ General: plsfci(fci)

Ĺ Perl/PDL: Not available?

This function is used in example 23.

plsfnam: Set output file name

plsfnam (fnam);

Sets the current output file name, if applicable. If the file name has not been specified and is

required by the driver, the user will be prompted for it. If using the X-windows output driver,

this sets the display name. This routine, if used, must be called before initializing PLplot.

fnam (const char *, input)

Pointer to file name string.

Redacted form: plsfnam(fnam)

This function is used in examples 1,20.

plsfont: Set family, style and weight of the current font

plsfont (family , style , weight);

Sets the current font. See the Section called FCI in Chapter 3 for more information on font

selection.

family (PLINT, input)

Font family to select for the current font. The available values are given by the

PL_FCI_* constants in plplot.h. Current options are PL_FCI_SANS, PL_FCI_SERIF,

PL_FCI_MONO, PL_FCI_SCRIPT and PL_FCI_SYMBOL. A negative value signifies

that the font family should not be altered.

192

Chapter 19. The Common API for PLplot

style (PLINT, input)

Font style to select for the current font. The available values are given by the PL_FCI_*

constants in plplot.h. Current options are PL_FCI_UPRIGHT, PL_FCI_ITALIC and

PL_FCI_OBLIQUE. A negative value signifies that the font style should not be altered.

weight (PLINT, input)

Font weight to select for the current font. The available values are given by the PL_FCI_*

constants in plplot.h. Current options are PL_FCI_MEDIUM and PL_FCI_BOLD. A

negative value signifies that the font weight should not be altered.

Redacted form: plsfont(family, style, weight)

This function is used in example 23.

plshades: Shade regions on the basis of value

plshades (a , nx , ny , defined , xmin , xmax , ymin , ymax , clevel , nlevel ,

fill_width , cont_color , cont_width , fill , rectangular , pltr , pltr_data);

Shade regions on the basis of value. This is the high-level routine for making continuous color

shaded plots with cmap1 while plshade (or plshade1) are used for individual shaded regions using

either cmap0 or cmap1. examples/c/x16c.c shows a number of examples for using this function.

See the following discussion of the arguments and the Section called Contour and Shade Plots in

Chapter 3 for more information.

a (PLFLT **, input)

Contains ** pointer to array to be plotted. The array must have been declared as PLFLT

a[nx][ny].

nx (PLINT, input)

First dimension of array "a".

ny (PLINT, input)

Second dimension of array "a".

defined (PLINT (*) (PLFLT, PLFLT), input)

User function specifying regions excluded from the shading plot. This function accepts x and

y coordinates as input arguments and must return 0 if the point is in the excluded region or

1 otherwise. This argument can be NULL if all the values are valid.

xmin (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

xmax (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

193

Chapter 19. The Common API for PLplot

ymin (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

ymax (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

clevel (PLFLT *, input)

Pointer to array containing the data levels corresponding to the edges of each shaded region

that will be plotted by this function. To work properly the levels should be monotonic.

nlevel (PLINT, input)

Number of shades plus 1 (i.e., the number of shade edge values in clevel).

fill_width (PLINT, input)

Defines width used by the fill pattern.

cont_color (PLINT, input)

Defines pen color used for contours defining edges of shaded regions. The pen color is only

temporary set for the contour drawing. Set this value to zero or less if no shade edge contours

are wanted.

cont_width (PLINT, input)

Defines pen width used for contours defining edges of shaded regions. This value may not

be honored by all drivers. The pen width is only temporary set for the contour drawing. Set

this value to zero or less if no shade edge contours are wanted.

fill (void (*) (PLINT, PLFLT *, PLFLT *), input)

Routine used to fill the region. Use plfill. Future version of PLplot may have other fill

routines.

rectangular (PLBOOL, input)

Set rectangular to true if rectangles map to rectangles after coordinate transformation with

pltrl . Otherwise, set rectangular to false. If rectangular is set to true, plshade tries to save

time by filling large rectangles. This optimization fails if the coordinate transformation dis-

torts the shape of rectangles. For example a plot in polar coordinates has to have rectangular

set to false.

pltr (void (*) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer) , input)

Pointer to function that defines transformation between indices in array z and the world

coordinates (C only). Transformation functions are provided in the PLplot library: pltr0 for

identity mapping, and pltr1 and pltr2 for arbitrary mappings respectively defined by one-

and two-dimensional arrays. In addition, user-supplied routines for the transformation can

be used as well. Examples of all of these approaches are given in the Section called Contour

Plots from C in Chapter 3. The transformation function should have the form given by any

of pltr0, pltr1, or pltr2.

194

Chapter 19. The Common API for PLplot

pltr_data (PLPointer, input)

Extra parameter to help pass information to pltr0, pltr1, pltr2, or whatever routine that

is externally supplied.

Redacted form:

Ĺ General: plshades(a, defined, xmin, xmax, ymin, ymax, clevel, fill_width, cont_color,

cont_width, fill, rectangular, pltr, pltr_data)

Ĺ Perl/PDL: plshades(a, xmin, xmax, ymin, ymax, clevel, fill_width, cont_color,

cont_width, fill, rectangular, defined, pltr, pltr_data)

This function is used in examples 16,21.

plshade: Shade individual region on the basis of value

plshade (a , nx , ny , defined , xmin , xmax , ymin , ymax , shade_min , shade_max ,

sh_cmap , sh_color , sh_width , min_color , min_width , max_color , max_width ,

fill , rectangular , pltr , pltr_data);

Shade individual region on the basis of value. Use plshades if you want to shade a number of

regions using continuous colors. plshade is identical to plshade1 except for the type of the first

parameter. See plshade1 for further discussion.

a (PLFLT **, input)

nx (PLINT, input)

ny (PLINT, input)

defined (PLINT (*) (PLFLT, PLFLT), input)

xmin (PLFLT, input)

xmax (PLFLT, input)

ymin (PLFLT, input)

ymax (PLFLT, input)

195

Chapter 19. The Common API for PLplot

shade_min (PLFLT, input)

shade_max (PLFLT, input)

sh_cmap (PLINT, input)

sh_color (PLFLT, input)

sh_width (PLINT, input)

min_color (PLINT, input)

min_width (PLINT, input)

max_color (PLINT, input)

max_width (PLINT, input)

fill (void (*) (PLINT, PLFLT *, PLFLT *), input)

rectangular (PLBOOL, input)

pltr (void (*) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer) , input)

pltr_data (PLPointer, input)

Redacted form:

Ĺ General: plshade(a, defined, xmin, xmax, ymin, ymax, shade_min, shade_max, sh_cmap,

sh_color, sh_width, min_color, min_width, max_color, max_width, fill, rectangular,

pltr, pltr_data)

Ĺ Perl/PDL: Not available?

This function is used in example 15.

196

Chapter 19. The Common API for PLplot

plshade1: Shade individual region on the basis of value

plshade1 (a , nx , ny , defined , xmin , xmax , ymin , ymax , shade_min , shade_max ,

sh_cmap , sh_color , sh_width , min_color , min_width , max_color , max_width ,

fill , rectangular , pltr , pltr_data);

Shade individual region on the basis of value. Use plshades if you want to shade a number of

contiguous regions using continuous colors. In particular the edge contours are treated properly

in plshades. If you attempt to do contiguous regions with plshade1 (or plshade) the contours at

the edge of the shade are partially obliterated by subsequent plots of contiguous shaded regions.

plshade1 differs from plshade by the type of the first argument. Look at the argument list below,

plcont and the Section called Contour and Shade Plots in Chapter 3 for more information about

the transformation from grid to world coordinates. Shading NEEDS DOCUMENTATION, but

as a stopgap look at how plshade is used in examples/c/x15c.c

a (PLFLT *, input)

Contains array to be plotted. The array must have been declared as PLFLT a[nx][ny].

nx (PLINT, input)

First dimension of array "a".

ny (PLINT, input)

Second dimension of array "a".

defined (PLINT (*) (PLFLT, PLFLT), input)

User function specifying regions excluded from the shading plot. This function accepts x and

y coordinates as input arguments and must return 0 if the point is in the excluded region or

1 otherwise. This argument can be NULL if all the values are valid.

xmin (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

xmax (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

ymin (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

ymax (PLFLT, input)

Defines the "grid" coordinates. The data a[0][0] has a position of (xmin,ymin), a[nx-1][0] has

a position at (xmax,ymin) and so on.

shade_min (PLFLT, input)

Defines the lower end of the interval to be shaded. If shade_max ≤ shade_min, plshade1

does nothing.

197

Chapter 19. The Common API for PLplot

shade_max (PLFLT, input)

Defines the upper end of the interval to be shaded. If shade_max ≤ shade_min, plshade1

does nothing.

sh_cmap (PLINT, input)

Defines color map. If sh_cmap=0, then sh_color is interpreted as a color map 0 (integer) index.

If sh_cmap=1, then sh_color is interpreted as a color map 1 floating-point index which ranges

from 0. to 1.

sh_color (PLFLT, input)

Defines color map index if cmap0 or color map input value (ranging from 0. to 1.) if cmap1.

sh_width (PLINT, input)

Defines width used by the fill pattern.

min_color (PLINT, input)

Defines pen color, width used by the boundary of shaded region. The min values are used

for the shade_min boundary, and the max values are used on the shade_max boundary. Set

color and width to zero for no plotted boundaries.

min_width (PLINT, input)

Defines pen color, width used by the boundary of shaded region. The min values are used

for the shade_min boundary, and the max values are used on the shade_max boundary. Set

color and width to zero for no plotted boundaries.

max_color (PLINT, input)

Defines pen color, width used by the boundary of shaded region. The min values are used

for the shade_min boundary, and the max values are used on the shade_max boundary. Set

color and width to zero for no plotted boundaries.

max_width (PLINT, input)

Defines pen color, width used by the boundary of shaded region. The min values are used

for the shade_min boundary, and the max values are used on the shade_max boundary. Set

color and width to zero for no plotted boundaries.

fill (void (*) (PLINT, PLFLT *, PLFLT *), input)

Routine used to fill the region. Use plfill. Future version of plplot may have other fill

routines.

rectangular (PLBOOL, input)

Set rectangular to true if rectangles map to rectangles after coordinate transformation with

pltrl . Otherwise, set rectangular to false. If rectangular is set to true, plshade tries to save

time by filling large rectangles. This optimization fails if the coordinate transformation dis-

torts the shape of rectangles. For example a plot in polar coordinates has to have rectangular

set to false.

pltr (void (*) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer) , input)

Pointer to function that defines transformation between indices in array z and the world

coordinates (C only). Transformation functions are provided in the PLplot library: pltr0 for

identity mapping, and pltr1 and pltr2 for arbitrary mappings respectively defined by one-

198

Chapter 19. The Common API for PLplot

and two-dimensional arrays. In addition, user-supplied routines for the transformation can

be used as well. Examples of all of these approaches are given in the Section called Contour

Plots from C in Chapter 3. The transformation function should have the form given by any

of pltr0, pltr1, or pltr2.

pltr_data (PLPointer, input)

Extra parameter to help pass information to pltr0, pltr1, pltr2, or whatever routine that

is externally supplied.

Redacted form:

Ĺ General: plshade1(a, defined, xmin, xmax, ymin, ymax, shade_min, shade_max, sh_cmap,

sh_color, sh_width, min_color, min_width, max_color, max_width, fill, rectangular,

pltr, pltr_data)

Ĺ Perl/PDL: plshade1(a, xmin, xmax, ymin, ymax, shade_min, shade_max, sh_cmap, sh_color,

sh_width, min_color, min_width, max_color, max_width, fill, rectangular, defined,

pltr, pltr_data)

This function is used in example 15.

plslabelfunc: Assign a function to use for generating custom axis labels

plslabelfunc (label_func , label_data);

This function allows a user to provide their own function to provide axis label text. The user

function is given the numeric value for a point on an axis and returns a string label to correspond

with that value. Custom axis labels can be enabled by passing appropriate arguments to plenv,

plbox, plbox3 and similar functions.

label_func (void (*) (PLINT, PLFLT, char *, PLINT, void *), input)

This is the custom label function. In order to reset to the default labeling, set this to NULL.

The labeling function parameters are, in order:

axis

This indicates which axis a label is being requested for. The value will be one of

PL_X_AXIS, PL_Y_AXIS or PL_Z_AXIS.

value

This is the value along the axis which is being labeled.

label_text

The string representation of the label value.

length

The maximum length in characters allowed for label_text.

199

Chapter 19. The Common API for PLplot

label_data (void *, input)

This parameter may be used to pass data to the label_func function.

This function is used in example 19.

plsmaj: Set length of major ticks

plsmaj (def , scale);

This sets up the length of the major ticks. The actual length is the product of the default length

and a scaling factor as for character height.

def (PLFLT, input)

The default length of a major tick in millimeters, should be set to zero if the default length

is to remain unchanged.

scale (PLFLT, input)

Scale factor to be applied to default to get actual tick length.

Redacted form: plsmaj(def, scale)

This function is used in example 29.

plsmem: Set the memory area to be plotted (RGB)

plsmem (maxx , maxy , plotmem);

Set the memory area to be plotted (with the “mem” or “memcairo” driver) as the dev member of

the stream structure. Also set the number of pixels in the memory passed in plotmem , which is a

block of memory maxy by maxx by 3 bytes long, say: 480 x 640 x 3 (Y, X, RGB)

This memory will have to be freed by the user!

maxx (PLINT, input)

Size of memory area in the X coordinate.

maxy (PLINT, input)

Size of memory area in the Y coordinate.

plotmem (void *, input)

Pointer to the beginning of the user-supplied memory area.

Redacted form: plsmem(maxx, maxy, plotmem)

This function is not used in any examples.

200

Chapter 19. The Common API for PLplot

plsmema: Set the memory area to be plotted (RGBA)

plsmema (maxx , maxy , plotmem);

Set the memory area to be plotted (with the “memcairo” driver) as the dev member of the stream

structure. Also set the number of pixels in the memory passed in plotmem , which is a block of

memory maxy by maxx by 4 bytes long, say: 480 x 640 x 4 (Y, X, RGBA)

This memory will have to be freed by the user!

maxx (PLINT, input)

Size of memory area in the X coordinate.

maxy (PLINT, input)

Size of memory area in the Y coordinate.

plotmem (void *, input)

Pointer to the beginning of the user-supplied memory area.

Redacted form: plsmema(maxx, maxy, plotmem)

This function is not used in any examples.

plsmin: Set length of minor ticks

plsmin (def , scale);

This sets up the length of the minor ticks and the length of the terminals on error bars. The

actual length is the product of the default length and a scaling factor as for character height.

def (PLFLT, input)

The default length of a minor tick in millimeters, should be set to zero if the default length

is to remain unchanged.

scale (PLFLT, input)

Scale factor to be applied to default to get actual tick length.

Redacted form: plsmin(def, scale)

This function is used in example 29.

plsori: Set orientation

plsori (ori);

201

Chapter 19. The Common API for PLplot

Set integer plot orientation parameter. This function is identical to plsdiori except for the type

of the argument, and should be used in the same way. See the Section called plsdiori : Set plot

orientation for details.

ori (PLINT, input)

Orientation value (0 for landscape, 1 for portrait, etc.) The value is multiplied by 90 degrees

to get the angle.

Redacted form: plsori(ori)

This function is used in example 3.

plspage: Set page parameters

plspage (xp , yp , xleng , yleng , xoff , yoff);

Sets the page configuration (optional). If an individual parameter is zero then that parameter

value is not updated. Not all parameters are recognized by all drivers and the interpretation is

device-dependent. The X-window driver uses the length and offset parameters to determine the

window size and location. The length and offset values are expressed in units that are specific to

the current driver. For instance: screen drivers will usually interpret them as number of pixels,

whereas printer drivers will usually use mm. This routine, if used, must be called before initializing

PLplot.

xp (PLFLT, input)

Number of pixels/inch (DPI), x.

yp (PLFLT, input)

Number of pixels/inch (DPI), y.

xleng (PLINT , input)

Page length, x.

yleng (PLINT, input)

Page length, y.

xoff (PLINT, input)

Page offset, x.

yoff (PLINT, input)

Page offset, y.

Redacted form: plspage(xp, yp, xleng, yleng, xoff, yoff)

This function is used in examples 14 and 31.

202

Chapter 19. The Common API for PLplot

plspal0: Set the colors for color table 0 from a cmap0 file

plspal0 (filename);

Set the colors for color table 0 from a cmap0 file

filename (const char *, input)

The name of the cmap0 file, or a empty to string to specify the default cmap0 file.

Redacted form: plspal0(filename)

This function is in example 16.

plspal1: Set the colors for color table 1 from a cmap1 file

plspal1 (filename);

Set the colors for color table 1 from a cmap1 file

filename (const char *, input)

The name of the cmap1 file, or a empty to string to specify the default cmap1 file.

Redacted form: plspal1(filename)

This function is in example 16.

plspause: Set the pause (on end-of-page) status

plspause (pause);

Set the pause (on end-of-page) status.

pause (PLBOOL, input)

If pause is true there will be a pause on end-of-page for those drivers which support this.

Otherwise there is no pause.

Redacted form: plspause(pause)

This function is in examples 14,20.

plsstrm: Set current output stream

plsstrm (strm);

203

Chapter 19. The Common API for PLplot

Sets the number of the current output stream. The stream number defaults to 0 unless changed

by this routine. The first use of this routine must be followed by a call initializing PLplot (e.g.

plstar).

strm (PLINT, input)

The current stream number.

Redacted form: plsstrm(strm)

This function is examples 1,14,20.

plssub: Set the number of subpages in x and y

plssub (nx , ny);

Set the number of subpages in x and y.

nx (PLINT, input)

Number of windows in x direction (i.e., number of window columns).

ny (PLINT, input)

Number of windows in y direction (i.e., number of window rows).

Redacted form: plssub(nx, ny)

This function is examples 1,2,14,21,25,27.

plssym: Set symbol size

plssym (def , scale);

This sets up the size of all subsequent symbols drawn by plpoin and plsym. The actual height

of a symbol is the product of the default symbol size and a scaling factor as for the character

height.

def (PLFLT, input)

The default height of a symbol in millimeters, should be set to zero if the default height is

to remain unchanged.

scale (PLFLT, input)

Scale factor to be applied to default to get actual symbol height.

Redacted form: plssym(def, scale)

This function is used in example 29.

204

Chapter 19. The Common API for PLplot

plstar: Initialization

plstar (nx , ny);

Initializing the plotting package. The program prompts for the device keyword or number of the

desired output device. Hitting a RETURN in response to the prompt is the same as selecting the

first device. If only one device is enabled when PLplot is installed, plstar will issue no prompt.

The output device is divided into nx by ny subpages, each of which may be used independently.

The subroutine pladv is used to advance from one subpage to the next.

nx (PLINT, input)

Number of subpages to divide output page in the horizontal direction.

ny (PLINT, input)

Number of subpages to divide output page in the vertical direction.

Redacted form: plstar(nx, ny)

This function is used in example 1.

plstart: Initialization

plstart (device , nx , ny);

Alternative to plstar for initializing the plotting package. The device name keyword for the

desired output device must be supplied as an argument. The device keywords are the same as

those printed out by plstar. If the requested device is not available, or if the input string is empty

or begins with “?”, the prompted startup of plstar is used. This routine also divides the output

device into nx by ny subpages, each of which may be used independently. The subroutine pladv

is used to advance from one subpage to the next.

device (const char *, input)

Device name (keyword) of the required output device. If NULL or if the first character is a

“?”, the normal (prompted) startup is used.

nx (PLINT, input)

Number of subpages to divide output page in the horizontal direction.

ny (PLINT, input)

Number of subpages to divide output page in the vertical direction.

Redacted form:

Ĺ General: plstart(device, nx, ny)

Ĺ Perl/PDL: plstart(nx, ny, device)

205

Chapter 19. The Common API for PLplot

This function is not used in any examples.

plstransform: Set a global coordinate transform function

plstransform (transform_fun , data);

This function can be used to define a coordinate transformation which affects all elements drawn

within the current plot window. The transformation function is similar to that provided for

the plmap and plmeridians functions. The data parameter may be used to pass extra data to

transform_fun .

transform_fun (void (*) (PLFLT, PLFLT, PLFLT*, PLFLT*, PLPointer) , input)

Pointer to a function that defines a transformation from the input (x, y) coordinate to a new

plot world coordiante.

data (PLPointer, input)

Optional extra data for transform_fun .

Redacted form:

Ĺ General: plstransform(transform_fun, data)

This function is used in example 19.

plstring: Plot a glyph at the specified points

plstring (n , x , y , string);

Plot a glyph at the specified points. (Supersedes plpoin and plsym because many[!] more glyphs

are accessible with plstring.) The glyph is specified with a PLplot user string. Note that the

user string is not actually limited to one glyph so it is possible (but not normally useful) to plot

more than one glyph at the specified points with this function. As with plmtex and plptex, the

user string can contain FCI escapes to determine the font, UTF-8 code to determine the glyph

or else PLplot escapes for Hershey or unicode text to determine the glyph.

n (PLINT, input)

Number of points in the x and y arrays.

x (PLFLT *, input)

Pointer to an array with X coordinates of points.

206

Chapter 19. The Common API for PLplot

y (PLFLT *, input)

Pointer to an array with Y coordinates of points.

string (const char *, input)

PLplot user string corresponding to the glyph to be plotted at each of the n points.

Redacted form: plstring(x, y, string)

This function is used in examples 4 and 26.

plstring3: Plot a glyph at the specified 3D points

plstring3 (n , x , y , z , string);

Plot a glyph at the specified 3D points. (Supersedes plpoin3 because many[!] more glyphs are

accessible with plstring3.) Set up the call to this function similar to what is done for plline3. The

glyph is specified with a PLplot user string. Note that the user string is not actually limited to

one glyph so it is possible (but not normally useful) to plot more than one glyph at the specified

points with this function. As with plmtex and plptex, the user string can contain FCI escapes

to determine the font, UTF-8 code to determine the glyph or else PLplot escapes for Hershey or

unicode text to determine the glyph.

n (PLINT, input)

Number of points in the x , y , and z arrays.

x (PLFLT *, input)

Pointer to an array with X coordinates of points.

y (PLFLT *, input)

Pointer to an array with Y coordinates of points.

z (PLFLT *, input)

Pointer to an array with Z coordinates of points.

string (const char *, input)

PLplot user string corresponding to the glyph to be plotted at each of the n points.

Redacted form: plstring3(x, y, z, string)

This function is used in example 18.

plstripa: Add a point to a stripchart

plstripa (id , p , x , y);

207

Chapter 19. The Common API for PLplot

Add a point to a given pen of a given stripchart. There is no need for all pens to have the same

number of points or to be equally sampled in the x coordinate. Allocates memory and rescales

as necessary.

id (PLINT, input)

Identification number (set up in plstripc) of the stripchart.

p (PLINT, input)

Pen number (ranges from 0 to 3).

x (PLFLT, input)

X coordinate of point to plot.

y (PLFLT, input)

Y coordinate of point to plot.

Redacted form: plstripa(id, p, x, y)

This function is used in example 17.

plstripc: Create a 4-pen stripchart

plstripc (id , xspec , yspec , xmin , xmax , xjump , ymin , ymax , xlpos , ylpos ,

y_ascl , acc , colbox , collab , colline , styline , legline[] , labx , laby ,

labtop);

Create a 4-pen stripchart, to be used afterwards by plstripa

id (PLINT *, output)

Identification number of stripchart to use on plstripa and plstripd.

xspec (char *, input)

X-axis specification as in plbox.

yspec (char *, input)

Y-axis specification as in plbox.

xmin (PLFLT, input)

Initial coordinates of plot box; they will change as data are added.

xmax (PLFLT, input)

Initial coordinates of plot box; they will change as data are added.

xjump (PLFLT, input)

When x attains xmax , the length of the plot is multiplied by the factor (1 + xjump).

ymin (PLFLT, input)

Initial coordinates of plot box; they will change as data are added.

208

Chapter 19. The Common API for PLplot

ymax (PLFLT, input)

Initial coordinates of plot box; they will change as data are added.

xlpos (PLFLT, input)

X legend box position (range from 0 to 1).

ylpos (PLFLT, input)

Y legend box position (range from 0 to 1).

y_ascl (PLBOOL, input)

Autoscale y between x jumps if y_ascl is true, otherwise not.

acc (PLBOOL, input)

Accumulate strip plot if acc is true, otherwise slide display.

colbox (PLINT, input)

Plot box color index (cmap0).

collab (PLINT, input)

Legend color index (cmap0).

colline (PLINT *, input)

Pointer to array with color indices (cmap0) for the 4 pens.

styline (PLINT *, input)

Pointer to array with line styles for the 4 pens.

legline (char **, input)

Pointer to character array containing legends for the 4 pens.

labx (char *, input)

X-axis label.

laby (char *, input)

Y-axis label.

labtop (char *, input)

Plot title.

Redacted form:

Ĺ General: plstripc(id, xspec, yspec, xmin, xmax, xjump, ymin, ymax, xlpos, ylpos,

y_ascl, acc, colbox, collab, colline, styline, legline, labx, laby, labz)

Ĺ Perl/PDL: plstripc(xmin, xmax, xjump, ymin, ymax, xlpos, ylpos, y_ascl, acc, colbox,

collab, colline, styline, id, xspec, ypsec, legline, labx, laby, labtop)

This function is used in example 17.

209

Chapter 19. The Common API for PLplot

plstripd: Deletes and releases memory used by a stripchart

plstripd (id);

Deletes and releases memory used by a stripchart.

id (PLINT, input)

Identification number of stripchart to delete.

Redacted form: plstripd(id)

This function is used in example 17.

plstyl: Set line style

plstyl (nels , mark , space);

This sets up the line style for all lines subsequently drawn. A line consists of segments in which

the pen is alternately down and up. The lengths of these segments are passed in the arrays mark

and space respectively. The number of mark-space pairs is specified by nels . In order to return

the line style to the default continuous line, plstyl should be called with nels=0.(see also pllsty)

nels (PLINT, input)

The number of mark and space elements in a line. Thus a simple broken line can be obtained

by setting nels=1. A continuous line is specified by setting nels=0.

mark (PLINT *, input)

Pointer to array with the lengths of the segments during which the pen is down, measured

in micrometers.

space (PLINT *, input)

Pointer to array with the lengths of the segments during which the pen is up, measured in

micrometers.

Redacted form: plstyl(mark, space)

This function is used in examples 1,9,14.

plsurf3d: Plot shaded 3-d surface plot

plsurf3d (x , y , z , nx , ny , opt , clevel , nlevel);

Plots a three dimensional shaded surface plot within the environment set up by plw3d. The

surface is defined by the two-dimensional array z[nx][ny], the point z[i][j] being the value of

210

Chapter 19. The Common API for PLplot

the function at (x[i], y[j]). Note that the points in arrays x and y do not need to be equally

spaced, but must be stored in ascending order. For further details see the Section called Three

Dimensional Surface Plots in Chapter 3.

x (PLFLT *, input)

Pointer to set of x coordinate values at which the function is evaluated.

y (PLFLT *, input)

Pointer to set of y coordinate values at which the function is evaluated.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array with set of function values.

nx (PLINT, input)

Number of x values at which function is evaluated.

ny (PLINT, input)

Number of y values at which function is evaluated.

opt (PLINT, input)

Determines the way in which the surface is represented. To specify more than one option

just add the options, e.g. FACETED + SURF_CONT

Ĺ opt=FACETED: Network of lines is drawn connecting points at which function is defined.

Ĺ opt=BASE_CONT: A contour plot is drawn at the base XY plane using parameters nlevel

and clevel .

Ĺ opt=SURF_CONT: A contour plot is drawn at the surface plane using parameters nlevel and

clevel .

Ĺ opt=DRAW_SIDES: draws a curtain between the base XY plane and the borders of the plotted

function.

Ĺ opt=MAG_COLOR: the surface is colored according to the value of Z; if MAG_COLOR is not used,

then the default the surface is colored according to the intensity of the reflected light in

the surface from a light source whose position is set using pllightsource.

clevel (PLFLT *, input)

Pointer to the array that defines the contour level spacing.

nlevel (PLINT, input)

Number of elements in the clevel array.

Redacted form: plsurf3d(x, y, z, opt, clevel)

This function is not used in any examples.

plfsurf3d: Plot shaded 3-d surface plot

plsurf3d (x , y , zops , zp , nx , ny , opt , clevel , nlevel);

211

Chapter 19. The Common API for PLplot

Plots a three dimensional shaded surface plot within the environment set up by plw3d. The surface

is defined by the data contained in the 2D PLFLT ** matrix or the PLfGrid2 structure zp . How the

data in zp is rendered is determined by the zops parameter. zops is a pointer to a function that

reads the data out of the grid structure. The following functions in PLplot core will return an

appropriate function pointer: plf2ops_c() (use when zp is of type PLFLT **), plf2ops_grid_c()

(use when zp is a pointer to a row-major PLfGrid2 structure), plf2ops_grid_row_major() (same as

plf2ops_grid_c()?) and plf2ops_grid_col_major() (use when zp is a pointer to a column-major

PLfGrid2 structure). nx , ny opt clevel and nlevel are the same as in for example plsurf3d.

x (PLFLT *, input)

Pointer to set of x coordinate values at which the function is evaluated.

y (PLFLT *, input)

Pointer to set of y coordinate values at which the function is evaluated.

zops (void (*) (?), input)

Pointer to a function for processing the data contained in zp.

zp (PLFLT ** or PLfGrid2 *, input)

Pointer to the data to be plotted, either as a vectored two-dimensional array with set of

function values, or as PLfGrid2 structure.

nx (PLINT, input)

Number of x values at which function is evaluated.

ny (PLINT, input)

Number of y values at which function is evaluated.

opt (PLINT, input)

Determines the way in which the surface is represented. To specify more than one option

just add the options, e.g. FACETED + SURF_CONT

Ĺ opt=FACETED: Network of lines is drawn connecting points at which function is defined.

Ĺ opt=BASE_CONT: A contour plot is drawn at the base XY plane using parameters nlevel

and clevel .

Ĺ opt=SURF_CONT: A contour plot is drawn at the surface plane using parameters nlevel and

clevel .

Ĺ opt=DRAW_SIDES: draws a curtain between the base XY plane and the borders of the plotted

function.

Ĺ opt=MAG_COLOR: the surface is colored according to the value of Z; if MAG_COLOR is not used,

then the default the surface is colored according to the intensity of the reflected light in

the surface from a light source whose position is set using pllightsource.

clevel (PLFLT *, input)

Pointer to the array that defines the contour level spacing.

212

Chapter 19. The Common API for PLplot

nlevel (PLINT, input)

Number of elements in the clevel array.

Redacted form? plfsurf3d(x, y, zops, zp, opt, clevel)

This function is used in example 8.

plsvect: Set arrow style for vector plots

plsvect (arrowx , arrowy , npts , fill);

Set the style for the arrow used by plvect to plot vectors.

arrowx, arrowy (PLFLT *,input)

Pointers to a pair of arrays containing the x and y points which make up the arrow. The

arrow is plotted by joining these points to form a polygon. The scaling assumes that the x

and y points in the arrow lie in the range -0.5 <= x,y <= 0.5.

npts (PLINT,input)

Number of points in the arrays arrowx and arrowy .

fill (PLBOOL,input)

If fill is true then the arrow is closed, if fill is false then the arrow is open.

Redacted form: plsvect(arrowx, arrowy, fill)

This function is used in example 22.

plsvpa: Specify viewport in absolute coordinates

plsvpa (xmin , xmax , ymin , ymax);

Alternate routine to plvpor for setting up the viewport. This routine should be used only if the

viewport is required to have a definite size in millimeters. The routine plgspa is useful for finding

out the size of the current subpage.

xmin (PLFLT, input)

The distance of the left-hand edge of the viewport from the left-hand edge of the subpage in

millimeters.

xmax (PLFLT, input)

The distance of the right-hand edge of the viewport from the left-hand edge of the subpage

in millimeters.

213

Chapter 19. The Common API for PLplot

ymin (PLFLT, input)

The distance of the bottom edge of the viewport from the bottom edge of the subpage in

millimeters.

ymax (PLFLT, input)

The distance of the top edge of the viewport from the bottom edge of the subpage in mil-

limeters.

Redacted form: plsvpa(xmin, xmax, ymin, ymax)

This function is used in example 10.

plsxax: Set x axis parameters

plsxax (digmax , digits);

Sets values of the digmax and digits flags for the x axis. See the Section called Annotating the

Viewport in Chapter 3 for more information.

digmax (PLINT, input)

Variable to set the maximum number of digits for the x axis. If nonzero, the printed label

will be switched to a floating point representation when the number of digits exceeds digmax .

digits (PLINT, input)

Field digits value. Currently, changing its value here has no effect since it is set only by plbox

or plbox3. However, the user may obtain its value after a call to either of these functions

by calling plgxax.

Redacted form: plsxax(digmax, digits)

This function is used in example 31.

plsyax: Set y axis parameters

plsyax (digmax , digits);

Identical to plsxax, except that arguments are flags for y axis. See the description of plsxax for

more detail.

digmax (PLINT, input)

Variable to set the maximum number of digits for the y axis. If nonzero, the printed label

will be switched to a floating point representation when the number of digits exceeds digmax .

214

Chapter 19. The Common API for PLplot

digits (PLINT, input)

Field digits value. Currently, changing its value here has no effect since it is set only by plbox

or plbox3. However, the user may obtain its value after a call to either of these functions

by calling plgyax.

Redacted form: plsyax(digmax, digits)

This function is used in examples 1,14,31.

plsym: Plot a glyph at the specified points

plsym (n , x , y , code);

Plot a glyph at the specified points. (This function is largely superseded by plstring which gives

access to many[!] more glyphs.)

n (PLINT, input)

Number of points in the x and y arrays.

x (PLFLT *, input)

Pointer to an array with X coordinates of points.

y (PLFLT *, input)

Pointer to an array with Y coordinates of points.

code (PLINT, input)

Hershey symbol code corresponding to a glyph to be plotted at each of the n points.

Redacted form: plsym(x, y, code)

This function is used in example 7.

plszax: Set z axis parameters

plszax (digmax , digits);

Identical to plsxax, except that arguments are flags for z axis. See the description of plsxax for

more detail.

digmax (PLINT, input)

Variable to set the maximum number of digits for the z axis. If nonzero, the printed label

will be switched to a floating point representation when the number of digits exceeds digmax .

215

Chapter 19. The Common API for PLplot

digits (PLINT, input)

Field digits value. Currently, changing its value here has no effect since it is set only by plbox

or plbox3. However, the user may obtain its value after a call to either of these functions

by calling plgzax.

Redacted form: plszax(digmax, digits)

This function is used in example 31.

pltext: Switch to text screen

pltext ();

Sets an interactive device to text mode, used in conjunction with plgra to allow graphics and

text to be interspersed. On a device which supports separate text and graphics windows, this

command causes control to be switched to the text window. This can be useful for printing

diagnostic messages or getting user input, which would otherwise interfere with the plots. The

program must switch back to the graphics window before issuing plot commands, as the text

(or console) device will probably become quite confused otherwise. If already in text mode, this

command is ignored. It is also ignored on devices which only support a single window or use a

different method for shifting focus (see also plgra).

Redacted form: pltext()

This function is used in example 1.

pltimefmt: Set format for date / time labels

pltimefmt (fmt);

Sets the format for date / time labels. To enable date / time format labels see the options to

plbox and plenv.

fmt (const char *, fmt)

This string is passed directly to the system strftime. See the system documentation for a full

list of conversion specifications for your system. All conversion specifications take the form

of a ’%’ character followed by further conversion specification character. All other text is

printed as-is. Common options include:

Ĺ %c: The preferred date and time representation for the current locale.

Ĺ %d: The day of the month as a decimal number.

Ĺ %H: The hour as a decimal number using a 24-hour clock.

Ĺ %j: The day of the year as a decimal number.

Ĺ %m: The month as a decimal number.

216

Chapter 19. The Common API for PLplot

Ĺ %M: The minute as a decimal number.

Ĺ %S: The second as a decimal number.

Ĺ %y: The year as a decimal number without a century.

Ĺ %Y: The year as a decimal number including a century.

Redacted form: pltimefmt(fmt)

This function is used in example 29.

plvasp: Specify viewport using aspect ratio only

plvasp (aspect);

Sets the viewport so that the ratio of the length of the y axis to that of the x axis is equal to

aspect .

aspect (PLFLT, input)

Ratio of length of y axis to length of x axis.

Redacted form: plvasp(aspect)

This function is used in example 13.

plvect: Vector plot

plvect (u , v , nx , ny , scale , pltr , pltr_data);

Draws a vector plot of the vector (u[nx][ny],v[nx][ny]). The scaling factor for the vectors is

given by scale . A transformation routine pointed to by pltr with a pointer pltr_data for additional

data required by the transformation routine is used to map indices within the array to the world

coordinates. The style of the vector arrow may be set using plsvect.

u, v (PLFLT **, input)

Pointers to a pair of vectored two-dimensional arrays containing the x and y components of

the vector data to be plotted.

nx, ny (PLINT, input)

Physical dimensions of the arrays u and v .

scale (PLFLT, input)

Parameter to control the scaling factor of the vectors for plotting. If scale = 0 then the

scaling factor is automatically calculated for the data. If scale < 0 then the scaling factor is

automatically calculated for the data and then multiplied by -scale . If scale > 0 then the

scaling factor is set to scale .

217

Chapter 19. The Common API for PLplot

pltr (void (*) (PLFLT, PLFLT, PLFLT *, PLFLT *, PLPointer) , input)

Pointer to function that defines transformation between indices in array z and the world

coordinates (C only). Transformation functions are provided in the PLplot library: pltr0 for

identity mapping, and pltr1 and pltr2 for arbitrary mappings respectively defined by one-

and two-dimensional arrays. In addition, user-supplied routines for the transformation can

be used as well. Examples of all of these approaches are given in the Section called Contour

Plots from C in Chapter 3. The transformation function should have the form given by any

of pltr0, pltr1, or pltr2.

pltr_data (PLPointer, input)

Extra parameter to help pass information to pltr0, pltr1, pltr2, or whatever routine that

is externally supplied.

Redacted form: plvect(u, v, scale, pltr, pltr_data)

This function is used in example 22.

plvpas: Specify viewport using coordinates and aspect ratio

plvpas (xmin , xmax , ymin , ymax , aspect);

Device-independent routine for setting up the viewport. The viewport is chosen to be the largest

with the given aspect ratio that fits within the specified region (in terms of normalized subpage

coordinates). This routine is functionally equivalent to plvpor when a “natural” aspect ratio (0.0)

is chosen. Unlike plvasp, this routine reserves no extra space at the edges for labels.

xmin (PLFLT, input)

The normalized subpage coordinate of the left-hand edge of the viewport.

xmax (PLFLT, input)

The normalized subpage coordinate of the right-hand edge of the viewport.

ymin (PLFLT, input)

The normalized subpage coordinate of the bottom edge of the viewport.

ymax (PLFLT, input)

The normalized subpage coordinate of the top edge of the viewport.

aspect (PLFLT, input)

Ratio of length of y axis to length of x axis.

Redacted form: plvpas(xmin, xmax, ymin, ymax, aspect)

This function is used in example 9.

218

Chapter 19. The Common API for PLplot

plvpor: Specify viewport using coordinates

plvpor (xmin , xmax , ymin , ymax);

Device-independent routine for setting up the viewport. This defines the viewport in terms of

normalized subpage coordinates which run from 0.0 to 1.0 (left to right and bottom to top) along

each edge of the current subpage. Use the alternate routine plsvpa in order to create a viewport

of a definite size.

xmin (PLFLT, input)

The normalized subpage coordinate of the left-hand edge of the viewport.

xmax (PLFLT, input)

The normalized subpage coordinate of the right-hand edge of the viewport.

ymin (PLFLT, input)

The normalized subpage coordinate of the bottom edge of the viewport.

ymax (PLFLT, input)

The normalized subpage coordinate of the top edge of the viewport.

Redacted form: plvpor(xmin, xmax, ymin, ymax)

This function is used in examples 2,6-8,10,11,15,16,18,21,23,24,26,27,31.

plvsta: Select standard viewport

plvsta ();

Sets up a standard viewport, leaving a left-hand margin of seven character heights, and four

character heights around the other three sides.

Redacted form: plvsta()

This function is used in examples 1,12,14,17,25,29.

plw3d: Set up window for 3-d plotting

plw3d (basex , basey , height , xmin , xmax , ymin , ymax , zmin , zmax , alt , az);

Sets up a window for a three-dimensional surface plot within the currently defined

two-dimensional window. The enclosing box for the surface plot defined by xmin , xmax , ymin ,

ymax , zmin and zmax in user-coordinate space is mapped into a box of world coordinate size basex

by basey by height so that xmin maps to -basex/2, xmax maps to basex/2, ymin maps to -basey/2,

ymax maps to basey/2, zmin maps to 0 and zmax maps to height . The resulting world-coordinate

219

Chapter 19. The Common API for PLplot

box is then viewed by an observer at altitude alt and azimuth az . This routine must be called

before plbox3 or plot3d. For a more complete description of three-dimensional plotting see the

Section called Three Dimensional Surface Plots in Chapter 3.

basex (PLFLT, input)

The x coordinate size of the world-coordinate box.

basey (PLFLT, input)

The y coordinate size of the world-coordinate box.

height (PLFLT, input)

The z coordinate size of the world-coordinate box.

xmin (PLFLT, input)

The minimum user x coordinate value.

xmax (PLFLT, input)

The maximum user x coordinate value.

ymin (PLFLT, input)

The minimum user y coordinate value.

ymax (PLFLT, input)

The maximum user y coordinate value.

zmin (PLFLT, input)

The minimum user z coordinate value.

zmax (PLFLT, input)

The maximum user z coordinate value.

alt (PLFLT, input)

The viewing altitude in degrees above the XY plane.

az (PLFLT, input)

The viewing azimuth in degrees. When az=0, the observer is looking face onto the ZX plane,

and as az is increased, the observer moves clockwise around the box when viewed from above

the XY plane.

Redacted form: plw3d(basex, basey, height, xmin, xmax, ymin, ymax, zmin, zmax, alt, az)

This function is examples 8,11,18,21.

plwid: Set pen width

plwid (width);

Sets the pen width.

220

Chapter 19. The Common API for PLplot

width (PLINT, input)

The desired pen width. If width is negative or the same as the previous value no action is

taken. width = 0 should be interpreted as as the minimum valid pen width for the device.

The interpretation of positive width values is also device dependent.

Redacted form: plwid(width)

This function is used in examples 1,2.

plwind: Specify world coordinates of viewport boundaries

plwind (xmin , xmax , ymin , ymax);

Sets up the world coordinates of the edges of the viewport.

xmin (PLFLT, input)

The world x coordinate of the left-hand edge of the viewport.

xmax (PLFLT, input)

The world x coordinate of the right-hand edge of the viewport.

ymin (PLFLT, input)

The world y coordinate of the bottom edge of the viewport.

ymax (PLFLT, input)

The world y coordinate of the top edge of the viewport.

Redacted form: plwind(xmin, xmax, ymin, ymax)

This function is used in examples 1,2,4,6-12,14-16,18,21,23-27,29,31.

plxormod: Enter or leave xor mode

plxormod (mode , status);

Enter (when mode is true) or leave (when mode is false) xor mode for those drivers (e.g., the xwin

driver) that support it. Enables erasing plots by drawing twice the same line, symbol, etc. If

driver is not capable of xor operation it returns a status of false.

mode (PLBOOL, input)

mode is true means enter xor mode and mode is false means leave xor mode.

status (PLBOOL *, output)

Pointer to status. Returned mode status of true (false) means driver is capable (incapable) of

xor mode.

Redacted form: plxormod(mode, status)

221

Chapter 19. The Common API for PLplot

This function is used in examples 1,20.

222

Chapter 20. The Specialized C API for PLplot

The purpose of this chapter is to document the PLPlot C functions that are currently not part of

the common API, either because they are C/C++ specific utility functions (e.g. plAlloc2dGrid,

plFree2dGrid) or because they are not easily implemented in other languages (e.g. plGetCursor).

Some of these functions are used in the examples and may be helpful for other users of plplot.

This chapter also documents some of the data types and structures defined by plplot and used

by the functions.

plabort: Error abort

plabort (message);

This routine is to be used when something goes wrong that doesn’t require calling plexit but

for which there is no useful recovery. It calls the abort handler defined via plsabort, does some

cleanup and returns. The user can supply his/her own abort handler and pass it in via plsabort.

message (char *, input)

Abort message.

This function is currently available in C, f77, f95 and python.

This function is used in example 20.

plAlloc2dGrid: Allocate a block of memory for use as a 2-d grid of type PLFLT.

plAlloc2dGrid (f , nx , ny);

Allocates a block of memory for use as a 2-d grid of type PLFLT. The grid is a vectored 2-d

C-style array and so can be accessed using syntax like *f[i][j]. The memory associated with the

grid must be freed by calling plFree2dGrid once it is no longer required.

f (PLFLT ***, output)

Pointer to a PLFLT grid. On success f will point to a pointer to the vectored 2-d array of

type PLFLT. If the allocation fails f will be NULL.

nx, ny (PLINT, input)

Dimensions of grid to be allocated.

This function is currently available in C, C++, perl and tk.

This function is used in examples 8, 9, 11, 14, 16, 20, 21, 22, 28, 30.

223

Chapter 20. The Specialized C API for PLplot

plClearOpts: Clear internal option table info structure.

plClearOpts ();

Clear the internal options table info structure. This removes any option added with plMergeOpts

as well as all default entries.

This function returns 0 on success.

This function is currently available in C, C++ and Ocaml.

This function is not used in any examples.

plexit: Error exit

plexit (message);

This routine is called in case an error is encountered during execution of a PLplot routine. It

prints the error message, tries to release allocated resources, calls the handler provided by plsexit

and then exits. If cleanup needs to be done in the driver program then the user may want to

supply his/her own exit handler and pass it in via plsexit. This function should either call plend

before exiting, or simply return.

message (char *, input)

Error message.

This function is currently available in C and ada.

This function is not used in any examples.

plFree2dGrid: Free the memory associated with a 2-d grid allocated using

plAlloc2dGrid.

plFree2dGrid (f , nx , ny);

Frees a block of memory allocated using plAlloc2dGrid.

f (PLFLT **, input)

PLFLT grid to be freed.

nx, ny (PLINT, input)

Dimensions of grid to be freed.

This function is currently available in C, C++, perl and tk.

This function is used in examples 8, 9, 11, 14, 16, 20, 21, 22, 28, 30.

224

Chapter 20. The Specialized C API for PLplot

plGetCursor: Wait for graphics input event and translate to world coordinates.

int plGetCursor (gin);

Wait for graphics input event and translate to world coordinates. Returns 0 if no translation to

world coordinates is possible.

gin (PLGraphicsIn *, output)

Pointer to PLGraphicsIn structure which will contain the output. The structure is not allo-

cated by the routine and must exist before the function is called.

This function returns 1 on success and 0 if no translation to world coordinates is possible.

This function is currently only available with the C, C++, Ocaml, Octave, Perl, Python and Ada

language bindings.

This function is used in examples 1 and 20.

plgfile: Get output file handle

plgfile (file);

Gets the current output file handle, if applicable.

file (FILE **, output)

File pointer to current output file.

This function is currently available in C, C++ and Ocaml.

This function is not used in any examples.

plMergeOpts: Merge use option table into internal info structure.

int plMergeOpts (options , name , notes);

Merges in a set of user supplied command line options with the internal options table. This allows

use options to be used along with the built-in plplot options to set device driver, output file etc.

See plparseopts for details of how to parse these options in a program.

options (PLOptionTable *, input)

User option table to merge.

name (const char *name, input)

Label to preface the options in the program help.

225

Chapter 20. The Specialized C API for PLplot

notes (const char **, input)

A null-terminated array of notes which appear after the options in the program help.

This function is currently available in C, C++ and Ocaml.

This function is used in examples 1, 8, 16, 20 and 21.

plMinMax2dGrid: Find the minimum and maximum of a 2d grid allocated using

plAlloc2dGrid.

plMinMax2dGrid (f , nx , ny , fmax , fmin);

Find the minimum and maximum of a 2d grid allocated using plAlloc2dGrid.

f (PLFLT **, input)

PLFLT grid to find the maximum / minimum of.

nx, ny (PLINT, input)

Dimensions of f.

fmax, fmin (PLFLT *, output)

Maximum and minimum values in the grid f.

This function is currently available in C, C++, Java, Ocaml and Python.

This function is used in examples 8, 11, 20 and 21.

plOptUsage: Print usage and syntax message.

plOptUsage ();

Prints the usage and syntax message. The message can also be display using the -h command

line option. There is a default message describing the default plplot options. The usage message

is also modified by plSetUsage and plMergeOpts.

program_string (const char *, input)

String to appear as the name of program.

usage_string (const char *, input)

String to appear as the usage text.

This function is currently available in C, C++, Java, Ocaml, Octave and Python.

This function is not used in any examples.

226

Chapter 20. The Specialized C API for PLplot

plMergeOpts: Reset internal option table info structure.

plResetOpts ();

Resets the internal command line options table to the default builtin value. Any user options

added with plMergeOpts will be cleared. See plparseopts for details of how to parse these options

in a program.

This function is currently available in C, C++, Java, Ocaml and Octave, although it is not much

use in Java or Octave since they don’t have plMergeOpts.

This function is not used in any examples.

plsabort: Set abort handler

plsabort (handler);

Sets an optional user abort handler. See plabort for details.

handler (void (*) (char *), input)

Error abort handler.

This function is currently available in C and Ocaml.

This function is not used in any examples.

plSetUsage: Set the strings used in usage and syntax messages.

plSetUsage (program_string , usage_string);

Sets the program string and usage string displayed by the command line help option (-h) and by

plOptUsage.

program_string (const char *, input)

String to appear as the name of program.

usage_string (const char *, input)

String to appear as the usage text.

This function is currently available in C, C++, Java, Ocaml, Octave and Python.

This function is not used in any examples.

227

Chapter 20. The Specialized C API for PLplot

plsexit: Set exit handler

plsexit (handler);

Sets an optional user exit handler. See plexit for details.

handler (int (*) (char *), input)

Error exit handler.

This function is currently available in C, C++ and Ocaml.

This function is not used in any examples.

plsfile: Set output file handle

plsfile (file);

Sets the current output file handle, if applicable. If the file has has not been previously opened

and is required by the driver, the user will be prompted for the file name. This routine, if used,

must be called before initializing PLplot.

file (FILE *, input)

File pointer. The type (i.e. text or binary) doesn’t matter on *ix systems. On systems where

it might matter it should match the type of file that the output driver would produce, i.e.

text for the postscript driver.

This function is currently available in C, C++ and Ocaml.

This function is not used in any examples.

pltr0: Identity transformation for grid to world mapping

pltr0 (x , y , tx , ty , pltr_data);

Identity transformation for grid to world mapping. This routine can be used both for plcont and

plshade. See also the Section called Contour Plots from C in Chapter 3 and the Section called

Shade Plots from C in Chapter 3.

x (PLFLT, input)

X-position in grid coordinates.

y (PLFLT, input)

Y-position in grid coordinates.

228

Chapter 20. The Specialized C API for PLplot

tx (PLFLT *, output)

X-position in world coordinates.

ty (PLFLT *, output)

Y-position in world coordinates.

pltr_data (PLPointer, input)

Pointer to additional input data that is passed as an argument to plcont or plshade and

then on to the grid to world transformation routine.

This function is currently available in C, C++, Ocaml, Perl, Python and Tcl.

This function is not used in any examples.

pltr1: Linear interpolation for grid to world mapping using singly dimensioned

coord arrays

pltr1 (x , y , tx , ty , pltr_data);

Linear interpolation for grid to world mapping using singly dimensioned coord arrays. This routine

can be used both for plcont and plshade. See also the Section called Contour Plots from C in

Chapter 3 and the Section called Shade Plots from C in Chapter 3.

x (PLFLT, input)

X-position in grid coordinates.

y (PLFLT, input)

Y-position in grid coordinates.

tx (PLFLT *, output)

X-position in world coordinates.

ty (PLFLT *, output)

Y-position in world coordinates.

pltr_data (PLPointer, input)

Pointer to additional input data that is passed as an argument to plcont or plshade and

then on to the grid to world transformation routine.

This function is currently available in C, C++, Ocaml, Perl, Python and Tcl.

This function is used in examples 9 and 16.

pltr2: Linear interpolation for grid to world mapping using doubly dimensioned

coord arrays (column dominant, as per normal C 2d arrays)

pltr2 (x , y , tx , ty , pltr_data);

229

Chapter 20. The Specialized C API for PLplot

Linear interpolation for grid to world mapping using doubly dimensioned coord arrays (column

dominant, as per normal C 2d arrays). This routine can be used both for plcont and plshade. See

also the Section called Contour Plots from C in Chapter 3 and the Section called Shade Plots

from C in Chapter 3.

x (PLFLT, input)

X-position in grid coordinates.

y (PLFLT, input)

Y-position in grid coordinates.

tx (PLFLT *, output)

X-position in world coordinates.

ty (PLFLT *, output)

Y-position in world coordinates.

pltr_data (PLPointer, input)

Pointer to additional input data that is passed as an argument to plcont or plshade and

then on to the grid to world transformation routine.

This function is currently available in C, C++, Ocaml, Perl, Python and Tcl.

This function is used in example 22.

PLGraphicsIn: PLplot Graphics Input structure

The PLGraphicsIn structure is used by plGetCursor to return information on the current cursor

position and key / button state for interactive drivers. The structure contains the following fields:

type (int)

Type of event (currently unused?).

state (unsigned int)

Key or button mask.

keysym (unsigned int)

Key selected.

button (unsigned int)

Mouse button selected.

subwindow (PLINT)

Subwindow (or subpage / subplot) number.

string (char [PL_MAXKEY])

Translated string.

230

Chapter 20. The Specialized C API for PLplot

pX, pY (int)

Absolute device coordinates of pointer.

dX, dY (PLFLT)

relative device coordinates of pointer.

wX, wY (PLFLT)

World coordinates of pointer.

PLOptionTable: PLplot command line options table structure

The PLOptionTable structure is used by plMergeOpts to pass information on user-defined com-

mand line options to plplot. The structure contains the following fields:

opt (const char*)

Name of option.

handler (int (*func) (const char *, const char *, void *))

User-defined handler function to be called when option is set. A NULL value indicates that

no user-defined handler is required.

client_data (void *)

Pointer to client data. A NULL value indicates that no client data is required.

var (void *)

Pointer to variable to set to the value specified on the command line option.

mode (long)

Type of variable var . Allowed values are PL_OPT_FUNC, PL_OPT_BOOL,

PL_OPT_INT, PL_OPT_FLOAT, PL_OPT_STRING.

syntax (const char *)

Syntax for option (used in the usage message).

desc (const char *)

Description of the option (used in the usage message).

231

Chapter 20. The Specialized C API for PLplot

232

Chapter 21. The Specialized Fortran 95 API

for PLplot

The purpose of this Chapter is to document the API for each Fortran 95 function in PLplot

that differs substantially (usually in argument lists) from the common API that has already been

documented in Chapter 19.

Normally, the common API is wrapped in such a way for Fortran 95 that there is and one-to-one

correspondence between each Fortran 95 and C argument with the exception of arguments that

indicate array sizes (see Chapter 11 for discussion). However, for certain routines documented in

this chapter the Fortran 95 argument lists necessarily differ substantially from the C versions.

This chapter is incomplete and NEEDS DOCUMENTATION.

plcont: Contour plot for Fortran 95

This is an overloaded function with a variety of argument lists:

interface plcont

subroutine plcontour_0(z,kx,lx,ky,ly,clevel)

integer :: kx,lx,ky,ly

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

end subroutine plcontour_0

subroutine plcontour_1(z,kx,lx,ky,ly,clevel,xg,yg)

integer :: kx,lx,ky,ly

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

real(kind=plflt), dimension(:) :: xg

real(kind=plflt), dimension(:) :: yg

end subroutine plcontour_1

subroutine plcontour_2(z,kx,lx,ky,ly,clevel,xg,yg)

integer :: kx,lx,ky,ly

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

real(kind=plflt), dimension(:,:) :: xg

real(kind=plflt), dimension(:,:) :: yg

end subroutine plcontour_2

subroutine plcontour_tr(z,kx,lx,ky,ly,clevel,tr)

integer :: kx,lx,ky,ly

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

real(kind=plflt), dimension(6) :: tr

end subroutine plcontour_tr

subroutine plcontour_0_all(z,clevel)

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

233

Chapter 21. The Specialized Fortran 95 API for PLplot

end subroutine plcontour_0_all

subroutine plcontour_1_all(z,clevel,xg,yg)

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

real(kind=plflt), dimension(:) :: xg

real(kind=plflt), dimension(:) :: yg

end subroutine plcontour_1_all

subroutine plcontour_2_all(z,clevel,xg,yg)

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

real(kind=plflt), dimension(:,:) :: xg

real(kind=plflt), dimension(:,:) :: yg

end subroutine plcontour_2_all

subroutine plcontour_tr_all(z,clevel,tr)

real(kind=plflt), dimension(:,:) :: z

real(kind=plflt), dimension(:) :: clevel

real(kind=plflt), dimension(6) :: tr

end subroutine plcontour_tr_all

end interface

When called from Fortran 95, this overloaded routine has the same effect as when invoked from

C. See examples/f95/x??f.f90 for various ways to call plcont from Fortran 95.

The meaning of the various arguments is as follows:

z (real(kind=plflt), dimension(:,:), input)

Matrix containing the values to be plotted.

kx, lx (integer, input)

Range for the first index in the matrix z to consider. If not given, then the whole first index

is considered.

clevel (real(kind=plflt), dimension(:), input)

Levels at which the contours are computed and drawn.

kx, lx (integer, input)

Range for the first index in the matrix z to consider. If not given, then the whole first index

is considered.

ky, ly (integer, input)

Range for the second index in the matrix z to consider. If not given, then the whole second

index is considered.

xg (real(kind=plft), dimension(:) or real(kind=plft), dimension(:,:), input)

The x-coordinates for the grid lines (if one-dimensional) or the x-coordinates of the grid

vertices (if two-dimensional). The values in the matrix are plotted at these coordinates. If

not given, implicit coordinates are used (equal to the indices in the matrix).

234

Chapter 21. The Specialized Fortran 95 API for PLplot

yg (real(kind=plft), dimension(:) or real(kind=plft), dimension(:,:), input)

The y-coordinates for the grid lines (if one-dimensional) or the x-coordinates of the grid

vertices (if two-dimensional). The values in the matrix are plotted at these coordinates.

tr (real(kind=plft), dimension(6), input)

The coefficients of an affine transformation:

x = tr(1) * ix + tr(2) * iy + tr(3)

y = tr(4) * ix + tr(5) * iy + tr(6)

The indices of the matrix element are used to compute the "actual" coordinates according

to the above formulae.

plshade: Shaded plot for Fortran 95

This is an overloaded function with a variety of argument lists which NEED DOCUMENTATION.

When called from Fortran 95, this overloaded routine has the same effect as when invoked from

C. See examples/f95/x??f.f90 for various ways to call plshade from Fortran 95.

plshades: Continuously shaded plot for Fortran 95

This is an overloaded function with a variety of argument lists which NEED DOCUMENTATION.

When called from Fortran 95, this overloaded routine has the same effect as when invoked from

C. See examples/f95/x??f.f90 for various ways to call plshades from Fortran 95.

plvect: Vector plot for Fortran 95

This is an overloaded function with a variety of argument lists which NEED DOCUMENTATION.

When called from Fortran 95, this overloaded routine has the same effect as when invoked from

C. See examples/f95/x??f.f90 for various ways to call plvect from Fortran 95.

plmesh: Plot surface mesh for Fortran 95

plmesh (x , y , z , nx , ny , opt , mx);

When called from Fortran 95, this routine has the same effect as when invoked from C. The inter-

pretation of all parameters (see plmesh) is also the same except there is an additional parameter

given by:

mx (PLINT, input)

Length of array in x direction, for plotting subarrays.

235

Chapter 21. The Specialized Fortran 95 API for PLplot

plot3d: Plot 3-d surface plot for Fortran 95

plot3d (x , y , z , nx , ny , opt , side , mx);

When called from Fortran 95, this routine has the same effect as when invoked from C. The inter-

pretation of all parameters (see plot3d) is also the same except there is an additional parameter

given by:

mx (PLINT, input)

Length of array in x direction, for plotting subarrays.

plparseopts: parse arguments for Fortran 95

plparseopts (mode);

When called from Fortran 95, this routine has the same effect as when invoked from C (see

plparseopts) except that the argument list just contains the parsing mode and the Fortran 95

system routines iargc and getarg are used internally to obtain the number of arguments and

argument values. (Note, during configuration, the user’s Fortran 95 compiler is checked to see

whether it supports iargc and getarg. If it does not, the Fortran 95 plparseopts simply writes a

warning message and returns.

mode (PLINT, input)

Parsing mode; see plparseopts for details.

plsesc: Set the escape character for text strings for Fortran 95

plsesc (esc);

Set the escape character for text strings. From Fortran 95 it needs to be the decimal ASCII value.

Only selected characters are allowed to prevent the user from shooting himself in the foot (For

example, a “\” isn’t allowed since it conflicts with C’s use of backslash as a character escape).

Here are the allowed escape characters and their corresponding decimal ASCII values:

Ĺ “!”, ASCII 33

Ĺ “#”, ASCII 35

Ĺ “$”, ASCII 36

Ĺ “%”, ASCII 37

Ĺ “&”, ASCII 38

236

Chapter 21. The Specialized Fortran 95 API for PLplot

Ĺ “*”, ASCII 42

Ĺ “@”, ASCII 64

Ĺ “^”, ASCII 94

Ĺ “~”, ASCII 126

esc (char, input)

NEEDS DOCUMENTATION

237

Chapter 21. The Specialized Fortran 95 API for PLplot

238

Chapter 22. The Specialized Fortran 77 API

for PLplot

The purpose of this Chapter is to document the API for each Fortran 77 function in PLplot

that differs substantially (usually in argument lists) from the common API that has already been

documented in Chapter 19.

Normally, the common API is wrapped in such a way for Fortran 77 that there is and one-to-

one correspondence between each Fortran 77 and C argument (see Chapter 10 for discussion).

However, for certain routines documented in this chapter the Fortran 77 argument lists necessarily

differ substantially from the C versions.

This chapter is incomplete and NEEDS DOCUMENTATION of, e.g., the Fortran 77 equivalent

of the plshade C routines.

plcon0: Contour plot, identity mapping for Fortran 77

plcon0 (z , nx , ny , kx , lx , ky , ly , clevel , nlevel);

Draws a contour plot of the data in z[nx][ny], using the nlevel contour levels specified by clevel .

Only the region of the array from kx to lx and from ky to ly is plotted out. See the Section called

Contour and Shade Plots in Chapter 3 for more information.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array containing data to be contoured.

nx, ny (PLINT, input)

Physical dimensions of array z .

kx, lx (PLINT, input)

Range of x indices to consider.

ky, ly (PLINT, input)

Range of y indices to consider.

clevel (PLFLT *, input)

Pointer to array specifying levels at which to draw contours.

nlevel (PLINT, input)

Number of contour levels to draw.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead

call plcont using the built-in transformation function pltr0 for the same capability.

239

Chapter 22. The Specialized Fortran 77 API for PLplot

plcon1: Contour plot, general 1-d mapping for Fortran 77

plcon1 (z , nx , ny , kx , lx , ky , ly , clevel , nlevel , xg , yg);

Draws a contour plot of the data in z[nx][ny], using the nlevel contour levels specified by clevel .

Only the region of the array from kx to lx and from ky to ly is plotted out. The arrays xg and

yg are used to specify the transformation between array indices and world coordinates. See the

Section called Contour and Shade Plots in Chapter 3 for more information.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array containing data to be contoured.

nx, ny (PLINT, input)

Physical dimensions of array z .

kx, lx (PLINT, input)

Range of x indices to consider.

ky, ly (PLINT, input)

Range of y indices to consider.

clevel (PLFLT *, input)

Pointer to array specifying levels at which to draw contours.

nlevel (PLINT, input)

Number of contour levels to draw.

xg, yg (PLFLT *, input)

Pointers to arrays which specify the transformation from array indices to world coordinates.

These must be one-dimensional arrays, used for a transformation of the form: tx = f(x), ty =

f(y). Function values at locations between grid points are obtained via linear interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead

call plcont using the built-in transformation function pltr1 for the same capability.

plcon2: Contour plot, general 2-d mapping for Fortran 77

plcon2 (z , nx , ny , kx , lx , ky , ly , clevel , nlevel , xg , yg);

Draws a contour plot of the data in z[nx][ny], using the nlevel contour levels specified by clevel .

Only the region of the array from kx to lx and from ky to ly is plotted out. The arrays xg and

yg are used to specify the transformation between array indices and world coordinates. See the

Section called Contour and Shade Plots in Chapter 3 for more information.

z (PLFLT **, input)

Pointer to a vectored two-dimensional array containing data to be contoured.

240

Chapter 22. The Specialized Fortran 77 API for PLplot

nx, ny (PLINT, input)

Physical dimensions of array z .

kx, lx (PLINT, input)

Range of x indices to consider.

ky, ly (PLINT, input)

Range of y indices to consider.

clevel (PLFLT *, input)

Pointer to array specifying levels at which to draw contours.

nlevel (PLINT, input)

Number of contour levels to draw.

xg, yg (PLFLT *, input)

Pointers to arrays which specify the transformation from array indices to world coordinates.

These must be two-dimensional arrays, used for a transformation of the form: tx = f(x,

y), ty = f(x, y). Function values at locations between grid points are obtained via linear

interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead

call plcont using the built-in transformation function pltr2 for the same capability.

plcont: Contour plot, fixed linear mapping for Fortran 77

plcont (z , nx , ny , kx , lx , ky , ly , clevel , nlevel);

When called from Fortran 77, this routine has the same effect as when invoked from C. The

interpretation of all parameters (see plcont) is also the same except there is no transformation

function supplied as the last parameter. Instead, a 6-element array specifying coefficients to use

in the transformation is supplied via the named common block plplot (see code). Since this

approach is somewhat inflexible, the user is recommended to call either of plcon0, plcon1, or

plcon2 instead.

plvec0: Vector plot, identity mapping for Fortran 77

plvec0 (u , v , nx , ny , scale);

Draws a vector plot of the data in (u[nx][ny], v[nx][ny]).

u, v (PLFLT **, input)

Pointer to a pair of vectored two-dimensional arrays containing the x and y components of

the vector to be plotted.

241

Chapter 22. The Specialized Fortran 77 API for PLplot

nx, ny (PLINT, input)

Physical dimensions of the arrays u and v .

scale (PLFLT, input)

Parameter to control the scaling factor of the vectors for plotting. If scale = 0 then the

scaling factor is automatically calculated for the data. If scale < 0 then the scaling factor is

automatically calculated for the data and then multiplied by -scale . If scale > 0 then the

scaling factor is set to scale .

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead

call plvect using the built-in transformation function pltr0 for the same capability.

plvec1: Vector plot, general 1-d mapping for Fortran 77

plvec1 (u , v , nx , ny , scale , xg , yg);

Draws a vector plot of the data in (u[nx][ny], v[nx][ny]).

u, v (PLFLT **, input)

Pointer to a pair of vectored two-dimensional arrays containing the x and y components of

the vector to be plotted.

nx, ny (PLINT, input)

Physical dimensions of the arrays u and v .

scale (PLFLT, input)

Parameter to control the scaling factor of the vectors for plotting. If scale = 0 then the

scaling factor is automatically calculated for the data. If scale < 0 then the scaling factor is

automatically calculated for the data and then multiplied by -scale . If scale > 0 then the

scaling factor is set to scale .

xg, yg (PLFLT *, input)

Pointers to arrays which specify the transformation from array indices to world coordinates.

These must be one-dimensional arrays, used for a transformation of the form: tx = f(x), ty =

f(y). Function values at locations between grid points are obtained via linear interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead

call plvect using the built-in transformation function pltr1 for the same capability.

plvec2: Vector plot, general 2-d mapping for Fortran 77

plvec2 (u , v , nx , ny , scale , xg , yg);

Draws a vector plot of the data in (u[nx][ny], v[nx][ny]).

242

Chapter 22. The Specialized Fortran 77 API for PLplot

u, v (PLFLT **, input)

Pointer to a pair of vectored two-dimensional arrays containing the x and y components of

the vector to be plotted.

nx, ny (PLINT, input)

Physical dimensions of the arrays u and v .

scale (PLFLT, input)

Parameter to control the scaling factor of the vectors for plotting. If scale = 0 then the

scaling factor is automatically calculated for the data. If scale < 0 then the scaling factor is

automatically calculated for the data and then multiplied by -scale . If scale > 0 then the

scaling factor is set to scale .

xg, yg (PLFLT *, input)

Pointers to arrays which specify the transformation from array indices to world coordinates.

These must be two-dimensional arrays, used for a transformation of the form: tx = f(x,

y), ty = f(x, y). Function values at locations between grid points are obtained via linear

interpolation.

NOTE: this function is intended for use from a Fortran 77 caller only. The C user should instead

call plvect using the built-in transformation function pltr2 for the same capability.

plvect: Vector plot, fixed linear mapping for Fortran 77

plvect (u , v , nx , ny , scale);

When called from Fortran 77, this routine has the same effect as when invoked from C. The

interpretation of all parameters (see plvect) is also the same except there is no transformation

function supplied as the last parameter. Instead, a 6-element array specifying coefficients to use

in the transformation is supplied via the named common block plplot (see code). Since this

approach is somewhat inflexible, the user is recommended to call either of plvec0, plvec1, or

plvec2 instead.

plmesh: Plot surface mesh for Fortran 77

plmesh (x , y , z , nx , ny , opt , mx);

When called from Fortran 77, this routine has the same effect as when invoked from C. The inter-

pretation of all parameters (see plmesh) is also the same except there is an additional parameter

given by:

mx (PLINT, input)

Length of array in x direction, for plotting subarrays.

243

Chapter 22. The Specialized Fortran 77 API for PLplot

plot3d: Plot 3-d surface plot for Fortran 77

plot3d (x , y , z , nx , ny , opt , side , mx);

When called from Fortran 77, this routine has the same effect as when invoked from C. The inter-

pretation of all parameters (see plot3d) is also the same except there is an additional parameter

given by:

mx (PLINT, input)

Length of array in x direction, for plotting subarrays.

plparseopts: parse arguments for Fortran 77

plparseopts (mode);

When called from Fortran 77, this routine has the same effect as when invoked from C (see

plparseopts) except that the argument list just contains the parsing mode and the Fortran 77

system routines iargc and getarg are used internally to obtain the number of arguments and

argument values. (Note, during configuration, the user’s Fortran 77 compiler is checked to see

whether it supports iargc and getarg. If it does not, the Fortran 77 plparseopts simply writes a

warning message and returns.

mode (PLINT, input)

Parsing mode; see plparseopts for details.

plsesc: Set the escape character for text strings for Fortran 77

plsesc (esc);

Set the escape character for text strings. From Fortran 77 it needs to be the decimal ASCII value.

Only selected characters are allowed to prevent the user from shooting himself in the foot (For

example, a “\” isn’t allowed since it conflicts with C’s use of backslash as a character escape).

Here are the allowed escape characters and their corresponding decimal ASCII values:

Ĺ “!”, ASCII 33

Ĺ “#”, ASCII 35

Ĺ “$”, ASCII 36

Ĺ “%”, ASCII 37

Ĺ “&”, ASCII 38

244

Chapter 22. The Specialized Fortran 77 API for PLplot

Ĺ “*”, ASCII 42

Ĺ “@”, ASCII 64

Ĺ “^”, ASCII 94

Ĺ “~”, ASCII 126

esc (char, input)

NEEDS DOCUMENTATION

245

Chapter 22. The Specialized Fortran 77 API for PLplot

246

Chapter 23. API compatibility definition

This chapter presents the formal definition of what is considered to be in the PLplot library API.

It is assumed that major new releases of PLplot will have substantial backwards incompatible

changes in the API, but the PLplot developers commit to introducing as few as possible of

such incompatibilities between minor releases such that stability across those minor releases is

practically guaranteed. In all cases where backwards incompatible changes have been introduced,

then the library soname will be changed (for operating systems such as Linux that support

versioned shared libraries).

The information in this chapter regards version 5.9.9 of PLplot, released on 2011-10-12.

What is in the API?

The formal definition of the PLplot C API is everything that is defined in the include file plplot.h.

This includes all the function prototypes, the defined structures and the semantics of the con-

stants. The list of symbols currently exported by the shared library libplplot.h that are declared

in plplot.h is the following:

plAlloc2dGrid plgcmap1_range plscmap1l

plClearOpts plgcol0 plscmap1la

plFindCommand plgcol0a plscmap1n

plFindName plgcolbg plscol0

plFree2dGrid plgcolbga plscol0a

plGetCursor plgcompression plscolbg

plGetFlt plgdev plscolbga

plGetInt plgdidev plscolor

plGetName plgdiori plscompression

plMergeOpts plgdiplt plsdev

plMinMax2dGrid plgdrawmode plsdidev

plOptUsage plgesc plsdimap

plResetOpts plgfam plsdiori

plSetOpt plgfci plsdiplt

plSetUsage plgfile plsdiplz

plTranslateCursor plgfnam plsdrawmode

pl_cmd plgfont plseed

pl_setcontlabelformat plglevel plseopH

pl_setcontlabelparam plgpage plsesc

pladv plgra plsetopt

plarc plgradient plsexit

plaxes plgriddata plsfam

plbin plgspa plsfci

plbop plgstrm plsfile

plbox plgver plsfnam

plbox3 plgvpd plsfont

plbtime plgvpw plshade

plcalc_world plgxax plshade1

plclear plgyax plshades

plcol0 plgzax plslabelfunc

plcol1 plhist plsmaj

plcolorbar plhlsrgb plsmem

247

Chapter 23. API compatibility definition

plconfigtime plimage plsmema

plcont plimagefr plsmin

plcpstrm plinit plsori

plctime pljoin plspage

pldid2pc pllab plspal0

pldip2dc pllegend plspal1

plend pllightsource plspause

plend1 plline plsstrm

plenv plline3 plssub

plenv0 pllsty plssym

pleop plmap plstar

plerrx plmeridians plstart

plerry plmesh plstr

plf2eval plmeshc plstransform

plf2eval1 plmkstrm plstring

plf2eval2 plmtex plstring3

plf2evalr plmtex3 plstripa

plf2ops_c plot3d plstripc

plf2ops_grid_c plot3dc plstripd

plf2ops_grid_col_major plot3dcl plstyl

plf2ops_grid_row_major plparseopts plsurf3d

plfamadv plpat plsurf3dl

plfcont plpath plsvect

plfgriddata plpoin plsvpa

plfill plpoin3 plsxax

plfill3 plpoly3 plsxwin

plfimage plprec plsyax

plfimagefr plpsty plsym

plflush plptex plszax

plfmesh plptex3 pltext

plfmeshc plrandd pltimefmt

plfont plreplot pltr0

plfontld plrgbhls pltr1

plfplot3d plsButtonEH pltr2

plfplot3dc plsError pltr2f

plfplot3dcl plsKeyEH pltr2p

plfshade plsabort plvasp

plfshade1 plsbopH plvect

plfshades plschr plvpas

plfsurf3d plscmap0 plvpor

plfsurf3dl plscmap0a plvsta

plfvect plscmap0n plw3d

plgDevs plscmap1 plwid

plgFileDevs plscmap1_range plwind

plgchr plscmap1a plxormod

Another important aspect of compatibility regard the Application Binary Interface (ABI). Back-

wards compatibility can be broken by changes in the C structures made public through plplot.h.

Currently, they are:

typedef struct

{

248

Chapter 23. API compatibility definition

const char *opt;

int (*handler)(const char *, const char *, void *);

void *client_data;

void *var;

long mode;

const char *syntax;

const char *desc;

} PLOptionTable;

typedef struct

{

int type; // of event (CURRENTLY UNUSED)

unsigned int state; // key or button mask

unsigned int keysym; // key selected

unsigned int button; // mouse button selected

PLINT subwindow; // subwindow (alias subpage, alias subplot) number

char string[PL_MAXKEY]; // translated string

int pX, pY; // absolute device coordinates of pointer

PLFLT dX, dY; // relative device coordinates of pointer

PLFLT wX, wY; // world coordinates of pointer

} PLGraphicsIn;

typedef struct

{

PLFLT dxmi, dxma, dymi, dyma; // min, max window rel dev coords

PLFLT wxmi, wxma, wymi, wyma; // min, max window world coords

} PLWindow;

typedef struct

{

unsigned int x, y; // upper left hand corner

unsigned int width, height; // window dimensions

} PLDisplay;

typedef struct

{

PLFLT *f;

PLINT nx, ny, nz;

} PLfGrid;

typedef struct

{

PLFLT **f;

PLINT nx, ny;

} PLfGrid2;

typedef struct

{

PLFLT *xg, *yg, *zg;

PLINT nx, ny, nz;

} PLcGrid;

typedef struct

249

Chapter 23. API compatibility definition

{

PLFLT **xg, **yg, **zg;

PLINT nx, ny;

} PLcGrid2;

typedef struct

{

unsigned char r; // red

unsigned char g; // green

unsigned char b; // blue

PLFLT a; // alpha (or transparency)

const char *name;

} PLColor;

typedef struct

{

PLFLT h; // hue

PLFLT l; // lightness

PLFLT s; // saturation

PLFLT p; // position

PLFLT a; // alpha (or transparency)

int rev; // if set, interpolate through h=0

} PLControlPt;

typedef struct

{

PLINT cmd;

PLINT result;

} PLBufferingCB;

typedef struct

{

PLFLT exp_label_disp;

PLFLT exp_label_pos;

PLFLT exp_label_just;

} PLLabelDefaults;

typedef struct

{

PLFLT (*get)(PLPointer p, PLINT ix, PLINT iy);

PLFLT (*set)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);

PLFLT (*add)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);

PLFLT (*sub)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);

PLFLT (*mul)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);

PLFLT (*div)(PLPointer p, PLINT ix, PLINT iy, PLFLT z);

PLINT (*is_nan)(PLPointer p, PLINT ix, PLINT iy);

void (*minmax)(PLPointer p, PLINT nx, PLINT ny, PLFLT *zmim, PLFLT *zmax);

//

// f2eval is backwards compatible signature for "f2eval" functions that

// existed before plf2ops "operator function families" were used.

//

PLFLT (*f2eval)(PLINT ix, PLINT iy, PLPointer p);

} plf2ops_t;

250

Chapter 23. API compatibility definition

Regression test for backwards compatibility

Since PLplot is developed by so many people, the task of checking for backwards compatiblity of

the library is very hard. As for the 5.3.1 release, we do not have any rigorous regression test for

check whether the library is really backwards compatible.

However, here are some rules to be followed by the Release Manager prior to releasing a new

version of PLplot:

Ĺ Check if there are any changes in plplot.h. If no prototype is changed, then the chances are

high that no backwards compatibilities have been introduced. If new functions has been added,

then the library soname will be kept, although the libtool soversion string in configure.ac must

be changed from x:y:z to (x+1):0:(z+1). See the libtool manual for details.

Ĺ A necessary, but not sufficient test consists of the following: first, install the previous released

version of PLplot in the system and compile all the examples examples/c/x??c.. After that,

install the to-be-released version of PLplot and try to run the previously compiled examples.

If they either link or run incorrectly, then backwards incompatibilities have been introduced

and the soversion string must be upgraded from x:y:z to (x+1):0:0.

251

Chapter 23. API compatibility definition

252

Chapter 24. Obsolete/Deprecated API for

PLplot

The purpose of this chapter is to provide minimal documentation for obsolete/deprecated API

that appears in our C library to provide backwards compatibility until our next major release,

PLplot-6, where these functions will disappear. Do not use these functions, and if you already

use them in legacy PLplot applications, replace them by the suggested equivalents so you won’t

be caught out by the next major PLplot release.

plclr: Eject current page

plclr ();

Removed. Use the new name, pleop, for this function instead.

plcol: Set color

plcol (color);

Removed. Use the new name, plcol0, for this function instead.

color (PLINT, input)

See plcol0.

plhls: Set current color by HLS

plhls (h , l , s);

Set current color by hue, lightness, and saturation. Convert hls color coordinates to rgb, then call

plrgb. This function has been removed. Use plhlsrgb and plscol0 instead.

h (PLFLT, input)

NEEDS DOCUMENTATION

l (PLFLT, input)

NEEDS DOCUMENTATION

s (PLFLT, input)

NEEDS DOCUMENTATION

253

Chapter 24. Obsolete/Deprecated API for PLplot

plHLS_RGB: Convert HLS color to RGB

plHLS_RGB (h , l , s , p_r , p_g , p_b);

Removed. Use plhlsrgb from the common API instead.

h (PLFLT, input)

Hue, in degrees on the colour cone (0.0-360.0)

l (PLFLT, input)

Lightness, expressed as a fraction of the axis of the colour cone (0.0-1.0)

s (PLFLT, input)

Saturation, expressed as a fraction of the radius of the colour cone (0.0-1.0)

p_r (PLFLT *, output)

Pointer to red intensity (0.0-1.0) of the colour

p_g (PLFLT *, output)

Pointer to green intensity (0.0-1.0) of the colour

p_b (PLFLT *, output)

Pointer to blue intensity (0.0-1.0) of the colour

plpage: Begin a new page

plpage ();

Removed. Use the new name, plbop, for this function instead.

plrgb: Set line color by red, green

plrgb (r , g , b);

Set line color by red, green, blue from 0. to 1. Do Removed. Use the function plscol0 instead.

r (PLFLT, input)

NEEDS DOCUMENTATION

g (PLFLT, input)

NEEDS DOCUMENTATION

254

Chapter 24. Obsolete/Deprecated API for PLplot

b (PLFLT, input)

NEEDS DOCUMENTATION

plrgb1: Set line color by 8-bit RGB values

plrgb1 (r , g , b);

Set line color by 8-bit RGB values. Do not use this. Removed. Use the function plscol0 instead.

r (PLINT, input)

NEEDS DOCUMENTATION

g (PLINT, input)

NEEDS DOCUMENTATION

b (PLINT, input)

NEEDS DOCUMENTATION

255

Chapter 24. Obsolete/Deprecated API for PLplot

256

Chapter 25. Internal C functions in PLplot

The purpose of this chapter is to document the API for every internal C function in PLplot (other

than language bindings) that is not part of the common API that has already been documented

in Chapter 19 or elsewhere. The functions documented here are internal plplot functions. They

are not intended for external use and may change between releases.

This chapter is a work that is just starting. There are many C functions in the code base that are

not part of the common API, and we haven’t even gotten to the point of listing them all. What

gets documented here now is whatever C-explicit code we are trying to understand at the time.

plP_checkdriverinit: Checks to see if any of the specified drivers have been

initialized

plP_checkdriverinit (list);

Checks to see if any of the specified drivers have been initialized. Function tests a space-delimited

list of driver names to see how many of the given drivers have been initialized, and how often.

The return code of the function is: 0 if no matching drivers were found to have been initialized;

-1 if an error occurred allocating the internal buffer; or, a positive number indicating the num-

ber of streams encountered that belong to drivers on the provided list. This function invokes

plP_getinitdriverlist internally to get a complete list of drivers that have been initialized in

order to compare with the driver names specified in the argument list to plP_checkdriverinit.

list (char *, input)

Pointer to character string specifying a space-delimited list of driver names, e.g., "bmp jpeg

tiff".

plP_getinitdriverlist: Get the initialized-driver list

plP_getinitdriverlist (text_buffer);

Get the initialized-driver list. Function returns a space-delimited list of the currently initialized

drivers or streams. If more than one stream is using the same driver, then its name will be returned

more than once. The function can be analogously thought of as also returning the names of the

active streams. Invoked internally by plP_checkdriverinit.

text_buffer (char *, output)

Pointer to a user-allocated buffer to hold the result. The user must ensure the buffer is big

enough to hold the result.

257

Chapter 25. Internal C functions in PLplot

258

Chapter 26. Notes for each Operating System

that We Support

The purpose of this Chapter is to present notes for each operating system that we support.

Currently, those are all operating systems supported by CMake (all forms of Unix including

Linux and Mac OS X, and all forms of Windows including MinGW, MinGW/MSYS, Cygwin,

and essentially all Windows variants directly supported by Microsoft).

Linux/Unix Notes

Linux/Unix Configure, Build, and Installation

Here is the short story:

Note many other cmake options are available besides -DCMAKE_INSTALL_PREFIX

Inspect CMakeCache.txt after a preliminary cmake run to see an annotated

list of the available options. Then remove CMakeCache.txt and try again.

cmake -DCMAKE_INSTALL_PREFIX=<install-prefix> \

<path-to-source-tree> >& cmake.out

make >& make.out

#(optional, requires -DBUILD_TEST=ON option for cmake)

ctest >& ctest.out

make install >& make_install.out

cd <install-prefix>/share/plplot<version>/examples/

make >& make_examples.out

./plplot-test.sh >& plplot-test.sh.out

The longer (CMake) story is currently documented here1. The eventual plan is to incorporate

that material in this documentation, but we haven’t done it yet so this section NEEDS DOCU-

MENTATION.

Linux/Unix Building of C Programmes that Use the Installed PLplot Libraries

This is incomplete. For now follow what is done to build our installed examples (see "make >&

make_examples.out above) using pkg-config. NEEDS DOCUMENTATION.

Windows Notes

Windows Configure and Build

This (CMake) story currently documented here2. The eventual plan is to incorporate that material

into this documentation, but we haven’t done it yet so this section NEEDS DOCUMENTATION.

259

Chapter 26. Notes for each Operating System that We Support

Notes
1. http://www.miscdebris.net/plplot_wiki/index.php?title=Main_Page#Building_PLplot_with_our_new_CBS

2. http://www.miscdebris.net/plplot_wiki/index.php?title=Main_Page#Windows

260

Chapter 27. The PLplot Libraries

The purpose of this chapter is give an overview of the libraries that are created as part of a

PLplot build. These consist of bindings libraries to make the PLplot API accessible for various

computer languages or GUI environments, the PLplot core library which implements the PLplot

API in C, enhancement libraries which add essential functionality the PLplot core library, and

device-driver libraries which help to implement some of our device drivers.

Bindings Libraries

The purpose of the PLplot bindings is to make the PLplot API documented in Chapter 19 acces-

sible from various computer languages and GUI environments. Some bindings (e.g., qt and cairo)

are implemented by a special form of "external" device. Other bindings (e.g., python) are imple-

mented as shared objects which are dynamically loaded by the language in question. However,

the majority of our bindings are implemented as bindings libraries which must be specifically

linked by the application. (See the Makefiles in the installed examples tree for comprehensive

examples of how we use pkg-config to supply the necessary linking information.) In turn these

bindings libraries are linked to the PLplot core library described in the Section called The PLplot

Core Library . We tabulate below the bindings library or libraries associated with the compiled

languages and GUI environments we support in this specific way.

Table 27-1. Bindings Libraries

Bindings Libraries

Ada libplplotada

C++ libplplotcxx

Fortran 77 libplplotf77, libplplotf77c

Fortran 95 libplplotf95, libplplotf95c

Tk GUI libplplottcltk, libtclmatrix

wxWidgets GUI libplplotwxwidgets

The PLplot Core Library

The PLplot core library is written in C and implements the PLplot API documented in Chapter

19. The name of that core library is libplplot. libplplot links to the enhancement libraries docu-

mented in the Section called Enhancement Libraries. libplplot also normally dynamically loads

devices (a build mode is also available to put the driver code right into the core library) which

in turn can potentially link to device-driver libraries that are described in the Section called

Device-driver Libraries.

Enhancement Libraries

The enhancement libraries add essential functionality to the PLplot core library (see the Sec-

tion called The PLplot Core Library). They consist of a cubic spline approximation library,

261

Chapter 27. The PLplot Libraries

libcsirocsa; a natural neighbours interpolation library, libcsironn; and a time format conversion

library libqsastime.

The CSIRO Cubic Spline Approximation Library

libcsirocsa NEEDS DOCUMENTATION.

The CSIRO Natural Neighbours Interpolation Library

libcsironn NEEDS DOCUMENTATION.

The QSAS Time Format Conversion Library

This library grew out of a discussion with Steve Schwartz of the QSAS Support Team, Cluster

Science Centre, Imperial College and our mutual frustrations with the poor time conversion

capabilities of POSIX-compliant computer operating systems. For such systems, the continuous

time variable is often stored internally as a 32-bit integer containing the number of seconds since

1970. This gives a limited date range of only 136 years, and a limited numerical precision of

only a second. Furthermore, although the POSIX standard includes gmtime which provides a

conversion between broken-down time (year, month, day, hour, min, sec), and the continuous

time variable, the inverse of gmtime (called timegm on Linux) is not a POSIX standard. Finally,

the POSIX standard ignores leap seconds. All these limitations are not acceptable for plotting

of scientific time series and are addressed by the qsastime library which was originally donated

under the LGPL to the PLplot project in early 2009 by Anthony J. Allen of the QSAS team and

substantially modifed after that by a PLplot developer, Alan W. Irwin (e.g., to add leap-second

functionality).

The qsastime library uses MJD (modified Julian Date = Julian Date - 2400000.5) for the internal

continuous time variable. This variable is stored as a signed int (to hold the integer part) and a

double (to hold the seconds since midnight). On 32-bit systems, this combination gives an effective

date range of roughly +/- 6 million years from the MJD epoch in late 1858 and an effective

numerical time precision of 0.01 ns. This should cover most range and precision requirements of

those doing plots of scientific time series.

The qsastime library provides internal routines to convert between the broken-down time repre-

sentation and the internal continuous time variable and vice versa using the formal rules of either

the Gregorian or Julian calendars. These routines have been tested extensively for the internal

consistency of the routines both for the Gregorian and Julian calendars and also by compar-

ing the Gregorian results against the equivalent Linux C library gmtime and timegm routines

on a 64-bit platform. These tests were done for a number of epochs including every year from

-5000000 to 5000000 for critical dates in the year (January 1, February 28, February 29, March

1, and December 31). These extensive tests give some confidence that the formal conversion from

broken-down to continuous time (and vice versa) should be reliable for the qsastime library on

all 32-bit and 64-bit platforms.

The qsastime library also provides an internal routine that gives formatted time results as a

function of continuous time. This routine has been lightly tested against the results of the C

library strftime routine on Linux.

262

Chapter 27. The PLplot Libraries

The three internal routines described above are wrapped by functions that provide the externally

visible API for the qsastime library. This API is described below.

Device-driver Libraries

Device-driver libraries are libraries which are built as part to the PLplot build and which are

linked by PLplot device drivers. At this time we only have one example of this, the NIST cd

library which makes it easy to create files in CGM format. The original name of this library was

libcd, but we call it libnistcd to distinguish it from all other "cd" libraries out there. This library

is linked by our cgm device driver.

CGM format is a long-established (since 1987) open standard for vector graphics (see

http://www.w3.org/Graphics/WebCGM/). The libnistcd software was developed by G. Edward

Johnson at NIST to provide convenient access to the CGM format. The library is no longer

maintained (the last official release was in 1997), but the software is mature and works well.

Furthermore, it is in the public domain except for the small part licensed under the libgd

open-source license (see lib/nistcd/cd.html in the PLplot source tree). PLplot developers have

added a modern CMake-based build system for libnistcd and also have done some visibility

support so the code builds properly under Windows and also under Linux with gcc when the

-fvisibility=hidden option for gcc is used. Otherwise, the code is identical to the 1997 version.

For documentation of the libnistcd API see lib/nistcd/cd.html in the PLplot source tree.

263

Chapter 27. The PLplot Libraries

264

	The PLplot Plotting Library
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Introduction
	The PLplot Plotting Library
	Getting a Copy of the PLplot Package
	Installing and Using the PLplot Library
	Organization of this Manual
	Copyrights
	Additional Copyrights

	Credits

	II. Programming
	Chapter 2. Simple Use of PLplot
	Plotting a Simple Graph
	Initializing PLplot
	Defining Plot Scales and Axes
	Labeling the Graph
	Drawing the Graph
	Drawing Points
	Drawing Lines or Curves
	Writing Text on a Graph
	Area Fills
	More Complex Graphs

	Finishing Up
	In Case of Error

	Chapter 3. Advanced Use of PLplot
	Command Line Arguments
	Output Devices
	Driver Functions
	PLplot Metafiles and Plrender
	Family File Output
	Interactive Output Devices
	Specifying the Output Device

	Adding FreeType Library Support to Bitmap Drivers
	Write a call back function to plot a single pixel
	Initialise FreeType
	Add A Command to redraw text (interactive drivers only)
	Add Function Prototypes
	Add Closing functions

	View Surfaces, (Sub)Pages, Viewports and Windows
	Defining the Viewport
	Defining the Window
	Annotating the Viewport
	Setting up a Standard Window

	Setting Line Attributes
	Setting the Area Fill Pattern
	Setting Color
	Color Map0
	Color Map1

	Setting Character Attributes
	Hershey fonts
	Unicode fonts
	FCI
	Escape sequences in text
	Character size adjustment

	Three Dimensional Surface Plots
	Contour and Shade Plots
	Contour Plots from C
	Shade Plots from C
	Contour Plots from the Fortran 95 interface
	Shade Plots from the Fortran 95 interface
	Contour Plots from the Fortran 77 interface
	Shade Plots from the Fortran 77 interface

	Chapter 4. Deploying programs that use PLplot
	Chapter 5. The PLplot Display Driver Family
	The Xwin Driver (XWindows)
	The Tk Driver
	The AquaTerm Driver (Mac OS X)
	The wxWidgets Driver (Linux, Mac OS X, Windows)
	wxWidgets Driver Basics

	Chapter 6. The PLplot Output Driver Family
	The GD Driver
	The PDF Driver
	The PostScript Driver
	The TrueType PostScript Driver
	The LaTeX PostScript Driver
	The SVG Driver

	III. Language Bindings
	Chapter 7. Ada Language
	Overview
	The Bindings
	Thin Binding
	The Thick Bindings
	Standard Thick Binding Using Enhanced Names
	Thick Binding Using Traditional Names

	The Examples
	Obtaining the Software
	Obtaining an Ada compiler
	Download and install PLplot
	Download the Ada bindings to PLplot

	How to use the Ada bindings
	Ada 95 versus Ada 2005
	GNAT versus nonGNAT
	Sample command line project

	Unique Features of the Ada bindings
	Highlevel features for simplified plotting
	Foregroundbackground control
	Simple Plotters
	Simple color map manipulations

	Integer Options Given Ada Names
	Oneoffs

	Parts That Retain a C Flavor
	Mapdrawing

	Known Variances
	Documentation
	API

	Compilation notes
	Ada 95 Versus Ada 2005
	GNAT Dependence
	PLplotAuxiliary

	Notes for Apple Macintosh OS X users
	Using Apple's Xcode IDE
	AquaTerm
	X11
	GNAT for OS X

	Chapter 8. C Language
	Chapter 9. A C++ Interface for PLplot
	Motivation for the C++ Interface
	Design of the PLplot C++ Interface
	Stream/Object Identity
	Namespace Management
	Abstraction of Data Layout
	Collapsing the API

	Specializing the PLplot C++ Interface
	Status of the C++ Interface

	Chapter 10. Fortran 77 Language
	Chapter 11. Fortran 95 Language
	Chapter 12. OCaml Language
	Overview
	The Bindings
	Core Binding
	OCamlspecific variations to the core PLplot API
	OCaml high level 2D plotting API

	The Examples
	Obtaining the Software
	Obtaining the OCaml compiler

	How to use the OCaml bindings
	How to setup findlib for use with the OCaml bindings
	Sample command line project (core API)
	Sample command line project (OCamlspecific API)
	Sample toplevel project

	Known Issues

	Chapter 13. Using PLplot from Perl
	Chapter 14. Using PLplot from Python
	Chapter 15. Using PLplot from Tcl
	Motivation for the Tcl Interface to PLplot
	Overview of the Tcl Language Binding
	The PLplot Tcl Matrix Extension
	Using Tcl Matrices from Tcl
	Using Tcl Matrices from C
	Using Tcl Matrices from C++
	Extending the Tcl Matrix facility

	Contouring and Shading from Tcl
	Drawing a Contour Plot from Tcl
	Drawing a Shaded Plot from Tcl

	Understanding the Performance Characteristics of Tcl

	Chapter 16. Building an Extended WISH
	Introduction to Tcl
	Motivation for Tcl
	Capabilities of Tcl
	Acquiring Tcl

	Introduction to Tk
	Introduction to [incr Tcl]
	PLplot Extensions to Tcl
	Custom Extensions to Tcl
	WISH Construction
	WISH Linking
	WISH Programming

	Chapter 17. Embedding Plots in Graphical User Interfaces
	IV. Reference
	Chapter 18. Bibliography
	References

	Chapter 19. The Common API for PLplot
	plsetcontlabelformat: Set format of numerical label for contours
	plsetcontlabelparam: Set parameters of contour labelling other than format of numerical label
	pladv: Advance the (sub)page
	plarc: Draw a circular or elliptical arc
	plaxes: Draw a box with axes, etc. with arbitrary origin
	plbin: Plot a histogram from binned data
	plbop: Begin a new page
	plbox: Draw a box with axes, etc
	plbox3: Draw a box with axes, etc, in 3d
	plcalcworld: Calculate world coordinates and corresponding window index from relative device coordinates
	plclear: Clear current (sub)page
	plcol0: Set color, map0
	plcol1: Set color, map1
	plcont: Contour plot
	plcpstrm: Copy state parameters from the reference stream to the current stream
	plend: End plotting session
	plend1: End plotting session for current stream
	plenv0: Same as plenv but if in multiplot mode does not advance the subpage, instead clears it.
	plenv: Set up standard window and draw box
	pleop: Eject current page
	plerrx: Draw x error bar
	plerry: Draw y error bar
	plfamadv: Advance to the next family file on the next new page
	plfill: Draw filled polygon
	plfill3: Draw filled polygon in 3D
	plflush: Flushes the output stream
	plfont: Set character font
	plfontld: Load character font
	plgchr: Get character default height and current (scaled) height
	plgcol0: Returns 8bit RGB values for given color from color map0
	plgcol0a: Returns 8bit RGB values and double alpha value for given color from color map0.
	plgcolbg: Returns the background color (cmap0[0]) by 8bit RGB value
	plgcolbga: Returns the background color (cmap0[0]) by 8bit RGB value and double alpha value.
	plgcompression: Get the current devicecompression setting
	plgdev: Get the current device (keyword) name
	plgdidev: Get parameters that define current devicespace window
	plgdiori: Get plot orientation
	plgdiplt: Get parameters that define current plotspace window
	plgfam: Get family file parameters
	plgfci: Get FCI (font characterization integer)
	plgfnam: Get output file name
	plgfont: Get family, style and weight of the current font
	plglevel: Get the (current) run level
	plgpage: Get page parameters
	plgra: Switch to graphics screen
	plgradient: Draw linear gradient inside polygon
	plgriddata: Grid data from irregularly sampled data
	plgspa: Get current subpage parameters
	plgstrm: Get current stream number
	plgver: Get the current library version number
	plgvpd: Get viewport limits in normalized device coordinates
	plgvpw: Get viewport limits in world coordinates
	plgxax: Get x axis parameters
	plgyax: Get y axis parameters
	plgzax: Get z axis parameters
	plhist: Plot a histogram from unbinned data
	plhlsrgb: Convert HLS color to RGB
	plimagefr: Plot a 2D matrix using color map1
	plimage: Plot a 2D matrix using color map1 with automatic colour adjustment
	plinit: Initialize PLplot
	pljoin: Draw a line between two points
	pllab: Simple routine to write labels
	pllegend: Plot legend using discretely annotated filled boxes, lines, and/or lines of symbols
	pllightsource: Sets the 3D position of the light source
	plline: Draw a line
	plline3: Draw a line in 3 space
	pllsty: Select line style
	plmap: Plot continental outline in world coordinates.
	plmeridians: Plot latitude and longitude lines.
	plmesh: Plot surface mesh
	plmeshc: Magnitude colored plot surface mesh with contour.
	plmkstrm: Creates a new stream and makes it the default
	plmtex: Write text relative to viewport boundaries
	plmtex3: Write text relative to viewport boundaries in 3D plots.
	plot3d: Plot 3d surface plot
	plot3dc: Magnitude colored plot surface with contour.
	plparseopts: Parse commandline arguments
	plpat: Set area fill pattern
	plpath: Draw a line between two points, accounting for coordinate transforms.
	plpoin: Plot a glyph at the specified points
	plpoin3: Plot a glyph at the specified 3D points
	plpoly3: Draw a polygon in 3 space
	plprec: Set precision in numeric labels
	plpsty: Select area fill pattern
	plptex: Write text inside the viewport
	plptex3: Write text inside the viewport of a 3D plot.
	plrandd: Random number generator returning a real random number in the range [0,1].
	plreplot: Replays contents of plot buffer to current device/file
	plrgbhls: Convert RGB color to HLS
	plschr: Set character size
	plscmap0: Set color map0 colors by 8bit RGB values
	plscmap0a: Set color map0 colors by 8bit RGB values and double alpha value.
	plscmap0n: Set number of colors in color map0
	plscmap1: Set color map1 colors using 8bit RGB values
	plscmap1a: Set color map1 colors using 8bit RGB values and double alpha values.
	plscmap1l: Set color map1 colors using a piecewise linear relationship
	plscmap1la: Set color map1 colors using a piecewise linear relationship
	plscmap1n: Set number of colors in color map1
	plscol0: Set a given color from color map0 by 8 bit RGB value
	plscol0a: Set a given color from color map0 by 8 bit RGB value and double alpha value.
	plscolbg: Set the background color by 8bit RGB value
	plscolbga: Set the background color by 8bit RGB value and double alpha value.
	plscolor: Used to globally turn color output on/off
	plscompression: Set devicecompression level
	plsdev: Set the device (keyword) name
	plsdidev: Set parameters that define current devicespace window
	plsdimap: Set up transformation from metafile coordinates
	plsdiori: Set plot orientation
	plsdiplt: Set parameters that define current plotspace window
	plsdiplz: Set parameters incrementally (zoom mode) that define current plotspace window
	plseed: Set seed for internal random number generator.
	plsesc: Set the escape character for text strings
	plsetopt: Set any commandline option
	plsfam: Set family file parameters
	plsfci: Set FCI (font characterization integer)
	plsfnam: Set output file name
	plsfont: Set family, style and weight of the current font
	plshades: Shade regions on the basis of value
	plshade: Shade individual region on the basis of value
	plshade1: Shade individual region on the basis of value
	plslabelfunc: Assign a function to use for generating custom axis labels
	plsmaj: Set length of major ticks
	plsmem: Set the memory area to be plotted (RGB)
	plsmema: Set the memory area to be plotted (RGBA)
	plsmin: Set length of minor ticks
	plsori: Set orientation
	plspage: Set page parameters
	plspal0: Set the colors for color table 0 from a cmap0 file
	plspal1: Set the colors for color table 1 from a cmap1 file
	plspause: Set the pause (on endofpage) status
	plsstrm: Set current output stream
	plssub: Set the number of subpages in x and y
	plssym: Set symbol size
	plstar: Initialization
	plstart: Initialization
	plstransform: Set a global coordinate transform function
	plstring: Plot a glyph at the specified points
	plstring3: Plot a glyph at the specified 3D points
	plstripa: Add a point to a stripchart
	plstripc: Create a 4pen stripchart
	plstripd: Deletes and releases memory used by a stripchart
	plstyl: Set line style
	plsurf3d: Plot shaded 3d surface plot
	plfsurf3d: Plot shaded 3d surface plot
	plsvect: Set arrow style for vector plots
	plsvpa: Specify viewport in absolute coordinates
	plsxax: Set x axis parameters
	plsyax: Set y axis parameters
	plsym: Plot a glyph at the specified points
	plszax: Set z axis parameters
	pltext: Switch to text screen
	pltimefmt: Set format for date / time labels
	plvasp: Specify viewport using aspect ratio only
	plvect: Vector plot
	plvpas: Specify viewport using coordinates and aspect ratio
	plvpor: Specify viewport using coordinates
	plvsta: Select standard viewport
	plw3d: Set up window for 3d plotting
	plwid: Set pen width
	plwind: Specify world coordinates of viewport boundaries
	plxormod: Enter or leave xor mode

	Chapter 20. The Specialized C API for PLplot
	plabort: Error abort
	plAlloc2dGrid: Allocate a block of memory for use as a 2d grid of type PLFLT.
	plClearOpts: Clear internal option table info structure.
	plexit: Error exit
	plFree2dGrid: Free the memory associated with a 2d grid allocated using plAlloc2dGrid.
	plGetCursor: Wait for graphics input event and translate to world coordinates.
	plgfile: Get output file handle
	plMergeOpts: Merge use option table into internal info structure.
	plMinMax2dGrid: Find the minimum and maximum of a 2d grid allocated using plAlloc2dGrid.
	plOptUsage: Print usage and syntax message.
	plMergeOpts: Reset internal option table info structure.
	plsabort: Set abort handler
	plSetUsage: Set the strings used in usage and syntax messages.
	plsexit: Set exit handler
	plsfile: Set output file handle
	pltr0: Identity transformation for grid to world mapping
	pltr1: Linear interpolation for grid to world mapping using singly dimensioned coord arrays
	pltr2: Linear interpolation for grid to world mapping using doubly dimensioned coord arrays (column dominant, as per normal C 2d arrays)
	PLGraphicsIn: PLplot Graphics Input structure
	PLOptionTable: PLplot command line options table structure

	Chapter 21. The Specialized Fortran 95 API for PLplot
	plcont: Contour plot for Fortran 95
	plshade: Shaded plot for Fortran 95
	plshades: Continuously shaded plot for Fortran 95
	plvect: Vector plot for Fortran 95
	plmesh: Plot surface mesh for Fortran 95
	plot3d: Plot 3d surface plot for Fortran 95
	plparseopts: parse arguments for Fortran 95
	plsesc: Set the escape character for text strings for Fortran 95

	Chapter 22. The Specialized Fortran 77 API for PLplot
	plcon0: Contour plot, identity mapping for Fortran 77
	plcon1: Contour plot, general 1d mapping for Fortran 77
	plcon2: Contour plot, general 2d mapping for Fortran 77
	plcont: Contour plot, fixed linear mapping for Fortran 77
	plvec0: Vector plot, identity mapping for Fortran 77
	plvec1: Vector plot, general 1d mapping for Fortran 77
	plvec2: Vector plot, general 2d mapping for Fortran 77
	plvect: Vector plot, fixed linear mapping for Fortran 77
	plmesh: Plot surface mesh for Fortran 77
	plot3d: Plot 3d surface plot for Fortran 77
	plparseopts: parse arguments for Fortran 77
	plsesc: Set the escape character for text strings for Fortran 77

	Chapter 23. API compatibility definition
	What is in the API?
	Regression test for backwards compatibility

	Chapter 24. Obsolete/Deprecated API for PLplot
	plclr: Eject current page
	plcol: Set color
	plhls: Set current color by HLS
	plHLSRGB: Convert HLS color to RGB
	plpage: Begin a new page
	plrgb: Set line color by red, green
	plrgb1: Set line color by 8bit RGB values

	Chapter 25. Internal C functions in PLplot
	plPcheckdriverinit: Checks to see if any of the specified drivers have been initialized
	plPgetinitdriverlist: Get the initializeddriver list

	Chapter 26. Notes for each Operating System that We Support
	Linux/Unix Notes
	Linux/Unix Configure, Build, and Installation
	Linux/Unix Building of C Programmes that Use the Installed PLplot Libraries

	Windows Notes
	Windows Configure and Build

	Chapter 27. The PLplot Libraries
	Bindings Libraries
	The PLplot Core Library
	Enhancement Libraries
	The CSIRO Cubic Spline Approximation Library
	The CSIRO Natural Neighbours Interpolation Library
	The QSAS Time Format Conversion Library

	Devicedriver Libraries

