
S9 CORE
A Toolkit for Implementing Dynamic Languages, Mk III

Contents
Rationale ... 2

Features ... 2

Reference Manual .. 3

Setup and Namespace .. 3

C-Level Data Types .. 4

Calling Conventions ... 5

Configuration .. 5

Initialization and Shutdown .. 5

Memor y Allocation ... 6

Ar ithmetics ... 9

S9core Types ...10

Special Values ...11

Tagged Types ...12

Additional Allocators ..19

Additional Predicates ...21

Additional Accessors ...21

Pr imitive Procedures ..22

Symbol Management...24

Bignum Arithmetics ..25

Real Number Arithmetics ...27

Input/Output ...31

Heap Images ...36

Memor y Management ..37

Str ing/Number Conversion ...38

Counters ..39

Inter nal Counters ...40

Utility Functions ...41

Caveats ...42

Temporar y Values ..42

Locations of Vector Objects ...43

Mixing Assignments and Allocators ...44

Index..45

2

Rationale
Dynamic languages typically require some basic infrastr ucture that

is common in their implementations, including garbage collection,

pr imitive functions, and dynamic type checking, but sometimes

also features like bignum arithmetics and heap images. S9core

offers all of the above , and some more, in a single object file that

can be linked against a dynamic language implementation. It takes

care of all the nitty gritty stuff and allows the implementor to focus

on the design of the language itself.

Features
• Precise, constant-space, stop-the-wor ld garbage collection with

vector pool compaction (defragmentation) and finalization of I/O

por ts

• Non-copying GC, all nodes stay in their original locations

• Bignum (unbounded-precision) integer arithmetics

• Decimal-based, platfor m-independent real number arithmetics

• Persistent heap images

• Type-checked primitive functions

• Symbol identity

• Memor y allocation on heap exclusively (no malloc() until the

heap grows)

• A basis for implementing interpreters, runtime librar ies, etc

• Statically or dynamically linked

• Available on Unix, Plan 9, and in C89/POSIX environments

3

Reference Manual

Setup and Namespace
A module that intends to use the S9core tool kit must include the

S9core header using

#include <s9core.h>

As of Mk II, the tool kit has a separate name space which is

implemented by beginning all symbol names with a S9_ or s9_

prefix. However, many symbols can be ‘‘impor ted’’ by adding

#include <s9import.h>

Doing so will create aliases of most definitions with the prefix

removed, so you can write, for instance:

cons(a, cons(b, NIL))

instead of

s9_cons(a, s9_cons(b, S9_NIL))

There are some symbol names that will not have aliases − mostly

tuneable parameters of s9core.h. Those names will print with

their prefixes in this text. All other names will have their prefixes

removed.

When a module wants to use S9core functions without importing

them, the following rules apply:

A low er-case function or macro name is prefixed with s9_, e.g.

bignum_add becomes s9_bignum_add.

A capitalized function or macro name has its first letter converted

to lower case and an S9_ prefix attached, e.g.: Real_exponent

becomes S9_real_exponent.

An upper-case symbol gets an S9_ prefix, e.g.: NIL becomes

S9_NIL.

S9_VERSION

4 Setup and Namespace

The S9_VERSION macro expands to a string holding the S9core

version in ‘‘YYYYMMDD’’ (year, month, day) for mat.

C-Level Data Types
At C level, there are only two data types in S9core. Dynamic

typing is implemented by adding type tags to objects on the heap.

cell

A ‘‘cell’’ is a reference to an object on the heap. All objects are

addressed using cells. A cell is wide enough to hold a pointer on

the host platfor m (typically a ptrdiff_t).

Example:

cell x, y;

PRIM (struct S9_primitive)

A PRIM is a structure containing infor mation about a primitive

procedure:

struct S9_primitive {

char *name;

cell (*handler)(cell expr);

int min_args;

int max_args;

int arg_types[3];

};

The name field names the primitive procedure. The handler is a

pointer to a function from cell to cell implementing the primitive

function. Because a cell may reference a list or vector, functions

may in fact have any number of arguments (and, for that matter,

retur n values).

The min_args, max_args, and arg_types[] fields define the

type of the primitive function. min_args and max_args specify

the expected argument count. When they are equal, the argument

count is fixed. When max_args is less then zero, the function

accepts any number of arguments that is greater or equal to

min_args.

C-Level Data Types 5

The arg_types[] array holds the type tags of the first three

argument of the primitive. Functions with more than three

arguments must check additional arguments internally. Unused

argument slots can be set to T_ANY (any type accepted).

Example:

PRIM Prims[] = {

{ "cons", p_cons, 2, 2, { T_ANY, T_ANY, T_ANY } },

{ "car", p_car, 1, 1, { T_PAIR, T_ANY, T_ANY } },

{ "cdr", p_cdr. 1, 1, { T_PAIR, T_ANY, T_ANY } },

{ NULL }

};

Where p_cons, p_car, and p_cdr are the functions

implementing the corresponding primitives.

Calling Conventions
All S9core functions protect their parameters from the garbage

collector, so it is safe, for example to write

make_real(1, 0, make_integer(x));

or

cell n = cons(c, NIL);

n = cons(b, n);

n = cons(a, n);

In the first case, the integer created by make_integer() will be

protected in the application of make_real(). In the second

example, the object c will be protected in the first call, and the list

n will be protected in all subsequent applications of cons(). Note

that the objects b and a are not protected during the first call and

a is not protected during the second call, though.

Use save() and unsave() [pg 21] to protect objects temporar ily.

Configuration

Initialization and Shutdown

void s9_init(cell **extroots);

6 Initialization and Shutdown

The s9_init() function initializes the memory pools, connects

the first three I/O ports to stdin, stdout, and stderr, and sets

up the internal S9core structures. It must be called before any

other S9core functions can be used.

The extroots parameter is a pointer to an array of addresses of

cells that will be protected from the garbage collector (the so-

called ‘‘GC roots’’). The last array member must be NULL.

Because cells can reference trees, lists, or vectors, larger

str uctures may be protected from GC by including their handles in

this array.

Example:

cell Environment;

cell *GC_roots[] = { &Environment, NULL };

...

s9_init(GC_roots);

void s9_fini(void);

The s9_fini() function shuts down S9core and releases all

memor y allocated by it. This function is normally never called,

because clean-up is done by the operating system.

The only reason to call it is to prepare for the re-initialization of the

toolkit, for example to recover from a failed image load (see

load_image()).

Memor y Allocation

S9_NODE_LIMIT

S9_VECTOR_LIMIT

The S9_NODE_LIMIT and S9_VECTOR_LIMIT constants specify

the maximal sizes of the node pool and the vector pool,

respectively. The ‘‘pools’’ are used to allocate objects at run time.

Their sizes are measured in ‘‘nodes’’ for the node pool and cells

for the vector pool. Both sizes default to 14013 × 1024 (14,013K).

Memor y Allocation 7

The size of a cell is the size of a pointer on the host platfor m.

The size of a node is two cells plus a char. So the total node

memor y limit using the default settings on a 64-bit host would be:

14013 × 1024 × (2 × 8 + 1) = 243, 938, 304 bytes.

The default vector pool limit would be:

14013K cells = 114, 794, 496 bytes.

At run time, the S9core toolbox will never allocate more memory

than the sum of the above (plus the small amount allocated to

pr imitive functions at initialization time).

When S9core runs out of memory, it will print a message and

ter minate program execution. However, a program can request to

handle memory allocation failure itself by passing a handler to the

mem_error_handler() function (further explanations can be

found below).

The amount allocated to S9core can be changed by the user. See

the set_node_limit() and set_vector_limit() functions

for details.

void mem_error_handler(void (*h)(int src));

When a function pointer is passed to mem_error_handler(),

S9core will no longer terminate program execution when a node or

vector allocation request fails. The request will succeed and the

function passed to mem_error_handler() will be called. The

function is then required to handle the error as soon as possible,

for example by interr upting program execution and returning to the

REPL, or by throwing an exception.

The integer argument passed to a memory error handler will

identify the source of the error: 1 denotes the node allocator and 2

indicates the vector allocator.

Allocation requests can still succeed in case of a low memor y

condition, because S9core never allocates more than 50% of each

pool. (This is done, because using more than half of a pool will

result in GC thrashing, which would reduce perfor mance

dramatically.)

8 Memor y Allocation

As soon as a memory error handler has been invoked, thrashing

will star t immediately. Program execution will slow down to a crawl

and eventually the allocator will fail to recover from a low-memor y

condition and kill the process, ev en with memory error handling

enabled.

The default handler (which just terminates program execution) can

be reinstalled by passing NULL to mem_error_handler().

void set_node_limit(int k);

void set_vector_limit(int k);

These functions modify the node pool and vector pool memory

limits. The value passed to the function will become the new limit

for the respective pool. The limits must be set up immediately

after initialization and may not be altered once set. Limits are

specified in kilo nodes, i.e. they will be multiplied by 1024

inter nally.

Setting either value to zero will disable the corresponding memory

limit, i.e. S9core will grow the memory pools indefinitely until

physical memory allocation fails. This may cause massive

sw apping in memory-heavy applications.

S9core memory pools both start with a size of 32768 units

(S9_INITIAL_SEGMENT_SIZE constant) and grow exponentially

to a base of
3

2
. With the default settings, the limit will be reached

after growing either pool for 15 times.

Note that actual memory limits all have the for m 32768 × 1. 5n, so

a limit that is not constructed using the above for mula will probably

be smaller than expected. Reasonable memory limits (using the

default segment size) are listed in figure 1.

As can be seen in the table, the minimal memory footpr int of

S9core is 416K bytes on 32-bit and 800K bytes on 64-bit systems.

In order to obtain a smaller initial memory footpr int, the

S9_INITIAL_SEGMENT_SIZE constant has to be reduced and

the table in figure 1 has to be recalculated.

Memor y Allocation 9

Limit 64-bit memor y 32-bit memory

32 800K 416K

48 1200K 625K

72 1800K 937K

108 2700K 1405K

162 4050K 2107K

243 6075K 3160K

364 9100K 4733K

546 14M 7089K

820 21M 11M

1,230 31M 16M

1,846 46M 24M

2,768 69M 36M

4,152 104M 54M

6,228 156M 81M

9,342 234M 121M

14,013 350M 182M

21,019 525M 273M

31,529 788M 410M

47,293 1182M 615M

70,939 1773M 922M

106,409 2660M 1383M

159,613 3990M 2075M

239,419 5985M 3112M

359,128 8978M 4669M

538,692 13G 7003M

808,038 20G 10G

1,212,057 30G 16G

1,818,085 45G 24G

2,727,127 68G 35G

4,090,690 102G 53G

6,136,034 153G 80G
Fig 1. Memory Limits

Ar ithmetics

S9_DITIGS_PER_CELL

S9_INT_SEG_LIMIT

10 Ar ithmetics

S9_DIGITS_PER_CELL is the number of decimal digits that can

be represented by a cell and S9_INT_SEG_LIMIT is the

smallest integer that can not be represented by an ‘‘integer

segment’’ (which has the size of one cell). The integer segment

limit is equal to

10S9_DITIGS_PER_CELL

A cell is called an integer segment in S9core arithmetics,

because numbers are represented by chains of cells

(segments).

The practical use of the S9_INT_SEG_LIMIT constant is that

bignums that are smaller than this limit can be converted to (long)

integers just be extracting their first segment.

These values are not tunable. S9_DIGITS_PER_CELL is 18 on

64-bit machines, 9 on 32- bit machines, and (theoretically) 4 on

16-bit machines.

S9_MANTISSA_SEGMENTS

S9_MANTISSA_SIZE

S9_MANTISSA_SEGMENTS his is the number of integer segments

(see above) in the mantissae of real numbers. The default is one

segment (18 digits of precision) on 64-bit hosts and two segments

(also 18 digits) on 32-bit platfor ms. Each additional mantissa

segment increases precision by S9_DIGITS_PER_CELL (see

above), but also slows down real number computations.

This is a compile-time option and cannot be tweaked at run time.

S9_MANTISSA_SIZE is the number of decimal digits in a

mantissa. It is used in the computation of var ious values, such as

Epsilon [pg 27].

S9core Types
S9core data types are pretty LISP- or Scheme-centric, but most of

them can be used in a var iety of languages.

Each type may be associated with a predicate testing for the type,

an allocator creating an object of the given type, and one or more

accessors that extract values from the type. Predicates always

S9core Types 11

retur n 0 (false) or 1 (true). Type predicates succeed (return 1) if

the object passed to them is of the given type.

Special Values

Special values are constant, unique, can be compared with ==,

and have no allocators.

Type: NIL
Predicate: x == NIL

NIL (‘‘Not In List’’) denotes the end of a list, an empty list, or an

empty return value. For example, to create a list of the objects a,

b, and c, the following S9core code would be used:

cell list = cons(c, NIL);

list = cons(b, list);

list = cons(a, list);

See also: T_LIST [pg 14]

Type: END_OF_FILE
Predicate: eof_p(x), x == END_OF_FILE

END_OF_FILE is an object that is reserved for indicating the end

of file when reading from an input source. The eof_p() predicate

retur ns tr uth only for the END_OF_FILE object.

Type: UNDEFINED
Predicate: undefined_p(x), x == UNDEFINED

The UNDEFINED value is returned by a function to indicate that its

value for the given arguments is undefined. For example,

bignum_divide(One, Zero)

would return UNDEFINED.

Type: UNSPECIFIC
Predicate: unspecific_p(x), x == UNSPECIFIC

The UNSPECIFIC value can be returned by functions to indicate

that their return value is of no importance and should be ignored.

USER_SPECIALS

special_p(x)

12 Special Values

When more special values are needed, they should be assigned

decreasing values star ting at the value of the USER_SPECIALS

constant. The predicate special_p() will return truth for all

special values, including user-defined ones.

Example:

#define TOP (USER_SPECIALS-0)

#define BOTTOM (USER_SPECIALS-1)

Type: VOID
Predicate: x == VOID

VOID denotes the absence of a value. While UNSPECIFIC is

typically retur ned by a function to indicate that its value is

uninteresting, VOID may be passed to a function to indicate that

the corresponding argument may be ignored.

Tagged Types

A ‘‘tagged’’ object is a compound data object (pair, tree) with a

type tag in its first slot. Tagged objects typically carry some

payload, such as an integer value, an I/O port, or a symbol name.

The internal structure of a tagged object does not matter; it is

created using an allocator function and its payload is accessed

using one or multiple accessor functions.

type_tag(x)

The type_tag() accessor extracts the type tag, like T_BOOLEAN

or T_INTEGER, from the given object. When the object does not

have a type tag, it returns a special value, T_NONE.

Type: T_ANY

When used in a PRIM str ucture, this type tag matches any other

type (i.e. the described primitive procedure will accept any type in

its place).

Type: T_BOOLEAN
Allocator : TRUE, FALSE
Predicate: boolean_p(x)

Tagged Types 13

The TRUE and FALSE objects denote logical truth and falsity.

Type: T_CHAR
Allocator : make_char(int c)
Predicate: char_p(x)
Accessor : int char_value(x)

T_CHAR objects store single characters. The make_char()

function expects the character to store, and char_value()

retr ieves the character.

Example:

make_char(’x’)

Type: T_INPUT_PORT
Allocator : make_port(int portno, T_INPUT_PORT)
Predicate: input_port_p(x)
Accessor : int port_no(x)

The make_port() allocator boxes a por t handle. The port handle

must be obtained by one of the I/O routines [pg 31] before passing

it to this function. port_no() retur ns the port handle stored in an

T_INPUT_PORT (or T_OUTPUT_PORT) object.

Example:

cell p = open_input_port(path);

if (p >= 0) return make_port(p, T_INPUT_PORT);

Type: T_INTEGER
Allocator : make_integer(cell segment)
Predicate: integer_p(x)
Accessor : cell bignum_to_int(x)

The make_integer() function creates a single-segment bignum

integer in the range from

−10S9_DITIGS_PER_CELL
+ 1 to 10S9_DITIGS_PER_CELL

− 1

To create larger bignum integers, the string_to_bignum()

function [pg 38] has to be used.

The bignum_to_int() accessor returns the value of a single-

segment bignum integer or UNDEFINED, if the bignum has more

than a single segment. There is no way to convert multi-segment

14 Tagged Types

bignums to a native C type.

Example:

cell x = make_integer(-12345);

int i = bignum_to_int(x);

Type: T_LIST, T_PAIR
Allocator : cons(cell car_val, cell cdr_val)
Predicate: pair_p(x)
Accessor : cell car(x), cell cdr(x)

The difference between the T_PAIR and T_LIST type tags is that

T_LIST also includes NIL, which T_PAIR does not. Both type

tags are used for primitive procedure type checking exclusively.

The cons() allocator returns an ordered pair of any two values. It

is in fact an incarnation of the LISP function of the same name.

The accessors car() and cdr() retr ieve the first and second

value from a pair, respectively.

pair_p() succeeds for pairs created by cons(). T_LIST

corresponds to

pair_p(x) || x == NIL

Fur ther accessors, like caar() and friends, are also available and

will be explained later in this text. [pg 21]

Example:

cons(One, NIL); /* list */

cell x = cons(One, Two); /* pair */

car(x); /* One */

cdr(x); /* Two */

Type: T_OUTPUT_PORT
Allocator : make_port(int portno, T_OUTPUT_PORT)
Predicate: output_port_p(x)
Accessor : int port_no(x)

See T_INPUT_PORT, above , for details.

Example:

make_port(port_no, T_OUTPUT_PORT);

Tagged Types 15

Type: T_PRIMITIVE
Allocator : make_primitive(PRIM *p)
Predicate: primitive_p(x)
Accessor : int prim_slot(x), int prim_info(x)

The make_primitive() function allocates a slot in an internal

pr imitive function table, fills in the infor mation in the given PRIM

str ucture, and returns a primitive function object referencing that

table entry. The prim_info() function retrieves the stored

infor mation (as a PRIM *).

The prim_slot() accessor returns the slot number allocated for

a given primitive function object in the internal table. Table offsets

can be used to identify individual primitive functions.

See the the discussion of the PRIM str ucture [pg 4] for an example

of how to set up a primitive function. Given the table shown there,

the following code would create the corresponding T_PRIMITIVE

objects:

for (i=0; p[i].name; i++) {

prim = make_primitive(&p[i]);

...

}

Type: T_FUNCTION
Allocator : n/a
Predicate: function_p(x)
Accessor : n/a

Function objects are deliberately underspecified. The user is

required to define their own function object structure and

accessors.

For example, a LISP function allocator might look like this:

cell make_function(cell args, cell body, cell env) {

/* args and body should be GC-protected! */

cell fun = cons(env, NIL);

fun = cons(body, fun);

fun = cons(args, fun);

return new_atom(T_FUNCTION, fun);

}

16 Tagged Types

Given the structure of this function object, the corresponding

accessors would look like this:

#define fun_args(x) (cadr(x))

#define fun_body(x) (caddr(x))

#define fun_env(x) (cadddr(x))

Type: T_REAL
Allocator : make_real(int s, cell e, cell m)

Make_real(int f, cell e, cell m)

Predicate: real_p(x)
Accessor : cell real_mantissa(x), cell real_exponent(x),

Real_flags(x)

A real number consists of three parts, a ‘‘mantissa’’ (the digits of

the number), an exponent (the position of the decimal point), and

a ‘‘flags’’ field, currently just containing the sign of the number.

The value of a real number is

sign × mantissa × 10exponent

The real_mantissa() and real_exponent() functions

extract the mantissa and exponent, respectively. When applied to

a bignum integer, the mantissa will be the number itself and the

exponent will always be 0.

Note that real_mantissa retur ns a bignum integer, but

real_exponent retur ns an unboxed, cell-sized integer.

The Real_flags() accessor can only be applied to real

numbers. It extracts the flags field.

The make_real() function is the principal real number allocator.

It expects a sign s (−1 or 1), an exponent as single cell, and a

mantissa in the for m of a bignum integer. When the mantissa is

too large, the function will return UNDEFINED.

Make_real() is a ‘‘quick and dirty’’ allocator. It expects a flags

field in the place of a sign, a chain of integer segments instead of

a bignum, and it does not perfor m any overflow checking.

Caution: This function can create an invalid real number!

Tagged Types 17

Examples:

cell m = make_integer(123);

cell r = make_real(1, 0, m); /* 123 */

cell r = make_real(1, 10, m); /* 1.23e+12 */

cell r = make_real(-1, -5, m); /* -0.00123 */

Type: T_STRING
Allocator : make_string(char *s, int k)
Predicate: string_p(x)
Accessor : char *string(x), int string_len(x)

The make_string() function creates a string of the length k and

initializes it with the content of s. When the length n of s is less

than k, the last k − n characters of the resulting string object will

be undefined.

Str ings are counted and NUL-ter minated. The counted length of a

given string is returned by the string_len() function, the C

str ing length of x is strlen(string(x)).

The string() accessor returns a pointer to the char array

holding the string.

Note: no string obtained by string() or symbol_name() may

be passed to make_string() as an initialization string, because

vector objects (including strings and symbols) may move dur ing

heap compaction. The proper way to copy a str ing is

int k = string_len(source);

cell dest = make_string("", k-1);

memcpy(string(dest), string(source), k);

Alter natively, the copy_string() function [pg 19] may be used.

Type: T_SYMBOL
Allocator : make_symbol(char *s, int k),

symbol_ref(char *s)

Predicate: symbol_p(x)
Accessor : char *symbol_name(x), int symbol_len(x)

Typically, the symbol_ref() function is used to create or

reference a symbol. A symbol is a unique string with an identity

operation defined on it. I.e. referencing the same string twice using

symbol_ref will return the same symbol. Hence symbols can be

18 Tagged Types

compared using the == operator.

The make_symbol() function creates an ‘‘uninter ned’’ symbol,

i.e. a symbol with no identity (which cannot be compared or

referenced). In a typical implementation, this function will not be

used.

See the T_STRING descr iption for fur ther details and caveats.

Example:

cell sym = symbol_ref("foo");

Type: T_SYNTAX
Allocator : n/a
Predicate: syntax_p(x)
Accessor : n/a

Like function objects, syntactic abstractions (‘‘macros’’) are

deliberately underspecified. Typically, the value of a T_SYNTAX

object would be a T_FUNCTION object.

Type: T_VECTOR
Allocator : make_vector(int k)
Predicate: vector_p(x)
Accessor : cell *vector(x), int vector_len(x)

The make_vector() function returns a vector of k elements

(slots) with all slots set to UNDEFINED.

vector() retur ns a pointer to the slots of the given vector,

vector_len() retur ns the number of slots.

Example:

cell v = make_vector(100);

save(v);

for (i=0; i<100; i++) {

x = make_integer(i);

vector(v)[i] = x;

}

unsave(1);

Note: the result of vector() may not be used on the left side of

an assignment where the right side allocates any objects. When in

doubt, first assign the value to a temporar y variable and then the

Tagged Types 19

variable to the vector. For an explanation see T_STRING.

Type: T_CONTINUATION
Allocator : n/a
Predicate: continuation_p(x)
Accessor : n/a

A ‘‘continuation’’ object is used to store the value of a captured

continuation (as in Scheme’s call/cc). Its implementation is left

to the user.

Additional Allocators

cell cons3(cell a, cell d, int t);

The cons3() function is the principal node allocator of S9core. It

is like cons(), but has an additional parameter for the ‘‘tag’’ field.

The tag field of a node assigns specific properties to a node. For

example, it can turn a node into an ‘‘atom’’ [pg 19], a vector

reference, or an I/O port reference. In fact, cons() is a wrapper

around cons3() that supplies an empty (zero) tag field.

The most interesting user-level application of cons3() is maybe

the option to mix in a CONST_TAG in order to create an immutable

node. Note though, that immutability is not enforced by S9core

itself, because it never alters any nodes. How ever,

implementations using S9core can use the constant_p()

predicate to check for immutability.

Also note that ‘‘atoms’’ are typically created by the new_atom()

allocator, explained below.

cell copy_string(cell x);

This function creates an new str ing object with the same content

as the given string object.

new_atom(x, d)

atom_p(x)

An atom is a node with its atom flag set. Unlike a ‘‘cons’’ node, as

delivered by cons(), an atom has no reference to another node

in its car field. Instead of a reference, it can carry any value in the

car field, for example: the character of a character object, a

20 Additional Allocators

bignum integer segment, or a type tag. The new_atom() function

expects any value in the x parameter and a node reference in the

d parameter.

Tagged S9core objects are composed of multiple atoms. For

example, the following program would create a ‘‘character’’ object

containing the character ’x’:

cell n = new_atom(’x’, NIL);

n = new_atom(T_CHAR, n);

(Don’t do this, though; use make_char() instead!)

The atom_p() function checks whether the given node is an

atom. S9core atoms encompass all the special values (like NIL,

TRUE, END_OF_FILE, etc), all nodes with the atom flag set

(including all tagged types), and all vector objects (see below). In

fact, only ‘‘conses’’ (as delivered by cons()) are considered to be

non-atomic).

cell new_port(void);

The new_port() function returns a handle to a port, but does not

assign any FILE to it. A file can be assigned by using the return

value of new_port() as an index to the Ports[] array. A

negative retur n value indicates failure (out of free ports).

Example:

int p = new_port();

if (p >= 0) {

Ports[p] = fopen(file, "r");

}

cell new_vec(cell type, int size);

This function allocates a new vector. A vector object has a type

tag in its car field and a reference into the vector pool in its cdr

field, that is, neither of its fields reference any other node. The type

parameter is the type tag to be installed in the new vector atom

and size is the number bytes to allocate in the vector pool. The

newly allocated segment of the vector pool will be left uninitialized.

Additional Allocators 21

Example:

new_vec(T_STRING, 100);

new_vec(T_VECTOR, 100 * sizeof(cell));

save(n)

cell unsave(int k);

save() saves an object on the internal S9core stack and

unsave(n) removes n elements from the stack and returns the

one last removed (i.e. the previously nth element on the stack).

The S9core stack is mostly used to protect objects from being

recycled by the GC.

Removing an element from an empty stack will cause a fatal error

and terminate program execution.

Example:

cell a = cons(One, NIL);

save(a);

cell b = cons(Two, NIL); /* a is protected */

b = cons(b, NIL); /* still protected */

a = unsave(1);

a = cons(a, b);

Additional Predicates

constant_p(x)

This predicate succeeds, if the object passed to it has its

CONST_TAG set, i.e. if it should be considered to be immutable.

Example:

if (constant_p(x))

/* error: x is constant */

number_p(x)

The number_p() predicate succeeds, if its argument is either a

bignum integer or a real number.

Additional Accessors

22 Additional Accessors

caar(x) ... cddddr(x)

These are the usual LISP accessors for nested lists and trees. For

instance,

cadr(x)

denotes the ‘‘car of the cdr of x’’. All names can be decoded by

reading their ‘‘a’’s and ‘‘d’’s from the right to the left, where each

‘‘a’’ denotes a car accessor, and each ‘‘d’’ a cdr, e.g.

cadadr of ((1 2) (8 9))

= cadar of ((8 9))

= cadr of (8 9)

= car of (9)

= 9

tag(x)

The tag() accessor extracts the ‘‘tag’’ field of a node. It is mostly

used in the implementation of type predicates, to find out whether

a node has its S9_ATOM_TAG set. For instance:

#define T_DICTIONARY (USER_SPECIALS-1)

#define dictionary_p(n) \

(!special_p(n) && \

(tag(n) & S9_ATOM_TAG) && \

car(n) == T_DICTIONARY)

Pr imitive Procedures
A S9core primitive function consists of a PRIM entr y [pg 4]

descr ibing the primitive, and a ‘‘handler’’ implementing it. Here is a

PRIM str ucture descr ibing the Scheme procedure list-tail

which, given a list and an integer n, retur ns the tail starting at the

nth element of the list.

{ "list-tail", p_list_tail, 2, 2,

{ T_LIST, T_INTEGER, T_ANY } },

The corresponding handler, p_list_tail, looks like this:

cell pp_list_tail(cell x) {

cell p, n;

Pr imitive Procedures 23

n = bignum_to_int(cadr(x));

if (n == UNDEFINED)

return error("int argument too big");

for (p = car(x); p != NIL; p = cdr(p), n--) {

if (!pair_p(p))

return error("not a proper list");

if (n <= 0)

break;

}

if (n != 0)

return error("int argument too big");

return p;

}

Like all primitive handlers, p_list_tail is a function from cell

to cell, but the argument it receives is actually a T_LIST of

arguments, so car accesses the first argument and cadr the

second one.

The function first extracts the value of the integer argument and

checks for overflow (multi-segment bignum). It then traverses the

list argument, decrementing n until n = 0 or the end of the list is

reached. After some final error checking, it returns the tail of the

given list.

Pr imitive handlers usually do not have to type-check their

arguments, because there is a function that can do that before

dispatching the handler. See below.

char *typecheck(cell f, cell a);

The typecheck() function expects a primitive function object f

and an argument list a. It checks the types of the arguments in a

against the type tags in the PRIM str ucture of f . When all

arguments match, it returns NULL.

When a type mismatch is found, the function returns a string

explaining the nature of the type error in plain English. For

example, passing a T_LIST and a T_CHAR to list-tail would

retur n the message

24 Pr imitive Procedures

list-tail: expected integer in argument #2

The program could then add a visual representation of the actual

arguments that were about to be passed to the handler.

cell apply_prim(cell f, cell a);

The apply_prim() function extracts the handler from the

pr imitive function object f , calls it with the parameter a, and

delivers the return value of the handler.

apply_prim() itself does not protect its arguments. Doing so is

in the responsibility of the implementation.

Symbol Management
cell find_symbol(char *s);

This function searches the internal symbol list for the given

symbol. When the symbol is in the list (‘‘inter ned’’; see also

intern_symbol(), below), then it returns a reference to it.

Otherwise, it retur ns NIL.

cell intern_symbol(cell y);

This function adds the given symbol to an internal list of symbols.

Symbols contained in that list are called ‘‘inter ned’’ symbols, and

only those symbols can be checked for identity (i.e. compared with

C’s == operator).

The intern_symbol() function should only be used to intern

‘‘uninter ned’’ symbols, i.e. symbols created by make_symbol().

Symbols creates by symbol_ref() are automatically interned.

Note: while uninterned symbols have their uses, almost all

common use cases rely on interned symbols.

cell symbol_to_string(cell x);

cell string_to_symbol(cell x);

symbol_to_string() retur ns a str ing object containing the

name of the given symbol. string_to_symbol() is the inverse

operation; it returns a symbol with the name given as its string

argument. It also makes sure that the new symbol is interned.

Bignum Arithmetics

Bignum Arithmetics 25

Bignum arithmetics can never overflow, but perfor mance will

degrade linearly as numbers get bigger.

Zero, One, Two, Ten

These are constants for common values, so you do not have to

allocate them using make_integer().

cell bignum_abs(cell a);

This function returns the absolute value (magnitude) of its

argument, i.e. the original value with a positive sign.

cell bignum_add(cell a, cell b);

bignum_add() adds two integers and returns their result.

cell bignum_divide(cell a, cell b);

bignum_divide() divides a by b and returns both the truncated

integer quotient trunc(a/b) and the truncated division remainder

a − trunc(a/b) × b (where trunc removes any non-zero fractional

digits from its argument).

The result is delivered as a cons node with the quotient in the car

and the remainder in the cdr field. For example, given

cell a = make_integer(-23),

b = make_integer(7);

cell r = bignum_divide(a, b);

the result would be equal to

car(r) = make_integer(-3); /* trunc(-23/7) */

cdr(r) = make_integer(-2); /* -23 - trunc(-23/7)*7 */

int bignum_equal_p(cell a, cell b);

This predicate returns 1, if its arguments are equal.

int bignum_even_p(cell a);

This predicate returns 1, if its argument is divisible by 2 with a

remainder of 0. See bignum_divide().

int bignum_less_p(cell a, cell b);

26 Bignum Arithmetics

This predicate returns 1, if its argument a has a smaller value than

its argument b.

cell bignum_multiply(cell a, cell b);

bignum_multiply() multiplies two integers and returns their

product.

cell bignum_negate(cell a);

This function returns its argument with its sign reversed.

cell bignum_shift_left(cell a, int fill);

The bignum_shift_left() function shifts its argument a to the

left by one decimal digit and then replaces the rightmost digit with

fill. Note that 0 ≤ fill ≤ 9 must hold!

Example:

cell n = make_integer(1234);

bignum_shift_left(x, 5); /* 12345 */

cell bignum_shift_right(cell a);

bignum_shift_right() shifts its argument to the right by one

decimal digit. It returns a node with the shifted argument in the car

par t. The cdr part will contain the digit that ‘‘fell out’’ on the right

side.

Example:

cell n = make_integer(12345);

cell r = bignum_shift_right(n);

The result would be equal to the following:

car(r) = make_integer(1234);

cdr(r) = make_integer(5);

cell bignum_subtract(cell a, cell b);

This function returns the difference a − b.

cell bignum_to_real(cell a);

Bignum Arithmetics 27

The bignum_to_real() function converts a bignum integer to a

real number. Note that for big integers, this will lead to a loss of

precision. E.g., converting the integer

340282366920938463463374607431768211456

to real on a machine with a mantissa size of 18 digits will yield:

3.40282366920938463e+38

Converting it back to bignum integer will give:

340282366920938463000000000000000000000

cell bignum_to_string(cell x);

bignum_to_string() will return a str ing object containing the

decimal representation of the given bignum integer. The string will

be allocated in the vector pool, so it is safe to convert really big

integers.

Real Number Arithmetics
All real number operations except those with a Real_ or S9_

prefix (capital first letter) accept bignum operands and convert

them to real numbers silently. Of course, this may cause a loss of

precision when large bignums are involved in a computation.

When both operands of a real number operation are bignums, the

function will perfor m a precise bignum computation instead

(except for real_divide(), which will always perfor m a real

number division).

Note that S9core real numbers are base-10 (ten), so 1/2, 1/4, 1/5,

1/ 8 have exact results, but 1/3, 1/6, 1/7, and 1/9 do not.

Epsilon

Epsilon (ε) is a ver y small number (10−(S9_MANTISSA_SIZE+1)). By all

practical means, two numbers a and b should be considered to be

equal, if their difference is not greater than ε , i.e. |a − b| ≤ ε .

Of course, much smaller numbers can be expressed and ordered

by S9core (using real_less_p()), but the difference between

two ver y small numbers becomes insignificant as it approaches ε .

28 Real Number Arithmetics

This is particular ly impor tant when computing converging series.

Here the precision cannot increase any fur ther when the

difference between the current guess xi and previous guess xi−1

drops below ε . So the computation has reached a fixed point

when |xi − xi−1| ≤ ε .

Technically, the value of Epsilon is chosen in such a way that its

number of fractional digits is one more than the mantissa size, so

it cannot represent an exact difference between any two exact real

numbers. For example (given a mantissa size of 9 digits:)

0. 999999999 + 0. 000000001 = 1. 0

but

0. 999999999 + 0. 0000000001 = 0. 999999999

In this example, the smaller value in the second equation would be

equal to ε .

Real_flags(x)

Real_exponent(x)

Real_mantissa(x)

Real_negative_flag(x)

The Real_mantissa() and Real_exponent() macros are just

more efficient versions of the real_mantissa() and

real_exponent() functions. Unlike their function counterpar ts

[pg 16], they accept real number operands exclusively.

Real_flags() is described in the section on tagged types [pg

28]. Real_negative_flag() extracts the ‘‘negative sign’’ flag

from the flags field of the given real number.

Note: Real_mantissa() retur ns a chain of integer segments

without a type tag!

Real_zero_p(x)

Real_negative_p(x)

Real_positive_p(x)

These predicate macros test whether the given real number is

zero, negative, or positive, respectively.

Real_negate(a)

Real Number Arithmetics 29

This macro negates the given real number (returning a new real

number object). It does not protect its argument!

cell real_abs(cell a);

The real_abs() function returns the magnitude (absolute value)

of its argument (the original value with a positive sign).

cell real_add(cell a, cell b);

This function returns the sum of its arguments.

Caveat: When the arguments a and b differ by n orders of

magnitude, where n ≥ S9_MANTISSA_SIZE, then the sum will be

equal to the larger of the two arguments. E.g. (given a mantissa

size of 9):

1000000000.0 + 9.0 = 1000000000.0

because the result (1000000009) would not fit in a mantissa. Even

with values that overlap only partially, the result will be truncated,

resulting in loss of precision.

This is not a bug, but an inherent property of floating point

ar ithmetics.

cell real_divide(cell x, cell a, cell b);

This function returns the quotient a/b. Loss of precision may

occur, e.g.:

1.0 / 3 * 3 = 0.999999999

(given a mantissa size of 9).

The function always perfor ms a real number division, even if both

arguments are integers.

int real_equal_p(cell a, cell b);

The real_equal_p() predicate succeeds, if its arguments are

equal. In S9core, two real numbers are equal, if they look equal

when printed with print_real().

30 Real Number Arithmetics

However, the result of a real number operation may not be equal

to a specific real number, even if expected. For instance,

1. 0 / 3 × 3 ≠ 1. 0

Generally, equality of real numbers implemented using a floating

point representation should be considered with care. This applies

not only to the S9core operations, but even to common hardware

implementations of real numbers. See also: Epsilon [pg 27].

cell real_floor(cell x);

cell real_trunc(cell x);

cell real_ceil(cell x);

These functions round the given real number as shown in figure 2.

round

function toward sample rounded

real_floor −∞ 1. 5 1. 0

−1. 5 −2. 0

real_trunc 0 1. 5 1. 0

−1. 5 −1. 0

real_ceil +∞ 1. 5 2. 0

−1. 5 −1. 0

Fig 2. Rounding

cell real_integer_p(cell x);

This predicate succeeds, if the given number is an integer, i.e. has

a fractional part of 0. This is trivially true for bignum integers.

int real_less_p(cell a, cell b);

This predicate succeeds, if a < b.

cell real_multiply(cell a, cell b);

This function returns the product of its arguments.

cell real_negate(cell a);

Real Number Arithmetics 31

This function returns its argument with its sign reversed.

cell real_negative_p(cell a);

cell real_positive_p(cell a);

cell real_zero_p(cell a);

These predicates test whether the given number is zero, negative,

or positive, respectively.

cell real_power(cell a, cell b);

This function returns ab. Both a and b may be real numbers, but

when b has a fractional part, a must be positive (i.e. the result of

real_power() may not be a complex number).

cell real_subtract(cell a, cell b);

The real_subtract() function returns the difference a − b. The

caveats regarding real number addition (see real_add()) also

apply to subtraction.

cell real_to_bignum(cell r);

This function converts a integers in real number for mat to bignum

integers. Real numbers with a non-zero fractional part cannot be

converted and will yield a result of UNDEFINED.

Note that converting large real number will result in bignum

integers with lots of zeros. Converting ver y large numbers may

ter minate the S9core process or, in case the memory limit has

been removed, result in allocation of huge amounts of memory.

For example, converting the number 1e+1000000 would create a

str ing of 1 million zeros (and one one) and allocate about 25M

bytes of memory in the process (on a 64-bit system). Also, the

process would take a ver y long time.

This function is most useful for real numbers with a magnitude not

larger than the mantissa size.

Input/Output
S9core input and output is based on ‘‘por ts’’. A port is a handle to

a garbage-collected object. On the C level, a port is a small

integer (an index to the Ports array). On the S9core level, a

32 Input/Output

T_INPUT_PORT or T_OUTPUT_PORT type tag is attached to the

handle to make it distinguishable to the type checker.

There are input ports and output ports, but no bidirectional ports

for both input and output.

When the garbage collector can prove that a port is inaccessible, it

will finalize and recycle it. Of course, this wor ks only for S9core

por ts. At C lev el, a port has to be locked (see lock_port()) to

protect it from being recycled.

Input ports are finalized by closing them, output ports by flushing

and closing them.

All I/O operations are perfor med on two implicit ports called the

current input port and current output port. There are procedures

for selecting these ports (e.g. set_input_port()).

The standard I/O files stdin, stdout, and stderr are assigned

to the port handles 0, 1, and 2 when S9core is initialized. These

por ts are locked from the beginning.

int blockread(char *s, int k);

This function reads up to k character from the current input port

and stores them in s. It retur ns the number of characters read.

When an I/O error occurs, it updates the internal I/O status (see

io_status()).

int readc(void)

void rejectc(int c)

readc() reads a single character from the current input port and

retur ns it. A return value of −1 indicates the EOF or an error.

The rejectc() function inserts a character into the input stream,

so the next readc() (or blockread()) will return it. In

combination with readc(), it can be used to look ahead in the

input stream.

Example:

cell peek = readc();

rejectc(peek);

Input/Output 33

At most two characters may be rejected subsequently, i.e. the

reject buffer has a length of two characters.

void blockwrite(char *s, int k);

This function writes k characters from s to the current output port.

It returns the number of characters written. When an I/O error

occurs, it updates the internal I/O status (see io_status()).

int port_eof(int p);

This function returns a non-zero value, if reading beyond the EOF

has been attempted on the given port. Otherwise it returns 0.

void prints(char *s);

prints() wr ites the C string s to the current output port.

void print_bignum(cell n);

The print_bignum() function writes the decimal representation

of the bignum integer n to the current output port.

void print_expanded_real(cell n);

void print_real(cell n);

void print_sci_real(cell n);

These functions all write representations of the real number n to

the current output port. print_expanded_real() pr ints all

digits of the real number, both the integer and fractional parts.

print_sci_real() pr ints numbers in ‘‘scientific’’ notation with a

nor malized mantissa and an exponent. E.g., 123. 45 will print as

1. 2345e+2, meaning 1. 2345 × 102. The exponent character may

vary; see the exponent_chars() function [pg 38] for details.

The print_real() function will print numbers in expanded

notation when there is an exact representation for that number,

and otherwise it will print it in scientific notation.

nl()

nl() is short for prints("\n");.

void flush(void);

34 Input/Output

flush() commits all pending write operations on the current

output port.

int io_status(void);

void io_reset(void);

The io_status() function returns the internal I/O state. When it

retur ns 0, no I/O error has occurred since the call of io_reset()

(or the initialization of S9core). When it returns −1, an I/O error

has occurred in between.

io_reset() resets the I/O status to zero.

These two functions can be used to perfor m multiple I/O

operations in a row without having to check each return value.

Once the I/O state was changed to −1, it will stay that way until

explicitly reset using io_reset().

int open_input_port(char *path);

int open_output_port(char *path, int append);

void close_port(int port);

open_input_port() opens a file for reading and returns a port

handle for accessing that file. open_output_port() opens the

given file for output and returns a handle. When the append flag is

zero, it creates the file. It will truncate any preexisting file to zero

length. When the append flag is one, it will append data to an

existing file. It still creates the file, if it does not exist.

The port opening functions return a negative value in case of an

error.

The close_port() function closes the file associated with the

given port handle and frees the handle. It can be used to close

locked por ts (see below), thereby unlocking them in the process.

char *open_input_string(char *s);

void close_input_string(void);

open_input_string() opens a string as input source and

immediately redirects the current input port to that string.

readc(), and rejectc() work as expected on string input, but

blockread() does not. The function returns the previous input

str ing, if any, and NULL otherwise.

Input/Output 35

close_input_string() ends input from a string and

reestablishes the current input port that was in effect before

opening the string (it does not reestablish a previous input string,

though!).

int lock_port(int port);

int unlock_port(int port);

These functions lock and unlock a por t, respectively. Locking a

por t protects it from being finalized and recycled by the garbage

collector. For example, a function opening a file and packaging the

resulting port in a T_INPUT_PORT object, would need to lock the

por t:

int port = open_input_port("some-file");

lock_port(port);

cell n = make_port(port, T_INPUT_PORT);

unlock_port(port);

Without locking the port, the make_port() function might close

the freshly opened port when it triggers a GC. After unlocking the

por t, the T_INPUT_PORT object protects the port, if it is accessible

through a GC root (on the stack, bound to a symbol, etc).

int input_port(void);

int output_port(void);

These functions return the current input port and current output

por t, respectively. input_port retur ns -1 when input is currently

being read from a string.

cell set_input_port(cell port);

cell set_output_port(cell port);

void reset_std_ports(void);

The set_input_port() functions redirect all input to the given

por t. All read operations (readc(), blockread()) will use the

given port after calling this function. The given port will become

the new ‘‘current input port’’.

set_output_port() changes the current output port, affecting

blockwrite(), prints(), etc.

36 Input/Output

The reset_std_ports() function sets the current input stream

(handle 0) to stdin, the current output stream (handle 1) to

stdout, and port handle 2 to stderr. It also clears the error and

EOF flags of all standard ports.

void set_printer_limit(int k);

int printer_limit(void);

When set_printer_limit() is used to specify a non-zero

‘‘pr inter limit’’ k, then the output functions (like prints(),

blockwrite(), etc) will write k characters at most and discard

any excess output. The printer_limit() function returns a

non-zero value, if the printer limit has been reached (so that no

fur ther characters will be written).

Specifying a printer limit of zero will remove any existing limit.

Pr inter limits are useful for printing partial data, for instance in

error messages. This is especially useful when outputting cyclic

str uctures, which would otherwise print indefinitely.

Heap Images

char *dump_image(char *path, char *magic);

The dump_image() function writes a heap image to the given

path. The "magic" parameter must be a string of up to 16

characters that will be used for a magic ID when loading images.

Heap images wor k only, if all state of the language implementation

using S9core is kept on the heap. Inter nal variables referr ing to

the heap must be included as image var iables. See the

image_vars() function, below.

dump_image() will return NULL on success or an error message

in case of failure.

void image_vars(cell **v);

void add_image_vars(cell **v);

The parameter of image_vars() is a list of addresses of cells

that need to be saved to a heap image. This basically includes all

non-temporar y cell variables that reference the node pool when

an image is dumped, for example: a symbol table, an inter preter

Heap Images 37

stack, etc.

add_image_vars() is similar to image_vars(), but adds

image var iables to an existing list. Calling image_vars() will

clear any previously existing list.

All var iables that are GC roots [pg 5] and all global symbols [pg

17] also have to be included in the image.

Inter nal S9core var iables are included automatically and do not

have to be specified here.

char *load_image(char *path, char *magic);

The load_image() function loads a heap image file from the

given path. It expects the heap image to contain the given magic

ID (or the load will fail). See dump_image() for details.

When an image could be successfully loaded, the function will

retur n NULL. In case of failure, it will deliver an explanator y error

message in plain English.

Note: If load_image() fails, it leaves the heap in an undefined

state. In this case, the following options exist:

• Load a different image

• Restar t S9core by calling s9_fini() and then s9_init()

• Ter minate the S9core process by calling fatal()

Memor y Management
int gc(void);

int gcv(void);

The gc() function starts a node pool garbage collection and

retur ns the number of nodes reclaimed. gcv() star ts a vector

pool garbage collection and compaction and returns the number of

free cells in the vector pool.

GC is normally triggered by the allocator functions, but sometimes

you might want to start from some known state (e.g. when

benchmar king).

void gc_verbosity(int n);

38 Memor y Management

When the parameter n of gc_verbosity() is set to 1, S9core

will print infor mation about pool growth to stdout. When n = 2, it

will also print the number of nodes/cells reclaimed in each GC.

n = 0 disables infor mational messages.

Str ing/Number Conversion
void exponent_chars(char *s);

This function specifies the characters that will be interpreted as

exponent signs in real numbers by string_numeric_p() and

string_to_real().

The first character of the string passed to this function will be used

to denote exponents in the output of print_sci_real().

The default exponent characters are "eE".

int integer_string_p(char *s);

int string_numeric_p(char *s);

string_numeric_p() checks whether the given string

represents a number. A number consists of the following parts:

• an optional + or − sign

• a non-empty sequence of decimal digits with an optional

decimal point at any position

• an optional exponent character followed by another optional sign

and another non-empty sequence of decimal digits

Subsequently, valid numbers would include, for instance:

0 +123 -1 .1 +1.23e+5 1e6 .5e-2

integer_string_p() checks whether a string represents an

integer, i.e. a non-empty sequence of digits with an optional

leading +/ − sign. Each integer is trivially a number by the above

rules.

cell string_to_bignum(char *s);

The string_to_bignum() function converts a numer ic str ing

(see integer_string_p()) to a bignum integer and returns it.

The result of this function is undefined, if its argument does not

Str ing/Number Conversion 39

represent an integer.

cell string_to_real(char *s);

The string_to_real() function converts a numer ic str ing (as

recognized by string_numeric_p()) to a real number and

retur ns it. The result of this function is undefined, if its argument

does not represent a real number.

It returns UNDEFINED, if the given exponent is too large.

Converting the string to real will lead to loss of precision, if the

mantissa does not fit in the internal representation, e.g.

string_to_real("3.1415926535897932384626")

will result in 3.14159265 when the internal for mat uses a 9-digit

mantissa. In this case, the result will be truncated (rounded

towards zero).

cell string_to_number(char *s);

This function converts integer representations to bignums and real

number representations (containing decimal points or exponent

characters) to real numbers. Its result is undefined for non-numer ic

str ings. See also: string_to_bignum(), string_to_real()

integer_string_p().

Counters
counter

A counter is a structure for counting events. It can be reset,

incremented, and read. See the following functions for details.

void reset_counter(counter *c);

This function resets the given counter to zero.

void count(counter *c);

This function increments the given counter by one. Counters

overflow at one quadrillion (1015). There is no overflow checking.

cell read_counter(counter *c);

40 Counters

This function converts the value of the given counter into a list of

numbers in the range 0. . 999, where the first number represents

the trillions, the second one the billions, etc. The last number

contains the ‘‘ones’’ of the counter. E.g. reading a counter with a

value of 12, 345, 678 would return

(0 0 12 345 678)

Inter nal Counters

void run_stats(int run);

When run_stats() is called with a non-zero arguments, it

resets all internal S9core counters and starts counting. When

passed a zero argument, it stops counting and leaves the counters

untouched. The counter values can be extracted using the

get_counters() function.

void cons_stats(int on);

Passing a non-zero value to cons_stats() activates the the

inter nal c (cons) counter of S9core. Passing zero to the function

deactivates the counter (but does not reset it).

Cons counting is usually activated before dispatching a primitive

function and immediately deactivated thereafter. It counts

allocation requests made by a program being interpreted rather

than requests made by the interpreter.

void get_counters(counter **n, counter **c, counter **g);

This function retrieves the values of the three internal S9core

counters that start when run_stats() is called with a non-zero

argument. These counters count

• the number of nodes allocated in total (n)

• the number of nodes allocated by a program (c)

• the number of garbage collections perfor med (g)

The n, c, and g varialbles can be passed to read_counter to

convert them to a (machine-)readable for m.

Utility Functions

Utility Functions 41

cell argv_to_list(char **argv);

The argv_to_list() function converts a C-style argv

argument vector to a LISP-style list of strings, containing one

command line argument per string. It returns the list.

long asctol(char *s);

The asctol() function is like atol(), but does not interpret a

leading 0 as a base-8 prefix, like Plan 9’s atol() does.

void fatal(char *msg);

This function prints the given message and then aborts program

execution.

cell flat_copy(cell n, cell *lastp);

flat_copy() copies the ‘‘spine’’ of the list n, i.e. the cons nodes

connecting the elements of the list, giving a ‘‘shallow’’ or ‘‘flat’’ copy

of the list, i.e. new spine, but identical elements.

When lastp is not NULL, it will be filled with the last cons of the

fresh list, allowing, for instance, an O(1) destructive append. lastp

will be ignored, if n is NULL.

int length(cell n);

This function returns the number of elements in the list n.

42

Caveats
Note: All caveats outlined here are due to garbage collection. This

means that code exhibiting any of these issues may run proper ly

most of the time and then fail unexpectedly.

Temporar y Values
A temporar y value is a cell that is not part of any GC-protected

str ucture, like the symbol table, the stack, or any other GC root.

Temporar y values are not protected in S9core and subject to

recycling by the garcage collector. E.g. the value n in

cell n = cons(One, NIL);

cell m = cons(Two, NIL); /* n is unprotected */

is not protected during the allocation of m and may therefore be

recycled.

Most S9core functions allocate nodes, so a conser vative premise

would be that calling any S9core function (with the obvious

exception of accessors, like car(), string(), or port_no()),

will destroy temporar y values.

There are several ways to protect temporar y values. The most

obvious one is to push the value on the stack dur ing a critical

phase:

cell m, n = cons(One, NIL);

save(n);

m = cons(Two, NIL);

unsave(1);

A less versatile, but more lightweight approach would be to create

a temporar y protection object (Tmp) and add that to the GC root

as specified in s9_init() [5]. Using such an object, you could

wr ite:

cell m, n = cons(One, NIL);

Tmp = n;

m = cons(Two, NIL);

Tmp = NIL;

Temporar y Values 43

Finally, all symbols created by symbol_ref() or interned by

intern_symbol() are automatically protected, because they

are stored in the internal S9core symbol table. So the following

code is safe:

cell n = symbol_ref("foo");

cell m = cons(Two, NIL);

Note that uninterned symbols (created by make_symbol()) are

not protected!

Locations of Vector Objects
Nodes never move once allocated, e.g., the location of N will

never change after executing

N = make_vector(10);

given that N is protected from GC.

However, vector objects (vectors, str ings, and symbols) will be

moved dur ing garbage collection by the vector pool compactor.

Therefore, no S9core function may be called between retrieving

the payload of a vector and accessing it. For example, the

following code will not work:

cell S = make_string("foo", 3);

char *s = string(S);

cell n = make_string("", 10); /* s may move */

printf("%s\n", s);

Because make_string() may trigger a vector pool garbage

collection and compaction, the location of s may change before it

is printed by printf(). In this simple example, the issue can be

resolved by swapping the first two statements.

Things are more complicated in statements like

make_string(string(S), strlen(string(S)));

As explained earlier [pg 17], this statement will not create a copy

of the string S, because the location delivered by string(S) may

become invalid before make_string() has a chance to copy it.

See page 17 for the proper procedure for copying strings.

44 Locations of Vector Objects

The same applies to locations delivered by the vector() and

symbol_name() accessors.

Mixing Assignments and Allocators
Assignments to accessors must never have an allocator in their

rvalues. The statement

car(n) = cons(One, Two); /* pool may move! */

will fail at some point, because the pool containing n may move

due to node pool reallocation.

The cell n is an index to an inter nal pool and car accesses a

slot in that pool. When the cons in the above statement causes

the node pool to grow, the pool will be realloc’ed, so the original

address of the pool may become invalid before car can access

the pool.

The above wor ks with some C compilers and does not with others,

but either way, it is not covered by any C standard and should be

avoided. The proper way to write the above would be:

m = cons(One, Two);

car(n) = m;

For similar reasons, statements like

return cdr(bignum_divide(a, b));

will fail. Even here, stor ing the result in a temporar y variable

before taking the cdr would be the proper way.

45

Index
add_image_vars 36

apply_prim 24

argv_to_list 41

asctol 41

atom_p 19

bignum_abs 25

bignum_add 25

bignum_divide 25

bignum_equal_p 25

bignum_even_p 25

bignum_less_p 25

bignum_multiply 26

bignum_negate 26

bignum_shift_left 26

bignum_shift_right 26

bignum_subtract 26

bignum_to_int 13

bignum_to_real 26

bignum_to_string 27

blockread 32

blockwrite 33

boolean_p 12

caar...cddddr 21

car 14

cdr 14

cell 4

char_p 13

char_value 13

close_input_string 34

close_port 34

cons3 19

constant_p 21

cons 14

continuation_p 19

copy_string 19

46 Index

counter 39

count 39

S9_DITIGS_PER_CELL 9

dump_image 36

END_OF_FILE 11

eof_p 11

Epsilon 27

exponent_chars 38

FALSE 12

fatal 41

find_symbol 24

flat_copy 41

flush 33

function_p 15

gcv 37

gc 37

gc_verbosity 37

get_counters 40

image_vars 36

input_port 35

input_port_p 13

integer_p 13

integer_string_p 38

intern_symbol 24

S9_INT_SEG_LIMIT 9

IO 31

io_reset 34

io_status 34

length 41

load_image 37

lock_port 35

make_char 13

make_integer 13

make_port 14

make_port 14

make_primitive 14

Make_real 16

make_real 16

Index 47

make_string 17

make_symbol 17

make_vector 18

S9_MANTISSA_SEGMENTS 10

mem_error_handler 7

new_atom 19

new_port 20

new_vec 20

NIL 11

nl 188400

S9_NODE_LIMIT 6

number_p 21

One 25

open_input_port 34

open_input_string 34

open_output_port 34

output_port 35

output_port_p 14

pair_p 14

port_no 14

port_no 14

primitive_p 14

PRIM 4

prim_info 14

prim_slot 14

printer_limit 36

prints 33

prints 33

print_bignum 33

print_expanded_real 33

print_real 33

print_sci_real 33

readc 32

read_counter 39

real_abs 29

real_add 29

real_ceil 30

real_divide 29

48 Index

real_equal_p 29

Real_exponent 28

real_exponent 16

Real_flags 28

Real_flags 28

real_floor 30

real_integer_p 30

real_less_p 30

Real_mantissa 28

real_mantissa 16

real_multiply 30

Real_negate 28

real_negate 30

Real_negative 28

Real_negative_flag 28

real_negative_p 31

real_p 16

Real_positive 28

real_positive_p 31

real_power 31

real_subtract 31

real_to_bignum 31

real_trunc 30

Real_zero 28

real_zero_p 31

rejectc 32

reset_counter() 39

reset_std_ports 35

run_stats 40

run_stats 40

s9_fini 6

s9_init 5

save 21

set_input_port 35

set_node_limit 8

set_output_port 35

set_printer_limit 36

set_vector_limit 8

Index 49

special_p 11

string 17

string_len 17

string_numeric_p 38

string_p 17

string_to_bignum 38

string_to_number 39

string_to_real 39

string_to_symbol 24

symbol_len 17

symbol_name 17

symbol_p 17

symbol_ref 17

symbol_to_string 24

syntax_p 18

TRUE 12

Two 25

typecheck 23

T_ANY 12

T_BOOLEAN 12

T_CHAR 13

T_CONTINUATION 19

T_FUNCTION 15

T_INPUT_PORT 13

T_INTEGER 13

T_LIST 14

T_OUTPUT_PORT 14

T_PAIR 14

T_PRIMITIVE 14

T_REAL 16

T_STRING 17

T_SYMBOL 17

T_SYNTAX 18

T_VECTOR 18

UNDEFINED 11

undefined_p 11

unlock_port 35

unsave 21

50 Index

UNSPECIFIC 11

unspecific_p 11

USER_SPECIALS 11

vector 18

vector_len 18

S9_VECTOR_LIMIT 6

vector_p 18

Zero 25

