
Sketch
Simple 3D sketching

Version 0.2 (build 170), Saturday, June 12, 2010

Gene Ressler

Copyright c© 2005, 2006, 2007, 2008 Eugene K. Ressler.
This manual is for sketch, version 0.2 (build 170), Saturday, June 12, 2010, a program that
converts descriptions of simple three-dimensional scenes into static drawings. This version
generates PSTricks or PGF/TikZ code suitable for use with the TEX document processing
system.
Sketch is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
3, or (at your option) any later version.
Sketch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with sketch;
see the file COPYING.txt. If not, see http://www.gnu.org/copyleft.

i

Table of Contents

1 About sketch . 1
1.1 Reporting bugs and recommending improvements. 1
1.2 Contributions . 1

2 Introduction by example . 2
2.1 Hello world . 2
2.2 Options . 3
2.3 Drawing a solid . 3
2.4 Special objects . 5
2.5 Transforms . 6
2.6 Repeated objects . 7
2.7 Swept objects . 7

2.7.1 Point sweeps . 7
2.7.2 Polyline sweeps . 8
2.7.3 Nested sweeps . 8
2.7.4 Polygon sweeps . 8
2.7.5 Polyline sweeps with closure . 9
2.7.6 Affine arithmetic . 9
2.7.7 More to learn . 10

3 Input language . 11
3.1 Basics . 11

3.1.1 Identifiers . 11
3.1.2 Key and reserved words . 11
3.1.3 Literals . 11

3.1.3.1 Scalar literals . 11
3.1.3.2 Point and vector literals . 12
3.1.3.3 Transform literals . 12

3.1.4 Arithmetic expressions . 13
3.1.4.1 Two-operand (binary) forms and precedence 13
3.1.4.2 Unary forms . 14

3.1.5 Options . 14
3.1.5.1 PSTricks options . 15
3.1.5.2 TikZ/PGF options . 15
3.1.5.3 Dots in TikZ/PGF . 15
3.1.5.4 TikZ/PGF user-defined styles . 15
3.1.5.5 Transparency . 16
3.1.5.6 Internal options . 16

3.1.6 Point lists . 17
3.2 Drawables . 17

3.2.1 Dots . 17
3.2.2 Lines . 17

ii

3.2.3 Curves . 17
3.2.4 Polygons . 17
3.2.5 Specials . 18
3.2.6 Sweeps . 18

3.2.6.1 Swept points . 18
3.2.6.2 Swept lines . 19
3.2.6.3 Swept polygons . 19
3.2.6.4 Swept blocks . 20
3.2.6.5 Sweep face splitting . 20

3.2.7 Blocks . 20
3.2.8 Repeats . 20
3.2.9 Puts . 21

3.3 Definitions . 21
3.3.1 Forms of definitions . 21
3.3.2 Forms of references . 21

3.4 Global environment . 22
3.4.1 Global options . 22
3.4.2 Camera . 22
3.4.3 Picture box . 22
3.4.4 Frame . 23
3.4.5 Language . 23

4 Building a drawing . 24
4.1 Overview . 24
4.2 A technical drawing . 28
4.3 A hierarchical model . 30
4.4 Caveats . 33

4.4.1 Limits on sketch error detection . 33
4.4.2 Clipping . 33
4.4.3 Hidden surface removal and polygon splitting 34

4.4.3.1 Statistics . 34
4.4.3.2 Bugs and anomalies . 34

5 Command line . 36

6 Building and installing sketch 37

Index of syntax . 38

Index of concepts . 40

Chapter 1: About sketch 1

1 About sketch

Sketch is a small, simple system for producing line drawings of two- or three-dimensional
objects and scenes. It began as a way to make illustrations for a textbook after we could find
no suitable tool for this purpose. Existing scene processors emphasized GUIs and/or photo-
realism, both un-useful to us. We wanted to produce finely wrought, mathematically-based
illustrations with no extraneous detail.

Sketch accepts a tiny scene description language and generates PSTricks or TikZ/PGF
code for LATEX. The sketch language is similar to PSTricks, making it easy to learn for
current PSTricks users. See www.pstricks.de for information on PSTricks. TikZ/PGF are
also very similar except for details of syntax. See http://sourceforge.net/projects/pgf.
One can easily lay raw PSTricks or TikZ/PGF output over, in, or under sketch drawings,
providing the full power of LATEX text and mathematics formatting in a three-dimensional
setting.

1.1 Reporting bugs and recommending improvements.

Report bugs and make suggestions at our Google Group http://groups.google.com/group/sketch-users.
A second method that will probably produce a slower response is email to
sketch@frontiernet.net. We will try to respond, but can’t promise. In any event, don’t
be offended if a reply is not forthcoming. We’re just busy and will get to your suggestion
eventually.

For bugs, attach a sketch input file that causes the bad behavior. Embed comments
that explain what to look for in the behavior of sketch or its output.

A recommendation for improvement from one unknown person counts as one vote. We
use overall vote tallies to decide what to do next as resources permit. We reserve the right
to a assign any number of votes to suggestions from people who have been helpful and
supportive in the past.

1.2 Contributions

If you intend to implement an enhancement of your own, that’s terrific! Consider collabo-
rating with us first to see if we’re already working on your idea or if we can use your work
in the official release.

Chapter 2: Introduction by example 2

2 Introduction by example

The sketch input language will seem familiar to users of the PSTricks package for LATEX.
The following program draws a triangular polygon pierced by a line.
polygon(0,0,1)(1,0,0)(0,1,0)
line(-1,-1,-1)(2,2,2)

The coordinate system is a standard right-handed Cartesian one.

x

y

z

2.1 Hello world

The sketch program above is nearly the simplest one possible, the equivalent of a “hello
world” program you might find at the start of a programming language text. If it is saved
in the file ‘simple.sk’, then the command
sketch simple.sk -o simple.tex

creates a file ‘simple.tex’ containing PSTricks commands to draw these objects on paper.
The contents of ‘simple.tex’ look like this.
\begin{pspicture}(-1,-1)(2,2)
\pstVerb{1 setlinejoin}
\psline(-1,-1)(.333,.333)
\pspolygon[fillstyle=solid,fillcolor=white](0,0)(1,0)(0,1)
\psline(.333,.333)(2,2)
\end{pspicture}

The hidden surface algorithm of sketch has split the line into two pieces and ordered the
three resulting objects so that the correct portion of the line is hidden.

If you’ve noticed that the projection we are using seems equivalent to erasing the z-
coordinate of the three-dimensional input points, pat yourself on the back. You are correct.
This is called a parallel projection. The z-coordinate axis is pointing straight out of the
paper at us, while the x- and y-axes point to the right and up as usual.

The resulting picture file can be included in a LATEX document with \input{simple}.
Alternately, adding the command line option ‘-T’1 causes the pspicture to be wrapped in a
short but complete document, ready to run though LATEX. In a finished, typeset document,
the picture looks like this. (The axes have been added in light gray.)

1 Or for European users of A4 size paper, ‘-Te’.

Chapter 2: Introduction by example 3

It is important to know that only the “outside” of a polygon is normally drawn. The
outside is where the vertices given in the polygon command appear in counter-clockwise
order. Thus, if the command above had been
polygon(0,1,0)(1,0,0)(0,0,1)

the polygon would not appear in the picture at all. It would have been culled from the
scene. This culling behavior may seem strange, but stay tuned.

2.2 Options

Many PSTricks and TikZ/PGF options work just fine in sketch. If generating PSTricks,
the code
polygon[fillcolor=lightgray,linewidth=3pt](0,0,1)(1,0,0)(0,1,0)
line[linestyle=dotted](-1,-1,-1)(2,2,2)

produces

To produce TikZ/PGF, the corresponding code is
polygon[fill=lightgray,line width=3pt](0,0,1)(1,0,0)(0,1,0)
line[style=dotted](-1,-1,-1)(2,2,2)
global { language tikz }

The final global instructs sketch to produce TikZ/PGF code as output rather than the
default, PSTricks. Note that polygon fill color and line style options both conform to
TikZ syntax rules. The resulting TikZ/PGF output is
\begin{tikzpicture}[join=round]
\draw[dotted](-1,-1)--(.333,.333);
\filldraw[fill=lightgray,line width=3pt](0,0)--(1,0)--(0,1)--cycle;
\draw[dotted](.333,.333)--(2,2);
\end{tikzpicture}

The remaining examples of this manual are in PSTricks style.

2.3 Drawing a solid

Let’s try something more exciting. Sketch has no notion of a solid, but polygonal faces
can be used to represent the boundary of a solid. To the previous example, let’s add three
more triangular polygons to make the faces of an irregular tetrahedron.
% vertices of the tetrahedron
def p1 (0,0,1) def p2 (1,0,0)
def p3 (0,1,0) def p4 (-.3,-.5,-.8)

% faces of the tetrahedron.
polygon(p1)(p2)(p3) % original front polygon

Chapter 2: Introduction by example 4

polygon(p1)(p4)(p2) % bottom
polygon(p1)(p3)(p4) % left
polygon(p3)(p2)(p4) % rear

% line to pierce the tetrahedron
line[linecolor=red](-1,-1,-1)(2,2,2)

This example uses definitions, which begin with def. These define or give names to points,
which are then available as references by enclosing the names in parentheses, e.g. (foo).
The parentheses denote that the names refer to points; they are required. There can be no
white space between them and the name.

As you can see, comments start with % as in TEX and extend to the end of the line
(though # will work as well). White space, including spaces, tabs and blank lines, has no
effect in the sketch language.

If we look inside the TEX file produced by sketch, there will be only three polygons. The
fourth has been culled because it is a “back face” of the tetrahedron, invisible to our view.
It is unnecessary, and so it is removed.

In some drawings, polygons act as zero-thickness solid surfaces with both sides visible
rather than as the faces of solid objects, where back faces can be culled. For zero-thickness
solids, culling is a problem. One solution is to use a pair of sketch polygons for each
zero-thickness face, identical except with opposite vertex orders. This is unwieldy and
expensive. A better way is to set the sketch internal option cull to false in the usual
PSTricks manner.
polygon[cull=false](p1)(p2)(p3)

The following shows the same helix shape drawn first with cull=true (the default) and
then cull=false.

We’ll soon see how to produce these helixes with a few lines of sketch language code.
It may be tempting to turn culling off gratuitously so that vertex order can be ignored.

This is not a good idea because output file size and TEX and Postscript processing time

Chapter 2: Introduction by example 5

both depend on the number of output polygons. Culling usually improves performance
by a factor of two. On the other hand, globally setting cull=false is reasonable while
debugging. See Section 3.4.1 [Global options], page 22 and Section 4.4.1 [Limits on error
detection], page 33.

2.4 Special objects

We can add labels to a drawing by using special objects, which provide a way to embed
raw LATEX and PSTricks code. Adding this to the tetrahedron does the trick.

special |\footnotesize
\uput{2pt}[ur]#1{$P1$}
\uput[r]#2{$P2$}
\uput[u]#3{$P3$}
\uput[d]#4{$P4$}|

(p1)(p2)(p3)(p4)

Here is the result.

P1
P2

P3

P4

There are several details to note here. First, the quoting convention for the raw code
is similar to the LATEX \verb command. The first non-white space character following
special is understood to be the quote character, in this case ‘|’. The raw text continues
until this character recurs.

Second, the argument references #1, #2, #3, and #4 refer to points in the list that follow.
This is similar to TEX macro syntax. The transformed and two-dimensional projections of
these three-dimensional points are substituted in the final output. An argument reference
of the form #1-2 is replaced with the angle in degrees of the two-dimensional vector that
connects the projections of the two respective argument points, here #1 and #2. The
substituted angle is enclosed in curly braces { }

By default, special objects are printed last, overlaying all other objects in the scene.
If you specify the internal option lay=in, the hidden surface algorithm considers the entire
special object to be the first point (#1) in the argument list. If that point is behind (of
smaller z-component than) any drawable, then the entire special object is drawn before
that drawable, so the drawable obscures parts of the special object that overlaps it. In our
example, p1 is the front-most point in the scene (has the largest z-component), so adding
lay=in has no effect.

With option lay=under, a special is drawn before, hence appears under any of the objects
handled by the hidden surface algorithm. This is how the light gray axes were added to the
“hello world” example Section 2.1 [Hello world], page 2.

Special objects are powerful, with many possible uses.

Chapter 2: Introduction by example 6

2.5 Transforms

Now let’s add a second copy of the pierced tetrahedron. We’ll rotate the copy 90 degrees
about the x-axis with the origin as center of rotation so we can see the back, then translate
it to the right—in the positive x-direction—so it doesn’t collide with the original. To help
us see what’s going on, make the back side gray.

def pierced_tetrahedron {
def p1 (0,0,1) def p2 (1,0,0)
def p3 (0,1,0) def p4 (-.3,-.5,-.8)
polygon(p1)(p2)(p3) % original
polygon(p1)(p4)(p2) % bottom
polygon(p1)(p3)(p4) % left
polygon[fillcolor=lightgray](p3)(p2)(p4) % rear
line[linecolor=red](-1,-1,-1)(2,2,2)

}
{pierced_tetrahedron} % tetrahedron in original position
put { rotate(90, (0,0,0), [1,0,0]) % copy in new position

then translate([2.5,0,0]) } {pierced_tetrahedron}

Here the entire code of the previous example has been wrapped in a definition by forming a
block with braces (a single item would not need them). The point definitions nested inside
the braces are lexically scoped. Their meaning extends only to the end of the block. The
outer def is called a drawable definition because it describes something that can be drawn.

A drawable definition by itself causes nothing to happen until its name is referenced.
Drawable references must be enclosed in curly braces, e.g. {foo}, with no intervening white
space. In the code above, the first reference {pierced_tetrahedron} is a plain one. Its
effect is merely to duplicate the earlier drawing. Almost any series of sketch commands
stuff may be replaced with def foo { stuff } {foo} without changing its meaning.

The put command supplies a second reference, this time with a transform applied first.
The rotate transform turns the tetrahedron 90 degrees about the origin. The axis of
rotation is the vector [1, 0, 0]. By the right hand rule, this causes the top of the tetrahedron
to rotate toward the viewer and the bottom away. The rule receives its name from the
following definition:

Right hand rule. If the right hand is wrapped around any axis with the thumb
pointing in the axis direction, then the fingers curl in the direction of positive
rotation about that axis.

The translate transform moves the pyramid laterally to the right by adding the vector
[2.5, 0, 0] to each vertex coordinate. The result is shown here.

Chapter 2: Introduction by example 7

2.6 Repeated objects

To draw seven instances of the tetrahedron, each differing from the last by the same trans-
form, replace the last two commands of the previous example with

repeat { 7, rotate(15, (0,0,0), [1,0,0]) % copy in new position
then translate([2,0,0]) } {pierced_tetrahedron}

And the result. . .

2.7 Swept objects

Many familiar shapes can be generated by sweeping simpler ones through space and con-
sidering the resulting path, surface, or volume. Sketch implements this idea in the sweep
command.

def n_segs 8
sweep { n_segs, rotate(180 / n_segs, (0,0,0), [0,0,1]) } (1,0,0)

This code sweeps the point (1, 0, 0) eight times by rotating it 180/8 = 22.5 degrees each
time and connecting the resulting points with line segments. The def used here is a scalar
definition. References to scalars have no enclosing brackets at all.

2.7.1 Point sweeps

Sweeping a point makes a one-dimensional path, which is a polyline. Since we have swept
with a rotation, the result is a circular arc. Here is what it looks like.

This is the first example we have seen of sketch arithmetic. The expression
180 / n_segs causes the eight rotations to add to 180. If you’re paying attention, you’ll
have already noted that there are nine points, producing eight line segments.

You can cause the swept point to generate a single polygon rather than a polyline by
using the closure tag <> after the number of swept objects. Code and result follow

def n_segs 8
sweep { n_segs<>, rotate(180 / n_segs, (0,0,0), [0,0,1]) } (1,0,0)

Chapter 2: Introduction by example 8

2.7.2 Polyline sweeps

Sweeping a polyline produces a surface composed of many faces. The unbroken helix in
the example [Helix with cull set false then true], page 4 is produced by this code (plus a
surrounding put rotation to make an interesting view; this has been omitted).

def K [0,0,1]
sweep[cull=false] {

60,
rotate(10, (0,0,0), [K]) then translate(1/6 * [K])

} line[linewidth=2pt](-1,0)(1,0)

Again, 60 segments of the helix are produced by connecting 61 instances of the swept line.
Options applied to the sweep, here cull=false, are treated as options for the generated
polygon or polyline. Options of the swept line itself, here linewidth=2pt, are ignored,
though with a warning. This def is a vector definition, which must be referenced with
square brackets, e.g. [foo].

2.7.3 Nested sweeps

When the center point of rotation is omitted, the origin is assumed. When a point has
only two coordinates, they are taken as x and y, with z = 0 assumed. A toroid is therefore
obtained with this code.

def n_toroid_segs 20 def n_circle_segs 16
def r_minor 1 def r_major 1.5
sweep { n_toroid_segs, rotate(360 / n_toroid_segs, [0,1,0]) }

sweep { n_circle_segs, rotate(360 / n_circle_segs, (r_major,0,0)) }
(r_major + r_minor, 0)

For intuition, the idea of the code is to sketch a circle to the right of the origin in the
xy-plane, then rotate that circle “out of the plane” about the y-axis to make the final figure.
This produces the following. (A view rotation and some axes have been added.)

x

y

z

This example also shows that the swept object may itself be another sweep. In fact, it
may be any sketch expression that results in a list of one or more points or, alternately,
a list of one or more polylines and polygons. The latter kind of list can be created with a
{ }-enclosed block, perhaps following a put or repeat.

2.7.4 Polygon sweeps

Sweeping a polygon creates a closed surface with polygons at the ends, which are just copies
of the original, appropriately positioned. See [Solid coil example], page 1. Options on the

Chapter 2: Introduction by example 9

swept polygon, if they exist, are applied to the ends. Otherwise the sweep options are used
throughout.

2.7.5 Polyline sweeps with closure

A polyline sweep with a closure tag creates another kind of closed surface. First, the polyline
segments are connected by faces, just as without the closure tag. Then, each set of end
points is joined to make a polygon, one for each end. A code for several views of a cylindrical
prism follows.
def n_cyl_segs 20 def n_views 5 def I [1,0,0]
def endopts [fillcolor=lightgray]
repeat { n_views, rotate(180/n_views, [I]) then translate([I] * 2.1) }

sweep[endopts]{ n_cyl_segs<>, rotate(360/n_cyl_segs, [0,1,0]) }
line[fillcolor=white](1,-1)(1,1)

It produces this drawing.

The options of the swept line, if any, are applied to the faces produced by sweeping the
line, but not the end polygons. Otherwise, the sweep options are applied throughout. The
def in this example is an option definition. References to options must be enclosed in
square brackets, e.g. [foo]. You can concatenate several sets of options with a single
reference, e.g. [color, size, style] would cause the option definitions for color, size,
and style to appear in sequence in the output created by the sketch command containing
the reference. Happily, the syntax of sketch is such that options references can never be
confused with vector references. While not apparent in this example, options references are
useful when defining many objects with a similar appearance.

2.7.6 Affine arithmetic

The arithmetic [I] * 2.1 above hints at a larger truth. Sketch operators work on scalars,
vectors, points, and transforms according to the general rules of affine algebra. This can be
helpful for setting up diagrams with computed geometry. For example, if you have triangle
vertices (p1) through (p3) and need to draw a unit normal vector pointing out of the center
of the triangle, this code does the trick.
def p1 (1,0,0) def p2 (0,0.5,0) def p3 (-0.5,-1,2)
def O (0,0,0)
def N unit(((p3) - (p2)) * ((p1) - (p2)))
def n1 ((p1)-(O) + (p2)-(O) + (p3)-(O)) / 3 + (O)
def n2 (n1)+[N]
polygon(p1)(p2)(p3)
line[arrows=*->](n1)(n2)

The first line computes the cross product of two edge vectors of the triangle and scales it to
unit length. The second computes the average of the vertices. Note that subtraction and

Chapter 2: Introduction by example 10

addition of the origin effectively convert vectors to points and vice versa. The line command
draws the normal at the correct spot.

Two caveats regarding this example remain. First, the only way to use PSTricks-style
arrows is with arrows=. The alternative syntax for PSTricks arrows is not allowed in
sketch. Second, you might like to eliminate the third def and write instead the following.
line[arrows=*->](n1) (n1)+[N]

This is not allowed. The point lists in drawables may consist only of explicit points or point
references. You may, however, use arithmetic to calculate point components. The following
works, though it’s a little cumbersome.
line[arrows=*->](n1)((n1)’x+(N)’x, (n1)’y+(N)’y, (n1)’z+(N)’z)

Obviously, the tick operator ‘’x’ extracts components of points and vectors.

2.7.7 More to learn

This is not the end of the story on sweeps! We invite the reader into the main body of this
documentation Section 3.2.6 [Sweeps], page 18 to learn more.

Who knows where you’ll finish?

Chapter 3: Input language 11

3 Input language

This chapter describes the sketch input language in detail.

3.1 Basics

Sketch input is plain ASCII text, usually stored in an input file. It describes a scene, so the
sketch language is a scene description language. Sketch input is also declarative. It merely
declares what the scene ought to look like when drawing is complete and says very little
about how sketch should do its work. Sketch commands are not executed sequentially as
in the usual programming language. They merely contribute to that declaration.

A few syntactic details are important. Case is significant in the sketch language. With
a few exceptions, white space is not. This includes line breaks. Comments begin with % or
and extend to the end of the line. You can disable a chunk of syntactically correct sketch
code by enclosing it in a def. There is a simple “include file” mechanism. The command
input{otherfile.sk}

causes the contents of ‘otherfile.sk’ to be inserted as though they were part of the current
file.

3.1.1 Identifiers

Identifiers in sketch are references to earlier-defined options, scalars, points, vectors, trans-
forms, drawables, and tags. Definitions are explained in Section 3.3 [Definitions], page 21.

An identifier consists of a leading letter followed by letters, numbers and underscores.
The last character may not be an underscore. Keywords cannot be used as identifiers, and
reserved words ought to be avoided. See Section 3.1.2 [Key and reserved words], page 11.

3.1.2 Key and reserved words

The keywords of sketch are picturebox curve def dots frame global input line
polygon put repeat set sweep and then. The sketch parser will note a syntax error if
any of these are used in place of a proper identifier.

In addition, there are reserved words that can currently be defined by the user, but with
the risk that future versions of sketch will reject those definitions. The reserved words
are atan2 cos inverse perspective project rotate scale sin special sqrt translate
unit and view.

3.1.3 Literals

Literals in sketch include scalars, points, vectors, and transforms. Literals, along with
defined object references, are used in arithmetic expressions. See Section 3.1.4 [Arithmetic],
page 13.

3.1.3.1 Scalar literals

Scalar literals are positive floating point numbers with syntax according to C conventions.
The following are some examples.

0 1004 .001 8.3143 3. 1.60E-19 6.02e+23

Scalar literals may not contain embedded spaces.

Chapter 3: Input language 12

3.1.3.2 Point and vector literals

Points and vector literals have these forms respectively.

(X,Y,Z) [X,Y,Z]

Each of the components is itself a scalar expression. The z-components are optional and
default to zero.

3.1.3.3 Transform literals

Most transform literals are formed by constructors. These are summarized in the following
table.

Constructor Param types Description
rotate(A,P,X) scalar,point,vector Rotate A degrees about point P with axis X accord-

ing to the right hand rule. See [Right hand rule],
page 6. P and X are both optional and default to
the origin and the z-axis respectively.

translate(X) vector Translate by X.
scale(S) scalar Scale uniformly by factor S.
scale(V) vector Scale along each axis by components of V.
project() — Same as scale([1,1,0]).
project(S) scalar Perspective projection with view center at origin

and projection plane z = −S.
perspective(S) scalar Perspective transform identical to project(S) ex-

cept that the z-coordinate of the transformed result
is pseudodepth, usable by the hidden surface algo-
rithm.

view(E,D,U) point,vector,vector View transform similar to that of OpenGL’s. The
eye point E is translated to the origin while a ro-
tation is also applied that makes the view direction
vector D and the view “up” vector U point in the
negative z- and the y-directions respectively. If U is
omitted, it defaults to [0, 1, 0]. When U is omitted,
D may be also; it defaults to (0,0,0)-(E), a vector
pointing from the eye toward the origin.

view(E,L,U) point,point,vector An alternate form of view(E,D,U) above where the
view direction parameter D is replaced with a “look
at” point L, i.e., a point where the viewer is focus-
ing her attention. This form of view is equivalent
to view(E, (L)-(E), U), where (L)-(E) is a direc-
tion vector. U is optional and defaults to [0, 1, 0].

[[a11,a12,a13,a14]
[a21,a22,a23,a24]
[a31,a32,a33,a34]
[a41,a42,a43,a44]]

16 scalars Direct transform matrix definition. Each of the aij

is a scalar expression. See text for details.

Chapter 3: Input language 13

The project constructor is not generally useful because it defeats hidden surface removal
by collapsing the scene onto a single plane. It is a special purpose transform for drawing
pictures of scenes where three-dimensional objects are being projected onto planes. See, for
example, Section 4.1 [Overview], page 24.

The direct transform constructor allows direct entry of a 4x4 transformation matrix.
Most 3d graphics systems, including sketch, use 4-dimensional homogeneous coordinates
internally. These are transformed by multiplication with 4x4 matrices. The built-in con-
structors (rotate, scale, etc.) are all translated internally to such 4x4 matrices. For more
information on homogeneous coordinate transformations, see any good computer graphics
textbook. The direct transform feature of sketch allows you to enter a matrix of your own
choice. There are not many cases where this is useful, but if you do need it, you need it
badly!

3.1.4 Arithmetic expressions

Arithmetic expressions over sketch literals and defined identifiers are summarized in the
following tables.

3.1.4.1 Two-operand (binary) forms and precedence

Most two-operand binary forms have meanings dependent on the types of their arguments.
An exhaustive summary of the possibilities is given in the following table.

Left Op Right Result Description
scalar + scalar scalar Scalar sum.
vector + vector vector Vector sum.
point + vector point Point-vector affine sum.
vector + point " "
scalar - scalar scalar Scalar difference.
vector - vector vector Vector difference.
point - point vector Point-point affine difference.
point - vector point Point-vector affine difference.
scalar * or . scalar scalar Scalar product.
scalar * or . vector vector Scalar-vector product.
vector * or . scalar " "
vector * vector vector Vector cross-product.
vector . vector scalar Vector dot product.
scalar ^ scalar scalar Raise scalar to scalar power.
transform ^ integer transform Raise transform to integer power.
transform * or . point point Affine point transform (right-to-left).
transform * or . vector vector Affine vector transform (right-to-left).
transform * or . transform transform Transform composition (right-to-left).
point then transform point Affine point transform (left-to-right).
vector then transform vector Affine vector transform (left-to-right).
transform then transform transform Transform composition (left-to-right).
scalar / scalar scalar Scalar division.
vector / scalar vector Vector component-wise division by scalar.
point ’ x, y, or z scalar Point component extraction.

Chapter 3: Input language 14

vector ’ x, y, or z scalar Vector component extraction.

Operator precedence is shown in this table.

Op Precedence
’ highest (most tightly binding)
^
- (unary negation)
* . /
+ -
then lowest (least tightly binding)

All operations are left-associative except for ‘^’. Parentheses ‘()’ are used for grouping to
override precedence in the usual way.

As you can see, the dot operator ‘.’ is usually a synonym for run-of-the-mill multiplica-
tion, ‘*’. The meanings differ only for vector operands. The then operator merely reverses
the operand order with respect to normal multiplication ‘*’. The intent here is to make
compositions read more naturally. The code

(1,2,3) then scale(2) then rotate(30) then translate([1,3,0])

expresses a series of successive modifications to the point, whereas the equivalent form
translate([1,3,0]) * rotate(30) * scale(2) * (1,2,3)

will be intuitive only to mathematicians (and perhaps Arabic language readers).

3.1.4.2 Unary forms

Unary or one-operand forms are summarized in the following table, where X stands for the
operand.

Op Operand Result Description
-X scalar scalar Unary scalar negation.
-X vector vector Unary vector negation.
|X| vector scalar Vector length.
unit(X) vector vector Unit vector with same direction.
sqrt(X) scalar scalar Scalar square root.
sin(X) scalar scalar Trigonometric sine (X in degrees).
cos(X) scalar scalar Trigonometric cosine (X in degrees).
atan2(X,Y) scalar scalar Polar angle in degrees of vector [X, Y].
inverse(X) transform transform Inverse transform.

Errors are reported when |X|, unit, sqrt, atan2, and inverse fail due to bad parameters.

3.1.5 Options

Syntax:

[key1=val1,key2=val2,...]

Options are used to specify details of the appearance of drawables. As shown above, they
are given as comma-separated key-value pairs.

Chapter 3: Input language 15

3.1.5.1 PSTricks options

When language pstricks is selected (the default), permissible key-value pairs include all
those for similar PSTricks objects. For example, a polygon might have the options
[linewidth=1pt,linecolor=blue,fillcolor=cyan]

Sketch merely passes these on to PSTricks without checking or modification. Option lists
are always optional. A missing options list is equivalent to an empty one ‘[]’.

When a polygon has options for both its face and its edges, and the polygon is split by
the hidden surface algorithm, sketch must copy the edge options to pslines for the edge
segments and the face options to pspolygons. Options known to sketch for purposes of
this splitting operation include arrows, dash, dotsep, fillcolor, fillstyle, linecolor,
linestyle, linewidth, opacity, showpoints, strokeopacity, and transpalpha.

3.1.5.2 TikZ/PGF options

TikZ/PGF options are handled much as for PSTricks. Though TikZ/PGF often allows colors
and styles to be given without corresponding keys, for example,
\draw[red,ultra thick](0,0)--(1,1);

this is not permitted in sketch. To draw a red, ultra-thick line in sketch, the form is
line[draw=red,style=ultra thick](0,0)(1,1)

Just as for PSTricks, when a polygon has options for both its face and its edges,
and the polygon is split by the hidden surface algorithm, sketch must copy the edge
options to pslines for the edge segments and the face options to pspolygons. TikZ/PGF
options known to sketch for purposes of this splitting operation include arrows, cap,
color, dash pattern, dash phase, double, double distance, draw, draw opacity, fill,
fill opacity, join, line width, miter limit, pattern, pattern color, and style.

The style option can contain both face and edge information, so sketch must check
the style value. Values known to sketch include dashed, densely dashed, densely
dotted, dotted, double, loosely dashed, loosely dotted, nearly opaque, nearly
transparent, semithick, semitransparent, solid, thick, thin, transparent, ultra
nearly transparent, ultra thick, ultra thin, very nearly transparent, very thick,
and very thin.

3.1.5.3 Dots in TikZ/PGF

TikZ/PGF does not have a dots command as does PSTricks. Instead, Sketch emits dots
as filldraw circles. The diameter may be set using the option dotsize borrowed from
PSTricks. The dotsize option will be removed from the option list in the output filldraw
command. Other options work in the expected way. For example, fill sets fill color and
color sets line color of the circles.

3.1.5.4 TikZ/PGF user-defined styles

TikZ/PGF allows named styles defined by the user, for example
\tikzstyle{mypolygonstyle} = [fill=blue!20,fill opacity=0.8]
\tikzstyle{mylinestyle} = [red!20,dashed]

Since sketch has no information on the contents of such styles, it omits them entirely from
lines, polygons, and their edges during option splitting. For example,

Chapter 3: Input language 16

polygon[style=mypolygonstyle,style=thick](0,0,1)(1,0,0)(0,1,0)
line[style=mylinestyle](-1,-1,-1)(2,2,2)

produces the TikZ output
\draw(-1,-1)--(.333,.333);
\filldraw[thick,fill=white](0,0)--(1,0)--(0,1)--cycle;
\draw(.333,.333)--(2,2);

Note that the user-defined styles are not present. Sketch also issues warnings:
warning, unknown polygon option style=mypolygonstyle will be ignored
warning, unknown line option style=mylinestyle will be ignored

The remedy is to state explicitly whether a user-defined style should be attched to
polygons or lines in the TikZ output using pseudo-options fill style and line style,
polygon[fill style=mypolygonstyle,style=thick](0,0,1)(1,0,0)(0,1,0)
line[line style=mylinestyle](-1,-1,-1)(2,2,2)

Now, the output is
\draw[mylinestyle](-1,-1)--(.333,.333);
\filldraw[mypolygonstyle,thick](0,0)--(1,0)--(0,1)--cycle;
\draw[mylinestyle](.333,.333)--(2,2);

A useful technique is to include user-defined style definitions in sketch code as specials
with option [lay=under] to ensure that the styles are emitted first in the output, before
any uses of the style names.1 For example,
special|\tikzstyle{mypolygonstyle} = [fill=blue!20,fill opacity=0.8]|[lay=under]
special|\tikzstyle{mylinestyle} = [red!20,dashed]|[lay=under]

The author is responsible for using the key, line style or fill style, that matches the
content of the style definition.

3.1.5.5 Transparency

Both PSTricks and TikZ/PGF support polygon options that have the effect of making the
polygon appear transparent. For PSTricks, keyword transpalpha was used during initial
development of transparency features, and opacity was adopted later. Sketch honors both.
TikZ/PGF uses opacity only. When transparent polygons are in the foreground, objects
behind them (drawn earlier) are visible with color subdued and tinted. The hidden surface
algorithm of sketch works well with such transparent polygons.

Note that cull=false must be used for rear-facing polygons to be visible when posi-
tioned behind other transparent surfaces.

3.1.5.6 Internal options

There are also internal options used only by sketch and not passed on to PSTricks. These
are summarized in the following table.

Key Possible values Description
cull true, false Turn culling of backfaces on and off respectively for this object.

The default value is true.

1 This clever trick is due to Kjell Magne Fauske.

Chapter 3: Input language 17

lay over, in, under Force this object to be under or over all other objects in the
depth sort order created by the hidden surface algorithm. The
default value over guarantees that output due to the special
will be visible.

split true, false Turn splitting of sweep-generated body polygons on and off
respectively. See Section 3.2.6 [Sweeps], page 18. The default
value true causes “warped” polygons to be split into triangles,
which avoids mistakes by the hidden surface algorithm.

3.1.6 Point lists

Syntax:

(x1,y1,z1)(x2,y2,z2)...

A sequence of one or more points makes a point list, a feature common to all drawables.
Each of the point components is a scalar arithmetic expression. Any point may have the
z-component omitted; it will default to z = 0.

3.2 Drawables

Drawables are simply sketch objects that might appear in the drawing. They include dots,
polylines, curves, polygons, and more complex objects that are built up from simpler ones
in various ways. Finally, special objects are those composed of LATEX or PSTricks code,
perhaps including coordinates and angles computed by sketch.

3.2.1 Dots

Syntax:

dots[options] point_list

This command is the three-dimensional equivalent of the PSTricks command \psdots.

3.2.2 Lines

Syntax:

line[options] point_list

This command is the three-dimensional equivalent of the PSTricks command \psline.

3.2.3 Curves

Syntax:

curve[options] point_list

This command is the three-dimensional equivalent of the PSTricks command \pscurve. It
is not implemented in the current version of sketch.

3.2.4 Polygons

Syntax:

polygon[options] point_list

This command is the three-dimensional equivalent of the PSTricks command \pspolygon.
The sketch hidden surface algorithm assumes that polygons are convex and planar. In
practice, drawings may well turn out correctly even if these assumptions are violated.

Chapter 3: Input language 18

3.2.5 Specials

Syntax:

special raw_text[lay=lay_value] point_list

Here $ can be any character and is used to delimit the start and end of raw text. The
command embeds raw text in the sketch output after performing substitutions as follows.

• #i where i is a positive integer is replaced by the i’th point in point list.
• #{i} is also replaced as above.
• #i-j where i and j are positive integers is replaced by a string {angle} where angle

is the polar angle of a vector from the i’th point in point list to the j’th.
• #{i-j} is also replaced as above.
• ## is replaced with #.

The forms with braces ‘{ }’ are useful when the argument is immediately followed by a digit
that is part of the TEX code.

The only useful option of special is lay. See Section 3.1.5.6 [Internal options], page 16.

3.2.6 Sweeps

Syntax:

sweep { n, T_1, T_2, ..., T_r }[options] swept_object

sweep { n<>, T_1, T_2, ..., T_r }[options] swept_object

The sweep connects n (or perhaps n + 1) copies of swept object in order to create a new
object of higher dimension. The T i (for i between 1 and r) are transforms. The k’th copy
of swept object is produced by applying the following transform to the original.

T1
k then T2

k then ... then Tr
k

Here Tk means “transform T applied k times.” The original object is the zero’th copy, with
k = 0 and effectively no transform applied (T 0 = I, the identity transform).

The method of connecting the copies depends on the type of swept object and on whether
the closure tag ‘<>’ is present or not.

An example of a sweep where r = 2 is the Mobius figure at Section 2.7.7 [More to learn],
page 10.

3.2.6.1 Swept points

If swept object is a point list and there is no closure tag, then sweep connects n+1 successive
copies of each point (including the original) with straight line segments to form a polyline.
If there are m points in the original point list, then m polylines with n segments each
are formed by the sweep. In this manner, sweep forms a set of one-dimensional objects
(polylines) from zero-dimensional ones (points).

When there is a closure tag, sweep connects n successive copies of each point (including
the original) with straight line segments and finally connects the last copy back to the
original to form a polygon with n sides. If there are m points in the original point list, then
m polygons with n sides each are formed by the sweep. In this manner, sweep forms a set
of two-dimensional objects (polygons) from zero-dimensional ones (points).

Options of the sweep are copied directly to the resulting polyline(s).

Chapter 3: Input language 19

3.2.6.2 Swept lines

If swept object is a polyline and there is no closure tag, then sweep connects n+1 successive
copies of the polyline (including the original) with four-sided polygons, each pair of copies
giving rise to a “polygon strip.” If there are m points in the original polyline, then (m−1)n
polygons are formed by the sweep. We call these body polygons. In this manner, sweep
forms a two-dimensional surface from from a one-dimensional polyline.

The order of vertices produced by sweep is important. If a polygon’s vertices do not
appear in counter-clockwise order in the final image, the polygon will be culled (unless
cull=false is set). If the points in the k’th copy of the polyline are P1, P2, . . . , Pm, and
the points in the next copy, the (k + 1)st, are P ′1, P ′2, . . . , P ′m, then the vertex order of the
generated polygons is

Body polygon 1: P2 P1 P ′1 P ′2
Body polygon 2: P3 P2 P ′2 P ′3
. . .
Body polygon m− 1: Pm Pm−1 P ′m−1 P ′m

Options of unclosed line sweeps are copied to each output polygon. Options of the swept
line are ignored.

When there is a closure tag, then sweep connects n successive copies of the polyline
(including the original) with four-sided body polygons just as the case with no closure tag.
It then connects the last copy back to the original to form a ribbon-shaped surface that
closes on itself with two holes remaining.

Finally, the sweep adds two more polygons to seal the holes and form a closed surface
that, depending on the sweep transforms, may represent the boundary of a solid. In this
manner, sweep forms the boundary of a three-dimensional object from a one-dimensional
polyline. We call these hole-filling polygons ends.

The order of vertices of end polygons is important for correct culling as described above.
If P 1

1 , P 2
1 , . . . , P n

1 are the n copies of the first polyline point and P 1
m, P 2

m, . . . ,P n
m are the

n copies of the last polyline point, then the end polygon vertex order is

End polygon 1: P n
1 , P n−1

1 , . . . ,P 1
1

End polygon 2: P 1
m, P 2

m, . . . ,P n
m

If there are no options on the swept line, then the ‘sweep’ options are copied to each
output polygon. If the swept line does have options, these are copied to corresponding body
polygons; the sweep options are copied to the end polygons. In this manner, body and ends
may be drawn with different characteristics such as fillcolor.

3.2.6.3 Swept polygons

If swept object is a polygon, the sweep connects n+1 successive copies of the closed polyline
border of the polygon to form body polygons exactly as though the border were a swept
polyline as described in Section 3.2.6.2 [Swept lines], page 19. If there are m points in the
original polygon, then mn body polygons are formed by this sweep. The body polygons
form an extrusion of the boundary of the original polygon with two holes at the open ends.

Finally, the sweep adds two copies of the original polygon to cover the holes. We call
these hole-filling polygons ends. In this manner, sweep forms the boundary of a three-
dimensional object from a two-dimensional polygon.

Chapter 3: Input language 20

The order of vertices of end polygons is important for correct culling as described above.
An exact copy of the original polygon with vertex order intact forms the first end polygon.
The other end polygon results from transforming and the reversing the order of vertices in
the original. The transform places the original polygon at the uncovered hole; it is

T1
n then T2

n then ... then Tr
n.

If there are no options on the swept polygon, then the ‘sweep’ options are copied to each
output polygon. If the swept polygon does have options, these are copied to the ends; the
sweep options are copied to the body polygons. In this manner, body and ends may be
drawn with different characteristics such as fillcolor.

3.2.6.4 Swept blocks

The swept object swept object may also be any collection of polylines and polygons. This
may be a block composed of line and/or polygon commands in braces ‘{ }’, or it may be
the result of a repeat, another sweep, etc. The sweep acts independently on each object
in the block exactly as if it were a single swept object described above in Section 3.2.6.2
[Swept lines], page 19 and Section 3.2.6.3 [Swept polygons], page 19.

3.2.6.5 Sweep face splitting

Before sending each four-sided body polygon of a sweep to the output, sketch tests to see
if it is roughly planar. Since planarity is necessary for proper functioning of the hidden
surface algorithm, “warped” polygons are automatically split into two triangles.

Hole-filling polygons produced by closure-tagged line sweeps are not split. Nor are
original polygons in polygon sweeps. It is the user’s responsibility to ensure these are
planar.

3.2.7 Blocks

Any sequence of drawables may be grouped in a block merely by enclosing them in braces
‘{ }’. A block is itself drawable. A key use of blocks is to extend the effect of a single def,
Section 3.3 [Definitions], page 21, put Section 3.2.9 [Puts], page 21, sweep Section 3.2.6
[Sweeps], page 18, or repeat Section 3.2.8 [Repeats], page 20 to include several objects
rather than one.

Definitions (See Section 3.3 [Definitions], page 21.) inside a block have lexical scope
extending from the place of definition to the end of the block.

3.2.8 Repeats

Syntax:

repeat { n, T_1, T_2, ..., T_r } repeated_object

The repeat makes n transformed copies of repeated object (including the original). The T i
are transforms. The k’th copy of the repeated object (for k = 0, 1, ..., n − 1) is produced
in the same manner as for sweeps described in Section 3.2.6 [Sweeps], page 18. This is
repeated here (no pun intended) for convenience. To make the k’th copy, the following
transform is applied to the original object.

T1
k then T2

k then ... then Tr
k

Here Tk means “transform T applied k times.”

Chapter 3: Input language 21

3.2.9 Puts

Syntax:

put { T } put_object

Put merely applies transform T to the drawable put object.

3.3 Definitions

Definitions give names to sketch objects. Definitions alone are benign. A sketch input
file consisting entirely of definitions will generate no drawing. Only when definitions are
referenced do they potentially lead to ink on the drawing.

The intent of definitions is to make sketch code more concise and readable. There is no
input file employing definitions that could not be re-written without them.

Definable objects include any result of an affine arithmetic expression (scalar, point,
vector, or transform), any drawable object (dots, line, curve, polygon, block, sweep, put,
repeat, or special), and option strings. In addition, tag definitions, which have no associated
object at all, allow the meaning of other definitions to be selected from a set of alternatives.
Since tags may be defined (and undefined) in the command line of sketch, they can be an
aid in the script-driven preparation of documents.

3.3.1 Forms of definitions

Definitions have three possible forms, simple, with alternatives, and tag as shown here in
order.
Syntax:

def id object % simple def
def id <tag_1> object_1 % def with alternatives

<tag_2> object_2

...
<> default_object

def id <> % tag def

The simple definition merely associates object with the identifier id.
The definition with alternatives associates object i with id, where tag i is the first defined

tag in the list of alternative tag references. If no tag in the list is defined, then default object
is associated with identifier id.

The final form defines id as a tag. Another way to define a tag is with the ‘-D’ command
line option. See Chapter 5 [Command line], page 36.

3.3.2 Forms of references

References to defined names are enclosed in bracketing delimiters. The delimiter characters
imply the type of the associated value as shown in the table below. A type error is raised
if the type of a reference does not match the type of the defined value. The intent of this
mechanism is, again, to make sketch input files more readable.

Type Reference
scalar id

Chapter 3: Input language 22

point (id)
vector [id]
transform [[id]]
drawable {id}
options [id] or [id1,...,idN]
tag <id>

Note that square brackets ‘[]’ are used both for vector and for options references. Details
of sketch syntax make it impossible for these two reference types to be confused. The
special multiple reference [id1,id2,...,idN] acts as if the respective lists of options were
concatenated.

3.4 Global environment

An optional global environment block provides a few ways to affect the entire scene. The
block must appear as the last text in the sketch input file. It may include definitions, but
note that previous definitions at the top level (not nested inside blocks) are also available.
Syntax:

global { environment_settings }

The contents of environment settings are discussed in the sections that follow.

3.4.1 Global options

Syntax:

set [options]

The contents of options, except for sketch internal options, are copied as-is to a \psset
that appears before anything else in the output file. This is a good place to set unit, a
default linewidth, etc.

Internal options work on all objects where they make sense. This includes cull and
split (but not lay). See Section 3.1.5.6 [Internal options], page 16.

3.4.2 Camera

Syntax:

camera transform_expression

The transform expression is applied after all other transformations of the scene. This is
currently only useful for transforming the bounding box. See Section 3.4.3 [Picture box],
page 22. It will play a role in any future implementation of clipping.

3.4.3 Picture box

Syntax:

picturebox[baseline]
picturebox[baseline] (p1)(p2)

The first form of picturebox causes a scalar baseline fraction to be emitted in the
pspicture environment of the output. See PSTricks documentation for pspicture.

In the second form, the baseline fraction is optional, and the two points that follow
define the diagonal of a three-dimensional bounding box for the completed scene. The

Chapter 3: Input language 23

parallel projection of the bounding box determines the corners of the drawing’s pspicture*
environment, which is used in place of pspicture. This causes PostScript to clip the final
drawing to the bounding box in 2d. If there is a camera specified, the camera tranformation
is applied to the bounding box, and the pspicture is set just large enough to include the
transformed box.

When no bounding box is given, sketch computes one automatically.

3.4.4 Frame

Syntax:

frame [options]

Causes a \psframebox to surround the pspicture environment in the output. If options
are present, they are copied as-is. Normally one would want to set linewidth, linestyle,
linecolor, etc. If omitted, then framesep=0pt is added so that the frame tightly hugs the
pspicture.

3.4.5 Language

language tikz
language tikz, context
language pstricks
language pstricks, latex

Sets the output language generated by sketch. The set of options understood by sketch
also changes. For example, the PSTricks option linewidth will not be properly handled if
language is set to tikz. Similarly, the TikZ option line style (note the space) will not
be properly handled if language is set to pstricks. If no language is specified, the default
pstricks is used.

An optional comma followed by latex or context specifies the macro package that the
output should assume. This affects the picture environment commands emitted and the
document template used with the ‘-T’ option. See Chapter 5 [Command line], page 36.
Note that at the time this manual was generated, PSTricks was not supported by LATEX
or by ConTeXt.

Chapter 4: Building a drawing 24

4 Building a drawing

Successful drawings with sketch and with any scene description language require that the
user develop an accurate mental picture of her code and its meaning. This image is best
built in small pieces. Therefore, sketch inputs are best created in small increments with
frequent pauses to compile and view the results. Careful comments in the input often help
as a scene grows in complexity.

4.1 Overview

As an overview, let’s develop a diagram that shows how a perspective projection transform
works. We’ll start with the traditional reference object used in computer graphics textbooks,
a house-shaped prism. Begin by defining the points of the house. Rather than defining the
faces of the house as polygons and transforming those, we are going to transform the points
themselves with sketch arithmetic so that we have names for the transformed points later.

% right side (outside to right)
def R1 (1,1,1) def R2 (1,-1,1) def R3 (1,-1,-1) def R4 (1,1,-1)
def R5 (1,1.5,0)

% left side (outside to right--backward)
def W [2,0,0]
def L1 (R1)-[W] def L2 (R2)-[W] def L3 (R3)-[W] def L4 (R4)-[W]
def L5 (R5)-[W]

To add a door to the house, we use a polygon slightly in front of the foremost face of the
house.
% door
def e .01
def D1 (0,-1,1+e) def D2 (.5,-1,1+e) def D3 (.5,0,1+e) def D4 (0,0,1+e)

Now let’s create a new set of points that are a to-be-determined transform of the originals.
def hp scale(1) % house positioner
def pR1 [[hp]]*(R1) def pR2 [[hp]]*(R2) def pR3 [[hp]]*(R3)
def pR4 [[hp]]*(R4) def pR5 [[hp]]*(R5)
def pL1 [[hp]]*(L1) def pL2 [[hp]]*(L2) def pL3 [[hp]]*(L3)
def pL4 [[hp]]*(L4) def pL5 [[hp]]*(L5)
def pD1 [[hp]]*(D1) def pD2 [[hp]]*(D2) def pD3 [[hp]]*(D3)
def pD4 [[hp]]*(D4)

Note the use of a transform definition and transform references. Now define the seven
polygonal faces of the house and the door using the transformed points as vertices. Be
careful with vertex order!
def rgt polygon (pR1)(pR2)(pR3)(pR4)(pR5)
def lft polygon (pL5)(pL4)(pL3)(pL2)(pL1)
def frt polygon (pR2)(pR1)(pL1)(pL2)
def bck polygon (pR4)(pR3)(pL3)(pL4)
def tfr polygon (pR1)(pR5)(pL5)(pL1)
def tbk polygon (pR5)(pR4)(pL4)(pL5)

Chapter 4: Building a drawing 25

def bot polygon (pR2)(pL2)(pL3)(pR3)
def door polygon[fillcolor=brown] (pD1)(pD2)(pD3)(pD4)
def house { {rgt}{lft}{frt}{bck}{tfr}{tbk}{bot}{door} }

Time for a sanity check. Add the line

{house}

and this is what we get.

This is correct, but does not reveal very much. Common errors are misplaced vertices and
polygons missing entirely due to incorrect vertex order. To rule these out, let’s inspect all
sides of the house. This is not hard. Merely replace the reference {house} with a repeat.
See Section 3.2.8 [Repeats], page 20.

repeat { 13, rotate(30, [1,2,3]), translate([3,0,0]) } {house}

Again things look correct. Note that the hidden surface algorithm handles intersecting
polygons correctly where some copies of the house overlap.

Let’s lay out the geometry of perspective projection of the house onto a plane with rays
passing through the origin. Begin by positioning the house twelve units back on the negative
z-axis and adding a set of coordinate axes. To move the house we need only change the
“house positioning” transform defined earlier.

def hp rotate(-40, [0,1,0]) then translate([0,0,-12])
def axes {

def sz 1
line [arrows=<->] (sz,0,0)(O)(0,sz,0)
line [arrows=->] (O)(0,0,sz)
line [linewidth=.2pt,linecolor=blue,linestyle=dashed] (O)(0,0,-10)
special |\uput[r]#1{x}\uput[u]#2{y}\uput[l]#3{z}|
(sz,0,0)(0,sz,0)(0,0,sz)

}

Time for another test. Let’s build a real view transform, creating a virtual camera to
look at the scene we are constructing. Replace the repeat with

def eye (10,4,10)
def look_at (0,0,-5)
put { view((eye), (look_at)) } { {house}{axes} }

The view transform repositions the scene so that the point eye is at the origin and
the direction from eye to look_at is the negative z-axis. This requires a rotation and a
translation that are all packed into the constructor view.

Chapter 4: Building a drawing 26

x

y

z

This is starting to look good! Add the projection plane half way between the origin and
the house at z = −5. We’ll try the angle argument feature of special to position a label.

def p 5 % projection distance (plane at z=-p)
def projection_plane {

def sz 1.5
polygon (-sz,-sz,-p)(sz,-sz,-p)(sz,sz,-p)(-sz,sz,-p)
special |\rput[b]#1-2#3{\footnotesize\sf projection plane}|
(-sz,-sz,-p)(sz,-sz,-p)(0,-sz+.1,-p)

}

Add {projection_plane} to the list of objects in the put above.

projection plane
x

y

z

The way we constructed the points of the house now makes it easy to draw rays of
projection. We’ll cast one ray from every visible vertex of the house and define options so
the appearance of all rays can be changed at the same time.

def projection_rays {
def rayopt [linewidth=.3pt,linecolor=lightgray]
line [rayopt](O)(pR1) line [rayopt](O)(pR2) line[rayopt](O)(pR3)
line [rayopt](O)(pR4) line [rayopt](O)(pR5)
line [rayopt](O)(pL1) line [rayopt](O)(pL2) line[rayopt](O)(pL5)
line [rayopt](O)(pD1) line [rayopt](O)(pD2)
line [rayopt](O)(pD3) line [rayopt](O)(pD4)

}

The result is shown here.

Chapter 4: Building a drawing 27

projection plane
x

y

z

The rays pierce the projection plane at the corresponding points on the perspective image
we are trying to draw. Albrecht Dürer and his Renaissance contemporaries had the same
idea in the early 1500’s.

All that’s left is to find a way to connect the points of the house on the projection plane.
We could pull out a good computer graphics text, find the necessary matrix, and enter it
ourselves as a transform literal. See Section 3.1.3.3 [Transform literals], page 12. That work
is already done, however. We can use the project(p) constructor.

There are still some details that require care. Projection will flatten whatever is trans-
formed onto the plane z = −p. Therefore any part of the house could disappear behind the
projection plane (the hidden surface algorithm orders objects at the same depth arbitrar-
ily). The door may also disappear behind the front of the house. To make sure everything
remains visible, we’ll place the house a tiny bit in front of the projection plane and a second
copy of the door in front of the house.
def projection {

% e is a small number defined above
put { project(p) then translate([0,0,1*e]) } {house}
put { project(p) then translate([0,0,2*e]) } {door}

}

projection plane
x

y

z

Chapter 4: Building a drawing 28

If you have studied and understand all this, you are well on the way to success with
sketch. Not shown are the 20 or so iterations that were required to find a reasonable
viewing angle and house position, etc. Nonetheless, this drawing was completed in about
an hour. While a GUI tool may have been a little faster, it is unlikely that a new drawing,
itself a perspective projection of the scene, could be generated with two more minutes’ work!
Just change the view transform to

put { view((eye), (look_at)) then perspective(9) } { ...

and produce this.

projection plane

x

y

z

4.2 A technical drawing

Let’s look at a drawing that represents the kind of problem sketch was meant to solve—a
pair of textbook figures regarding a polygonal approximation of a truncated cone. Here are
the pictures we will produce.

r0

r1

h

x

y

z

b

b
b

b

i=0

i=1

j j+1

P00

P10

P01

P11

The cone shape is just a swept line with no closure tag and culling turned off. Begin by
setting up some useful constants.

def O (0,0,0) def I [1,0,0] def J [0,1,0] def K [0,0,1]
def p0 (1,2) def p1 (1.5,0) def N 8
def seg_rot rotate(360 / N, [J])

The points p0 and p1 are the end points of the line to be swept. The definition seg_rot is
the sweep transformation. With these, the cone itself is simple.

sweep[cull=false] { N, [[seg_rot]] } line(p0)(p1)

The axes are next and include an interesing trick that shows the hidden parts as dotted
lines. The secret is draw the axes twice—solid lines with the normal hidden surface algo-
rithm in effect, and then dotted with the option lay=over so that no polygons can hide
them.

Chapter 4: Building a drawing 29

def ax (dx,0,0) % tips of the axes
def ay (0,dy,0)
def az (0,0,dz)
line[arrows=<->,linewidth=.4pt](ax)(O)(ay)
line[arrows=->,linewidth=.4pt](O)(az)
% repeat dotted as an overlay to hint at the hidden lines
line[lay=over,linestyle=dotted,linewidth=.4pt](ax)(O)(ay)
line[lay=over,linestyle=dotted,linewidth=.4pt](O)(az)
special|\footnotesize

\uput[d]#1{x}\uput[u]#2{y}\uput[l]#3{z}|
(ax)(ay)(az)

The labels are applied with PSTricks special objects as usual.

For the height dimension mark, the power of affine arithetic is very helpful.

def hdim_ref unit((p1) - (O)) then [[seg_rot]]^2
def c0 (p0) then scale([J])
def h00 (c0) + 1.1 * [hdim_ref]
def h01 (c0) + 1.9 * [hdim_ref]
def h02 (c0) + 1.8 * [hdim_ref]
line(h00)(h01)
def h10 (O) + 1.6 * [hdim_ref]
def h11 (O) + 1.9 * [hdim_ref]
def h12 (O) + 1.8 * [hdim_ref]
line(h10)(h11)
line[arrows=<->](h02)(h12)
def hm2 ((h02) - (O) + (h12) - (O)) / 2 + (O)
special|\footnotesize\rput*#1{h}|(hm2)

The general idea employed here is to compute a unit “reference vector” parallel to the
xz-plane in the desired direction of the dimension from the origin. The transformation
[[seg_rot]]^2 rotates two segments about the y-axis. When applied to (p1) - (O), the
resulting vector points to the right as shown. In this manner, we can pick any vertex as
the location of the height dimension lines by varying the exponent of [[seg_rot]]. This
is only one of many possible strategies.

The computation of hm2 is a useful idiom for finding the centroid of a set of points.

The two radius marks are done similarly, so we present the code without comment.

% radius measurement marks
def gap [0,.2,0] % used to create small vertical gaps

% first r1
def up1 [0,3.1,0] % tick rises above dimension a little
def r1 ((p1) then [[seg_rot]]^-2) + [up1]
def r1c (r1) then scale([J])
def r1t (r1) + [gap]
def r1b ((r1t) then scale([1,0,1])) + [gap]
line[arrows=<->](r1c)(r1) % dimension line
line(r1b)(r1t) % tick

Chapter 4: Building a drawing 30

def r1m ((r1) - (O) + (r1c) - (O)) / 2 + (O) % label position
special |\footnotesize\rput*#1{r_1}|(r1m) % label

% same drill for r0, but must project down first
def up0 [0,2.7,0]
def r0 ((p0) then scale([1,0,1]) then [[seg_rot]]^-2) + [up0]
def r0c (r0) then scale([J])
def r0t (r0) + [gap]
def r0b ((p0) then [[seg_rot]]^-2) + [gap]
line[arrows=<->](r0c)(r0)
line(r0b)(r0t)
def r0m ((r0) - (O) + (r0c) - (O)) / 2 + (O)
special |\footnotesize\rput*#1{r_0}|(r0m)

The second drawing uses the same techniques. Only the method for drawing the elliptical
arc is new. Here is the code.

def mid ((p00)-(O)+(p10)-(O)+(p11)-(O)+(p01)-(O))/4+(O)
special|\rput#1{\pscustom{

\scale{1 1.3}
\psarc[arrowlength=.5]{->}{.25}{-60}{240}}}|
[lay=over](mid)

We could have swept a point to make the arc with sketch, but using a PSTricks custom
graphic was simpler. Again we computed the centroid of the quadrilateral by averaging
points. Note that scaling in Postscript distorts the arrowhead, but in this case the distortion
actually looks better in the projection of the slanted face. A sketch arrowhead would not
have been distorted.

The complete code for this example, which draws either figure depending on the definition
of the tag <labeled>, is included in the sketch distribution in the file ‘truncatedcone.sk’.

4.3 A hierarchical model

While sketch was never meant to be a geometric modeling language, it comes fairly close.
The following example puts all we have seen to work in a very simple model of the human
hand. Start by sweeping a line to make a truncated cone, which will be copied over and
over again to make the segments of fingers.

def O (0,0,0) % origin
def I [1,0,0] def J [0,1,0] def K [0,0,1] % canonical unit vectors
def segment {

def n_faces 8
sweep { n_faces<>, rotate(360 / n_faces, [J]) }
line(proximal_rad, 0)(distal_rad, distal_len)

}

In hand anatomy, distal is “at the tip” and proximal is “in the area of the palm.” We have
omitted all the scalar constants. You can find them in ‘hand.sk’, which is provided in the
sketch distribution.

We also need a prototypical sphere to use for the joints themselves.

Chapter 4: Building a drawing 31

def joint_sphere {
def n_joint_faces 8
sweep [fillcolor=red] { n_joint_faces, rotate(360 / n_joint_faces, [J]) }
sweep { n_joint_faces, rotate(180 / n_joint_faces) }

(0, -joint_rad)
}

We’ll now design the index finger (number 1 in our notational convention; finger 0 is the
thumb). The distal rotation for the finger applies only to the tip, so we define the following.

def distal_1 {
put { translate(joint_gap * joint_rad * [J])

then rotate(distal_1_rot, [I])
then translate((distal_len + joint_gap * joint_rad) * [J]) }

{segment}
put { rotate(distal_1_rot / 2, [I])

then translate((distal_len + joint_gap * joint_rad) * [J]) }
{joint_sphere}

put { scale([J] + proximal_distal_ratio * ([I]+[K])) }
{segment}

}

The identifiers here are for size and location constants. The exception is distal_rot_1.
This rotation parameter models the flexing of the finger tip. The first put makes a copy of
the finger segment that is translated upward just far enough to make room for the spherical
joint. Then it applies the distal rotation. Finally it translates the whole assembly upward
again to make room for the middle phlanges (the next bone toward the palm). The second
put positions the sphere. There is a rotation to place the grid on the sphere surface at an
nice angle, then a translation to the base of the distal phlanges, which is also center of its
rotation. Finally, the last put positions the middle segment itself.

The middle joint is the next one down, with rotation angle middle_rot_1. When this
angle changes, we need all the objects in distal_1 to rotate as a unit. This is the reasoning
behind the next definition.
def finger_1 {

put { translate(joint_gap * joint_rad * [J])
then rotate(middle_1_rot, [I])
then translate((middle_ratio * distal_len +

joint_gap * joint_rad) * [J]) }
{distal_1}

put { scale(proximal_distal_ratio)
then rotate(middle_1_rot / 2, [I])
then translate((middle_ratio * distal_len +

joint_gap * joint_rad) * [J]) }
{joint_sphere}

put { scale(middle_ratio * [J] +
proximal_distal_ratio^2 * ([I]+[K])) }

{segment}
}

Chapter 4: Building a drawing 32

This looks very similar to the previous definition, and it is. The important difference is
that rather than positioning and rotating a single segment, we position and rotate the entire
“assembly” defined as distal_1. The rest is just arithmetic to compute sizes and positions
that look nice. The last put places an appropriately shaped segment that is the proximal
phlanges, the bone that joins the palm of the hand. This completes the finger itself.

All the other fingers are described identically to this one. We account for the fact that
real fingers are different sizes in the next step, which is to build the entire hand.

The hand definition that follows includes a section for each finger. We’ll continue
with finger 1 and omit all the others. (Of note is that the thumb needs slightly special
treatment—an extra rotation to account for its opposing angle. This is clear in the full
source code.) Not surprisingly, the hand definition looks very much like the previous two.
It should be no surprise that when the rotation parameter meta_1_rot changes, the entire
finger rotates! There is an additional rotation that allows the fingers to spread laterally.
We say these joints of the proximal phlanges have two degrees of freedom. The joints higher
on the finger have only one. Finally, each finger is scaled by a factor to lend it proportion.

def hand {
% finger 1 [all other fingers omitted]
def scale_1 .85
put { scale(scale_1)

then translate((joint_gap * joint_rad) * [J])
then rotate(meta_1_rot, [I])
then rotate(-spread_rot, [K])
then translate((proximal_1_loc) - (O)) }

{finger_1}
put { scale(scale_1 * proximal_distal_ratio^2)

then rotate(meta_1_rot / 2, [I])
then rotate(-spread_rot, [K])
then translate((proximal_1_loc) - (O)) }

{joint_sphere}

% palm
sweep { 1, rotate(6, (0,15,0), [I]) }
put { rotate(-3, (0,15,0), [I]) } {

polygon(proximal_1_loc)(proximal_2_loc)
(proximal_3_loc)(proximal_4_loc)
(h5)(h6)(h6a)(h9)(h10)

polygon(h6a)(h7)(h8)(h9)
} }

The last section of the definition creates the polytope for the palm of the hand by sweeping
a 10-sided polygon through a very short arc (9 degrees). This provides a wedge-shaped
profile when viewed from the side. The thick end of the wedge is the wrist. Because the
polygon is concave, it is split into into two convex shapes with nine and four vertices.

We can now have fun positioning the hand by adjusting the various rotation angles. The
complete source includes definitions with alternatives that include the following views and
more.

Chapter 4: Building a drawing 33

4.4 Caveats

Sketch is a fairly powerful tool for drawing, but, just as with TEX, the power to create
beautiful results comes along with the power to make mistakes. The following are some
points where care is necessary and where the current version of sketch is limited or has
known bugs.

4.4.1 Limits on sketch error detection

Sketch catches many kinds of errors, but not all. For example, options that sketch does not
recognize, even incorrect ones, are quietly copied to PSTricks commands in the output. It
is also unfortunately easy to produce sketch inputs that lead to no picture at all (improper
vertex ordering causes everything to be culled), to pictures that are too big or too small for
PSTricks to draw (due to limits of TEX math), and pictures that look nothing like what
was intended. A picture with one of these problems can be difficult to “debug.” We offer
the following suggestions.

• Follow the suggested incremental development method described in Section 4.1 [Over-
view], page 24.

• Always maintain one or two back-versions of a drawing so that it is easy to fall back
to a known-good increment.

• When using perspective, ensure all finally transformed objects satisfy z < 0 and, in
fact, do not come very close to the origin at all.

• Temporarily use cull=false to see where vertex ordering problems lie.

• Use temporary changes of color of one or more objects to ensure that your understand-
ing of the scene geometry is correct.

• If PSTricks complains about something, inspect the output directly for clues.

4.4.2 Clipping

The current version of sketch has no clipping operations. The entire scene is always drawn.
This means that when a perspective transform is employed, it is the user’s responsibility to
make sure the entire scene remains in front of the viewer, the region z < 0.

Chapter 4: Building a drawing 34

4.4.3 Hidden surface removal and polygon splitting

Sketch uses the depth sort algorithm for hidden surface removal. This is a very old technique
due to Newell.1 It is generally regarded as too slow for real time graphics, but it is ideal for
our purpose where speed is not very important.2

The depth sort algorithm merely sorts objects on a key of increasing z-coordinate, equiv-
alent to decreasing depth. Objects are then drawn in the sorted sequence so that those at
the rear of the scene are overwritten by those closer to the viewer. Since this is also how
oil painters practice their art, depth sort is sometimes called “the painter’s algorithm.”

In some cases it is impossible to strictly order polygons according to depth. Moreover,
even if a correct depth ordering exists, the computation needed to find it may be too complex
and slow. In these cases, sketch splits one or more polygons into pieces. The expectation
is that the new, smaller polygons will be simpler to order. Sketch uses a BSP (binary space
partition) to handle the splitting operation.

4.4.3.1 Statistics

For the curious, sketch writes one line of depth sort statistics. Here is an example for a
large collection of triangles.
remark, node=34824 probe=581.9 swap=5 split=2 (in=4 out=6) ols=24851/0

It means that 34, 824 objects were depth sorted after culling. For each, an average of
581.9 others had to be checked to ensure that the initial, approximate ordering was correct.
Among all these checks, only 5 resulted in swaps to reorder the initial sort. In two cases,
a correct ordering could not be determined, so binary space partitions were constructed
for splitting. A total of 4 objects (triangles in this case) were inserted in the partitions,
and 6 polygons were produced. Finally, 24, 851 “last resort” polygon overlap checks were
performed after simpler, faster checks failed to yield conclusive results. The final /0 is for
line-polygon overlap checks. For comparison, the statistics for the last figure in Section 4.1
[Overview], page 24 follow.
remark, node=27 probe=14.6 swap=36 split=15 (in=30 out=45) ols=0/69

Note that there was proportionally much more swapping and splitting activity in this highly
connected scene.

4.4.3.2 Bugs and anomalies

Polygon and line splitting can both cause anomalies in the output. PSTricks dash patterns,
specified with linestyle=dashed, can be disrupted by splitting. This occurs when the
depth sort gives up too early and splits a line where it is not really necessary. A workaround
is to use gray or finely dotted lines instead. If your drawing is small, you can also edit the
sketch output by hand to merge the pieces of the offending line.

Another anomaly is tiny (or in degenerate cases not-so-tiny) notches in the lines that
border split polygons. These derive from the way each polygon is painted: first, all pixels

1 Newell, M.E., R.G. Newell, and T.L. Sancha, A solution to the hidden surface problem. Proceedings of
the ACM annual conference - Volume 1, page 443–450, ACM Press, 1972.

2 We have run sketch on the famous Stanford Bunny, which consists of nearly 70, 000 triangles. Run time
was about 6 seconds. Most of this was spent writing the output file rather than in the hidden surface
algorithm. LATEX took much longer to process the resulting PSTricks code. The obvious conclusion is
that the speed of the depth sort algorithm is not a worry.

Chapter 4: Building a drawing 35

within the boundary are filled with color (perhaps white), then the same boundary is stroked
(a Postscript term) with a line. The result is that half the line lies inside the boundary
and half outside, while the Painter’s algorithm assumes the polygon lies entirely within its
boundary. The notches are due to one polygon fill operation overwriting the already-drawn
inside of the border of another polygon.3 One workaround is to make border lines very thin.
In fact linewidth=0pt is guaranteed to eliminate this problem, though this results in the
thinnest line your output device can draw, which is usually too thin. You might get lucky
by merely reordering things in the input file, which is likely to move the splits to different
places. The only sure-fire solution is pretty terrible: custom fit special overlay lines (with
\psline) to cover the notches.

Polygon splitting also breaks PSTricks hatch patterns. The only known workaround is
to substitute a solid fill for the hatch.

3 I know how to fix this problem, but I don’t like my solution, and I’m interested in yours.

Chapter 5: Command line 36

5 Command line

Synopsis:

sketch [-h][-V x.y][-v][-b][-d][t doctmp][-T[u|e][p[P|T][L|C]]][-o output.tex]
[-D tag ...] input1.sk [-U tag ...] input2.sk ...

Description Processes the sketch input files in order to produce PSTricks output code
suitable for inclusion in a TEX or LATEX document.
Options:

-h Print a short catalog of options.

-V Set the PSTricks version assumed for output purposes to x.y, for example 1.19.
Usually needed only if your PSTricks is old compared to your sketch. Use -v
to see what sketch assumes by default.

-v Print version information to standard output, including the version of PSTricks
assumed for output (can be changed with -V above).

-b Use a BSP (See Section 4.4.3 [Hidden surface removal], page 34.) for all hidden
surface removal rather than the default, which is the depth sort algorithm
with BSPs used only for cycle resolution. This may produce correct output in
certain degenerate cases where the depth sort cannot, but it also leads to many
gratuitous splits, hence more anomalies Section 4.4.3.2 [Bugs and anomalies],
page 34 and big output files.

-d Run sketch’s parser in debugging mode. This is primarily for development.

-t Use contents of file ‘doctmp’ as a document template in which to enclose
PSTricks output code. The code is inserted in place of the first instance of
the escape string %%SKETCH_OUTPUT%%.

-T Causes PSTricks output to be enclosed in default US document template text.
Option ‘-Tu’ is a synonym. Option ‘-Te’ causes the Euro standard document
template to be used. A ‘p’ appended to any of these options causes the respec-
tive default PSTricks document template to be printed to standard output.
An appended ‘P’ is a synonym. An appended ‘T’ causes the the TikZ/PGF tem-
plate to be printed. An appended ‘L’ prints the LATEX version of the document
template, a synonym for the default. A ‘C’ prints the ConTeXt template.

-o Use ‘output.tex’ as the output file. The default is standard output.

-D Define a tag for purposes of selecting definition alternatives. See Section 3.3
[Definitions], page 21. The definition applies for all input files that follow unless
the tag is undefined with ‘-U’.

inputi.sk Input files, read in the sequence they are given.

-U Un-define a tag for purposes of selecting definition alternatives.

Chapter 6: Building and installing sketch 37

6 Building and installing sketch

Sketch is so small that compiling by brute force is probably best. The following command
ought to do the trick on any systems where gcc is installed. Make sure to first change
current directories to the place where you have unpacked the sources.

gcc *.c -o sketch.exe -lm

The ‘.exe’ at the end is necessary for Windows systems. Drop it if your system is some
version of Unix. Other C compilers ought to work as just as well. For example,

cl *.c -o sketch.exe

is the correct command for many versions of MS Visual C. In the latest versions, Microsoft
has deprecated the -o option and, by default, does not define the __STDC__ macro. This
causes problems with some versions of flex, bison, lex, and yacc, which are used to create
the sketch scanner and parser. It’s nearly always possible to find a set of options that
compiles with no errors or warnings, and this means sketch is very likely to work correctly.
For example, the Visual C++ 2005 Express Edition compiler (available free of charge from
the Microsoft web site), flex version 2.5.4, and bison version 2.1 build error-free with

cl -DYY_NEVER_INTERACTIVE=1 -Za -Ox -Fesketch.exe *.c

For purists, there is also a makefile compatible with GNU make and gcc. The command
make

will build the executable, including the rebuilding of the scanner and parser with flex and
bison if you have changed ‘sketch.l’ or sketch.y respectively.

To build this document in all its myriad forms (assuming you have the necessary con-
version programs on your system), use

make docs

The possibilities are listed in this following table.

Format Converter Pictures Description
manual.info makeinfo ‘.txt’ GNU Info.
manual.dvi texi2dvi ‘.eps’ TEX typeset output.
manual.ps texi2dvi,dvips ‘.eps’ Postscript.
manual.pdf texi2dvi ‘.pdf’ Adobe PDF.
manual.html makeinfo ‘.png’ A single web page.
manual/index.html makeinfo ‘.png’ Linked web pages, one per node.

An additional open source program epstool is needed to refine the Encapsulated Post-
script bounding boxes of sketch-generated figures.

Index of syntax 38

Index of syntax

’
’x, ’y, and ’z . 10, 13

(
(), grouping . 14
(foo), point reference . 4, 22

*
*, multiplication operator 13, 14

+
+, plus operator . 13

-
-, minus operator . 13
-, unary minus operator . 14

.

., dot operator . 13, 14

/
/, division operator . 13

<
<>, closure tag . 7, 9, 18, 19, 20
<foo>, tag reference . 21, 22

[
[[][][][]], transform literal 12, 13
[[foo]], transform reference 22, 24
[foo,...,bar], multiple options reference 22
[foo], options reference . 9, 22
[foo], vector reference . 8, 22

^
^, exponentiation operator . 13

{
{ }, block drawable 6, 8, 20, 24
{foo}, drawable reference 6, 22, 25

|
|X|, magnitude operator . 14

A
arrows . 9, 10, 25, 28, 29
atan2 . 14

C
camera . 22
context . 23
cos . 14
cull . 4, 8, 16, 22, 28
curve . 17

D
def 3, 4, 6, 7, 8, 9, 24, 25, 28, 29, 30, 31
dots . 17

F
fill opacity . 16
fill style . 16
fillcolor . 6, 9, 24
frame . 23
framesep . 23

G
global . 22

I
input . 11
inverse . 14

L
language . 23
latex . 23
lay . 5, 16, 18, 22, 28, 30
line 3, 6, 9, 17, 20, 25, 28, 29, 30
line style . 16
linecolor . 6, 23, 25
linestyle . 23, 25, 28, 34
linewidth . 8, 23, 25, 28

O
opacity . 16

Index of syntax 39

P
perspective . 12
picturebox . 22
point list . 17
polygon . 3, 6, 9, 17, 20, 24
project . 12, 13
pstricks . 23
put . 6, 8, 21, 31

R
repeat . 7, 8, 9, 20, 25
rotate 6, 7, 8, 9, 12, 25, 28, 30, 31

S
scale . 12, 29, 31
set . 22
sin . 14

special . 5, 18, 25, 28, 29, 30
split . 16, 22
sqrt . 14
sweep . 7, 8, 9, 18, 28, 30

T
then . 6, 9, 13, 14
tikz . 23
translate 6, 7, 8, 9, 12, 25, 31
transpalpha . 16

U
unit . 14, 29

V
view . 12

Index of concepts 40

Index of concepts

A
affine arithmetic . 9, 29
alternatives, definition . 21
argument, special . 5, 18
associativity, operator . 14
axis, rotation . 6

B
back face . 4
baseline fraction . 22
binary form . 13
binary space partition . 34, 36
block . 6, 20
block sweep . 20
body polygon . 17, 19
bounding box . 22
BSP, binary space partition 34, 36

C
camera . 22
center of rotation . 6, 8
centroid . 29, 30
clipping . 23, 33
closure tag, <> . 7, 9, 18, 19, 20
command line option . 2
command line options . 36
command line, sketch . 2, 36
comments . 4, 11
constructor . 12
coordinate system, right-handed 2
counter-clockwise polygon vertex order 3
culling . 3, 4, 19

D
declarative language . 11
definition . 4, 21
definition with alternatives . 21
definition, drawable . 6
definition, options . 9
definition, point . 4
definition, scalar . 7
definition, simple . 21
definition, tag . 21, 36
definition, transform . 24
definition, vector . 8
depth sort . 17, 34
direct transform . 12, 13
document template . 2, 36
drawable . 6, 17
drawable definition . 6
drawable reference . 22

E
end polygon . 19

F
faces . 3, 8
file, include . 11
file, input . 11
frame box . 23

G
global options . 3, 22

H
helix . 4, 8
hello world . 2
hidden surface algorithm 2, 5, 12, 28, 34
hierarchical model . 30

I
identifiers . 11
include file . 11
input file . 11
internal option . 5
internal options . 16, 22

K
keywords . 11

L
labels . 5
language, declarative . 11
language, output . 23
language, scene description . 11
lexical scope . 6, 20
line sweep . 8, 19, 28
literal, point . 12
literal, scalar . 11
literal, transform . 12
literal, vector . 12

N
nesting, swept object . 8

O
one-operand form . 14

Index of concepts 41

operator associativity . 14
operator precedence . 14
option . 3
option, command line . 2
option, internal . 5
options . 14
options definition . 9
options multiple reference . 22
options reference . 22
options, command line . 36
options, global . 3, 22
options, internal . 16, 22
options, sweep . 8, 9, 18, 19
options, swept object . 8, 9, 19
order, polygon vertex 3, 19, 20, 24, 25
output language . 23
outside of a polygon . 3

P
parallel projection . 2, 12, 23
parentheses . 14
perspective projection . 12, 24
picture box . 22
planarity of polygons . 17, 20
point definition . 4
point list . 18
point literal . 12
point reference . 22
point sweep . 7, 18
polygon sweep . 8, 19, 32
polygon vertex order 3, 19, 20, 24, 25
polygon, body . 17, 19
polygon, end . 19
polygon, outside of . 3
polygon, planar . 17, 20
precedence, operator . 14
program, hello world . 2
projection, parallel . 2, 12, 23
projection, perspective . 12, 24
pseudo-options . 16
psframebox . 23
pspicture . 22
PSTricks . 1

Q
quoting, special . 5, 18

R
reference, drawable . 6, 22, 25
reference, multiple options . 22
reference, options . 9, 22
reference, point . 4, 22
reference, scalar . 7, 21
reference, tag . 21, 22
reference, transform . 22, 24

reference, vector . 8, 22
repeated object . 20
reserved words . 11
right hand rule . 6
right-hand coordinate system 2
rotation . 6
rotation transform . 12, 31, 32
rotation, center of . 6, 8
running sketch . 2

S
scalar definition . 7
scalar literal . 11
scalar reference . 21
scale transform . 12
scene description language 11, 24
scope, identifier . 6, 20
simple definition . 21
solid . 3
special argument substitution 5, 18
special object . 5
special objects . 29
splitting, line and surface . 2, 34
substitution, special . 5
surface . 8
sweep . 7
swept bock . 20
swept line . 8, 19, 28
swept object . 7, 18
swept point . 7, 18
swept polygon . 8, 32

T
tag definition . 21, 36
tag reference . 21, 22
template, document . 2, 36
tetrahedron . 3
tick operator (’) . 10, 13
TikZ/PGF . 1
toroid . 8
transform . 6, 13, 18, 20, 24
transform definition . 24
transform literal . 12
transform reference . 22, 24
transform, direct . 12, 13
transform, rotation . 12, 31, 32
transform, scale . 12
transform, translation 6, 12, 31
transform, view . 12
translation transform . 6, 12, 31
transparency . 16
two-operand form . 13

U
unary form . 14

Index of concepts 42

V
vector . 6

vector definition . 8

vector literal . 12

vector reference . 22

view transform . 12
virtual camera . 25

W
white space . 4, 6, 11

	About sketch
	Reporting bugs and recommending improvements.
	Contributions

	Introduction by example
	Hello world
	Options
	Drawing a solid
	Special objects
	Transforms
	Repeated objects
	Swept objects
	Point sweeps
	Polyline sweeps
	Nested sweeps
	Polygon sweeps
	Polyline sweeps with closure
	Affine arithmetic
	More to learn

	Input language
	Basics
	Identifiers
	Key and reserved words
	Literals
	Scalar literals
	Point and vector literals
	Transform literals

	Arithmetic expressions
	Two-operand (binary) forms and precedence
	Unary forms

	Options
	PSTricks options
	TikZ/PGF options
	Dots in TikZ/PGF
	TikZ/PGF user-defined styles
	Transparency
	Internal options

	Point lists

	Drawables
	Dots
	Lines
	Curves
	Polygons
	Specials
	Sweeps
	Swept points
	Swept lines
	Swept polygons
	Swept blocks
	Sweep face splitting

	Blocks
	Repeats
	Puts

	Definitions
	Forms of definitions
	Forms of references

	Global environment
	Global options
	Camera
	Picture box
	Frame
	Language

	Building a drawing
	Overview
	A technical drawing
	A hierarchical model
	Caveats
	Limits on sketch error detection
	Clipping
	Hidden surface removal and polygon splitting
	Statistics
	Bugs and anomalies

	Command line
	Building and installing sketch
	Index of syntax
	Index of concepts

