
The SPASS Handbook

2

Contents
1 Foundations 52 SPASS 92.1 What This Chapter is (not) About . 92.2 A First Simple Prover . 102.3 Inferene and Redution Rules . 172.3.1 Redution Orderings . 172.3.2 Sorts . 192.3.3 Inferene Rules . 212.3.4 Redution Rules . 252.3.5 Splitting . 302.4 Global Design Deisions . 322.4.1 Main-Loop . 322.4.2 Proof Doumentation/Cheking . 362.4.3 Data Strutures and Algorithms . 362.5 SPASS Version 2.0 Options . 382.5.1 Control . 382.5.2 Inferene Rules . 382.5.3 Redution Rules . 392.6 Pointers into the SPASS Soure Code . 392.7 Links to Saturation Based Provers . 393 dfg2dfg 453.1 Introdution . 453.2 Synopsis . 453.3 Transforming a lause to a Horn lause . 453.4 Transformation to monadi literals . 453.4.1 Transformation by term enoding . 463.4.2 Transformation by projetion . 463.5 The linear approximation of a lause . 463.6 The shallow approximation of a lause . 463.6.1 The strit version . 463.6.2 A more relaxed version . 463.6.3 The least restrited version . 473.7 Combining several transformations . 474 EML Logi Features 514.1 Introdution . 514.2 Dynami modal logis . 524.3 Overview of EML input spei�ations . 534.4 Translation mappings . 554.4.1 Standard relational translation method . 563

4 CONTENTS4.4.2 (Monadi) Funtional translation method . 564.4.3 Polyadi funtional translation method . 574.4.4 (Monadi) Optimised funtional translation method 584.4.5 Polyadi optimised funtional translation method 584.4.6 Semi-funtional translation method . 594.4.7 Relational-funtional translation method . 594.4.8 Relational-relational translation method . 604.5 Bakground theories . 604.6 Additional options . 614.6.1 Path representations . 614.6.2 Dead-end prediates . 614.6.3 Sorts . 614.6.4 Eliminating omposition . 614.6.5 Exhanging quanti�ers . 624.7 Combinations of options . 62

Chapter 1FoundationsA multiset over a set A is a funtion M from A to the natural numbers. Intuitively, M(a) spei�es thenumber of ourrenes of a inM . We say that a is an element ofM ifM(a) > 0. The union, intersetion,and differene of multisets are de�ned by the identities (M1[M2)(x) =M1(x)+M2(x), (M1\M2)(x) =min(M1(x);M2(x)), and (M1nM2)(x) = max (0;M1(x)�M2(x)). We use a set-like notation to desribemultisets.A �rst-order language is onstruted over a signature � = (F ;R), where F and R are non-empty,disjoint, in general in�nite sets of funtion and prediate symbols, respetively. Every funtion or prediatesymbol has some �xed arity. Funtion and prediate symbols with arity one are alledmonadi. In additionto these sets that are spei� for a �rst-order language, we assume a further, in�nite set X of variablesymbols disjoint from the symbols in �. Then the set of all terms T (F ;X) is reursively de�ned by:(i) every funtion symbol 2 F with arity zero (a onstant) is a term, (ii) every variable x 2 X is a termand (iii) whenever t1; : : : ; tn are terms and f 2 F is a funtion symbol with arity n, then f(t1; : : : ; tn) isa term. A term not ontaining a variable is a ground term. If t1; : : : ; tn are terms and R 2 R is a prediatesymbol with arity n, then R(t1; : : : ; tn) is an atom. An atom or the negation of an atom is alled a literal.Disjuntions of literals are lauses where all variables are impliitly universally quanti�ed. Clauses areoften denoted by their respetive multisets of literals where we write multisets in usual set notation. Alause onsisting of exatly one literal is alled a unit.The set of free variables of an atom (term) � denoted by vars(�) is de�ned as follows: vars(P (t1; : : : ; tn)) =[ivars(ti) and vars(f(t1; : : : ; tn)) = [ivars(ti), vars(x) = fxg. The funtion naturally extends to lit-erals, lauses and (multi)sets of terms (literals, lauses).A substitution � is a mapping from the set of variables to the set of terms suh that x� 6= x foronly �nitely many x 2 X . We de�ne the domain of � to be dom(�) = fx j x� 6= xg and theo-domain of � to be dom(�) = fx� j x� 6= xg. Hene, we an denote a substitution � by the�nite set fx1 7! t1; : : : ; xn 7! tng where xi� = ti and dom(�) = fx1 ; : : : ; xng. A ground substitu-tion � has no variable ourrenes in its o-domain, vars(dom(�)) = ;. An injetive substitution �where dom(�) � X is alled a variable renaming. The appliation of substitutions to terms is givenby f(t1; : : : ; tn)� = f(t1�; : : : ; tn�) for all f 2 F with arity n. We extend the appliation of substi-tutions to literals and lauses as usual: P (t1; : : : ; tn)� = P (t1�; : : : ; tn�) (aordingly for literals) andfL1; : : : ; Lng� = fL1�; : : : ; Ln�g.Given two terms (atoms) s, t, a substitution � is alled a uni�er for s and t if s� = t�. It is alleda most general uni�er (mgu) if for any other uni�er � of s, t there exists a substitution � with �� = � .A substitution � is alled a mather from s to t if s� = t. The notion of a mgu is extended to atoms,literals in the obvious way. We say that � is a uni�er for a sequene of terms (atoms, literals) t1; : : : ; tn ifti� = tj� for all 1 � i; j � n and � is a mgu if in addition for any other uni�er � of t1; : : : ; tn, there existsa substitution � with �� = � .A position is a word over the natural numbers. The set pos(f(t1; : : : ; tn)) of positions of a given termf(t1; : : : ; tn) is de�ned as follows: (i) the empty word � is a position in any term t and t j�= t, (ii) iftj�= f(t1; : : : ; tn), then �:i is a position in t for all i = 1; : : : ; n, and tj�:i= ti. We write t[s℄� for tj�= s.With t[�=s℄, where � 2 pos(t), we denote the term (atom) obtained by replaing tj� by s at position � in5

6 CHAPTER 1. FOUNDATIONSt. The length of a position � is de�ned by length(�) = 0 and length(i:�) = 1 + length(�). The notion ofa position an be extended to atoms, literals and even formulae in the obvious way.As an alternative to the already mentioned multiset notation of lauses, we also write lauses in theform � k� ! � where � is a multiset of monadi atoms1 and �, � are multisets ontaining arbitraryatoms. Logially, the atoms in � and � denote negative literals while the atoms in � denote the positiveliterals in the lause. The empty lause 2 denotes ? (falsity). The multiset � is alled the sort onstraintof � k� ! �. A sort onstraint � is solved in a lause � k� ! � if it does not ontain non-variableterms and vars(�) � vars(� [�). If the lause is determined by the ontext, we simply say that asort onstraint is solved. In ase we are not interested in a separation of the negative literals in a lause,we write lauses in the form � ! �. We often abbreviate disjoint set union with sequening, e.g., wewrite � k� ! �; R(t1; : : : ; tn) for � k� ! � [fR(t1; : : : ; tn)g. Equality atoms are written l � r andare mostly distinguished from non-equality atoms. The latter are named A, B. In ase we don't want todistinguish these two different kinds of atoms we use the letter E (possibly indexed) to denote an arbitraryatom. Inferenes and redutions where equations are involved are applied with respet to the symmetry of�. A lause �1 k�1 ! �1 subsumes a lause �2 k�2 ! �2 if �1� � �2, �1� � �2 and �1� � �2for some mather �. The relation �is subsumed by� between lauses is a quasi-ordering on lauses. Pleasereall that we onsider lauses to be multisets. Hene, e.g., the lause fP (x); P (y)g (also possibly written! P (x); P (y)) does not subsume the lause fP (x)g (possibly written! P (x)).The funtion size maps terms, atoms, literals to the number of symbols they are built from, e.g.,size(t) = jpos(t)j. In ase of a literal, we don't onsider the negation symbol for its size. The depthof a term, literal is the maximal length of a position in the term, literal, e.g., depth(t) = max (flength(�) j� 2 pos(t)g). The depth of a lause is the maximal depth of its literals. The size of lause is the sum of itsliteral sizes.For the de�nition of our inferene/redution rules we shall often need the notion of an ordering toompare terms. This notion is then lifted to tuples, sets, lauses and (multi)sets of lauses. A partial orderis a re�exive, transitive and antisymmetri relation. A strit order is a transitive and irre�exive relation.Every partial order � indues a strit order � by t � s iff t � s and t 6= s. The lexiographi extension�lex on tuples of some strit order � is de�ned by (t1; : : : ; tn) �lex (s1; : : : ; sn) if for some 1 � i � nwe have ti � si and for all 1 � j < i it is the ase that ti = si. The multiset extension �mul is de�nedbyM �mul N if N 6= M and for all n 2 N nM there exists an m 2 M nN with m � n. A redutionordering � is a well-founded, transitive relation satisfying for all terms t, s, l, positions p 2 pos(l) andsubstitutions � that whenever s � t then l[p=s�℄ � l[p=t�℄. For the purpose of this artile, we are mainlyinterested in redution orderings that are total on ground terms, possibly up to some ongruene on theground terms. Any (redution) ordering � on terms (atoms) an be extended to lauses in the followingway. We onsider lauses as multisets of ourrenes of equations and atoms. The ourrene of anequation s � t in the anteedent is identi�ed with the multiset ffs; tgg, the ourrene of an atom A inthe anteedent is identi�ed with the multiset ffA;>gg, the ourrene of an equation in the suedent isidenti�ed with the multiset ffsg; ftgg and the ourrene of an atom in the suedent is identi�ed withthe multiset ffAg; f>gg. We always assume that > is the minimal onstant with respet to �. Now weoverload � on literal ourrenes to be the twofold multiset extension of � on terms (atoms) and � onlauses to be the multiset extension of � on literal ourrenes. If � is well-founded (total) on terms(atoms), so are the multiset extensions on literals and lauses.Observe that an ourrene of an equation s � t (an atom) in the anteedent is stritly bigger thanan ourrene of s � t in the suedent. The atoms in the sort onstraint will not be subjet to orderingrestritions but will be proessed by spei� inferene/redution rules.An anteedent or suedent ourrene of an equation s � t (an atom A) is maximal in a lause� k� ! � if there is no ourrene of an equation or atom in � ! � that is stritly greater than theourrene s � t (the atom A) with respet to �. An anteedent or suedent ourrene of an equations � t is stritly maximal in a lause � k� ! � if there is no ourrene of an equation in � ! � thatis greater or equal than the ourrene s � t with respet to �. A lause � k� ! �; s � t (lause� k�! �; A) is redutive for the equation s � t (the atom A), if s � t (the atom A) is a stritly maximal1These are atoms with a monadi prediate as their top symbol that form the sort onstraint.

7ourrene of an equation (atom) and t 6� s.For the spei� sort onstraint approah introdued here, monadi Horn theories are of partiular im-portane. Suh theories provide a natural representation of sort/type information (see Setion 2.3.2). AHorn lause is a lause with at most one positive literal. A monadi Horn theory is a set of Horn lauseswhere all ourring prediates are monadi. A delaration is a lause S1(x1); : : : ; Sn(xn) ! S(t) withfx1; : : : ; xng � vars(t). It is alled a term delaration if t is not a variable and a subsort delarationotherwise. A subsort delaration is alled trivial if n = 0. A term t is alled shallow if t is a variableor is of the form f(x1; : : : ; xn) where the xi are not neessarily different variables. A term t is alledlinear if every variable ours at most one in t. It is alled semi-linear if it is a variable or of the formf(t1; : : : ; tn) suh that every ti is semi-linear and whenever vars(ti) \ vars(tj) 6= ; we have ti = tj forall i, j. A term delaration is alled shallow (linear, semi-linear) if t is shallow (linear, semi-linear). Notethat shallow term delarations don't inlude arbitrary ground terms. However, any ground term delarationan be equivalently represented, with respet to the minimal model semantis, by �nitely many shallowterm delarations. For example, the ground term delaration! S(f(a)) an be represented by the shallowdelarations T (x) ! S(f(x)), ! T (a). A sort theory is a �nite set of delarations. It is alled shallow(linear, semi-linear) if all term delarations are shallow (linear, semi-linear).A lause store is a multiset of lauses. A lause store olletion is a multiset of lause stores. Theinferene and redution rules disussed in this hapter operate on lauses ourring in a lause store of alause store olletion. There are inferene rulesI �1 k�1 ! �1 : : : �n k�n ! �n	 k�! �redution rules R �1 k�1 ! �1 : : : �n k�n ! �n	1 k�1 ! �1...	k k�k ! �kand splitting rules. S � k�! �	1;1 k�1;1 ! �1;1 	1;2 k�1;2 ! �1;2... ...	n;1 k�n;1 ! �n;1 	m;2 k�m;2 ! �m;2The lauses �i k�i ! �i are alled the parent lauses or premises of the splitting (redution, inferene)rule and the lauses 	i(;j) k�i(;j) ! �i(;j) the onlusions. A rule is applied to a lause store olletionP by seleting a lause store N out of P suh that the premises of an inferene (redution, splitting) ruleare ontained in N . In this ase, N is alled the urrent lause store. If an inferene is performed, theonlusion of the inferene is added to N . If a redution is performed, the premises are replaed in Nby the onlusions. As a speial ase, if no onlusion is present, the premises are deleted from N . If asplitting rule is applied, the urrent storeN is replaed in P by two storesN n f� k�! �g [f	j;1 k�j;1 ! �j;1 j 1 � j � ngN n f� k�! �g [f	j;2 k�j;2 ! �j;2 j 1 � j � mgOne an think of more general splitting rules but the above shema is suf�ient for a general understand-ing of the implementation onsequenes aused by suh a rule and is atually implemented in SPASS (seeSetion 2.3.5). Semantially, lause stores represent onjuntions of their lauses whilst lause store ol-letions represent disjuntions of their ontained lause stores. So a lause store olletion P represents adisjuntion (lause stores) of onjuntions (of universally quanti�ed lauses) of disjuntions (of literals).A lause storeN is saturated with respet to a set of inferene and redution rules (no splitting rules),if any onlusion of an inferene rule appliation to N yields a lause that an eventually be deleted by asequene of redution rule appliations. This de�nition of saturation provides an operational point of view.

8 CHAPTER 1. FOUNDATIONS

Chapter 2SPASS2.1 What This Chapter is (not) AboutThis artile is about the design, the implementation and the use of SPASS Version 2.0 [54℄, a saturation-based automated theorem prover for �rst-order logi with equality. SPASS is unique due to the ombina-tion of the superposition alulus with spei� inferene/redution rules for sorts (types) and a splittingrule for ase analysis motivated by the �-rule of analyti tableau and the ase analysis employed in theDavis-Putnam proedure [10℄. Furthermore, SPASS provides a sophistiated lause normal form transla-tion [37, 38℄. This hapter is not about ompleteness/soundness proofs for saturation-based �rst-order logialuli. For this we refer to [4℄, [35℄ and the orresponding referenes in this artile. Nevertheless, thisdoumentation introdues a variety of inferene/redution rules that are implemented in SPASS and thatform a basis for various �rst-order aluli.At the heart of SPASS is a �rst-order alulus. It onsists of inferene rules that generate new lausesand redution rules that redue the number of lauses or transform lauses into simpler ones. In SPASS weintrodued a great variety of lause set1 based inferene and redution rules that an be omposed to varioussound and omplete �rst-order aluli. The lause store data struture together with suh a alulus arethe basis for most of today's theorem proving systems, like Otter, E or Vampire(see Appendix 2.7). SPASSgoes one step further by introduing a splitting rule that supports expliit ase analysis. This generalizes thestandard lause store based approah to a lause store olletion2 approah where different lause storesrepresent the different ases. Therefore, the splitting rule introdues a seond dimension in saturation-basedautomated theorem proving.The third dimension we onsider in SPASS are onstraints, extra information attahed to a lause re-striting its semantis and/or usage with respet to the alulus. Well-known onstraints are orderingonstraints, foring substituted terms to satisfy the attahed ordering restritions, basiness onstraints,forbidding paramodulation inferenes on ertain terms in the lause, or type onstraints guaranteeing thatinstantiations for variables onform to the attahed type of the variable. From an abstrat implementationpoint of view the handling of onstraints is always the same. The information is attahed to a lause, it ismaintained during the inferene/redution appliation proess and it is exploited by onstraint spei� al-gorithms/dedution mehanisms to restrit inferenes/redutions or to even eventually delete a lause. Weimplemented sort onstraints, spei� type onstraints for variables where the type (sort) theory is itselfexpressed by lauses.A software projet like SPASS is always a ompromise between different goals like maintainability,ef�ieny, �exibility, readability, short development time, modularity, et. For SPASS, the most importantgoals are maintainability, �exibility, readability and modularity of the design (ode). This does not meanthat SPASS is inef�ient, but whenever there is a on�it between ef�ieny and, e.g., a modular design,we prefer the latter. Best evidene that SPASS really meets its design goals is the fat that its ode isused by several researh groups as a basis for ode development and that the projet has at the time of this1From an implementation point of view we onsider lause multisets, alled lause stores.2A lause store olletion is a multiset of lause stores. 9

10 CHAPTER 2. SPASSwriting run suessfully for eight years. We also view this prover as a tool(box), so even for users that don'twant to spend effort in implementation work it offers great �exibility, rih doumentation and a number ofindispensable extra tools like syntax translators or a proof heker.We believe that a sophistiated alulus, a �good theory�, has the highest impat on the performaneof a prover. Therefore, we won't study the implementation of provers at the level of data strutures, objethierarhies or module design. Instead, we will disuss the needs for an ef�ient implementation of thevarious inferene/redution rules and the impats that the top-level searh algorithms have on an atualimplementation. This together with a spei� design goal deision an then lead to a design onept for areal prover like SPASS.Heuristis are also not in fous of SPASS, although they an play an important r�le in automated theo-rem proving. For example, the heuristi that hooses the next lause for inferenes inside a typial �mainloop� of a saturation based prover (see Table 2.1 on page 12) an have a great impat on the suess/non-suess of a searh attempt for a proof. However, it is the nature of heuristis that they are sometimesuseful and sometimes make things even worse. In the ontext of automated theorem proving, it is often notpreditable what will be the ase as long as we don't restrit our attention to spei� problems (problemlasses). Therefore again, the main fous of SPASS is on inferene/simpli�ation/redution tehniques.For these tehniques we know, e.g., that they an be omposed to deision proedures for a variety ofsyntatially identi�able sublasses of �rst-order logi [5, 34, 27, 53℄. Our level of abstration is oftenlower ompared to papers that solely are onerned with theory, beause we want to emphasize on the im-plementation relevant aspets of inferene/simpli�ation/redution tehniques. Hene, we always refrainfrom �more elegant� formulations in order to make the onsequenes for an (ef�ient) implementationmore expliit.The design onepts introdued in SPASS and disussed here are not neessarily original ontributionsof the author. For example, the ombination of saturation and splitting is original, but the use of indexingtehniques [22℄ is a widely used method. Many of the design ideas introdued in SPASS are �ommonknowledge� among the developers of �rst-order saturation based theorem provers and are regularly dis-ussed among these. Thus it is hard to say where the origin of some idea omes from and I refer to myolleagues listed in the aknowledgments.In this hapter I frequently use the notion in pratie to argue for design deisions. This refers to theproblem domains we have been interested in so far: Problems resulting from the analysis/veri�ation ofsoftware [16℄, from the area of automati type inferene [17, 8℄, from the analysis of seurity protools [24,53℄, planning problems [29℄, modal logi problems [26℄, and problems from the TPTP problem library [48℄.If we say that some tehnique/design/alulus is preferred over some other tehnique/design/alulus inpratie, this is always meant with respet to the above mentioned problem domains.SPASS is freely available from the SPASS homepage athttp://spass.mpi-sb.mpg.de/After a setion on notation and notions (Chapter 1), an introdution to major design aspets of saturation-based provers (Setion 2.2), we disuss the inferene/redution rules (Setion 2.3) of SPASS. For eahrule we provide a formal de�nition and explain spei� aspets of its pragmatis and implementation. InSetion 2.4 we evolve the global design of a prover from all these rules. Finally, the appendix establisheslinks between all mentioned design onepts, inferene/redution rules and the user interfae of SPASS aswell as its soure ode.2.2 A First Simple ProverIn this setion, we disuss the implementation of a simple resolution based alulus. Although the aluliimplemented by SPASS are muh more sophistiated than the simple resolution alulus onsidered here,some important design deisions an already be explained on the basis of suh a simple example. Theresolution alulus onsists of the inferene rules resolution, fatoring and the redution rules subsumptiondeletion and tautology deletion

2.2. A FIRST SIMPLE PROVER 11Resolution Fatoring RightI �1; A! �1 �2 ! �2; B(�1;�2 ! �1;�2)� I �! �; A;B(�! �; A)�Subsumption Deletion Fatoring LeftR �1 ! �1 �2 ! �2�1 ! �1 I �; A;B ! �(�; A! �)�Tautology DeletionR �; A! �; Awhere � is a most general uni�er (mgu) of the atoms A and B for the rules resolution, fatoring and inorder to apply subsumption, the lause �1 ! �1 must subsume the lause �2 ! �2.For the resolution rule to be omplete, it is required that the parent lauses �1; A ! �1 and �2 !�2; B have no variables in ommon. Atual implementations of the rule satisfy this requirement in dif-ferent ways. They all have in ommon that variables are represented by (natural) numbers, so this is ourassumption for the rest of this paragraph. The �rst solution expliitely renames the lauses suh that theyhave no variables in ommon. The seond solution aepts lauses that share variables, but when runningthe uni�ation algorithm the variables are separated by adding an offset to the variables of one lause.3A typial offset is the value of the maximal, with respet to number greater, variable of the other lause.The third solution also aepts lauses that share variables and solves the problem by employing two sub-stitutions, one for eah lause. This requires some modi�ations to the standard uni�ation algorithms,beause the terms of the different atoms need to be expliitely separated. This is the solution implementedin SPASS. In order to test appliability of the resolution rule, it is suf�ient to expliitely or impliitlyrename the variables of the onsidered atoms, not the overall lause.For the fatoring rule there is an extra variant for positive (FatoringRight) and negative literals (Fator-ing Left). We ould have presented both variants in one rule, by denoting lauses as disjuntions of literals.However, our representation is loser to the implementation of the rule. All lause data strutures used inwell-known provers expliitely separate positive from negative literals. The reason is ef�ieny and alreadybeomes obvious for fatoring: Whenever we searh for a partner literal for a positive literal it does notmake sense to onsider negative literals at all. Similar situations arise for other inferene/redution rules.Therefore, the deision in this artile is always to distinguish positive and negative literals when presentinginferene/redution rules.Now let us ompose the inferene/redution rules to an atual prover. The input of the prover is a lausestore ontaining lauses without equality and the output on termination is a proof or a saturated lausestore. The above resolution alulus is omplete, so we also want our searh proedure to be omplete inthe sense that if resoures don't matter and our proedure is alled with an unsatis�able lause store then itwill eventually �nd a proof (the empty lause). In order to ahieve this goal, we have to guarantee that theonsidered lause set is saturated in the limit. This inludes that all inferenes between lauses have beenperformed. An easy way to remember whih inferenes have already been performed is to split the inputlause store in a set Wo of lauses (Worked off lauses) where all inferenes between lauses in this setalready took plae and a set Us of lauses (Usable lauses) whih still have to be onsidered for inferenes.Then a main loop iteration of the prover onsists of seleting a lause from the Us set, moving it to theWoset and then adding all inferenes between the seleted lause and the lauses in Wo to the Us set. If theseletion is fair, i.e., no lause stays arbitrarily long in the Us set without being seleted, this results in aomplete proedure. It remains to build redutions into this loop. The idea for this loop is due to the Ottertheorem prover and its predeessors [32℄.The redution rules tautology deletion and subsumption deletion derease the number of lauses in thelause store while the inferene rules inrease the number of lauses. Hene, exhaustive appliation of theredution rules terminates and produes smaller lause stores. In pratie, small lause sets are preferredover large ones, hene redutions are preferred over inferenes. This onsideration together with the idea ofthe main-loop introdued above leads to ResolutionProver1 depited in Table 2.1. Note that subsumption3Please reall that we assume variables to be represented by naturals.

12 CHAPTER 2. SPASS1 ResolutionProver1 (N)2 Wo := ;;3 Us := taut(sub(N));4 While (Us 6= ; and 2 62 Us) f5 (Given ;Us):= hoose(Us);6 Wo :=Wo [fGiveng;7 New := res(Given ;Wo) [fa(Given);8 New := taut(sub(New));9 New := sub(sub(New ;Wo);Us);10 Wo := sub(Wo;New);11 Us := sub(Us ;New) [New ;12 g13 If (Us = ;) then print �Completion Found�;14 If (2 2 Us) then print �Proof Found�;Table 2.1: A First Resolution Based Proverand tautology deletion are independent in the sense that one all tautologies have been removed, subsump-tion does not generate new tautologies. Analyzing suh dependenies between redutions is one key for anef�ient implementation.For the desription of theorem proving proedures we use the following abbreviations: fa(C) is theset of all fatoring inferene onlusions (left and right) from the lause C, res(C;D) is the set of allresolution inferene onlusions between two lauses C and D, taut(N) is the set N after exhaustiveappliation of tautology deletion and sub(N;M) is the set of all lauses from N that are not subsumedby a lause in M . We overload sub for one argument, where sub(N) denotes the set N after exhaustiveappliation of subsumption deletion to the lauses in N . We overload res by de�ning res(C;N) to bethe set of all resolution inferenes between the lause C and a lause in N . The funtion hoose seletsand removes a lause from its argument lause store and returns the seleted lause as well as the updatedargument lause store.As already motivated, the proedure ResolutionProver1 operates on two lause stores: Wo and Us.The storeWo holds all lauses that have already been seleted for inferenes, while the store Us ontainsall andidate lauses to generate inferenes. The prover ResolutionProver1 is alled with a �nite lausestore N and tests those for unsatis�ability. Lines 2 and 3 initialize the sets Wo and Us. Note that Us isnot initialized withN , but its ompletely inter-redued equivalent. This step is alled input redution. Thesearh for the empty lause (a saturation) is implemented by the lines 4�12. The while-loop starting atline 4 terminates if the empty lause is found or the set Us is empty. We will argue below that this impliesthat the set Wo is saturated. If Us is not empty and the body of the while-loop is entered, the funtionhoose selets at line 5 a lause out of the usable set. The funtion is fair, if no lause stays in Us foran in�nite number of iterations through the while loop. A widely used, fair implementation (heuristi) ofhoose is to selet a lightest lause that is a lause of smallest size. This seletion funtion is fair, beausethere are only �nitely many different lauses with respet to subsumption having less than k symbols, forany onstant k.4 Many re�nements of the hoose funtion are possible: using different weights for variableand signature symbols, preferring lauses with more/fewer variables, preferring lauses that ontain ertainatoms/term strutures or onsidering in addition the depth of a lause in the searh spae. The depth of alause in the searh spae is zero for all input lauses and every onlusion of an inferene has the maximal4Note that sine the input set N is �nite, the relevant signature is �nite, too.

2.2. A FIRST SIMPLE PROVER 13depth of their parent lauses plus one. Many provers use a ombination of weight and depth seletion, e.g.,hoosing four times lauses by minimal weight and every �fth time by minimal depth. This ombinationagain goes bak to Otter where the ratio an be ontrolled by the pik-given ratio parameter. The parameteris also available in SPASS.Then the lause Given is seleted, removed from Us and added to Wo (lines 5, 6). Next (line 7)all resolution inferene onlusions between Given andWo and all fatoring inferene onlusions fromGiven are stored in New . Note that sine Given is already ontained in Wo these inferenes inlude selfresolution inferenes. The lauses generated so far are alled derived lauses. The lines 8�11 are devotedto redution. First, all tautologies and subsumed lauses are removed from New . Then all lauses that aresubsumed by a lause in Wo or Us are deleted from New . This operation is alled forward subsumption.Clauses remaining in New are then used for bakward subsumption, the subsumption of lauses in the setsWo and Us by lauses from New . Finally, the lauses from New are added to Us. These lauses areusually alled kept lauses.There are two invariants that hold eah time line 4 is exeuted:� Any resolution inferene onlusion from two lauses inWo (fatoring inferene onlusion from alause inWo) is either ontained inWo, Us or is subsumed by a lause inWo, Us or is a tautology.� The sets Wo and Us are ompletely inter-redued:Wo [Us = taut(Wo [Us) andWo [Us = sub(Wo [Us).A onsequene of these invariants to hold is that if the proedure stops then the set Wo is saturated.Furthermore, if the funtion hoose is fair, then the ResolutionProver1 is omplete.In ase that for the set N a satis�able subset N 0 is known, e.g., if the lauses represent a proof attemptof a onjeture with respet to some theory that is known to be satis�able, we ould also initialize the setsby Wo := N 0 and Us := (N nN 0), obtaining the so alled set of support (SOS) strategy [55℄. The SOSstrategy preserves ompleteness.Many other saturation based provers (e.g., Otter, SPASS, Waldmeister, see Appendix 2.7) have a searhalgorithm based on two sets of lauses.5 SPASS implements ResolutionProver1 on a Unix system by theshell invoationSPASS -Auto=0 -ISRe -ISF -RTaut -RFSub -RBSub <�le>where the option -Auto=0 turns off the automati mode of SPASS. In this mode SPASS deides onthe basis of the input problem the set of inferene and redution rules. If the automati mode is turnedoff, no inferene/redution rules are ativated. All options starting with an I (de)ativate inferene rules,options starting with an R (de)ativate redution rules. So the above all to SPASS ativates the infer-ene rules standard resolution (-ISRe), standard fatoring (-ISF) and the redution rules tautologydeletion (-RTaut), forward subsumption(-RFSub) and bakward subsumption (-RBSub). An infer-ene/redution rule option is ativated by setting it to 1 (the default) and deativated by setting it to 0. Forfurther details onsider Appendix 2.5.For example, we simulate a run of ResolutionProver1 on the lauses1: !P (f(a))2: P (f(x))!P (x)3: P (f(a)); P (f(x))!shown in Table 2.2. For eah while-loop iteration, we show the ontent of theWo and Us set at line 4,the seleted Given lause and the ontent of New before exeution of line 8. Newly generated lauses areprinted in full detail while we refer to a lause in the sets Wo and Us only by its unique lause number.The funtion hoose selets lightest lauses.Every box in Table 2.2 represents one while-loop iteration. For newly generated lauses we also showthe applied inferene rule and parent lauses/literals. Here Res indiates a resolution inferene, Fa afatoring inferene and the notion n.m refers to literal m of lause n. So, for example, lause 7 is generated5However, they use different names for the sets. So don't be onfused.

14 CHAPTER 2. SPASS

Iteration 1Wo = ; Us = f1; 2; 3gGiven = 1: ! P (f(a))New = ;Iteration 2 #Wo = f1g Us = f2; 3gGiven = 2: P (f(x))! P (x)New = f4:[Res:1.1,2.1℄ ! P (a),5:[Res:2.1,2.2℄ P (f(f(x)))! P (x) gIteration 3 #Wo = f1; 2g Us = f3; 4; 5gGiven = 4: ! P (a)New = ;Iteration 4 #Wo = f1; 2; 4g Us = f3; 5gGiven = 3: P (f(a)); P (f(x))!New = f 6:[Res:1.1,3.1℄ P (f(x))!,7:[Res:1.1,3.2℄ P (f(a))!,8:[Res:2.2,3.1℄ P (f(f(a))); P (f(x))!,9:[Res:2.2,3.2℄ P (f(a)); P (f(f(x)))!,10:[Fa:3.1,3.2℄ P (f(a))!gIteration 5 #Wo = f1; 4g Us = f6gGiven = 6: P (f(x))!New = f11:[Res:1.1,6.1℄ 2 gTable 2.2: A Run of ResolutionProver1

2.2. A FIRST SIMPLE PROVER 151 ResolutionProver2 (N)2 Wo := ;;3 Us := taut(sub(N));4 While (Us 6= ; and 2 62 Us) f5 (Given ;Us):= hoose(Us);6 if (sub(fGiveng;Wo) 6= ;) f7 Wo := sub(Wo; fGiveng);8 Wo := Wo [fGiveng;9 New := res(Given ;Wo) [fa(Given);10 New := taut(sub(New));11 New := sub(New ;Wo);12 Us := Us [New ;13 g14 g15 If (Us = ;) then print �Completion Found�;16 If (2 2 Us) then print �Proof Found�;Table 2.3: A Seond Resolution Based Proverby a resolution inferene between the �rst literal of lause 1 and the seond literal of lause 3 whereliterals are ounted from left to right. Iteration 4 shows already some ommon phenomena of saturationbased aluli. First, these aluli are typially redundant in the sense that the very same lause an begenerated in various, different ways. For example, lause 7 and lause 10 are logially idential, althoughthe former is generated by a resolution inferene while the latter is the result of a fatoring appliation. Asa onsequene, subsumption is indispensable for saturation based aluli to ut down the number of keptlauses. The situation gets even more dramati in the ontext of equality, where a single loop iterationan already ause an explosion in the number of newly generated lauses. This will be disussed in moredetail in Setion 2.3. Coming bak to our run, note that in the redution part of while-loop iteration 4, thelauses 2, 3, 5, 7�10 are all subsumed by lause 6. Seond, even for this simple example, it happened thatthe seletion of the Given lause is not always unique when hoosing lightest lauses. During iteration 4,the lauses 3 and 5 have both size 6, but hoosing lause 5 instead of lause 3 would have aused anadditional while loop iteration before the empty lause is derived. Of ourse, the funtion hoose ould bere�ned and we will in fat disuss suh re�nements, but in pratie it happens (and must happen) frequentlythat several lauses have the same preedene with respet to hoose . Then seleting the right lause (byaident) an enable a prover to �nd a proof where it gets lost in the searh spae by seleting a differentone. This phenomenon is ommon to all theorem provers and an be observed at the yearly CADE CASCsystem ompetitions (e.g., see [49℄), where the performane of provers varies depending on the ordering ofthe input problem lauses.If ResolutionProver1 is ran on non-trivial examples, the Us set rapidly gets muh larger than theWoset. It easily happens that after some iterations the size inreases by a fator of 1000. In partiular, it isommon in the ontext of problems ontaining equality. Therefore, at least with respet to the number oflauses that have to be onsidered, the subsumption tests with respet to the Us set are the most expensiveparts of the algorithm. Typial runs of ResolutionProver1 show a behavior where more than 95% of theoverall time is spent for subsumption heks. This motivates the design of ResolutionProver2 shown inTable 2.3.

16 CHAPTER 2. SPASSResolutionProver2 (N) does not perform any subsumption tests with respet to the Us set and baksubsumption is only performed with respet to the atually seleted given lause. The two invariants forResolutionProver2 are� Any resolution inferene onlusion from two lauses inWo (fatoring inferene onlusion from alause inWo) is either ontained inWo, Us or is subsumed by a lause inWo or is a tautology.� The setWo is ompletely inter-redued:Wo = taut(Wo) andWo = sub(Wo).These two invariants are still strong enough to guarantee that if the while loop terminates, the Wo set issaturated. Note that althoughNew is always redued with respet toWo at line 11, the set Us is in generalnot redued with respet toWo, i.e., Us 6= sub(Us ;Wo).If we assume that hoose selets light lauses there is a furthermotivation to leave out subsumption testswith respet to the Us set. If a lause C subsumes a lause D, then size(C) � size(D). So small lauseshave a higher probability to subsume other lauses than larger lauses. Therefore, beause we always seletthe lightest given lause, the hope is that not too many lauses that ould have been subsumed stay in theUs set. In pratie, ResolutionProver2 saves about 10% of the time spent for redutions (subsumption)ompared to ResolutionProver1. For the simple resolution alulus we studied so far, ResolutionProver2is mostly in favor of ResolutionProver1when run in pratie. As soon as our redution tehniques inluderules that produe lighter lauses (see Setion 2.3) the hoie is no longer obvious in general. There areexamples where an overall interredution easily yields the empty lause, but for a ResolutionProver2 stylealgorithm sophistiated heuristis are needed to still �nd a proof.Running ResolutionProver2 on the example lause store, the result is similar to the run of Resolution-Prover1 (Table 2.2). The �rst three iterations are idential, but at iteration 4, the lauses 2, 3, 5, 7�10 arenot subsumed but stay in their respetive sets. Then, in iteration 5, where lause 6 is seleted as givenlause, the lauses 2, 3 are removed from the Wo set (line 7 of ResolutionProver2, Table 2.3) and theempty lause is derived.SPASS implements ResolutionProver2 by the allSPASS -Auto=0 -FullRed=0 -ISRe -ISF -RTaut -RFSub -RBSub <�le>where the option -FullRed=0 deativates redution with respet to theUs set and modi�es the algorithmaordingly. For further details onsider Appendix 2.5.There are many possible alternatives, variations, re�nements for the two loops suggested here. Let usdisuss some aspets. First, onerning fatoring, any lause store an be �nitely saturated with respetto fatoring, sine a fator has stritly fewer literals than its parent. So one ould get the idea to keep theWo set always saturated with respet to fatoring. The disadvantage of this approah is that the numberof fators that an be generated out of one lause grows worst ase exponentially in the number of literals.The prover Bliksem allows a user to prefer fators (see Appendix 2.7).Seond, onerning resolution and the seletion of the given lause, we ould also a priori built for eahloop iteration all one step resolvents between the lauses in theUs set and between one parent from the Usset and one parent from theWo set. Then instead of piking a Given lause, we pik one resolvent, use itfor (bak and/or forward) redution and �nally add it to the Wo set. This approah results in a more �negrained development of the searh spae. This design for a proof searh is losely related to lause graphresolution [15℄.Third, on the implementation side, if we one deide to implement ResolutionProver2, the only in-formation we need for the lauses in Us are their properties with respet to the hoose funtion and howthese lauses an be generated. For all lauses exept the input lauses it suf�es to store referenes for theparents and the used inferene. This way it is possible to store all Us lauses in a ompat way. In pratieonstant spae suf�es for any lause. This dramatially dereases memory onsumption and results inan extra speed up. The neessary regeneration of lauses one they are seleted, plays no r�le onerningperformane. The Waldmeister prover follows this approah. Fourth, another way to keep the Us set smallis to throw away lauses with respet to ertain weight or omplexity restritions on the newly generatedlauses. Either these lauses are just thrown away resulting in an inomplete proedure, this is supported

2.3. INFERENCE AND REDUCTION RULES 17by Otter, SPASS and Vampire (see Appendix 2.7), or the restritions an be set in a way suh that only�nitely many lauses an pass the restrition test and one the searh results in suh a saturated set, therestritions are adjusted and the searh is restarted. This design is supported by Bliksem, SPASS and Fiesta.In SPASS the resoure restrition strategy is ontrolled by the �ags BoundMode speifying the resouretype where 0 means no resoure restrition, 1 means lause size restrition and 2 means lause depth re-strition, the �ag BoundStart speifying the initial start value to restrit the seleted resoure type andBoundLoops determines how often a saturation aused by resoure restritions is restarted with adjustedrestritions. So the allSPASS -BoundMode=1 -BoundStart=5 -BoundLoops=3 <�le>auses SPASS to throw away all lauses that have a weight greater 5. If this leads to an empty Us setwithout �nding the empty lause, the bound is inreased to the smallest size greater 5 that aused a lauseto be deleted. This proess is repeated at most 3 times, then any weight restritions are disarded. Suh anexploration of the searh spae an be partiularly useful in the ontext of unit equational problems.2.3 Inferene and Redution RulesIn this setion we desribe a variety of inferene/redution rules. For every rule, we start with a formalde�nition of the rule and then, if neessary, disuss aspets of its pragmatis, omplexity, interation withother rules or design onepts and its implementation and usage. Some rules are stated in a general,possibly non-effetive form (e.g., see the on�it rule, De�nition 2.3.19). In this ase we also disusseffetive instantiations. The rules don't form a partiular alulus, instead several well-known aluli anbe implemented by forming appropriate groups of rules. An example is the simple resolution alulusonsidered in Setion 2.2.Many redution rules an be simulated by one or several inferene rule appliations followed by a (triv-ial) subsumption step. As long as the inferene rule set is omplete this observation is not too surprising,sine we require all our rules to be sound. So one might think that the sophistiated redution mahineryintrodued in this setion is not really neessary but just a waste of resoures when implemented. How-ever, it is just the other way round. Redution rules always lead to �simpler� lause stores by deletingsome lause or by replaing a lause by a �simpler� one. This often ensures the termination of exhaustiveappliation of (groups of) suh rules and enables appliation of these rules to all lauses. Therefore, inthe ontext of an implementation, redution rules annot be simulated by inferene rule appliations sinethose don't terminate when applied exhaustively. Inferene rules are only applied to some seleted Givenlause. Redution rules should be viewed as restrited inferene rules that eventually lead to simpler lausestores and help to explore the �easy� parts of the searh spae (problem). They replae searh spae explo-ration by (ef�ient) alulation. In fat, some of the redution rules introdued in this setion are motivatedby deidability results for various �rst-order logi fragments.2.3.1 Redution OrderingsFor many of the inferene/redution rules de�ned in the sequel, maximality restritions on literals, termsplay an important r�le. The two most popular orderings are the Knuth-Bendix ordering (KBO) [30, 39℄and the reursive path ordering with status (RPOS) [11℄. For a broad introdution to orderings, onsiderthe artile by [12℄ and the more reent book by [2℄. The de�nitions below differ in some details from otherde�nitions found in the literature, but re�et implementation experiene.Nearly all orderings used in todays provers are variations of the KBO and the RPOS. In partiular,weaker versions the orderings are often used. For example, purely weight based orderings or variantsof the RPOS without reursive onsideration of subterms. These weaker versions have the advantage ofheaper omputation and when used to restrit inferene rules (see Setion 2.3.3) of a broader explorationof the searh spae. This an be useful for the searh of short proofs. We desribe KBO and RPOS exatlythe way they are implemented in SPASS.Let > be a strit order on the set of signature symbols (funtions, prediates), alled a preedene. Letweight be a mapping from the set of signature symbols into the non-negative integers. We all a weight

18 CHAPTER 2. SPASSfuntion admissible for some preedene if for every unary funtion symbol f with weight(f) = 0, thefuntion f is maximal in the preedene, i.e., f � g for all other funtion symbols g. The funtion weightis extended to a weight funtion for terms (atoms) as follows: (i) if t is a variable, then weight(t) = k,where k is the minimumweight of any onstant and (ii) if t = f(t1; : : : ; tn), thenweight(t) = weight(f)+Pi weight(ti). Let o be a funtion returning the number of ourrenes o(s; t) of a term s in a term t,de�ned by o(s; t) = jfp 2 pos(t) j tjp= sgj and let status be a mapping from the signature symbols tothe set fleft ; right ;mulg.De�nition 2.3.1 (KBO)If t, s are terms, then t �kbo s if o(x; t) � o(x; s) for every variable x 2 (vars(t) [vars(s)) and(1) weight(t) > weight(s) or(2) weight(t) = weight(s) and t = f(t1; : : : ; tk) and s = g(s1; : : : ; sl) and(2a) f > g in the preedene or(2b) f = g and(2b1) status(f) = left and (t1; : : : ; tk) �lexkbo (s1; : : : ; sl) or(2b2) status(f) = right and (tk; tk�1; : : : ; t1) �lexkbo (sl; sl�1; : : : ; s1)Note that in ase (2b) the ondition f = g implies k = l. Multiset status for funtion symbols analso be de�ned but does not pay off in pratie for the KBO. If the weight funtion is admissible for thepreedene, then the KBO is a redution ordering [2℄. If the preedene > is total, then the KBO is totalon ground terms (atoms). For some �nite set of signature symbols6 and two terms s, t with s �kbo t, thereare �nitely many terms s0 with s �kbo s0 �kbo t.The motivation to onsider unary funtion symbols with weight zero omes in partiular from grouptheory. The standard group axioms an be turned into a onvergent system [2℄ using the KBO with pree-dene i > f > e and weights weight(i) = 0, weight(f) = weight(e) = 1 where i is the inverse funtion,f denotes group multipliation and e represents the neutral element. During the saturation (ompletion)proess it is ruial to orient the derived equation i(f(x; y)) � f(i(y); i(x)) from left to right, for oth-erwise the saturation proess won't terminate. The only way to ahieve i(f(x; y)) � f(i(y); i(x)) is toassign weight 0 to the funtion symbol i.Implementation of the KBO an be done straightforward from the de�nition. For the RPOS we alsoassume > to be a strit order (preedene) on the set of signature symbols (funtions, prediates).De�nition 2.3.2 (RPOS)If t, s are terms, then t �rpos s if(1) s 2 vars(t) and t 6= s or(2) t = f(t1; : : : ; tk) and s = g(s1; : : : ; sl) and(2a) ti �rpos s for some 1 � i � k or(2b) f > g and t �rpos sj for all 1 � j � l or(2) f = g and(21) status(f) = left and (t1; : : : ; tk) �lexrpos (s1; : : : ; sl) andt �rpos sj for all 1 � j � l or(22) status(f) = right and (tk; tk�1; : : : ; t1) �lexrpos (sl; sl�1; : : : ; s1) andt �rpos sj for all 1 � j � l or(23) status(f) = mul and ft1; : : : ; tkg �mulrpos fs1; : : : ; slg6For an in�nite set the ondition does obviously not hold.

2.3. INFERENCE AND REDUCTION RULES 19The RPOS is a redution ordering as well and if the preedene> is total RPOS is also total on groundterms (atoms), up to the ongruene relation =mul generated from the symbols with multiset status. If fis a funtion symbol with status(f) = mul then f(t1; : : : ; tn) =mul f(s1; : : : ; sn) if ft1; : : : ; tng =mulmulfs1; : : : ; sng, for example f(a; f(a; b)) =mul f(f(b; a); a). Even for some �nite set of signature symbolsand two terms s, t with s �rpos t, there are in general in�nitely many terms s0 with s �rpos s0 �rpos t.The RPOS an for example be used to orient distributivity the �right way�. If f > g, then the equationf(x; g(y; z)) � g(f(x; y); f(x; z)) is oriented by RPOS from left to right. Note that KBO annot orientthe equation from left to right, beause the right hand side has one more ourrene of the variable x.Given a spei� theorem proving problem, the relevant signature is �nite and �xed. In this ase itan be useful to further re�ne an ordering by de�ning t � s if t� � s� for all ground substitutions �where (vars(t) [vars(s)) � dom(�). Following this idea, RPOS an be instantiated to an ordering thattotally orders all atoms by prediate symbols and only in seond plae onsiders possible argument terms,independently from variable ourrenes! This an be ahieved by making all (some) prediate symbolslarger in the preedene than all funtion symbols. For example, with respet to the above suggested liftingand a signature with prediate symbols P , Q and funtion symbols f , a where P > Q > f > a it holdsthat P (x) �rpos Q(f(x; y)) beause P is greater in the preedene than Q, f , a and hene any groundterm that an be substituted for x or y. Prediates an be delared to be superior over funtion symbols, bya delaration set_DomPred(< prediate sequene >).in the SPASS settings setion of an input �le [23℄. Suh an appliation of RPOS an, e.g., be useful to makeliterals built from newly introdued formula renaming prediates minimal. This prevents the generation ofthe standard CNF via ordered resolution [38℄.Straightforward reursive implementation of RPOS following the de�nition results in an algorithmwithworst ase exponential omplexity. Using a dynami programming idea, a polynomial algorithm an bedevised [45℄. However, in pratie, it turns out that the straightforward implementation is superior to thedynami programming approah, if the following �lter is added. Whenever we test t �rpos s for two termss, t, we �rst hek vars(s) � vars(t).2.3.2 SortsThe motivation for sorts omes from programming languages, where one likes to ath as many errors atompile time as possible. For example, if the addition funtion is only de�ned for number sorts (types) butused in a program with a list type, the ompiler an omplain about suh a statement by exploiting the sortinformation. Of ourse, the sort heking must be tratable, i.e., it should at least be deidable and/or showaeptable performane for real world programs. A prerequisite for the sort information to be heked atompile time, is that the sort information is separated from the program and it is typially inluded in anextra delaration part.Here we generalize this situation. The sort information is not separated from the �rst-order problem as,e.g., done in algebrai spei�ation languages, but part of the problem itself. Therefore, we annot heksort information at ompile time, after or while reading the problem. Instead the sort information is used atrun time, during proof searh, to detet ill-sorted and therefore redundant lauses and to simplify the sortinformation ontained in the lauses by spei� algorithms. These algorithms exploit the sort informationin a muh more ef�ient way than their standard �rst-order redution rule ounterparts.Sorts are ativated in SPASS by the -Sorts option. If SPASS is alled with option -Sorts=1 allnegative monadi literals with a variable argument are onsidered for the initial sort onstraints, whereas-Sorts=2 auses SPASS to onsider all negative monadi literals for the initial sort onstraints. The latterhoie an affet ompleteness, beause of the basiness restrition on the sort onstraint.De�nition 2.3.3 (Sort Constraint Resolution)The infereneI T1(t); : : : ; Tn(t);	 k�! � �i k�i ! �i; Ti(si) (1 � i � n)(�1; : : : ;�n;	 k�1; : : : ;�n;�! �1; : : : ;�n;�)�

20 CHAPTER 2. SPASSwhere (i) � is the simultaneous mgu of t; s1; : : : ; sn, (ii) t is a non-variable term and there is no furtherliteral S(t) 2 	, (iii) all �i are solved, (iv) all Ti(si)� are redutive for (�i k�i ! �i; Ti(si))� is a sortonstraint resolution inferene.Sort onstraint resolution is a hyper resolution (see De�nition 2.3.14) like inferene rule. It simulatesthe rule weakening of sorted uni�ation [52℄ on the relativization of sorted variables represented by thesort onstraint. Sort onstraint resolution is ativated by the -ISoR option.De�nition 2.3.4 (Empty Sort)The infereneI T1(x); : : : ; Tn(x);	 k�! � �i k�i ! �i; Ti(si) (1 � i � n)(�1; : : : ;�n;	 k�1; : : : ;�n;�! �1; : : : ;�n;�)�where (i) � is the simultaneous mgu of s1; : : : ; sn, (ii) x 62 vars(� [� [) and no non-variable termours in 	, (iii) all �i are solved, (iv) all Ti(si)� are redutive for (�i k�i ! �i; Ti(si))� is an emptysort inferene.Empty sort is similar to sort resolution and, in fat, in some of our papers (e.g., [27℄) we uni�ed bothrules into one inferene rule. For the purpose of the deidability results presented in these papers this isappropriate. It makes sense to distinguish these rules, beause the eventual suess of empty sort, i.e., weare able to show that some sort is non-empty, does not rely on the partiular sort onstraint, but only on theset of monadi (sort) symbols that share their variable argument. We hek emptiness of an intersetionof sort symbols. Sine there are only �nitely many different suh sorts with respet to some �nite lausestore, it may make sense to store onstraints that resulted in suessful non-emptiness proofs and to reusethem. One appliation domain are the proofs required in the ontext of stati soft typing (De�nition 2.3.6).Empty sort is ativated by the -IEmS option.De�nition 2.3.5 (Sort Simpli�ation)LetN be the urrent lause store andN 0 � N be exatly the set of all delarations inN . The redutionR S(t);� k�! �� k�! �where N 0 j= 8x1; : : : ; xn [S1(x1); : : : ; Sn(xn) � S(t)℄ and fS1(x1); : : : ; Sn(xn)g � � is the maximalsubset of � for whih fx1; : : : ; xng � vars(t) is alled sort simpli�ation.Given an arbitrary sort theoryN 0, the relationN 0 j= 8x1; : : : ; xn [S1(x1); : : : ; Sn(xn) � S(t)℄is always deidable in polynomial time. In terms of sorted uni�ation the problem means deiding well-sortedness [52℄. A bottom-up algorithm based on dynami programming yields the polynomial omplexitywhereas a simple top down approah results in an exponential proedure. The latter proedure wouldorrespond to solve the problem with ordered resolution and an SOS strategy. The former algorithm isimplemented in SPASS. Sort simpli�ation is ativated by the -RSSi option.Sort simpli�ation is one important reason why it makes sense to treat partiular ourrenes of mo-nadi prediates in a speial way. Sort simpli�ation annot be simulated via other standard redutiontehniques like mathing replaement resolution (see De�nition 2.3.20) and annot be extended to non-monadi prediates. For example, for binary relations, the undeidable problem whether two ground termsare ontained in a transitive binary relation generated by some positive unit lauses [43℄ an be reduedto deiding appliability of an extended sort simpli�ation rule for binary relations. So without furtherrestritions, sort simpli�ation annot be effetively used for other n-ary relations.

2.3. INFERENCE AND REDUCTION RULES 21De�nition 2.3.6 (Stati Soft Typing)Let N be the urrent lause store over some �xed signature � andM be a sort theory suh thatN j= S(t)impliesM j= S(t) for any ground monadi atom S(t) over � where S ours in some sort onstraint inN . The redution R � k�! �whereM 6j= 9x1; : : : ; xn� with vars(�) = fx1; : : : ; xng is alled stati soft typing.The above de�nition of stati soft typing is not effetive. The problem M 6j= 9x1; : : : ; xn� is notdeidable for arbitrary sort theories M and sort onstraints �. It inludes the general problem of sorteduni�ation [52℄ that is well-known to be undeidable, in general. Furthermore, it is not obvious how thesort theory M an be onstruted out of N suh that it meets the requirements of De�nition 2.3.6. Asolution to all these problems is the following. First, all lauses that ontain positive monadi atoms aresafely approximated and restrited to the sort information they ontain:R � k�! �; S1(t1); : : : ; Sn(tn)�1 k !S1(t1)...�n k !Sn(tn)where no monadi atom ours in �, � is solved and �i = fS(x) j S(x) 2 � and x 2 vars(Si(ti))g for1 � i � n. By onstrution all�i are solved and the rule does not modify delarations. If the initial lauseset N does not ontain positive equations, then the sort theory N 0 obtained by a �x-point omputation ofthe above redution onN approximatesN in the desired way (see De�nition 2.3.6). Seond, the sort theoryN 0 is approximated to a sort theoryN 00 suh that satis�ability of sort onstraints inN 00 gets deidable.R � k ! S(f(t1; : : : ; tn))�1; T (x) k !S(f(s1; : : : ; sn))�2 k !T (ti)where ti is not a variable and for all 1 � j � n we de�ne sj = x if tj = ti and sj = tj otherwise.Furthermore,�1 = fS(y) j S(y) 2 � and y 2 vars(S(f(s1; : : : ; sn)))g and �2 is the restrition of � toatoms with argument x 2 vars(ti).By onstrution, the derived lauses have a solved sort onstraint andN 00 approximatesN 0 as desired.The sort theory N 00 is shallow and satis�ability of sort onstraints with respet to shallow sort theories isdeidable by the inferene rules sort resolution, empty sort and the redution rules sort simpli�ation, sub-sumption deletion (De�nition 2.3.16) and ondensation (De�nition 2.3.17) [27, 53℄. Hene, this instaneof stati soft typing is effetive.So if we start with a lause store N that does not ontain positive equations, we onstrut one theapproximated sort theory N 00. If this theory is not trivial, i.e., there is at least one monadi prediate Swith N 00 6j= 8xS(x), the sort theory N 00 is stored and stati soft typing is applied to any input or derivedlause. SineN 00 is only approximated one, typially at the beginning of the inferene proess, the rule isalled stati soft typing. If in the input lause store all sort onstraints are solved and there are no positiveequations, stati soft typing preserves ompleteness [51, 18℄.If equations our in a lause store a dynami soft typing approah seems to be more suitable. Consider[18℄ and [33℄ for details. These tehniques are not implemented in SPASS Version 2.0 but are an option forlater releases. Stati soft typing is ativated by the -RRSST option.2.3.3 Inferene RulesThe introdued inferene rules an be omposed to a variety of (well-known) aluli. The aluli rangefrom the ordinary resolution alulus investigated in Setion 2.2 to a superposition alulus with seletion,splitting and sort onstraints that are subjet to the basiness restrition. To over all these ases, therules de�ned here are given in generi way suh that eah de�nition overs several variants of the rule.

22 CHAPTER 2. SPASSIn partiular, all rules are available with a seletion restrition of negative literals that does not destroyompleteness [3℄. For any lause we an selet some negative literals with the effet that all inferenerule appliations taking this lause as a parent lause must involve the seleted literals. For example, ifwe selet the literal R(x; y) in the lause kR(x; y); f(g(x); y) � f(y; z) ! then no equality resolutioninferene (see below) is possible from this lause.De�nition 2.3.7 (Equality/Re�exivity Resolution)The inferene I � k l � r;�! �(� k�! �)�where (i) � is the mgu of l and r, (ii) � is solved, (iii) l � r is seleted or (l � r)� is maximal in (� k l �r;� ! �)� and no literal is seleted in � is alled an equality resolution inferene. If ondition (iii) isreplaed by l � r is seleted or no literal is seleted in �, the inferene is alled re�exivity resolution.Equality resolution is ativated by the -IEqR option. Re�exivity resolution is ativated by the -IERRoption.De�nition 2.3.8 ((Ordered) Paramodulation/Superposition Left)The inferenes I �1 k�1 ! �1; l � r �2 k s[l0℄p � t;�2 ! �2(�1;�2 k s[p=r℄ � t;�1;�2 ! �1;�2)�and I �1 k�1 ! �1; l � r �2 kA[l0℄p;�2 ! �2(�1;�2 kA[p=r℄;�1;�2 ! �1;�2)�where (i) � is the mgu of l0 and l, (ii) l0 is not a variable, (iii) �1 and �2 are solved (iv) no literal in �1is seleted, (v) s � t (the atom A) is seleted or no literal in �2 is seleted, is alled a paramodulationleft inferene. If, in addition, r� 6� l� the inferene is an ordered paramodulation left inferene. If, inaddition, l� � r� is redutive for (�1 k�1 ! �1; l � r)�, (v) is replaed by s� � t� (the atom A�)is seleted or it is maximal in (�2 k s � t;�2 ! �2)� (in (�2 kA;�2 ! �2)�) and no literal in �2 isseleted and t� 6� s� then the inferene is alled a superposition left inferene.Standard paramodulation is ativated by the -ISPm option. Ordered paramodulation is ativated bythe -IOPm option. Superposition left is ativated by the -ISpL option.Note that no paramodulation/superposition inferene is performed into the sort onstraint. Hene, thesort onstraint is subjet to the basiness restrition. In ase all sort onstraints of an initial lause storewere solved, the basiness restrition preserves ompleteness.De�nition 2.3.9 ((Ordered) Paramodulation/Superposition Right)The inferenes I �1 k�1 ! �1; l � r �2 k�2 ! �2; s[l0℄p � t(�1;�2 k�1;�2 ! �1;�2; s[p=r℄ � t)�and I �1 k�1 ! �1; l � r �2 k�2 ! �2; A[l0℄p(�1;�2 k�1;�2 ! �1;�2; A[p=r℄)�where (i) � is the mgu of l0 and l, (ii) l0 is not a variable, (iii) �1 and �2 are solved (iv) no literal in�1, �2 is seleted is a paramodulation right inferene. If, in addition, r� 6� l� the inferene is an orderedparamodulation right inferene. If, in addition, l� � r� is redutive for (�1 k�1 ! �1; l � r)�, s� � t�(A�) is redutive for (�2 k�2 ! �2; s � t)� (�2 k�2 ! �2; A)� the inferene is alled a superpositionright inferene.

2.3. INFERENCE AND REDUCTION RULES 23Superposition right is ativated by the -ISpR option.In SPASS the parallel extensions of the above de�ned paramodulation/superposition left/right infer-enes [6℄ are preferred. Whenever suh an inferene rule is appliable, we don't only replae the initiallyfound ourrene of l� in the seond lause by r�, but all ourrenes. On the ground level the parallel re-plaement orresponds to an appliation of the inferene rules exatly the way they are de�ned above plusexhaustive appliation of non-unit rewriting with the left premise (De�nition 2.3.21) on the onlusion.Note that the ordering onditions of the above inferene rules as well as the ordering onditions of theinferene rules de�ned below, are heked with respet to the found uni�er. This is alled the a posterioriordering hek. For all inferene rules that have ordering restritions, SPASS �rst orders the lauses as theyare and only searhes for inferenes with respet to the found andidates (maximal literals, maximal sidesof equations). This is alled the a priori ordering hek. Then, after having found a seond andidate lausetogether with a uni�er, the a posteriori hek is evaluated. This seond hek is more expensive than the�rst, beause it has to be dynamially omputed with respet to any found uni�er. However, sine most ofthe time in a saturation prover is spent with redution (see Setion 2.2), the extra time for the a posteriorihek does not matter, but needs some effort for an (ef�ient) implementation.The following example shows that the a posteriori hek an in fat prevent the generation of extralauses. Consider the two lauses ! f(x; y) � f(y; x)!P (f(a; b))The equation f(x; y) � f(y; x) annot be oriented by any redution ordering. So without an a pos-teriori ordering hek, we an derive the lause ! P (f(b; a)) by a superposition right inferene. Nowonsider the very same example where we use an RPOS with preedene f > b > a and status(f) = left .This implies f(b; a) �rpos f(a; b) and therefore the a posteriori ordering hek for the potential super-position right inferene onlusion! P (f(b; a)) fails. No inferene is possible between the above twolauses.Next we de�ne three fatoring rules, namely (ordered) fatoring, equality fatoring andmerging paramod-ulation. The different rules are needed to obtain ompleteness results with respet to different inferene rulesets. For the standard resolution/paramodulation alulus [42, 41, 7, 39℄ the fatoring rule without orderingrestritions suf�es for ompleteness. For the ordered resolution/superposition alulus, ordered fatoringhas to be ombined with either equality fatoring or merging paramodulation to obtain ompleteness [3℄.De�nition 2.3.10 ((Ordered) Fatoring)The inferenes I � k�! �; E1; E2(� k�! �; E1)�and I � k�; E1; E2 ! �(� k�; E1 ! �)�where (i) � is the mgu of E1 and E2, (ii) � is solved (iii) (E1; E2 our positively, E1 is maximal andno literal in � is seleted) or (E1; E2 our negatively, E1 is maximal and no literal in � is seleted orE1 is seleted) are alled ordered fatoring right and ordered fatoring left, respetively. If ondition(iii) is replaed by (E1; E2 our positively and no literal in � is seleted) or (E1; E2 our negatively,E1 is seleted or no literal in � is seleted) the inferenes are alled fatoring right and fatoring left,respetively.Standard fatoring is ativated by the -ISF option. Ordered fatoring is ativated by the -IOFoption.There is an overlap between Ordered Fatoring de�ned above and Equality Fatoring de�ned below,beause the rule ordered fatoring also onsiders equations. We did so beause for the ordered paramodu-lation alulus with respet to our de�nitions Equality Fatoring is not needed for ompleteness. The ruleOrdered Fatoring suf�es for ompleteness.

24 CHAPTER 2. SPASSDe�nition 2.3.11 (Equality Fatoring)The inferene I � k�! �; l � r; l0 � r0(� k�; r � r0 ! �; l0 � r0)�where (i) � is the mgu of l0 and l, (ii) r� 6� l�, (iii) � is solved, (iv) no literal in � is seleted, (v) l� � r�is a maximal ourrene in (� k�! �; l � r; l0 � r0)� is alled an equality fatoring inferene.Equality fatoring is ativated by the -IEqF option.De�nition 2.3.12 (Merging Paramodulation)The inferene I �1 k�1 ! �1; l � r �2 k�2 ! �2; s � t[l0℄p; s0 � t0(�1;�2 k�1;�2 ! �1;�2; s � t[p=r℄; s � t0)�where (i) � is the omposition of the mgu � of l and l0 and the mgu � of s� and s0� , (ii) the lause(�1 k�1 ! �1; l � r)� is redutive for l� � r�, (iii) �1 and �2 are solved, (iv) no literal in �1, �2 isseleted, (v) the lause (�2 k�2 ! �2; s � t; s0 � t0)� is redutive for s� � t�, (vi) s� � t� , (vii) l0 isnot a variable is alled a merging paramodulation inferene.Merging paramodulation is ativated by the -IMPm option.De�nition 2.3.13 ((Ordered) Resolution)The inferene I �1 k�1 ! �1; E1 �2 kE2;�2 ! �2(�1;�2 k�1;�2 ! �1;�2)�where (i) � is the mgu of E1 and E2, (ii) �1 and�2 are solved, (iii) no literal in �1 is seleted, (iv) E1� isstritly maximal in (�1 k�1 ! �1; E1)�, (v) the atomE2� is seleted or it is maximal in (�2 kE2;�2 !�2)� and no literal in �2 is seleted is alled ordered resolution. If onditions (iv), (v) are replaed by E2is seleted or no literal is seleted in �2, the inferene is alled resolution.Standard resolution is ativated by the -ISRe option. Ordered resolution is ativated by the -IOReoption. If any of the options is set to 2, equations are also onsidered for the inferenes.If, in De�nition 2.3.13, one of the parent lauses of the inferene is a unit, the inferene is alled(ordered) unit resolution. The standard resolution rule is an instane of this rule if we omit the onditions(ii)�(iv) and restrit our attention to non-equational atoms.De�nition 2.3.14 ((Ordered) Hyper Resolution)The inferene I � kE1; : : : ; En ! � �i k ! �i; E0i (1 � i � n)(�;�1; : : : ;�n k ! �;�1; : : : ;�n)�(i) � is the simultaneousmgu ofE1; : : : ; En; E01; : : : ; E0n, (ii)� as well as all�i are solved, (iii) allE0i� arestritly maximal in (�i k�i ! �i; E0i)� is alled an ordered hyper resolution inferene. If ondition (iii)is dropped, the inferene is alled a hyper resolution inferene.Standard hyper resolution is ativated by the -ISHy option. Ordered hyper resolution is ativated bythe -IOHy option.In the appliation of the inferene rule hyper resolution as well as the inferene rules sort resolution(De�nition 2.3.3) and empty sort (De�nition 2.3.4) more than two parent lauses are involved, in general.So the searh for andidate lauses gets more ompliated. In partiular, an appropriate ordering of theliterals E1; : : : ; En for searhing partner lauses an be indispensable for ef�ieny reasons. For example,if we searh partners for the literals P (x); Q(a; f(x)) it may be the ase that we �nd thousand potentialpartners for P (x) (all lauses with a positive (maximal) literal P (t)) but only a few for Q(a; f(x)) (onlylauses with a positive (maximal) literalQ(a; f(t)) or with variable ourrenes at the positions of a, f(t)).

2.3. INFERENCE AND REDUCTION RULES 25So starting with Q(a; f(x)) for partner searh is the more ef�ient way, sine it will potentially provideinstantiation of x when we subsequently searh for partners of P (x). So a good heuristi is to proeed atany time of the partner searh with the literals that has a maximal number of symbols with respet to thealready established partial uni�er. Nevertheless, please note that the number of hyper resolvents grows inthe worst ase exponentially in n.2.3.4 Redution RulesOur philosophy is that redution rules are at the heart of suessful automated theorem proving. The aimof redution rules is to transform lauses (or even formulas see [38℄) in simpler ones. So whereas inferenerules are at the searh side of automated theorem proving, redution rules are at the omputation side.De�nition 2.3.15 (Dupliate/Trivial Literal Elimination)The redutions R � k�! �; E;E� k�! �; Eand R � k�; E;E ! �� k�; E ! �and R �; A;A k�! ��; A k�! �are alled dupliate literal eliminations. The redutionsR � k�; t � t! �� k�! �and R k t � s!2where for the �nal variant we assume that t and s are uni�able, are alled trivial literal eliminations.Dupliate/trivial literal elmination are both ativated by the -RObv option.Please reall that although trivial literal elimination an be simulated by equality resolution or fatoring,for these inferene rules to apply a lause must �rst be seleted as Given lause. Redution rules likedupliate or trivial literal elimination apply to all (newly) generated lauses.De�nition 2.3.16 (Subsumption Deletion)The redution R �1 k�1 ! �1 �2 k�2 ! �2�1 k�1 ! �1where �2 k�2 ! �2 is subsumed by �1 k�1 ! �1 is alled subsumption deletion.Subsumption deletion is ativated by the -RFSub and -RBSub option for forward and bakwardsubsumtion, respetively (see Setion refse�rstsimpprover).Testing subsumption between two lauses is an NP-omplete problem [19℄. Nevertheless, subsumptionis indispensable for saturation based theorem proving as we already disussed in Setion 2.2. Hene, thereexist a variety of papers presenting algorithms that show a polynomial behavior on ertain sublasses oflauses (e.g., [21℄) or that introdue spei� data strutures to speed up the subsumption test in pratie(e.g., [46, 50℄). Many of todays provers use a variant of the [47℄ algorithm for the subsumption test.Basially, the algorithm tries to �nd for every literal in�1 k�1 ! �1 a different instane in�2 k�2 ! �2suh that all single instantiations are ompatible, i.e., idential variables are mapped to idential terms. Thissimple version is not tratable in pratie. Pre�lters must be added to the algorithm that make it tratable

26 CHAPTER 2. SPASSin pratie. In SPASS we introdued two �lters [37℄. The �rst �lter is based on the size of the lauses. Aneessary ondition for a subsumption deletion appliation over multisets is that size(�1 k�1 ! �1) �size(�2 k�2 ! �2). Sine the size of lauses is usually needed for seletion heuristis (see the disussionon the hoose funtion in Setion 2.2), the size of a lause is already stored in a lause data struture andtherefore this test is almost for free. For every two lauses passing this test, the seond pre�lter hekswhether for every literal in �1 k�1 ! �1 there exists some instane literal in �2 k�2 ! �2 at all. Sowe onsider the literals in �1 k�1 ! �1 separately and don't hek ompatibility between the differentsubstitutions. This hek is again a neessary ondition for the subsumption test to sueed and an bedone in polynomial time. Clauses passing these two tests are then subjet to the Stillman algorithm. Inpratie, more than 95% of all subsumption tests an already be rejeted by the two �lters.Note that there is a subtle differene between multiset subsumption (onsidered here) and set subsump-tion. The lause! Q(a; x); Q(y; b) subsumes the lause! Q(a; b) if we onsider lauses to be sets, butdoes not if we onsider lauses to be multisets. Therefore, in our version of the Stillman algorithm werequire mathed literals to be different.When integrated into a prover, subsumption deletion is not an operation applied to two lauses butapplied to two sets of lauses or a lause and a set of lauses (see Table 2.1 and Table 2.3). The former testan be redued to the latter by onsidering the lauses in one set separately. So it remains to test whethersome lause C subsumes some lause in a set N or is subsumed by some lause in N . We already arguedthat the set N (in partiular the Us set) an beome very large. Then it is in pratie intratable to traverseall lauses in N and then to apply the subsumption test to eah lause. An additional �lter is needed:Indexing. Indexing is the data base tehnology of automated theorem proving. The ruial operationsprovided by an index of a lause storeN are: ompute all lauses that inlude an atom that is an instane/ageneralization/uni�able with some query atom. Typially, the result of suh a query onsists of the lausestogether with the found atom. So in order to test whether some lause C is subsumed by a lause in anindexed lause store N , one piks a literal from C that has a low probability of being subsumed, searhesthe index for generalizations of that literal and then tests C and the found lauses for subsumption. Sinethe query and the result literal are already found, using appropriate data strutures of SPASS it is suf�ientto test the lauses without these literals. We use a more general subsumption test with the possibility tohide at least one literal in eah lause and we are able to keep the bindings of an indexing query result. Thisextended test is also needed for the redution rules mathing replaement resolution (De�nition 2.3.20) andnon-unit rewriting (De�nition 2.3.21).De�nition 2.3.17 (Condensation)The redution R �1 k�1 ! �1�2 k�2 ! �2where �2 k�2 ! �2 subsumes �1 k�1 ! �1 and �2 k�2 ! �2 is derived from �1 k�1 ! �1 byinstantiation and (exhaustive) appliation of trivial literal elimination is alled ondensation.Condensation is ativated by the -RCon option.In the literature ondensation is often de�ned on the basis of fatoring appliations. From an imple-mentation point of view the above de�nition is muh sharper, beause it only suggests mathers to generatedupliate literals that an be eventually removed, not uni�ers as suggested by a de�nition based on fator-ing. All these andidate instantiation substitutions an be effetively omputed by subsequently searhingfor mathers � suh that E1� = E2 for E1; E2 2 �1 (respetively for �1, �1) and then testing whether(�1 k�1 n fE2g ! �1)� subsumes �1 k�1 ! �1. This idea leads to a proedure that is more ef�ientthan the fatoring based algorithm suggested by [28℄ and related to the tehniques presented by [20℄.De�nition 2.3.18 (Tautology Deletion)The redution R � k�! �where j= � k�! � is alled tautology deletion.

2.3. INFERENCE AND REDUCTION RULES 27The above rule is sometimes also alled semanti tautology deletion, sine it is based on a semantitautology test. This test orresponds to testing unsatis�ability of a set of ground literals. If we keep inmind that any literal an be oded as an (dis)equation, in order to test unsatis�ability of a set of groundliterals it is suf�ient to test ongruene losure with respet to the positive equations. This an be done inpolynomial time [14℄. There are ertain weaker syntati onditions that an be heked in linear time:R � k�; E ! �; Eor R �; A k�! �; Aor R � k�! �; t � tIn SPASS the syntati as well as the semanti hek is implemented (see Appendix 2.5). For the semantitest we adopted the algorithm presented by [14℄ to our data strutures. These onditions are implemented bynearly all todays theorem provers. The semanti hek requires appropriate data strutures for an ef�ientimplementation. It is ontained in the provers E, Saturate and SPASS.Tautology deletion is ativated by the -RTaut option. If the option is set to 1 only syntati tautologiesare deleted and if the option is set to 2 also the semanti test is performed.De�nition 2.3.19 (Con�it)The redution R �1 k�1 ! �1 : : : �n k�n ! �n2where �1 k�1 ! �1; : : : ;�n k�n ! �n j= 2 is alled on�it.Even if n is �xed, the rule on�it is not effetive, in general. It basially solves the general unsatis-�ability problem of �rst-order logi. The rule sort simpli�ation is an effetive instane of this rule. Twofurther effetive instantiations of this rule that are not related to spei� theories are implemented in todaysprovers: unit on�it and the terminator [1℄. 7 The former is the ruleR k ! E1 kE2 !2suh that E1 and E2 are uni�able. It seems that this rule is super�uous sine it only detets a ontra-dition between two unit lauses. However, sine we onsider uni�ation between E1 and E2, this ruleannot be simulated by, for example, mathing replaement resolution (see De�nition 2.3.20), but only bya resolution step. In the ontext of problems where the majority of generated lauses are units (e.g., unitequational problems or ondensed detahment problems [31℄) the probability that both lauses are seletedfor inferenes an beome arbitrarily low. Then it an pay off to add this redution rule that implements a(global) one step searh for the empty lause.The terminator is a generalization of unit on�it and a restrition of the general on�it rule to at mostk non-unit lauses out of the n lauses, k �xed. For some given, �nite set of lauses it is deidable whetherwe an derive the empty lause by resolution, if any derivation is restrited to ontain at most k non-unitlauses. This is easy to see, sine there are only �nitely many different derivations using k non-unit lausesand resolving with a unit lause stritly redues the length of the resolvent ompared to the maximal lengthof one of its parent lauses. That's the terminator. In pratie the terminator an be useful with valuesk � 3. Larger values rarely make sense, sine the number of lauses that have to be onsidered for this rulegrows exponentially in k times the length of the non-unit lauses. Note that if the terminator is applied toa Horn lause store without equality, it an be turned into a omplete refutation proedure by subsequentlyinreasing n.7Hasta la vista baby!

28 CHAPTER 2. SPASSAs an exeption from all other redution rules, in pratie the terminator is integrated in the searhproedure like an inferene rule, not like a redution rule. It is too expensive to apply the terminator to allnewly generated lauses and often it does not pay off. So the terminator is solely applied to the seletedGiven lauses, if it is ativated.Unit on�it is ativated by the -RUnC option. The terminator is ativated by the -RTer=<n> option,where n spei�es the number of onsidered non-unit lauses.De�nition 2.3.20 (Mathing Replaement Resolution)The redutions R �1 k�1 ! �1; E1 �2 k�2; E2 ! �2�1 k�1 ! �1; E1�2 k�2 ! �2and R �1 k�1; E1 ! �1 �2 k�2 ! �2; E2�1 k�1; E1 ! �1�2 k�2 ! �2and R �1 k�1 ! �1; A1 �2; A2 k�2 ! �2�1 k�1 ! �1; A1�2 k�2 ! �2where (i) E1� = E2 (A1� = A2 for the third variant), (ii) �1� � �2, �1� � �2, �1� � �2 are alledmathing replaement resolutions.Mathing replaement resolution is ativated by the -RFMRR and -RBMRR option, for the forward andbakward diretion, respetively.Mathing replaement resolution is a restrited variant of replaement resolution, itself a restritedform of resolution where the onlusion must subsume one of its parent lauses. For mathing replaementresolution we restrit the uni�er of the omplementary literals omputed for replaement resolution to bea mather. This speeds up the appliability test signi�antly.The third variant of the rule that applies to the sort onstraint annot be simulated by sort simpli�ation(De�nition 2.3.5), beause it also onsiders lauses that are not delarations. On the other hand, mathingreplaement resolution an also not simulate sort simpli�ation. Consider the lausesT (x); S(f(x));�1 k�1!�1R(x) k !S(f(x))T (x) k !R(x)The negative ourrene of S(f(x)) in the �rst lause annot be eliminated by mathing replaementresolution but by sort simpli�ation.De�nition 2.3.21 (Non-Unit Rewriting)The redutions R �1 k�1 ! �1; s � t �2 k�2; E[s0℄p ! �2�1 k�1 ! �1; s � t�2 k�2; E[p=t�℄! �2and R �1 k�1 ! �1; s � t �2 k�2 ! �2; E[s0℄p�1 k�1 ! �1; s � t�2 k�2 ! �2; E[p=t�℄where (i) s� = s0, (ii) s � t, (iii) �1� � �2, �1� � �2,�1� � �2 are alled non-unit rewriting.

2.3. INFERENCE AND REDUCTION RULES 29Non-unit rewriting and unit rewritung (see below) are ativated by the -RFRew and -RBRew option,for the forward and bakward diretion, respetively.The ordering restritions for non-unit rewriting are a priori ordering restritions, i.e., we do not omparethe terms s and t with respet to the found mather �. The ordering test with respet to � is sharper, butan ef�ient implementation of this hek is non-trivial beause it requires a tight onnetion betweenindexing, ordering omputation and subsumption. Therefore, SPASS uses the a priori ordering hek, i.e.,SPASS veri�es s � t. See also the disussion on page 23.De�nition 2.3.22 (Unit Rewriting)The redutions R k ! s � t kE[s0℄p !k ! s � tkE[p=t�℄!and R k ! s � t k ! E[s0℄pk ! s � tk ! E[p=t�℄where (i) s� = s0, (ii) s� � t�, are alled unit rewriting.Unit rewriting is an instane of the seond version of non-unit rewriting where all�i, �i,�i are empty.We mention it here expliitely, beause it is the style of rewriting used in purely equational ompletion,a theorem proving disipline of its own. Furthermore, the a posteriori ordering hek is muh easier toimplement, beause we need no subsumption hek. Atually, it is implemented in SPASS.In pratie the rewriting redutions are among the most expensive redutions. Note that any subtermof any lause has to be onsidered and that subsequent rewriting steps to the same lause are ommon.Therefore, many provers don't use the full power of non-unit rewriting, but restrit the left lause to be apositive unit equation. They redue non-unit lauses by positive unit equations.Even the a posteriori hek, ondition (ii), an be further re�ned. Consider an equation where theleft and right hand side don't share any variables. Then the a posteriori hek will typially fail but maysueed by appropriate further instantiations. For example the equation f(x; y) � g(z) annot be orientedand hene the equation f(a; b) � a annot be rewritten by unit rewriting using the �rst equation. Nowassume a RPOS with preedene f > g > a > b. Then the equation f(a; b) � g(z) (the result of mathingf(x; y) with f(a; b)) an be turned into an oriented equation by instantiating z with a or b. This enablesrewriting of f(a; b) to g(a) or g(b). In general it is suf�ient to onsider the minimal onstant and theruial extra variables for further instantiation. Note also that the equation f(x; y) � g(z) subsumes anequation like f(x; y) � g(y) that is oriented and an therefore be used for rewriting in a straightforwardway. This re�nement is not implemented in SPASS Version 2.0 but remains an option for further releases.Another way to solve the problem of unorientable equations beause of extra variables is to split equa-tions. Given some equation s � t where vars(s) 6� vars(t) and vars(t) 6� vars(s), we introdue a newfuntion symbol h where the arity of h is exatly jvars(s)\vars(t)j. If fx1; : : : ; xng = vars(s)\vars(t)then the equation s � t is replaed by the equations s � h(x1; : : : ; xn) and t � h(x1; : : : ; xn). Givena KBO or RPOS and a preedene where the new symbol h is smaller than the top symbols of s and t,both introdued equations are oriented from left to right. In order to obtain a omplete alulus that in-ludes splitting of equations splitting must not be applied in�nitely many times. Splitting equations is notimplemented in SPASS Version 2.0.De�nition 2.3.23 (Contextual Rewriting)The redutions R �1 k�1 ! �1; s � t �2 k�2; E[s0℄p ! �2�1 k�1 ! �1; s � t�2 k�2; E[p=t�℄! �2

30 CHAPTER 2. SPASSand R �1 k�1 ! �1; s � t �2 k�2 ! �2; E[s0℄p�1 k�1 ! �1; s � t�2 k�2 ! �2; E[p=t�℄where (i) s� = s0, (ii) s � t, (iii) s � t is stritly maximal in �1 k�1 ! �1; s � t, (iv) for anyterm t0 in �1 k�1 ! �1; s � t, s � t0, (v) if E[s0℄p does not our negatively, s� � t� � E[s0℄p,(vi) j= fred(�2 ! S(t0)) for all sort atoms S(t0) 2 sortsimp(�1�), (vii) j= fred(�2 ! E) for all atomsE 2 �1�, (viii) j= fred(E ! �2) for all atoms E 2 �1� are alled ontextual rewriting.The expression sortsimp(�1�) denotes the sort onstraint �1� after exhaustive appliation of therule sort simpli�ation. The funtion fred , see Table 2.5, (reursively) applies the redution rules to theonstruted sublauses before they are heked as tautologies. The performane of fred , i.e. whih rulesare atually tested/applied, determines the strength as well as the ost for testing and applying ontetualrewriting. Our urrent idea is to use all redution rules exept ontextual rewriting. We do not test/applyontextual rewriting reursively. Contextual rewriting is not implemented in SPASS Version 2.0 but will beinluded in the next release. We already have a prototype implementation of the rule.The �nal redution rule exploits partiular equations of the form x � t (alled assignment equations),where x does not our in t nor in the rest of the lause. Negative equations of this form an simply beremoved from a lause. In order to remove positive assignment equations the domain struture shared byany model of the urrent lause store has to be examined. In partiular, we exploit the ase that the domainis non-trivial. Therefore, before this rule an be applied, ertain properties of any lause store model mustbe heked. This an, e.g., be done by a suf�ient riterion that an be tested syntatially.De�nition 2.3.24 (Assignment Equation Deletion)LetN be the urrent lause store. The redutionsR � kx � t;�! �� k�! �and R � k�! x � t;�� k�! �where for both variations of the rule we assume (i) x 62 vars(t), (ii) x 62 vars(� k� ! �) and forthe seond variant, where we remove a positive equation, we assume in addition that jDj > 1 for anyinterpretationM withM j= N , are alled assignment equation deletion.Assignment equation deletion is ativated by the -RAED option. If -RAED is set to 1 only the �rstvariant is applied, if set to 2 both variants are used.For the elimination of the positive equation to be sound it is neessary to guarantee a non-trivial domainfor any model of the urrent lause store. A syntati ondition is the existene of a lause k s � t !where s and t are arbitrary. If suh a lause is ontained in the lause store, the domain of any model isnon-trivial and we an apply the seond variant of the rule.2.3.5 SplittingThe effet of a splitting rule appliation is not only to extend the urrent lause store but also to modifyand extend the urrent lause store olletion.De�nition 2.3.25 (Splitting)The inferene S �1;�2 k�1;�2 ! �1;�2�1 k�1 ! �1 j �2 k�2 ! �2where vars(�1 k�1 ! �1) \ vars(�2 k�2 ! �2) = ; and�1 6= ;,�2 6= ; is alled splitting.

2.3. INFERENCE AND REDUCTION RULES 31Splitting is ativated by the -Splits=<n> option, where n spei�es the overall number of splittingappliations in a SPASS run. Unlimited appliation of the rule an be ahieved by hoosing�1 for n.Without the ondition that the two split lauses must not share variables, Splitting is very muh likethe �-rule of free variable tableau. Sine the lauses don't share variables, the two ases are ompletelyindependent and the derived lauses an be used for simpli�ation/redution without any restrition. Forexample, both lauses subsume the parent lause.In ase the �rst split part is ground, i.e., vars(S(t) kE ! E0) = ;, where S(t) = S1(t1); : : : ; Sn(tn),E = E1; : : : ; Em and E0 = E01; : : : ; E0l and 1 � i � n, 1 � j � m, 1 � k � l, it is very useful to add thenegation of the �rst split lause to the seond partS S(t);�2 kE;�2 ! E0;�2S(t) kE ! E0 �2 k �2!�2k !Si(ti)k !EjkE0k!All these additional unit lauses an help a lot in reduing the lause set of the seond part (see math-ing replaement resolution, De�nition 2.3.20 or non-unit rewriting, De�nition 2.3.21). In a purely propo-sitional setting, a alulus solely based on unit on�it (see De�nition 2.3.19) and extended splitting anpolynomially simulate truth tables, whereas a alulus based on unit on�it and the simple splitting ruleannot [9℄.Of ourse, for any �rst part split lause we ould add its negation to the seond part. However, ingeneral this leads to the introdution of new Skolem onstants, and in pratie this tends to extend thesearh spae for the seond part. Note that in this ase the ground units resulting from the negated �rstpart annot be used for mathing replaement resolutions, beause the introdued Skolem onstants arenew. As an alternative one ould also reord the ground instanes of the variables in the �rst split lauseused in the refutation of the �rst part and then add their negation as a disjunt to the seond part. But it isquestionable whether suh an effort pays off in pratie.Splitting itself often tends to generate a huge searh tree, so additional re�nements are neessary. There-fore, we required that �1 and �2 are non-empty in De�nition 2.3.25. So we only split non-Horn lausesinto lauses having stritly less positive literals. The rationale behind this omes from the propositionallevel. For a set of propositional Horn lauses, satis�ability an be deided in linear time [13℄, whereassatis�ability for arbitrary lauses is an NP-omplete problem. The redution rule mathing replaementresolution (De�nition 2.3.20) is also a deision proedure for propositional Horn lauses (although it resultsin a quadrati time implementation). Hene, non-Horn splitting and mathing replaement resolution are areasonable deision proedure for propositional lauses. In ase a lause an be split into a propositionalpart (no variables) and a non-propositional one, it is very useful to split the lause that way and to add thenegation of the propositional part to the seond as indiated before.An alternative to an expliit ase analysis is to split lauses by the introdution of new propositionalsymbols. For example, the lause S(x) k f(x) � y ! Q(x; x); Q(a; z)an be replaed by the lauses S(x) jj f(x) � y, A!Q(x; x)jj B!Q(a; z)jj !A;Bwhere A, B are new propositional symbols. The replaement preserves satis�ability of the urrent lausestore and if it is only applied �nitely many often during a proof attempt it also preserves ompleteness.If A, B are minimal in the ordering, no inferene on A, B will be performed as long as other literals areontained in the respetive lauses. So the different parts of the original lause don't interfere as long asthey are ompletely resolved. This simulates splitting without the need to extend the notion of a lausestore to a olletion of lause stores and hene a less ompliated implementation. The seond advantageof this approah is that it does not introdue the inherent redundany of an expliit splitting approah.The main disadvantage of this splitting style is that none of the generated lauses an be diretly used for

32 CHAPTER 2. SPASS1 PROVER(N)2 Wo := ;;3 Us := ired(N;N);4 While (Us 6= ; and 2 62 Us) f5 (Given ;Us) := hoose(Us);6 Wo := Wo [fGiveng;7 New := inf (Given ;Wo);8 (New ;Wo;Us) := ired(New ;Wo;Us);9 g10 If (Us = ;) then print �Completion Found�;11 If (2 2 Us) then print �Proof Found�;Table 2.4: The Overall Loop without Splittingredutions, beause the propositional variables A, B must be new. This splitting style is available in theprovers Saturate and Vampire, expliit splitting (De�nition 2.3.25) is available in SPASS.2.4 Global Design Deisions2.4.1 Main-LoopThe main-loop without splitting, Table 2.4, is a generalization of the main-loop introdued in Setion 2.2,Table 2.1.Compared to the simple, resolution-based prover, all inferenes are omputed in the extra funtion infand (inter)redution takes plae in the funtion ired . In the automati mode of SPASS, the inferene rulesapplied in inf are hosen after an analysis of the input problem, suh that the resultion alulus is soundand omplete. For example, if the input problem ontains no equality, the superposition/paramodulationrules are not ativated or if the input problem is Horn, fatoring rules are not needed. In Appendix 2.5.1 wesum up all SPASS options needed to (de)ativate the inferene/redution rules introdued in Setion 2.3.Please note that a manual setting setting of inferene/redution rules an result in an unsound or inompletealulus. SPASS does not verify your manual settings.The ombination of the redution rules gets more subtle ompared to the ombination of subsump-tion/tautology deletion presented in Setion 2.2. The funtion ired serves this purpose, Table 2.6. Pleasereall that the terminator is integrated like an inferene rule and hene does not show up. First, line 4,any newly derived lause is forward redued with respet to the sets Wo and Us . The funtion fred ispresented in detail in Table 2.5. The ordering of the tested forward redutions is determined by potentialdependenies between the rules and by their respetive implementation osts.We don't onsider the lazy redution approah introdued in Setion 2.2, Table 2.3. It is a bit trikybut not too dif�ult to develop it out of the presented full redution algorithms. Inside the algorithms aredundant lause is not always diretly deleted, but represented by the onstant>.In pratie, tautology deletion (Table 2.5, line 2), elimination of trivial literals (line 4), ondensation(line 5) and assignment equation deletion (line 6) are heap operations, beause only the derived lausehas to be onsidered for testing their appliability. This is not ompletely true for the assignment equationdeletion (see De�nition 2.3.24), but the suggested syntati domain size riterion an be tested one at thebeginning of the searh proess, so no extra effort is neessary. Clauses that pass these tests, are heked forforward subsumption with respet toWo andUs (line 7) and for forward rewriting (line 8) whereHit is setto true, if a rewriting step atually took plae. If a rewriting step is performed, the rules tautology deletion,

2.4. GLOBAL DESIGN DECISIONS 33

1 fred(Given ;Wo;Us)2 Given := taut(Given);3 If (Given = >) then return(>);4 Given := obv(Given);5 Given := ond(Given);6 Given := aed(Given ;Wo;Us);7 If (fsub(Given ;Wo;Us)) then return(>);8 (Hit ;Given) := frew (Given ;Wo;Us);9 If (Hit) then f10 Given := taut(Given)11 If (Given = >) then return(>);12 Given := obv(Given);13 Given := ond(Given);14 If (fsub(Given ;Wo;Us)) then return(>);15 g16 Given := ssi(Given ;Wo;Us);17 Given := fmrr(Given ;Wo;Us);18 Given := un(Given ;Wo;Us);19 Given := sst(Given ;Wo;Us);20 return(Given);Table 2.5: Forward Redution

34 CHAPTER 2. SPASS1 ired(New ;Wo;Us)2 While (New 6= ;) f3 (Given ;New) := hoose(New);4 Given := fred(Given ;Wo;Us);5 If (Given 6= >) then f6 (New ;Wo;Us) := bsub(Given ;New ;Wo;Us);7 (New ;Wo;Us) := bmrr(Given ;New ;Wo;Us);8 (New ;Wo;Us) := brew(Given ;New ;Wo;Us);9 Us := Us [fGiveng;10 g11 g12 return(;;Wo;Us);Table 2.6: Interredutionelimination of dupliate/trivial literals, ondensation and forward subsumption are heked a seond time(lines 10�14). Below is a simple example that demonstrates dependenies between the different redutionrules. 1: ! f(x) � x2: ! a � b3: P (f(x))!P (x)4: P (f(x)); P (b)!5: P (a); P ()!6: P (g(f(x))); P (g(x))!The lauses 3�6 are ompletely interredued with respet to the redutions presented in Setion 2.3.Rewriting with lause 1 into lause 3 generates a syntati tautology, rewriting with lause 1 into lause 4enables a further ondensation step on lause 4 resulting in 40:P (b)! and rewriting lause 5 with lause 2produes 50:P (b); P () ! (assuming a � b) that is forward subsumed by lause 40. After rewriting withlause 1, dupliate literal elimination an be applied to lause 6.Finally the redutions sort simpli�ation (line 16), forward lause redution (line 17), unit on�it(line 18) and stati soft typing are tested. These redution rules don't enable further appliations of otherrules, beause they either stritly redue the number of literals or redue the lause to> (stati soft typing).In order to test the appliability of these rules the overall lause storesWo and Us must be onsidered.All lauses that pass forward redution (Table 2.6, line 4) are used for bak redution (lines 6�8) andare �nally added to theUs set (line 9). Bakward subsumption (line 6) deletes all lauses fromWo andUsthat are subsumed by Given . Bakward mathing replaement resolution (line 7) tests all lauses in Woand Us for mathing replaement resolution with Given . Redued lauses are always deleted from theirrespetive soure set and added to New . Bak rewriting (line 8) behaves the same, but tests rewriting. Thelauses in New are not diretly tested for all these redution rules. They are tested after having entered theUs set. This is motivated by ef�ieny issues whih we will disuss below.The funtion hoose (Table 2.6, line 3) selets a lause with the smallest number of symbols. Smalllauses have a higher probability to redue other lauses. For example, a subsuming lause must havefewer symbols (onsider the disussion after De�nition 2.3.16) than the lause it subsumes. For manyother redutions like rewriting, seleting small lauses is still a good heuristi beause the size ordering ofterms is often inluded in the redution ordering.Note that a lause an be seleted several times as Given lause in the while-loop of the interredution

2.4. GLOBAL DESIGN DECISIONS 351 PROVER(N)2 Wo := ;;3 Us := ired(N;N);4 Stak := emptystak();5 While (Us 6= ; and (2 62 Us or not stakempty(Stak))) f6 If (2 2 Us) then7 (Stak ;Wo;Us) := baktrak (Stak ;Wo;Us);8 else f9 (Given ;Us) := hoose(Us);10 If (splittable(Given)) then f11 New := �rstsplitase(Given);12 Stak := push(Stak ; seondsplitase(Given));13 g14 else f15 Wo := Wo [fGiveng;16 New := inf (Given ;Wo);17 g18 (New ;Wo;Us) := ired(New ;Wo;Us);19 g20 g21 If (Us = ;) then print �Completion Found�;22 If (2 2 Us) then print �Proof Found�;Table 2.7: The Overall Loop with Splittingalgorithm, if it is suessfully redued several times. Seleting small Given lauses tries to minimize thenumber of suh situations.The main-loop presented in Table 2.7 extends the already disussed main-loop of Table 2.4 with splitting.Whether SPASS applies splitting or not depends on the input problem8 and an be ontrolled by the splittingoption (see Appendix 2.5.2). In ase splitting is not applied, exeuting the main-loop in Table 2.7 orTable 2.4 results in exatly the same behavior.If splitting is possible (Table 2.7, line 10) it is preferred over all other inferenes. The rationale behindthis deision is that a splitting appliation results in a stritly smaller lause store olletion. The explo-ration of the binary tree generated by the splitting rule is performed by a standard depth-�rst, baktrakingsearh (lines 7, 11, 12). Compared to the SPASS Versions 1.0.x, Version 2.0 has a more sophistiatedsplitting lause seletion. It selets the lause with the highest unit redution potential after the split.All funtions implementing inferene/redution operations have to be re�ned and must also onsiderthe split level of a lause. Initially, all lauses have split level zero and the urrent split level is zero. Thenany lause generated by a splitting inferene gets the urrent split level plus one as its split level and theurrent split level is inremented. Clauses generated by all other inferene/redution rules get the maximalsplit level of their parent lauses as their new split level. Baktraking resets the urrent split level to thesplit level of the ativated branh. But what happens if a lause C is now subsumed by a lause D with a8SPASS only splits non-Horn lauses, see De�nition 2.3.25.

36 CHAPTER 2. SPASSgreater split level? We must not delete C, but only remove it from the urrent lause store, store it at D'ssplit level on the split stak and reinsert it if baktraking onsiders that level. Clauses that are rewritten orredued by lauses with a higher split level must be opied and also kept appropriately on the split stak.Basially that is all to integrate splitting into a saturation based prover. Nevertheless, some re�nementsare possible. First, sine all lauses have a split level, also the empty lause has a split level. This levelindiates where baktraking should start to onsider open branhes and all branhes at a higher split levelan be disarded. For example, if we derive the empty lause at split level zero, then we an immediatelystop and don't have to onsider any further possibly open branhes. Seond, if we don't only store thesplit level with eah lause but also a bit array with length of the split level, the following improvementis possible. The bit array is updated together with the split level and indiates every level that ontributedto the lause. If we now derive an empty lause at some split level and detet that it does not depend onsome earlier levels above the previous baktraking level that have open branhes left, we an erase theselevels, their split lauses and all lauses depending on these. We all this operation branh ondensationand it is indispensable to make splitting feasible in pratie. In the AI literature branh ondensation itoften referred to as dependeny direted baktraking.In Setion 2.2 we also introdued a main-loop with lazy redution, Table 2.3. Although we did not presentit here, lazy redution is also possible with the extended inferene rule set and it is not too dif�ult to thinkof lazy extensions of the main-loops aording to Table 2.3. Therefore, we omitted an extra presentationhere.2.4.2 Proof Doumentation/ChekingBy default, SPASS does not output a proof in ase it derives the (�nal) empty lause nor does SPASS providea �nal saturated set of lauses, in ase all possible inferenes have been performedwithout �nding an emptylause. This an be hanged by ativating the proof doumentation option (see Appendix 2.5.1).Proof doumentation is possible by impliitly or expliitly storing all lauses during the overall searhproess that might ontribute to a proof. As a onsequene, a run with proof doumentation has a highermemory onsumption and thus auses the prover to slow down. This effet is further supported by splittingappliations, where all lauses from all signi�ant branhes must be kept as well. Therefore, in favor ofexeution speed, by default SPASS does not output proofs (saturated lause stores). Nevertheless, SPASSan handle proofs of several hundred thousand steps in reasonable time.Automated proof heking is a very important topi in any theorem proving projet. The inferene/redutionrules are non-trivial to (ef�iently) implement, so there is a high potential for bugs. This is also shown byseveral a posteriori disquali�ations at the CASC theorem proving ompetitions happened so far [49℄.Proofs of automated theorem provers annot be heked by hand in pratie. So there is a need for auto-mated proof heking. Our solution is a separately implemented proof heker. The heker takes a proofand starts with an analysis of the splitting rule appliations. The heker generates the binary tree resultingfrom subsequent splitting inferene appliations and tests whether all branhes ontain an empty lause,whether the split level assignments are done orretly and whether the splitting inferene rule is applied ina sound way. Then the heker generates for every inferene/redution rule appliation the orresponding�rst-order theorem proving problem and provides it for a separate prover. The single step proof problemsan typially be easily solved if they are orret. This way, it is possible to validate proofs up to severalhundred thousand steps in reasonable time and that ompletely automatially. As suh a proof hekersolely relies on logial impliation, it supports most of today's saturation-based inferene systems and isrobust against modi�ations to inferene/redution rules.2.4.3 Data Strutures and AlgorithmsIn Setion 2.2 we disussed a simple prover based on resolution. In Setion 2.4.1 we extended this proverto ope with the inferene/redution rules of SPASS. For our simple resolution-based prover we alreadyargued that� the Us set grows very fast,

2.4. GLOBAL DESIGN DECISIONS 37� redutions are indispensable to redue the number of lauses in the Us set� most of the time is spent with redutions.The situation is getting even more dramati if we onsider the inferene rules for equality introdued inSetion 2.3 and the suggested main-loops (Table 2.4, Table 2.7). For example, if the seletedGiven lauseC in the main-loop ontains a positive equation, then any non-variable subterm of any literal of a lause inWo that uni�es with the left or right hand side of the equation generates a new lause by paramodulation. Ifthe onsidered left hand side is a variable then any subterm of any different lause uni�es with the variableand produes a new lause via paramodulation. An example for suh a lause is one that fores a �nite,two element domain: ! x � a; x � b. Ordering restritions improve the situation (not for the �nitedomain lause), but we nevertheless have to �nd reasonable ways to store large Us sets and to ef�iently�nd redution/inferene partners.There are several solutions to these problems. We now fous on one solution and disuss alternativesat the end of this setion. The �rst design deision in SPASS is to store all atoms in Wo, Us in a sharedway, respetively. That means every ourrene of any subterm of an atom in Us (Wo) exists exatly oneand is shared by all superterms ontaining this subterm. The idea is to save spae and to keep indexingstrutures small. As all terms are shared, any subterm is only submitted one to the indexing struturethat provides retrieval for inferenes/redutions. This works �ne for ground terms, but in general lausesontain variables that are onsidered different if they our in different lauses. Therefore, almost nothingan be shared between two different non-ground lauses. The solution to this problem is our seond designdeision that is to normalize variables of lauses. For any lause, if the lause is onsidered from left toright as a sequene of its literals, the variables are named with respet to their ourrene aording to a�xed variable sequene. After normalization there is a high probability that lauses with variables sharenon-ground subterms. This is on�rmed by experiments.A onsequene of this deision is that algorithms for uni�ation/mathing/generalization have to keeptrak of this fat. For example, we have variants of the uni�ation algorithm that use two substitutions(whih are alled ontexts inside the uni�ation algorithm) in order to store bindings between variables fortwo terms stemming from two different lauses in an appropriate way.9Putting newly generated lauses into a sharing/indexing data struture is extra effort. Sine newlygenerated lauses have a high probability of being subsumed or redued by already existing lauses, theNew set (Table 2.4, 2.7, 2.6) is kept unshared. Furthermore, redutions are (by de�nition) destrutive, sothey an only be ef�iently applied to unshared lauses. Shared lauses have to be extrated/opied fromthe sharing struture before modi�ation, beause destrutive manipulation of shared terms may also effetother lauses where the onsidered redution is not permitted. So any forward redution to the Givenlause inside the interredution algorithm (Table 2.6) is done destrutively, but before a bak redutionoperation an atually be performed (lines 6�8) the lause has to be extrated/opied from the Wo, Ussharing struture �rst. As it is unshared afterwards, it an be moved to the New set. At line 9 of the iredfuntion (Table 2.6), the Given lause is inserted into the sharing/indexing strutures of the Us set.An alternative solution not implemented in SPASS is to ompletely abstrat from variable positions,e.g., by introduing one dummy variable for all ourring variables. We build one or several atom/termtrees that represent all atoms/terms without onsidering variables to be different. These trees are then linkedto the real atoms/terms and ef�ient algorithms an be devised to searh for andidate atoms/terms out ofsuh skeleton trees. Atoms/terms found this way are still andidates, beause of the variable abstration.They have then to be veri�ed by the appropriate mathing/uni�ation test. The so alled disriminationtrees support suh an approah.If we resign from omplete interredution and fous on lazy redution (see Table 2.3), no redution ruleneeds to be tested with respet to the Us set. So inserting the Us lauses into an indexing struture foraess is not needed. The Us lauses are only needed to provide a pool from whih the nextGiven lauseis seleted. To this end, we only need the neessary information for the hoose funtion and the lauseitself. If the hoose funtion relies on size, the neessary information is simply a number. Sine all Uslauses are hildren of two Wo lauses, instead of storing the lause, we store the numbers of the parents9See the disussion in Setion 2.2.

38 CHAPTER 2. SPASSand the way it was generated represented by, say, one extra number. So, every lause in the Us set anbe represented by four numbers, in pratie in onstant spae. This results in a huge redution of memoryonsumption and hene in an inrease of exeution speed. The Waldmeister system (see Appendix 2.7) antreat the Us set this way. Note that the extra time needed to generate theGiven lause an be negleted. Inase a parent of a seleted Given lause is no longer in theWo set, it must have beome redundant, henethe Given lause is redundant as well and needs not to be onsidered.A further possibility to restrit the number of lauses in theUs set is to simply throw away lauses. Thismay ause inompleteness of the theorem prover. Suh tehniques are available in Fiesta, Otter, SPASSand Vampire, see Appendix 2.7 and the disussion in Setion 2.2.2.5 SPASS Version 2.0 OptionsFrom a (unix) shell, SPASS is alledSPASS [options℄ [<input-file>℄where options in�uene the behavior of the prover. Here, we only introdue SPASS options that relateto the ontent of this hapter. Further options, e.g., options ontrolling the output, are doumented inthe SPASS man-pages. The options disussed here apply to SPASS Versions 2.0. Options an be set tointeger values. For boolean options 0 means falsity and 1 means truth. For example, the option -IMPm=1enables the inferene rule merging paramodulationwhih an be abbreviated by-IMPmwhereas -IMPm=0disables the inferene rule.2.5.1 ControlAuto Automati Mode, after a problem analysis, all options are set automati-ally.FullRed Full Redution, Setion 2.2. If full redution is enabled, the overallSPASS loop orresponds to the loop presented in Table 2.1, if the op-tion is disabled, it orresponds to the lazy redution loop presented inTable 2.3.BoundMode Bound Mode selets the mode for resoure ontrolled generation of thesearh spae, Setion 2.2. If set to 1 lauses are weight restrited, if setto 2 lauses are depth restrited.BoundStart Bound Start determines the start value for resoure restrition, Se-tion 2.2.BoundLoops Bound Loops determines the number of resoure restrited main-loopiterations.DoProof ativates proof doumentation.2.5.2 Inferene RulesISoR Sort Constraint Resolution, De�nition 2.3.3.IEmS Empty Sort, De�nition 2.3.4.IEqR Equality Resolution, De�nition 2.3.7.IERR Re�exivity Resolution, De�nition 2.3.7.ISpL Superposition Left, De�nition 2.3.8.IOPm Ordered Paramodulation, De�nition 2.3.8 and De�nition 2.3.9.ISPm (Standard) Paramodulation, De�nition 2.3.8 and De�nition 2.3.9.ISpR Superposition Right, De�nition 2.3.9.IOF Ordered Fatoring, De�nition 2.3.10.ISF (Standard) Fatoring, De�nition 2.3.10.IEqF Equality Fatoring, De�nition 2.3.11.

2.6. POINTERS INTO THE SPASS SOURCE CODE 39IMPm Merging Paramodulation, De�nition 2.3.12.IORe Ordered Resolution, De�nition 2.3.13.ISRe (Standard) Resolution, De�nition 2.3.13.IOHy Ordered Hyper Resolution, De�nition 2.3.14.ISHy (Standard) Hyper Resolution, De�nition 2.3.14.Splits Splitting, De�nition 2.3.25. The option determines the number of split-ting appliations where any negative number means that splitting is notrestrited.2.5.3 Redution RulesRSSi Sort Simpli�ation, De�nition 2.3.5.RSST Stati Soft Typing, De�nition 2.3.6.RObv Trivial Literal Elimination, De�nition 2.3.15.RFSub Forward Subsumption Deletion, De�nition 2.3.16, Table 2.5.RBSub Bakward Subsumption Deletion, De�nition 2.3.16, Table 2.6.RCon Condensation, De�nition 2.3.17.RTaut Tautology Deletion, De�nition 2.3.18. If the option is set to 1 onlysyntati tautologies are eliminated. If it is set to2, semanti tautologiesare deleted as well.RUnC Unit Con�it, De�nition 2.3.19.RTer Terminator, De�nition 2.3.19, where the value of the option determinesthe number of non-unit lause ourrenes in the searhed refutation.RFMMR Forward Mathing Replaement Resolution, De�nition 2.3.20, Ta-ble 2.5.RBMMR Bakward Mathing Replaement Resolution, De�nition 2.3.20, Ta-ble 2.6.RFRew Forward Rewriting, De�nition 2.3.21 and De�nition 2.3.22, Table 2.5.RBRew Bakward Rewriting, De�nition 2.3.21, Table 2.6.RAED Assignment Equation Deletion, De�nition 2.3.24. If set to 2, it is as-sumed that any model has a non-trivial domain and the orrespondingeliminations are performed.2.6 Pointers into the SPASS Soure CodeThe below tabular relates algorithms presented in this hapter to the atual soure ode. It is meant toprovide a starting point to explore further details or to adapt the ode to personal desires. For every topi,we point to the SPASS soure �le and the name of the orresponding funtion.Main-Loop, Table 2.7 �! top.�! top_ProofSearhfred , Table 2.5 �! rules-red.�! red_CompleteRedutionOnDerivedClauseired , Table 2.6 �! rules-red.�! red_CompleteRedutionOnDerivedClausesinf , Table 2.7 �! rules-inf.�! inf_DerivableClauses2.7 Links to Saturation Based ProversBliksem by Hans de Nivellehttp://www.mpi-sb.mpg.de/�nivelle/

40 CHAPTER 2. SPASSDisount by Jörg Denzingerhttp://agent.informatik.uni-kl.de/denzinge/denzinger.htmlE by Stephan Shulz [44℄http://wwwjessen.informatik.tu-muenhen.de/personen/shulz.htmlFiesta by Robert Nieuwenhuis, Pilar Nivela and Guillem Godoyhttp://www.lsi.up.es/�roberto/Gandalf by Tanel Tammethttp://www.s.halmers.se/�tammet/gandalf/Otter by William MCune [32℄http://www-unix.ms.anl.gov/AR/otter/Saturate by Harald Ganzinger, Robert Nieuwenhuis and Pilar Nivela [36℄http://www.mpi-sb.mpg.de/SATURATE/SPASS by Christoph Weidenbah, Bijan Afshordel, Enno Keen, Chris-tian Theobalt, Dalinor Topí [54℄http://spass.mpi-sb.mpg.de/Vampire by Alexandre Riazanov and Andrei Voronkov [40℄http://www.s.man.a.uk/fmethods/vampire/Waldmeister by Arnim Buh, Thomas Hillenbrand, Roland Vogt, BerndLöhner and Andreas Jaeger [25℄http://agent.informatik.uni-kl.de/waldmeister/AknowledgmentsKnowledge about the design of automated theorem provers is mostly distributed by disussions among theauthors of suh systems. I want to thank Bill MCune the author of Otter that is the father system of alltoday's �modern� automated saturation based theorem provers. We learned a lot about the implementationof theorem provers by inspeting Otter. My olleagues Arnim Buh, Thomas Hillenbrand, Bernd Löhner,authors of Waldmeister, Jörg Denzinger, author of Disount, Hans de Nivelle, author of Bliksem, TanelTammet, author of Gandalf, Stephan Shulz, author of E, Harald Ganzinger, author of Saturate, AndreiVoronkov, o-author of Vampire, Robert Nieuwenhuis, author of Fiesta (and Saturate) ontributed a lot tothis hapter.As mentioned in the introdution the development of a ompetative theorem prover is a hallengingsoftware projet, exempli�ed in the following for the SPASS theorem prover: Although there existed somepreliminary versions of SPASS before 1994, the �rst version alled SPASS was started in that year and was�nished in 1995 by BerndGaede in the ontext of his diploma thesis. This version already relied on a libraryof data strutures we alled EARL.10 The library already ontained indexing support and was developed byPeter Graf and ChristophMeyer and myself. Clause normal form translation was added to SPASS by GeorgRok as a diploma projet. Further development of SPASS took plae in paid student projets that typiallylasted for several months eah. Christian Cohrs introdued splitting to SPASS, Enno Keen was responsiblefor inferene rules and parsing support, Thorsten Engel wrote our proof heker, Dalibor Topi signi�antlyimproved our memory management module and ontributed to the implementation of redution rules andChristian Theobalt wrote a whole bunh of doumentation support sripts and mastered the hallenge toport SPASS to the Windows world. As a prerequisite he developed a neat graphial user interfae. BijanAfshordel ontributed to redutions on the formula level and programmed the atom de�nition module,Uwe Brahm was indispensable for putting SPASS on the Web and Christof Brinker added the most reentdevelopment, the detetion and deletion of non-syntati tautologies. Thanks to all of them.Finally, I'm indebted to Thomas Hillenbrand, Enno Keen, Andreas Nonnengart and Andrei Voronkovfor many omments on this hapter that lead to signi�ant improvements.
10Ef�ient Automated Reasoning Library

Bibliography[1℄ Grigorios Antoniou and Hans Jürgen Ohlbah. Terminator. In Alan Bundy, editor, Proeedings of 8thInternational Joint Conferene on Arti�ial Intelligene, IJCAI-83, pages 916�919, 1983.[2℄ Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.[3℄ Leo Bahmair and Harald Ganzinger. Rewrite-based equational theorem proving with seletion andsimpli�ation. Journal of Logi and Computation, 4(3):217�247, 1994. Revised version of Max-Plank-Institut für Informatik tehnial report, MPI-I-91-208, 1991.[4℄ Leo Bahmair and Harald Ganzinger. Resolution theorem proving. In Alan Robinson and AndreiVoronkov, editors, Handbook of Automated Reasoning, volume I, hapter 2, pages 19�99. Elsevier,2001.[5℄ Leo Bahmair, Harald Ganzinger, and Uwe Waldmann. Superposition with simpli�ation as a dei-sion proedure for the monadi lass with equality. In Georg Gottlob, Alexander Leitsh, and DanieleMundii, editors, Computational Logi and Proof Theory, Third Kurt Gödel Colloquium, volume 713of LNCS, pages 83�96. Springer, August 1993.[6℄ Dan Benanav. Simultaneous paramodulation. In M. E. Stikel, editor, Proeedings of the 10th In-ternational Conferene on Automated Dedution, volume 449 of LNAI, pages 442�455. Springer,1990.[7℄ Chin-Liang Chang and Rihard Char-Tung Lee. Symboli Logi and Mehanial Theorem Proving.Computer Siene and Applied Mathematis. Aademi Press, 1973.[8℄ Witold Charatonik, David MAllester, Damian Niwinski, Andreas Podelski, and Igor Walukiewiz.The horn mu-alulus. In Proeedings 13th IEEE Symposium on Logi in Computer Siene,LICS'98, pages 58�69. IEEE Computer Soiety Press, 1998.[9℄ Marello D'Agostino. Are tableaux an improvement on truth-tables? Journal of Logi, Languageand Information, 1:235�252, 1992.[10℄ Martin Davis and Hilary Putnam. A omputing proedure for quanti�ation theory. Journal of theACM, 7:201�215, 1960.[11℄ Nahum Dershowitz. Orderings for term-rewriting systems. Theoretial Computer Siene, 17:279�301, 1982.[12℄ Nahum Dershowitz. Termination of rewriting. Journal of Symboli Computation, 3(1):69�115, July1987.[13℄ William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing the satis�ability of propo-sitional horn formulae. Journal of Logi Programming, 1(3):267�284, 1984.[14℄ Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the ommon subexpressionproblem. Journal of the ACM, 27(4):758�771, 1980.41

42 BIBLIOGRAPHY[15℄ Norbert Eisinger. Completeness, Con�uene, and Related Properties of Clause Graph Resolution.Researh Notes in Arti�ial Intelligene. Pitman Ltd., London, 1991.[16℄ Bernd Fisher, Johann Shumann, and Gregor Snelting. Dedution-based software omponent re-trieval. In Wolfgang Bibel and Peter H. Shmitt, editors, Automated Dedution - A Basis for Applia-tions, volume 3 of Applied Logi, hapter 11, pages 265�292. Kluwer, 1998.[17℄ Thom Frühwirth, Ehud Shapiro, Moshe Y. Vardi, and Eyal Yardeni. Logi programs as types for logiprograms. In Albert R. Meyer, editor, Proeedings of the 6th Annual IEEE Symposium on Logi inComputer Siene, LICS'91, pages 300�309. IEEE Computer Soiety Press, July 1991.[18℄ Harald Ganzinger, Christoph Meyer, and Christoph Weidenbah. Soft typing for ordered resolution.In Proeedings of the 14th International Conferene on Automated Dedution, CADE-14, volume1249 of LNAI, pages 321�335, Townsville, Australia, 1997. Springer.[19℄ Mihael R. Garey and David S. Johnson. Computers and intratability : A guide to the theory ofNP-ompleteness. Mathematial Sienes Series. Freeman, New York, 1979.[20℄ Georg Gottlob and Christian G. Fermüller. Removing redundany from a lause. Arti�ial Intelli-gene, 61:263�289, 1993.[21℄ Georg Gottlob and Alexander Leitsh. On the ef�ieny of subsumption algorithms. Journal of theACM, 32(2):280�295, 1985.[22℄ Peter Graf. Term Indexing, volume 1053 of LNAI. Springer, 1996.[23℄ Reiner Hähnle, Manfred Kerber, and Christoph Weidenbah. Common syntax of the dfg-shwerpunktprogramm �deduktion�. Interner Beriht 10/96, Universität Karlsruhe, Fakultät für In-formatik, Germany, 1996. Current version available from http://spass.mpi-sb.mpg.de/.[24℄ Nevin Heintze and Edmund Clarke, editors. Workshop on Formal Methods and Seurity Protools,Trento, Italy, July 1999. Self Publishing.[25℄ Thomas Hillenbrand, Andreas Jaeger, and Bernd Löhner. Waldmeister � improvements in perfor-mane and ease of use. In Harald Ganzinger, editor, 16th International Conferene on AutomatedDedution, CADE-16, LNAI, pages 232�236. Springer, 1999.[26℄ Ullrih Hustadt and Renate A. Shmidt. On evaluating deision proedures for modal logis. InProeedings of 15th International Joint Conferene on Arti�ial Intelligene, IJCAI-97, pages 202�207, 1997.[27℄ Florent Jaquemard, Christoph Meyer, and Christoph Weidenbah. Uni�ation in extensions of shal-low equational theories. In Tobias Nipkow, editor, Rewriting Tehniques and Appliations, 9th Inter-national Conferene, RTA-98, volume 1379 of LNCS, pages 76�90. Springer, 1998.[28℄ William H. Joyner Jr. Resolution strategies as deision proedures. Journal of the ACM, 23(3):398�417, July 1976.[29℄ Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logi and stohastisearh. In Proeedings of the 13th National Conferene on AI, AAAI'96, volume 2, pages 1194�1201.AAAI Press / MIT Press, 1996.[30℄ Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In I. Leeh,editor, Computational Problems in Abstrat Algebra, pages 263�297. Pergamon Press, 1970.[31℄ William MCune and Larry Wos. Experiments in automated dedution with ondensed detahment.In 11th International Conferene on Automated Dedution, CADE-11, volume 607 of LNCS, pages209�223. Springer, 1992.[32℄ William MCune and Larry Wos. Otter. Journal of Automated Reasoning, 18(2):211�220, 1997.

BIBLIOGRAPHY 43[33℄ Christoph Meyer. Soft Typing for Clausal Inferene Systems. Dissertation, Tehnishe Fakultät derUniversität des Saarlandes, Saarbrüken, Germany, 1999.[34℄ Robert Nieuwenhuis. Basi paramodulation and deidable theories (extended abstrat). In Proeed-ings 11th IEEE Symposium on Logi in Computer Siene, LICS'96, pages 473�482. IEEE ComputerSoiety Press, 1996.[35℄ Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Alan Robinsonand Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, hapter 7, pages 371�443. Elsevier, 2001.[36℄ Pilar Nivela and Robert Nieuwenhuis. Saturation of �rst-order (onstrained) lauses with the Saturatesystem. In Claude Kirhner, editor, Rewriting Tehniques and Appliations, 5th International Confer-ene, RTA-93, volume 690 of Leture Notes in Computer Siene, LNCS, pages 436�440, Montreal,Canada, June 16�18, 1993. Springer.[37℄ Andreas Nonnengart, Georg Rok, and Christoph Weidenbah. On generating small lause normalforms. In Claude Kirhner andHèléne Kirhner, editors, 15th International Conferene on AutomatedDedution, CADE-15, volume 1421 of LNAI, pages 397�411. Springer, 1998.[38℄ Andreas Nonnengart and Christoph Weidenbah. Computing small lause normal forms. In AlanRobinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1, hapter 6,pages 335�367. Elsevier, 2001.[39℄ Gerald E. Peterson. A tehnique for establishing ompleteness results in theorem proving with equal-ity. SIAM Journal of Computation, 12(1):82�100, February 1983.[40℄ Alexandre Riazanov and Andrei Voronkov. Vampire. In Harald Ganzinger, editor, 16th InternationalConferene on Automated Dedution, CADE-16, volume 1632 of LNAI, pages 292�296. Springer,1999.[41℄ G. Robinson and L. Wos. Paramodulation and theorem-proving in �rst-order theories with equality.In B. Meltzer and D. Mihie, editors,Mahine Intelligene 4, pages 135�150, 1969.[42℄ John Alan Robinson. A mahine-oriented logi based on the resolution priniple. Journal of theACM, 12(1):23�41, January 1965.[43℄ Manfred Shmidt-Shauß. Impliation of lauses is undeidable. Theoretial Computer Siene,59:287�296, 1988.[44℄ Stephan Shulz. System abstrat: E 0.3. In Harald Ganzinger, editor, 16th International Confereneon Automated Dedution, CADE-16, volume 1632 of LNAI, pages 297�301. Springer, 1999.[45℄ Wayne Snyder. On the omplexity of reursive path orderings. Information Proessing Letters,46:257�262, 1993.[46℄ Rolf Soher. A subsumption algorithm based on harateristi matries. In E. Lusk and R. Overbeek,editors, 9th International Conferene on Automated Dedution, CADE-9, volume 310 of LNCS, pages573�581. Springer, 1988.[47℄ Rona B. Stillman. The onept of weak substitution in theorem-proving. Journal of the ACM,20(4):648�667, 1973.[48℄ Geoff Sutliffe and Christian B. Suttner. The tptp problem library � nf release v1.2.1. Journal ofAutomated Reasoning, 21(2):177�203, 1998.[49℄ Geoff Sutliffe and Christian B. Suttner. The ade-15 atp system ompetition. Journal of AutomatedReasoning, 23(1):1�23, 1999.

44 BIBLIOGRAPHY[50℄ Tanel Tammet. Towards ef�ient subsumption. In Claude Kirhner and Hèléne Kirhner, editors, 15thInternational Conferene on Automated Dedution, CADE-15, volume 1421 of LNAI, pages 427�441.Springer, 1998.[51℄ Christoph Weidenbah. Computational Aspets of a First-Order Logi with Sorts. Dissertation,Tehnishe Fakultät der Universität des Saarlandes, Saarbrüken, Germany, 1996.[52℄ ChristophWeidenbah. Sorted uni�ation and tree automata. InWolfgang Bibel and Peter H. Shmitt,editors, Automated Dedution - A Basis for Appliations, volume 1 of Applied Logi, hapter 9, pages291�320. Kluwer, 1998.[53℄ Christoph Weidenbah. Towards an automati analysis of seurity protools in �rst-order logi. InHarald Ganzinger, editor, 16th International Conferene on Automated Dedution, CADE-16, volume1632 of LNAI, pages 378�382. Springer, 1999.[54℄ Christoph Weidenbah, Bijan Afshordel, Uwe Brahm, Christian Cohrs, Thorsten Engel, Enno Keen,Christian Theobalt, and Dalibor Topi. System desription: Spass version 1.0.0. In Harald Ganzinger,editor, 16th International Conferene on Automated Dedution, CADE-16, volume 1632 of LNAI,pages 314�318. Springer, 1999.[55℄ L. Wos, G.A. Robinson, and D.F. Carson. Ef�ieny and ompleteness of the set of support strategyin theorem proving. Journal of the ACM, 12(4):536�541, 1965.

Chapter 3dfg2dfg3.1 IntrodutionThe tool dfg2dfg allows the user to alulate some approximation of a lause set. It is named dfg2dfgbeause it �rst reads lauses from an input �le in DFG syntax [1℄. It then alulates some approximationof the lause set depending on ommand line options. Finally it writes the approximated lause set in DFGsyntax to a �le.3.2 Synopsisdfg2dfg [-horn℄ [-monadi℄ [-linear℄ [-shallow℄ infile [outfile℄If neither infile nor outfile are given, dfg2dfg reads from standard input and writes to standard output. Ifone �le name is given, it reads from that �le and writes the output to standard output. If more than one �le name isgiven, dfg2dfg reads from the �rst �le and writes to the seond.The following setions desribe the effets of the ommand line options. We are using a notation similar to thenotation of redution rules [2℄: � k �! �	1 k �1 ! �1...	n k �n ! �nSuh a rule is applied to a lause set P by seleting a lause � k � ! � from P and replaing it by the lauses	i k �i ! �i. A transformation is alulated by reursively applying the orresponding rule. The alulation stopswhen the rule isn't appliable to any lause from the lause set.3.3 Transforming a lause to a Horn lauseThis transformation is enabled with the -horn ommand line option. The rule is� k �! E1; : : : ; En� k �! E1...� k �! Enwhere n � 2 and E1; : : : ; En are equality or non-equality literals.3.4 Transformation to monadi literalsThe following two transformations are enabled with the -monadi ommand line option. They transform non-monadi non-equality literals into monadi literals. Note that equality literals are not transformed.45

46 CHAPTER 3. DFG2DFG3.4.1 Transformation by term enodingThis transformation is enabled with the option -monadi, whih is equivalent to -monadi=1. It is desribed bythe rule � k �! P (t1; : : : ; tn); �� k �! T (p(t1; : : : ; tn)); �where p is a new funtion orresponding to the prediate P and T is a speial prediate. All ourrenes of P in thelause set are transformed into the same funtion p. Constraint and anteedent literals are transformed in a similar way.This approximation is equivalene preserving.3.4.2 Transformation by projetionThis transformation is enabled with the option -monadi=2. It is desribed by the two rules� k P (t1; : : : ; tn); �! �� k P1(t1); : : : ; Pn(tn); �! � � k �! P (t1; : : : ; tn); �� k �! P1(t1); �...� k �! Pn(tn); �where P1; : : : ; Pn are some new prediates. All ourrenes of P in the lause set are transformed into the sameprediates P1; : : : ; Pn. Constraint literals are transformed similar to anteedent literals.3.5 The linear approximation of a lauseA term is alled linear, if it ontains no repeated variables. This transformation generates the linear approximation ofa lause with monadi literals by replaing a variable x repeated within the suedent by some new variable x0. Notethat the transformation isn't appliable to lauses ontaining equality or non-monadi literals. This transformation isenabled with the -linear option. It is desribed by the rule� k �! A[x℄p; B[x℄q; ��0�; � k �0�; �! A; B[q=x0℄; �where (i) all literals are monadi, (ii) A 6= B or p 6= q, (iii) x0 is a new variable, (iv) � = fx ! x0g, (v) �0 = fL 2� j x 2 vars(L)g and (vi) �0 = fL 2 � j x 2 vars(L)g.3.6 The shallow approximation of a lauseWe implemented three kinds of transformations with different requirements for the input lause and different outputlauses. The transformations are enabled with the -shallow option. Note that the rules aren't appliable to non-hornlauses.3.6.1 The strit versionThis transformation is enabled with the -shallow option, whih is equivalent to -shallow=1. It is desribed bythe rule � k �! P (t[s℄p1)S(x); �1 k �1 ! P (t[p1; : : : ; pn=x℄)�2 k �2 ! S(s)where (i) all literals are monadi and all terms in �, � are variables, (ii) s is a omplex term at non-top position p in t,(iii) vars(s)\ vars(P (t[p1; : : : ; pn=℄)) = ;, where is an arbitrary onstant and p1; : : : ; pn are all positions of s in t,(iv) x is a new variable and S is a new prediate, (v) �1 and �2 are a partition of �, with �2 = fL 2 � j vars(L) �vars(s)g and (vi) �1 and �2 are a partition of �, with �2 = fL 2 � j vars(L) � vars(s)g. Note that all ourrenesof s in t are replaed simultaneously. This transformation is equivalene preserving with respet to the extension of Pin the minimal model.3.6.2 A more relaxed versionThis version uses the same rule as the strit version, but ondition (iii) is omitted. This results in an upper approximationof P . This transformation is enabled with the -shallow=2 option.

3.7. COMBINING SEVERAL TRANSFORMATIONS 473.6.3 The least restrited versionThis transformation is enabled with the -shallow=3 option. It uses the rule� k �! P (t[s℄p1)S(x); � k �! P (t[p1; : : : ; pn=x℄)� k �! S(s)where (i) all literals are monadi, (ii) s is a omplex term at non-top position p1 in t and p1; : : : ; pn refer to all positionsof s in t and (iii) x is a new variable and S is a new prediate. Note that � and � may ontain non-variable terms andthat s and t[p1; : : : ; pn=℄ (where is an arbitrary onstant) may share variables. In ontrast to the other two versionsall negative literals are opied into all resulting lauses. This transformation is an upper approximation of P .3.7 Combining several transformationsIt is possible to ombine several of the transformations desribed above. However, transformations from the setions3.4 or 3.6 aren't ombinable with other transformations from the same setion, beause they have the same goal. Butfor the other transformations the order of their appliation beomes important if several transformations are ombined.For example a transformation to monadi literals should be applied before the linear transformation beause the latterrequires monadi literals. If the transformations are applied in this order it might be possible to apply the seondtransformation more often. dfg2dfg therefore applies the transformations in the same order as the order of theirdesription in this paper. That means transformations are applied in the following order:1. transformation to horn lauses2. transformation to monadi literals3. linear transformation4. shallow transformation.The shallow transformation is applied last beause it has the most preonditions.

48 CHAPTER 3. DFG2DFG

Bibliography[1℄ Reiner Hähnle, Manfred Kerber, and Christoph Weidenbah. Common syntax of the dfg-shwerpunktprogramm�deduktion�. Interner Beriht 10/96, Universität Karlsruhe, Fakultät für Informatik, Germany, 1996. Currentversion available from http://spass.mpi-sb.mpg.de/.[2℄ Christoph Weidenbah. Combining superposition, sorts and splitting. In Alan Robinson and Andrei Voronkov,editors, Handbook of Automated Reasoning, volume 2, hapter 27, pages 1965�2012. Elsevier, 2001.

49

50 BIBLIOGRAPHY

Chapter 4EML Logi Features4.1 IntrodutionThis hapter desribes the features and failities for supporting automated reasoning in a large lass ofrelated logis whih we refer to as EML logis (short for extended modal logis). Support for EML logiswas implemented from 1998 onwards in the MSPASS theorem prover [11, 13, 20℄ as an extension ofSPASS 1.0. This ode has been integrated and upgraded with respet to SPASS 3.0 (and FLOTTER 3.0) sothat support for modal, relational and desription logi reasoning is now immediately available to SPASSusers (as had been planned from the outset) and the latest SPASS tehnology is immediately available toMSPASS users.EML logis inlude (traditional) propositional modal logis suh as K(m), KD(m), KT4(m) et., whihplay an important role e.g. in the spei�ation of multi-agent systems. EML logis also inlude dynamimodal logis [22℄ whih are PDL-like modal logis in whih the modal operators are parameterized byrelational formulas. These an be used to formalize dynami notions suh as ations or programs and areuseful in linguisti or AI appliations. Examples of dynami modal logis are Boolean modal logi, tenselogi, information logis, logis expressing inaessibility and suf�ieny, Peire logi, as well as a largelass of desription logis. The EML lass further inludes relational logis, i.e. logial versions of Tarski'srelation algebras. The strongest dynami modal logi that the prover supports is Peire logi [22, 23℄ orequivalent logis. SPASS handles these logis by translation to �rst-order logi.With the EML failities SPASS supports the following kind of reasoning for EML logis.1. For dynami modal logis and relational logis: non-logial axioms, modal operators harater-ized by any �rst-order frame orrespondene properties, relational symbols satisfying any �rst-orderproperties, spei�ation of onrete worlds as onstants, (�rst-order) relationships between onreteworlds, spei�ations of frames and models.2. For desription logis: the orresponding features, inluding terminologial axioms, TBox and RBoxstatements, and ABox statements for onept and role expressions.Beause SPASS is a �rst-order resolution prover its apabilities as a modal, relational or desriptionlogi prover are very different and more varied than those of other provers for these logis. It is possibleto use SPASS as a deision proedure for a large lass of EML logis. For instane, it deides extensionsof Boolean modal logi with onverse, domain/range restrition, and positive ourrenes of omposition,and the orresponding desription logis, i.e. extensions ofALB with positive ourrenes of omposition.SPASS is a deision proedure for many solvable �rst-order fragments inluding the guarded fragment,Maslov's lass K, �rst-order logi in two variables, the lausal lass DL�, and many deidable quanti�erpre�x lasses. No other (speial-purpose) prover urrently deides these logis. Using the features ofSPASS it possible to approximate the behaviour of modal and desription logi tableau provers with SPASS.Additionally, SPASS an be used as a model �nder. For details and referenes please onsult the surveypapers [12, 22℄ (see also [4, 8, 21℄). 51

52 CHAPTER 4. EML LOGIC FEATURESIn the following we assume terminology and notation of dynami modal logi and Peire logi asdesribed in [22℄. We do not disuss desription logis and relational logis separately beause1. desription logis and dynami modal logis an be viewed as syntati variants of eah other, and2. dynami modal logis an be viewed as two-sorted ombinations of relational logis and proposi-tional logi and therefore ater also for relational logis.4.2 Dynami modal logisThis setion de�nes the lass of dynami modal logis [22℄ in whih Peire logi is the strongest logi andthe basi multi-modal logiK(m)is the weakest logi. Peire logi is a logial formalisation of representablePeire algebras [14, 23℄ and is losely related to de Rijke's dynami modal logi [5℄.Formally, Peire logi is the modal logi de�ned over relations whih form a relation algebra. Thelanguage of Peire logi onsists of two syntati types: dynami modal formulas and relational formulas.The logial onnetives are1. the onnetives of the modal logi K(m), with the differene that the modal operators are indexedwith relational formulas, instead of just numbers,2. the standard onnetives of relational logis, namely: ; (omposition), ` (onverse), id (identity),and3. a left ylindri�ation operator .Instead of the left ylindri�ation operator one ould have hosen the test operator of PDL, domain restri-tion, range restrition, or ross produt, f. [3℄; the symbol id is a logial onstant whih is interpreted asthe identity relation. Given ountably many propositional variables denoted by pj , and ountably many re-lational variables, denoted by ri, dynami modal formulas and relational formulas are generated aordingto the following prodution rules. � �! pj j :� j � ^ � j [�℄�Dynami modal formulas: � �! rj j :� j � ^ � j � ;� j �` j id j �Relational formulas:are de�ned indutively as follows.We de�ne the set of formulas of Peire logi to be the set of dynami modal formulas. The de�nition in[23℄ allows also relational formulas as �rst-lass itizens, but these an be expressed in terms of dynamimodal formulas (see below). This variation in the de�nition is thus inonsequential.The semantis of Peire logi is de�ned in terms of frames, where a frame is a tuple (W;R) of a non-empty setW (of worlds) and a mapping R from relational formulas to binary relations overW satisfying:R:� =W 2nR�R�^� = R� \ R�R� ;� = R� ;R�R�` = R�̀Rid = IdWR� = f(x; y) 2W 2 jx 2 v(�)g:Here and in the rest of the paper we prefer to use the notationR� instead ofR(�). IdW denotes the identityrelation on the set W , while R` denotes the onverse (or inverse) of a relation R. A model is now givenby a tripleM = (W;R; v), where (W;R) is a frame and v is a mapping from propositional variables to

4.3. OVERVIEW OF EML INPUT SPECIFICATIONS 53subsets ofW satisfying:M; x j= p iff x 2 v(p)M; x j= :� iffM; x 6j= �M; x j= � ^ iff bothM; x j= � andM; x j= M; x j= [�℄� iff (x; y) 2 R� impliesM; y j= �; for any y 2 WIfM; x j= ' holds then we say ' is true at x inM and thatM satis�es '. A modal formula' is satis�ableiff there exists a modelM and a world x inM suh thatM; x j= '. A modal formula is valid in a frameiff it is valid in all models based on the frame.We an de�ne numerous other onnetives in Peire logi. For example:� y� =def :((:�) ; (:�))Relational sum: ��� =def � ^ �Domain restrition: ��� =def (�`��)`Range restrition: �? =def id ^ �Test: [>℄� =def [r _ :r℄� where r denotes some relational variableUniversal modality:Relational formulas as `independent' formulas are impliit in all dynami modal logis with relationalnegation and relational onjuntion or disjuntion. For example, impliation between relational formulasan be de�ned by (� � �) =def > � [� ^ :�℄?:Then it is also possible to speify properties of the underlying aessibility relations. Figure 4.1 gives someproperties of the aessibility relation assoiated with r whih an be spei�ed by relational formulas inPeire logi. In the �gure the relational operators are assumed to have higher priority than �.Property of Rr Relational formula Property of Rr Relational formulare�exivity id � r transitivity r ; r � rsymmetry r � r` funtionality r` ; r � idseriality > � r ;> or > � hri> Eulideanness r ; r` � rFigure 4.1: Relational properties expressed as relational formulas.The basi multi-modal logi K(m)is the redut of Peire logi in whih relational formulas are limitedto m relational variables rj . Dynami modal logis are de�ned over the language of K(m)but inlude inaddition to the operators of K(m)and relational variables also �nitely many relational operators ?1; : : : ; ?k.We assume that these relational operators are de�nable in terms of the operators of Peire logi. A logiK(m)(?1; : : : ; ?k) is then de�ned to be the multi-modal logi de�ned over relations losed under the set-theoreti operations orresponding to the relational operators ?1; : : : ; ?k. The lass of dynami modallogis forms therefore a lattie in whih K(m)is the weakest logi and every other logi is obtained byenhaning the language with one or more relational operators ?i. Clearly some of the logis in this lattieare expressively equivalent. Peire logi is equivalent to the top element in the lattie. Tense logi oin-ides with the logi K(m)(`), Boolean modal logi oinides with K(m)(:;^), and the desription logiALB [10℄ oinides with K(m)(:;^;`; �).4.3 Overview of EML input spei�ationsThe dfg input language of SPASS was extended to support the input of EML problems without hangingthe syntax for formulas in �rst-order logi or lause form. EML problems are spei�ed with new, speialtypes of formulas using list_of_speial_formulas(axioms,EML)

54 CHAPTER 4. EML LOGIC FEATURESfor axioms and list_of_speial_formulas(onjetures,EML)for onjetures. Currently the only lass of speial formulas are EML formulas. EML formulas inlude �rst-order formulas, Boolean type formulas and relational type formulas. First-order formulas are spei�ed withformula using the familiar dfg syntax. Boolean type formulas are spei�ed with eitherprop_formula or onept_formula,and relational formulas with eitherrel_formula or role_formula.Boolean and relational type formulas an be onstruted using ommon modal, relational and desrip-tion logi operators. The pre-de�ned logial operators inlude the following.� The standard Boolean operators (for all three types of formulas): true, false, not, and, or,implies (subsumed by), implied (subsumes), and equiv. These operators have different se-mantis depending on the type of formulas they ombine.� Multi-modal operators with atomi or omplex relational arguments: dia and box (synonyms aresome and all), as well as domain and range.� Additional relational operators: omp (omposition), sum (relational sum), onv (onverse), id(the identity relation), and div (the diversity relation).� test (test), domrestr (domain restrition) and ranrestr (range restrition).Apart from their usual interpretation in propositional logi and �rst-order logi, the (nullary) operatorstrue and false may also be used as Boolean or relational formulas. true used as a Boolean type,resp. relational type, represents the universal set, the universal (binary) relation, or truth in �rst-order logi.Similarly, false represents either, the empty set, the empty relation or falsum.We give three examples of EML formulas, two Boolean type formulas and one relational type formula.prop_formula(implies(box(bel1,p), box(know1,box(bel1,p)))).(4.1) onept_formula(implies(expert_AR,(4.2) not(some(not(has_studied),proof_methods)))).rel_formula(implies(omp(r,r), r)).(4.3)(4.1) is an example from modal logi and says that if agent 1 believes p then it knows that it believes p,i.e. it is aware that it believes p. The example (4.2) is a desription logi example; it says that an expertin automated reasoning is someone who has studied every proof method. This kind of example annot behandled by urrent tableau-based desription logi provers beause it requires negation of roles. (4.3) isthe way to express transitivity of a relation in relational logi (or in desription logis).Boolean- and relational-type atomi formulas must be delared as nullary prediates in the delarationsetion of the input �le (beause the supported EML logis are propositional non-lassial logis de�nedover languages free of �rst-order variables).For EML problems it is sometimes useful to speify the �rst-order prediate symbols to whih thenullary Boolean and relational prediate symbols are mapped. This an be done with a new kind of dela-ration statement. For example, translpairs(p,Qp)auses the nullary symbol p to be translated to a �rst-order prediate symbol with the name Qp. Qp shouldbe delared as a unary (resp. binary) prediate symbol if p is a Boolean (resp. relational) symbol.The new extended dfg is suf�ient to support the following.

4.4. TRANSLATION MAPPINGS 55� For dynami modal logis and relational logis: non-logial axioms, modal operators haraterisedby any �rst-order frame orrespondene properties, relational symbols satisfying any �rst-orderproperties, spei�ation of onrete worlds as onstants, (�rst-order) relationships between onreteworlds, spei�ations of frames and models.� For desription logis: the orresponding features, inluding terminologial axioms, TBox and RBoxstatements, ABox statements for onept and role expressions,A more detailed, formal spei�ation of the input language with examples of input �les in the extendeddfg format an be found in [24℄.4.4 Translation mappingsBoolean and relational type formulas are translated into �rst-order formulas using one of numerous trans-lation methods. Table 4.1 summarizes the implemented translation methods.Translation method Optionsrelational translation -EMLTranslation=0 (default)(monadi) funtional translation -EMLTranslation=1polyadi funtional translation -EMLTranslation=1 -EMLFunNary=1(monadi) optimized funtional translation -EMLTranslation=2polyadi optimized funtional translation -EMLTranslation=2 -EMLFunNary=1semi-funtional translation -EMLTranslation=3relational-funtional translation -EMLTranslation=0 -EMLFunNary=1relational-relational translation -EML2Rel=1 [-EMLTranslation=0℄Table 4.1: Available translation methodsThe different translation methods are based on �rst-order enodings of the different ways of de�n-ing the semantis of the logis. The basis for the relational translation, or standard translation, methodis the standard set-theoreti semantis of EML logis. It is implemented for all Boolean and relationalEML formulas. The basis for the different funtional translations is the funtional semantis of traditionalmodal logis. The optimized funtional translations are obtained from the funtional translations by a non-standard quanti�er exhange operation, whih is implemented by replaing non-onstant Skolem termsby Skolem onstants. The polyadi funtional translation methods are variations of funtional translationmethods and differ in the way they enode world paths (transition sequenes). The polyadi translationsavoid the use of an extra funtion symbol by using n-ary prediates of different arities. The semi-funtionaltranslation approah is a mixture of the relational and funtional translation approahes. It translatesbox modalities in the standard relational way, while diamond modalities are translated funtionally. Therelational-funtional translation method, or tree-layered relational translation, is a variation of the rela-tional translation speialized for the basi modal logi K(m). The relational-relational translation onvertsBoolean EML formulas into the relational formulas via a ylindri�ation operation. All translation methodsare sound and omplete for the logis they are implemented for and have linear time omplexity.The transformation of non-�rst-order EML formulas into �rst-order logi an be spei�ed with the-EMLTranslation option. Unless output is disabled, the prover outputs the translated formulas usingthe indiators as spei�ed in Table 4.2.The different transformation mappings are desribed in more detail in the following setions. Therelational translation, the relational-funtional translation and the relational-relational translation are ol-letively referred to as relational translation mappings and are disussed in Setions 4.4.1, 4.4.7, and4.4.8. The monadi and polyadi, optimised and non-optimised funtional translations and the semi-funtional translation are olletively referred to as funtional translation mappings and are disussedin Setions 4.4.2�4.4.6.

56 CHAPTER 4. EML LOGIC FEATURESTranslation method Output indiatorrelational translation RelTr(monadi) funtional translation FunTrpolyadi funtional translation FunFTr(monadi) optimised funtional translation (FunTr)polyadi optimised funtional translation (FunFTr)semi-funtional translation SemiFunTrrelational-funtional translation RelFunTrrelational-relational translation RelTable 4.2: Translation output indiators4.4.1 Standard relational translation methodThe standard relation translation is enabled by -EMLTranslation=0. This is the default setting for-EMLTranslation. It is implemented for all EML formulas. It maps formulas into fragments of �rst-order logi de�ned over unary and binary symbols [12, 22℄. These are uninterpreted unless properties havebeen spei�ed in the input �le.The relational translation is determined by the usual Kripke semantis. For instane, the standardrelational translation of Peire logi into �rst-order logi is spei�ed by the following.For dynami modal formulas: �r(p; x) = Qp(x)�r(:�; x) = :�r(�; x)�r(� ^ ; x) = �r(�; x) ^ �r(; x)�r([�℄�; x) = 8y (�r(�; x; y) � �r(�; y))For relational formulas: �r(r; x; y) = Qr(x; y)�r(:�; x; y) = :�r(�; x; y)�r(� ^ �; x; y) = �r(�; x; y) ^ �r(�; x; y)�r(�`; x; y) = �r(�; y; x)�r(� ;�; x; y) = 9z (�r(�; x; z) ^ �r(�; z; y))�r(�; x; y) = �r(�; x)�r(id; x; y) = x � yQp, respetively Qr, denote a unary, respetively binary, prediate symbol uniquely assoiated with thepropositional symbol p, respetively the relational symbol r.Let L be a logi in the lattie of dynami modal logis and let � be a (possibly empty) set of �rst-orderrelational frame properties. Then we have that, for any formula ',1. �r('; x) an be omputed in linear time, and2. ' is satis�able in L with respet to � iff � ^ 9x�r('; x) is �rst-order satis�able [22℄.4.4.2 (Monadi) Funtional translation methodThe (monadi) funtional translation method is enabled by -EMLTranslation=1. It is implemented forthe basi multi-modal logi K(m)possibly with serial (total) modalities (-EMLTheory=1), plus frames(atom strutures) and models, and non-logial axioms. The orresponding deription logis are ALCwith onept ABox statements (onept and role assertions) and TBox statements (general inlusion andequivalene axioms), and total roles.

4.4. TRANSLATION MAPPINGS 57The funtional translation transforms modal formulas into a fragment of monadi many-sorted �rst-order logi. The sorts are: SW for the set of worldsW , Si for eah modality2i in the logi. For eah i thereis a binary, left-assoiative funtion [�; �℄i of sort SW � Si ! W . There are speial unary prediates ndeiof sort SW representing subsets of W . Eah propositional variable p is uniquely assoiated with a unaryprediate symbols Qp of sort SW . The (monadi) optimised funtional translation �f is de�ned by:�f (p; s) = Qp(s)�f (:'; s) = :�f ('; s)�f (' ^ ; s) = �of ('; s) ^ �f (; s)�f (2i'; s) = 8y:Si(ndei(s) � �f ('; [s y:Si℄i))If 2i is a D modality then �f is given by the following.�f (2i'; s) = 8y:Si�f ('; [s y:Si℄i)The symbol s denotes a path and y:Si denotes a variable of sort Si. The intuition of the term [s y:Si℄i isthat it represents an i-suessor world whih is reahed via the path s to its predeessor world followed bya y transition of type Si. This means [s y:Si℄i represents both a world and the path via whih it is reahedfrom the initial world. The intuition of ndei(s) is that the world represented by s is not a dead-end.The following holds: A modal formula ' is satis�able in K(m) or KD(m) iff 9x�of ('; x:SW) is �rst-order satis�able [2, 6, 16, 19℄.In the prover the [�; �℄i funtion is implemented by the appl funtion and the ndei prediates areimplemented as uninterpreted speial unary nde prediates. There is urrently no support for spei�yingadditional properties for the nde prediates. Similarly for the other funtional translations.4.4.3 Polyadi funtional translation methodThe polyadi funtional translation method is enabled by -EMLTranslation=1 -EMLFunNary=1.The polyadi funtional translation methods are variations of funtional translation methods. Instead ofusing the [�; �℄i (or appl) funtions, and unary prediates, to enode truth in world paths, k-ary predi-ates are used. The polyadi funtional translation method is implemented for the basi multi-modal logiK(m)possibly with D modalities.The k-ary prediate symbols are Qp;� and ndei;� where p denotes a propositional symbol, and � is asequene of length k of natural numbers. We use x to denote a sequene of variables x1; : : : ; xk , and wedenote by `�' and `:' the empty sequene and the onatenation operation on sequenes, respetively. Thenthe polyadi funtional translation �0f is given by the following.�0f (p; x; k; �) = (Qp;� if � = � and k = 0Qp;�(x1; : : : ; xk) otherwise�0f (:'; x; k; �) = :�0f ('; x; k; �)�0f (' ^ ; x; k; �) = �0f ('; x; k; �) ^ �0f (; x; k; �)�0f (2i'; x; k; �) = 8xn+1 (ndei;�(x) � �0f ('; x:xk+1; k+1; �:i))In KD(m) the translation of 2i formulas is given by the following,�0f (2i'; x; k; �) = 8xn+1 �0f ('; x:xk+1; k+1; �:i)In this de�nition the variable sequene in the argument position two of �0f represents the world, and itspath from the initial world, where the formula in argument position one is true. The translation of a modalformula ' is given by �0f ('; �; 0; �).For any multi-modal logiLwithK-modalities andD-modalities only, a modal formula' is satis�ablein L iff �0f ('; �; 0; �) is �rst-order satis�able [7℄. �0f embeds modal formulas into �uted logi [12, 18℄.

58 CHAPTER 4. EML LOGIC FEATURES4.4.4 (Monadi) Optimised funtional translation methodThe (monadi) optimised funtional translation method is enabled by -EMLTranslation=2. It is im-plemented for K(m), possibly with serial modalities.It is an optimisation of the funtional translation. A ruial differene is that it eliminates the depen-deny of existentially quanti�ed �rst-order variables on universally quanti�ed �rst-order variables via anon-standard quanti�er exhange operator.The (monadi) optimised funtional translationmaps the basi modal logiK(m) to basi path logi [18℄.Basi path logi is a fragment of monadi many-sorted �rst-order logi. Basi path logi has a sort SWfor the set of worlds W and a sort Si for eah modality 2i in the logi. For eah i there is a binary,left-assoiative funtion [�; �℄i of sort SW � Si ! W . There are speial unary prediates ndei of sort SWrepresenting subsets of W . Eah propositional variable p is uniquely assoiated with a unary prediatesymbols Qp of sort SW . The (monadi) optimised funtional translation �of is implemented as a two stepproess:1. The appliation of the funtional translation to a modal formula whih translates it to basi pathlogi, followed by2. the appliation of a quanti�er exhange operation whih onverts the �rst-order formula obtainedfrom the funtional translation into prenex normal form andmoves all existential quanti�ers outwardsas far as possible (or inwards, depending on one's point of view).The following de�nes the optimised funtional translation obtained as a result of both steps.�of (p; s) = Qp(s)�of (:'; s) = :�of ('; s)�of (' ^ ; s) = �of ('; s) ^ �f (; s)�of (2i'; s) = 8y:Si(ndei(s) � �of ('; [s y:Si℄i))�of (3i'; s) = ndei(s) ^ �of ('; [s y:Si℄i)The symbol s denotes a path and y:Si denotes a variable of sort Si. The intuition of the term [s y:Si℄i isthat it represents an i-suessor world whih is reahed via the path s to its predeessor world followed bya y transition of type Si. This means [s y:Si℄i represents both a world and the path via whih it is reahedfrom the initial world. The inlusion of a spei�ation for diamond formulas in the above de�nition isintentional and so is the omission of the quanti�ers. The optimised funtional translation of a modalformula ' is given by �of ('; x:SW), where x:SW is an arbitrary variable of sort SW , and x:SW as well asthe y:Si from �of (3i'; s), are free variables whih are impliitly existentially quanti�ed.In KD(m) the translation of 2i and3i formulas is given by:�of (2i'; s) = 8y:Si�of ('; [s y:Si℄i)�of (3i'; s) = �of ('; [s y:Si℄i):The following holds: A modal formula ' is satis�able in K(m) or KD(m) iff 9xy �of ('; x:SW) is�rst-order satis�able [17, 18℄.4.4.5 Polyadi optimised funtional translation methodThe setting -EMLTranslation=2 -EMLFunNary=1 uses the optimised version of the polyadifuntional translation.

4.4. TRANSLATION MAPPINGS 59The following spei�es the polyadi optimised funtional translation �0of .�0of (p; x; k; �) = (Qp;� if � = � and k = 0Qp;�(x1; : : : ; xk) otherwise�0of (:'; x; k; �) = :�0of ('; x; k; �)�0of (' ^ ; x; k; �) = �0of ('; x; k; �) ^ �0of (; x; k; �)�0of (2i'; x; k; �) = 8xn+1 (ndei;�(x) � �0of ('; x:xk+1; k+1; �:i))�0of (3i'; x; k; �) = ndei;�(x) ^ �0of ('; x:xk+1; k+1; �:i)In KD(m) the translation of 2i and3i formulas is given by:�0of (2i'; x; k; �) = 8xn+1 �0of ('; x:xk+1; k+1; �:i)�0of (3i'; x; k; �) = �0of ('; x:xk+1; k+1; �:i):The translation of a modal formula ' is given by �0of ('; �; 0; �).For any multi-modal logiLwithK-modalities andD-modalities only, a modal formula' is satis�ablein L iff 9x�0of ('; �; 0; �) is �rst-order satis�able [9, 17℄. �0of embeds modal formulas into the Bernays-Shön�nkel lass, the lass of 9�8� pre�x quanti�er formulas [9℄.4.4.6 Semi-funtional translation methodThe semi-funtional translation method is enabled by -EMLTranslation=3. It is de�ned for numer-ous traditional-style modal logis [15℄, but is implemented only for the basi multi-modal logi K(m)andKD(m) (-EMLTheory=1), plus frames (atom strutures) and models, and non-logial axioms. The orre-sponding deription logis areALC with onept ABox statements (onept and role assertions) and TBoxstatements (general inlusion and equivalene axioms), and total roles.The semi-funtional translation maps modal formulas to many-sorted �rst-order formulas. We distin-guish between the sortsW and AF for worlds and aessibility funtions. Unary prediate symbols havesortW , the binary prediate symbol R assoiated with the aessibility relation has sortW �W , the on-stant symbol � has sort W , and the binary (left-assoiative) funtion [�; �℄ has sort W � AF ! W . Thenthe semi-funtional translation �sf is de�ned as follows.�sf (p; s) = Qp(s)�sf (: ; s) = :�sf (; s)�sf (� ^ ; s) = �sf (�; s) ^ �sf (; s)�sf (2 ; s) = 8y(R(s; y) � �sf (; y))�sf (3 ; s) = nde(s) ^ 9��sf (; [s�℄)[15℄ proves the following: A modal formula ' in negation normal form is satis�able in K(m)iff �sf ('; �)is satis�able. And, a modal formula ' in negation normal form is satis�able in KD(m) iff �sf ('; �) ^8x8�(nde(x) ^ R(x; [x�℄)) is satis�able.4.4.7 Relational-funtional translation methodThe settings -EMLTranslation=0 -EMLFunNary=1 enable the relational-funtional translationmethod. This translation is implemented for multi-modal K(m).The relational-funtional translation method was introdued as the tree-layered relational translationmethod in [1℄. It is a variation of the relational translation speialised for the basi modal logi K(m)butthere is also a lose onnetion to the (optimised) funtional translation [22℄.

60 CHAPTER 4. EML LOGIC FEATURESThe relational-funtional translation �rf is spei�ed by the following.�rf (p; x; �) = Qp;�(x)�rf (:'; x; �) = :�rf ('; x; �)�rf (' ^ ; x; �) = �rf ('; x; �) ^ �rf (; x; �)�rf (2i'; x; �) = 8y (R�;i(x; y) � �rf ('; y; �:i))� denotes a sequene of natural numbers of length k, � denotes the empty sequene, and `:' is the onate-nation operation on sequenes.We have that a modal formula ' is satis�able in K(m) iff �rf ('; x; �) is �rst-order satis�able [1℄.4.4.8 Relational-relational translation methodIf the option -EML2Rel=1 is used, dynami modal formulas are embedded into the relational alulus.The option is disabled by default. It an be ombined only with the relational translation to �rst-orderlogi, option -EMLTranslation=0, whih is the default. The translation is spei�ed by the followingand the obvious extension to all other operators of the language.For dynami modal formulas: �rr(p) = p ;>�rr(:�) = :�rr(�)�rr(� ^) = �rr(�) ^ �rr()�rr([�℄�) = :(�rr(�) ;:�rr(�))�rr(h�i�) = �rr(�) ; �rr(�)For relational formulas with relational operators �rr is a homomorphism, and:�rr(�?) = �rr(�) ^ id�rr(���) = �rr(�) ^ �rr(�)�rr(���) = �rr(�) ^ �rr(�)`The de�nition amounts to a redution of Boolean type formulas via a ylindri�ation operation (whihmaps Boolean type formulas to right-ideal relations). There are other ways of embedding dynami modallogi into the relational alulus, f. [3℄.4.5 Bakground theoriesThe -EMLTheory option an be used to add ertain relational properties to the bakground theory, andan in partiular be used to add the frame orrespondene properties for all modalities.1. -EMLTheory=1 for D = 2ip � 3ip.When the relational translation is used, it adds the seriality ondition for every non-equality binaryprediate symbol. For the funtional, optimised funtional and semi-funtional translation methods,it simpli�es the translation of 2 and3 subformulas.2. -EMLTheory=2 for T = 2ip � p.When the relational translation is used, it adds the re�exivity ondition for every non-equality binaryprediate symbol. Not implemented for any of the funtional translations.3. -EMLTheory=3 for B = 3i2ip � p.When the relational translation is used, it adds the symmetry ondition for every non-equality binaryprediate symbol. Not implemented for any of the funtional translations.4. -EMLTheory=4 for 4 = 2ip � 2i2ip.When the relational translation is used, it adds the transitivity ondition for every non-equality binaryprediate symbol. Not implemented for any of the funtional translations.

4.6. ADDITIONAL OPTIONS 615. -EMLTheory=5 for 5 = 3i2ip � 2ip.When the relational translation is used, it adds the Eulideanness ondition for every non-equalitybinary prediate symbol. Not implemented for any of the funtional translations.6. -EMLTheory=6 for S4 axioms, i.e. T and 4.When the relational translation is used, it adds re�exivity and transitivity for every non-equalitybinary prediate symbol. Not implemented for any of the funtional translations.7. -EMLTheory=7 for S5 axioms, in partiular, T, B and 4.When the relational translation is used, it adds re�exivity, transitivity and symmetry for every non-equality binary prediate symbol. Not implemented for any of the funtional translations.4.6 Additional optionsThere are various additional EML options.4.6.1 Path representationsThe main purpose of the option -EMLFunNary is to vary the way paths are enodedwhen the funtionaltranslations are used. With -EMLFunNary=1 enabled the polyadi versions of the funtional transla-tions is used. The option an be ombined with the funtional translation and the optimised funtionaltranslation, but also the relational translation, see Setions 4.4.3, 4.4.5 and 4.4.7 above. This option isswithed off by default.4.6.2 Dead-end prediatesWhen a funtional translation is used, the option -EMLFunNdeQ=1 plaes the ndei literals outside thesope of the quanti�ers. For example, for the funtional translation2i formulas are translated aording to�f (2i'; s) = ndei(s) � 8y:Si �f ('; [s y:Si℄i)rather than �f (2i'; s) = 8y:Si(ndei(s) � �f ('; [s y:Si℄i)):The pattern used is `ndei literal followed by quanti�er' rather than `quanti�er followed by ndei literal'.The translation for 3i formulas and the other funtional translations is de�ned similarly. Enabling thisoption is only meaningful together with a funtional translation method. The default is enabled.4.6.3 SortsWhen enabled the option -EMLFFSorts=1 uses expliit sorts in the translation rather than enodingthe information into prediate names. Enabling this option is only meaningful together with a funtionaltranslation method. By default this option is disabled.4.6.4 Eliminating ompositionWhen enabled the option -EMLElimComp=1 attempts to eliminate omposition using these replaementrules. h� ;�i�h�ih�i� [� ;�℄�[�℄[�℄�By default this option is disabled.

62 CHAPTER 4. EML LOGIC FEATURES4.6.5 Exhanging quanti�ersWhen enabled, the option -QuantExh=1 replaes non-onstant Skolem terms in the lausal form ofthe onjeture are replaed by onstants. The option is automatially set for the optimised funtionaltranslation methods (-EMLTranslation=2). The option is not limited to EML logis. It an also beused for lassial formulas and lauses. By default this option is disabled.4.7 Combinations of optionsTable 4.3 summarises the ombinations of options whih are meaningful.Relational translations Funtional translationsEMLTranslation 0 EMLTranslation 1, 2, 3EMLTheory 0, 1, 2, 3, 4, 5, 6, 7 EMLTheory 0, 1, 2, 3, 4, 5, 6, 7EMLFunNary 0, 1 EMLFunNary 0, 1EMLFunNdeQ 0, 1EMLFFSorts 0, 1EMLElimComp 0, 1 EMLElimComp 0, 1EML2Rel 0, 1Table 4.3: Meaningful ombinations of options

Bibliography[1℄ C. Arees, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-based heuristis in modal theoremproving. In W. Horn, editor, Proeedings of the 14th European Conferene on Arti�ial Intelligene(ECAI-2000), pages 199�203. IOS Press, 2000.[2℄ Y. Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint. Journal of Logi andComputation, 2(3):247�297, 1992.[3℄ C. Brink, K. Britz, and R. A. Shmidt. Peire algebras. Formal Aspets of Computing, 6(3):339�358,1994.[4℄ H. De Nivelle, R. A. Shmidt, and U. Hustadt. Resolution-based methods for modal logis. LogiJournal of the IGPL, 8(3):265�292, 2000. Commissioned survey paper.[5℄ M. de Rijke. Extending Modal Logi. PhD thesis, Univ. of Amsterdam, Deember 1993.[6℄ L. Fariñas del Cerro and A. Herzig. Modal dedution with appliations in epistemi and temporallogis. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logi in Arti�ialIntelligene and Logi Programming: Epistemi and Temporal Reasoning, volume 4, pages 499�594.Clarendon Press, Oxford, 1995.[7℄ A. Herzig. A new deidable fragment of �rst order logi, June 1990. In Abstrats of the 3rd LogialBiennial, Summer Shool & Conferene in honour of S. C. Kleene, Varna, Bulgaria.[8℄ I. Horroks, U. Hustadt, U. Sattler, and R. A. Shmidt. Computational modal logi. In P. Blakburn,J. van Benthem, and F. Wolter, editors, Handbook of Modal Logi, volume 3 of Studies in Logi andPratial Reasoning, pages 181�245. Elsevier, Amsterdam, 2007. Commissioned overview paper.[9℄ U. Hustadt and R. A. Shmidt. An empirial analysis of modal theorem provers. Journal of AppliedNon-Classial Logis, 9(4):479�522, 1999.[10℄ U. Hustadt and R. A. Shmidt. Issues of deidability for desription logis in the framework ofresolution. In R. Caferra and G. Salzer, editors, Automated Dedution in Classial and Non-ClassialLogis, volume 1761 of Leture Notes in Arti�ial Intelligene, pages 191�205. Springer, 2000.[11℄ U. Hustadt and R. A. Shmidt. MSPASS: Modal reasoning by translation and �rst-order resolution.In R. Dykhoff, editor, Automated Reasoning with Analyti Tableaux and Related Methods, Interna-tional Conferene (TABLEAUX 2000), volume 1847 of Leture Notes in Arti�ial Intelligene, pages67�71. Springer, 2000.[12℄ U. Hustadt, R. A. Shmidt, and L. Georgieva. A survey of deidable �rst-order fragments and desrip-tion logis. Journal of Relational Methods in Computer Siene, 1:251�276, 2004. Invited overviewpaper.[13℄ U. Hustadt, R. A. Shmidt, and C. Weidenbah. MSPASS: Subsumption testing with SPASS. InP. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Shneider, editors, Pro. of Intern.Workshop on Desription Logis'99, pages 136�137. Linköping University, 1999.63

64 BIBLIOGRAPHY[14℄ K. Nellas. Reasoning about sets and relations: A tableaux-based automated theorem prover for Peirelogi. Master's thesis, University of Manhester, UK, 2001.[15℄ A. Nonnengart. A Resolution-Based Calulus for Temporal Logis. PhD thesis, Universität desSaarlandes, Saarbrüken, 1995.[16℄ H. J. Ohlbah. Semantis based translation methods for modal logis. Journal of Logi and Compu-tation, 1(5):691�746, 1991.[17℄ H. J. Ohlbah and R. A. Shmidt. Funtional translation and seond-order frame properties of modallogis. Journal of Logi and Computation, 7(5):581�603, 1997.[18℄ R. A. Shmidt. Optimised Modal Translation and Resolution. PhD thesis, Universität des Saarlandes,Saarbrüken, Germany, 1997.[19℄ R. A. Shmidt. Deidability by resolution for propositional modal logis. Journal of AutomatedReasoning, 22(4):379�396, 1999.[20℄ R. A. Shmidt. MSPASS, 1999. http://www.s.man.a.uk/~shmidt/mspass/.[21℄ R. A. Shmidt and U. Hustadt. Mehanised reasoning and model generation for extended modal log-is. In H. C. M. de Swart, E. Orlowska, G. Shmidt, and M. Roubens, editors, Theory and Applia-tions of Relational Strutures as Knowledge Instruments, volume 2929 of Leture Notes in ComputerSiene, pages 38�67. Springer, 2003. Survey paper ommissioned for the Kikoff Volume of EUCOST Ation 274.[22℄ R. A. Shmidt and U. Hustadt. First-order resolution methods for modal logis. In A. Podelski,A. Voronkov, and R. Wilhelm, editors, Volume in memoriam of Harald Ganzinger, Leture Notes inComputer Siene. Springer, 2006. Invited overview paper, to appear.[23℄ R. A. Shmidt, E. Orlowska, and U. Hustadt. Two proof systems for Peire algebras. In R. Bergham-mer, B. Möller, and G. Struth, editors, Relational and Kleene-AlgebraiMethods in Computer Siene(RelMiCS 7), volume 3051 of Leture Notes in Computer Siene, pages 238�251. Springer, 2004.[24℄ ChristophWeidenbah, Renate A. Shmidt, and Dali Topi. Spass input syntax version 3.0. Containedin the doumentation of SPASS Version 3.0, 2007.

IndexSPASS, 9atommaximal, 6stritly maximal, 6lause, 6delaration, 7derived, 13Horn, 7kept, 13redutive, 6store, 7store olletion, 7unit, 5delaration, 7linear, 7semi-linear, 7shallow, 7subsort, 7term, 7trivial, 7depth, 6equationmaximal, 6stritly maximal, 6Hornlause, 7theory, 7implementation, 36inferene rules, 17(ordered) fatoring, 23(ordered) hyper resolution, 24(ordered) paramodulation, 22(ordered) resolution, 24empty sort, 20equality fatoring, 24equality resolution, 22merging paramodulation, 24re�exivity resolution, 22sort onstraint resolution, 19splitting, 30

superposition left, 22superposition right, 22input redution, 12maximal, 6monadi, 5multiset, 5ourreneequation, 6orderingKnuth-Bendix, 18RPOS, 18preedene, 17proverbliksem, 39Disount, 40E, 40�esta, 40gandalf, 40otter, 40saturate, 40spass, 40waldmeister, 40redutionordering, 6redution rules, 17assignment equation deletion, 30ondensation, 26on�it, 27ontextual rewriting, 29dupliate literal elimination, 25mathing replaement resolution, 28non-unit rewriting, 28sort simpli�ation, 20splitting, 30stati soft typing, 20subsumption deletion, 25tautology deletion, 26trivial literal elimination, 25unit rewriting, 29redutive, 6renamingvariable, 565

66 INDEXsaturated, 7size, 6sort theory, 7linear, 7semi-linear, 7shallow, 7stritly maximal, 6substitution, 5subsumption, 6bakward, 13forward, 13termdelaration, 7linear, 7semi-linear, 7shallow, 7theorem proving, 9theoryHorn, 7sort, 7

