
Reference Manual for TESS Version 0.1.2

Michael S. Noble, mnoble@space.mit.edu Nov 2, 2005

ii

Preface

TESS is the (Te)st (S)ystem for (S)-Lang.

Copyright (C) 2004-2005 Massachusetts Institute of Technology

Michael S. Noble <mnoble@space.mit.edu>

This software was partially developed at the MIT Center for Space

Research, under contract SV1-61010 from the Smithsonian Institution.

Permission to use, copy, modify, distribute, and sell this software

and its documentation for any purpose is hereby granted without fee,

provided that the above copyright notice appear in all copies and

that both that copyright notice and this permission notice appear in

the supporting documentation, and that the name of the Massachusetts

Institute of Technology not be used in advertising or publicity

pertaining to distribution of the software without specific, written

prior permission. The Massachusetts Institute of Technology makes

no representations about the suitability of this software for any

purpose. It is provided "as is" without express or implied warranty.

THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY DISCLAIMS ALL WARRANTIES

WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE MASSACHUSETTS

INSTITUTE OF TECHNOLOGY BE LIABLE FOR ANY SPECIAL, INDIRECT OR

CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS

OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Model: Multiple Tests per Script . 2

1.1.2 Model: Single Test per Script . 2

1.1.3 Consistency and Reuse . 3

2 Examples 5

2.1 Scripts . 5

2.2 Output . 6

2.3 Analysis . 7

2.3.1 tess-common.sl . 7

2.3.2 Type Mismatch Exceptions . 7

2.3.3 Stack Maintenance . 8

2.3.4 Results Summary . 8

2.3.5 Exit Status . 8

3 Function Reference 9

3.1 tess add eval paths . 9

3.2 tess add import paths . 9

3.3 tess catch type errors . 10

3.4 tess invoke . 10

3.5 tess load component . 11

3.6 tess summary . 11

4 Utility Script Reference 13

4.1 tessrun . 13

v

vi CONTENTS

Chapter 1

Introduction

TESS is the (Te)st (S)ystem for (S)-Lang, which aims at reducing the workload and ad-hoc nature
of regression testing S-Lang software (http://www.s-lang.org), by collecting common testing
elements into a single, easy-to-use framework. TESS provides the S-Lang developer nominal mech-
anisms for tailoring the S-Lang environment and invoking functions with arbitrary inputs, while
transparently inspecting and cleaning the stack, gathering pass/fail statistics, and providing error
recovery from selected exceptions.

TESS is primarily a development tool, so we assume the reader is familiar with scripting in S-Lang.
Knowledge of how to create S-Lang modules is also helpful. Since TESS is intended to assist in
automating and simplifying regression testing, it is most often utilized in conjunction with the make

tool via a Makefile. If these are unfamiliar terms then you will benefit from learning about them
first prior to reading further.

1.1 Motivation

Suppose you had a function defined within some file add.sl as

define add()

{

variable i, j;

if (_NARGS < 2) usage("add(i,j)");

(i,j) = ();

return i+j;

}

and that you wanted to exercise it in automated fashion on a range of input conditions. To test it
with insufficient arguments, for instance, one might write a script add.t

() = evalfile("./add");

add(1);

which, when invoked from slsh as

1

http://www.s-lang.org

2 Chapter 1. Introduction

slsh ./add.t

yields something like

Usage: add(i,j)

called from line 2, file: ./add.t

1.1.1 Model: Multiple Tests per Script

Ok, so far things look reasonable. Now, suppose you appended the line

add(1,"two");

to the test and reran it in slsh. Curiously enough, the output generated would look no different from
above. Why? Because the first add() call generates a usage exception, which causes the interpreter
to unwind the S-Lang stack and then exit. In other words, the second add() call is never even
executed! One way to address this is to modify the script by adding an ERROR BLOCK, such as:

() = evalfile("./add");

define test1()

{

ERROR_BLOCK { _clear_error(); return; }

add(1);

}

test1;

add(1, "two");

Now both tests will be exercised when the script is invoked, generating a usage exception in the first
case and a type mismatch error in the second. Progress, for sure, but the script has grown longer,
and we needed to introduce a wrapper for the first test case in order to use the error block. In this
model, where one script contains multiple test cases, each test would need to be invoked within such
a wrapper, which explains why TESS offers the tess invoke() function.

1.1.2 Model: Single Test per Script

An alternative to the model used above would be to each test case within its own .t file and invoke
slsh upon each. This approach avoids the need for error blocks, but introduces a number of other
concerns which collectively steer the author towards a preference for the first model.

For example, the resultant file proliferation makes it more cumbersome to enumerate/name and
effectively organize the test suite. Packages of only moderate size might conceivably contain scores
or perhaps hundreds of relatively tiny files, needlessly wasting disk resources, increasing sizes of
software distributions, and wasting CPU cycles by launching slsh once per test instead of only
once per group of tests. Moreover, each test invocation would also need to load both TESS and the
package being tested, resulting in yet more CPU waste and code duplication.

1.1. Motivation 3

Identifying semantically related test cases would not be as easy, since groupings are now distinguished
by like-named files within a directory, instead of by cohabitation of test cases within a single file.

Collecting useful failure statistics becomes more difficult, since in this model aggregate counts can
be be obtained only by metascripts, e.g. invoked within Makefiles at the operating system level to
keep track of the 1 or 0 returned from each test, instead of within the test scripts themselves. In
contrast, the tess invoke function mentioned above transparently tallies pass/fail statistics.

For small test suites these issues may be negligible, but as packages grow their cumulative effect
may not be so easily ignored, making it better to cultivate the preferable habit of ”starting clean,”
rather than one of ”cleaning up later”.

1.1.3 Consistency and Reuse

TESS emerged as the coalescence of scripts used in testing a number of existing S-Lang packages.
In fact, development versions of packages such as SLgtk and SLxpa have already been migrated
from their original testing scheme towards TESS, and as such they serve as the wealthiest source of
supplemental examples to this documentation.

By distilling common patterns from existing test suites into a self-contained distribution TESS fosters
reuse, reduces duplicative busy work, and hopefully serves to ease the burden of testing (perhaps
one of the least loved aspects of writing and maintaining software).

4 Chapter 1. Introduction

Chapter 2

Examples

Before continuing it is worthwhile noting that the examples in this chapter are bundled within the
examples directory of the TESS distribution (along with a Makefile and baseline test.ref output),
and that they have been written under the assumption that an operational version of TESS is
installed on your system.

It should also be noted that a TESS script is merely a S-Lang script which has, somewhere along
its execution path, loaded TESS. Normally S-Lang scripts are named with a .sl suffix, however the
author has adopted the convention of suffixing them with .t instead. Not only does this serve as a
useful mnemonic, it also prevents tests from being accidently loaded by S-Lang through its default
script loading mechanism (fostering the use of nearly identical names for both test scripts and the
package components which they exercise).

2.1 Scripts

Let’s begin our example by augmenting the add() function defined above with a correspond-
ing subtract() function, and migrating the definition of both into a S-Lang script named
sillymath.sl, as follows:

define add()

{

variable i, j;

if (_NARGS < 2) usage("add(i,j)");

(i,j) = ();

return i+j;

}

define subtract()

{

variable i, j;

if (_NARGS < 2) usage("subtract(i,j)");

(i,j) = ();

return i - j;

}

5

6 Chapter 2. Examples

Two TESS scripts which more thoroughly exercise sillymath.sl, then, are:

add.t:

require("tess");

tess_invoke(1, &add);

tess_invoke(1, &add, "hi there!");

tess_invoke(1, &add, 2);

tess_invoke(0, &add, 2, 3);

tess_invoke(1, &add, "one", 2);

tess_invoke(0, &add, "hello", " there!");

subtract.t:

require("tess");

variable f = &subtract;

tess_invoke(1, f);

tess_invoke(1, f, "hi there!");

tess_invoke(1, f, 2);

tess_invoke(0, f, 2, 3);

tess_invoke(1, f, "one", 2);

tess_invoke(1, f, "hello", " there!");

2.2 Output

The first of these should emit feedback resembling that given below. Since the result of add.t closely
resembles that of subtract.t (differing only in that case 5 signals an exception in one but not the
other, since string subtraction is undefined while string addition is equivalent to concatenation) we
omit output from the latter.

Usage: add(i,j)

Test Case 1: add: PASSED (SHOULD signal error, DID)

Usage: add(i,j)

Test Case 2: add: PASSED (SHOULD signal error, DID)

Stack Contents:

(0)[String_Type]:hi there!

Usage: add(i,j)

Test Case 3: add: PASSED (SHOULD signal error, DID)

2.3. Analysis 7

Stack Contents:

(0)[Integer_Type]:2

Test Case 4: add: PASSED (SHOULD NOT signal error, DID NOT)

Stack Contents:

(0)[Integer_Type]:5

S-Lang Error: Type Mismatch: String_Type + Integer_Type is not possible

Test Case 5: add: PASSED (SHOULD signal error, DID)

Test Case 6: add: PASSED (SHOULD NOT signal error, DID NOT)

Stack Contents:

(0)[String_Type]:hello there!

=============== add Test Summary ===============

Number of Failures: 0

Number of Passes : 6

2.3 Analysis

In the above tests the absence of an explicit ERROR BLOCK, and the cleaner code which results,
should be immediately apparent. For example, add.t contains one fewer non-blank lines than does
the example in section 1.1.1 (Motivation), while tripling the number of cases tested (6 versus 2).
Also revealed is the fact that tess invoke() is the single most important function in the interface.

2.3.1 tess-common.sl

A more subtle point of interest is that sillymath.sl does not appear to be loaded by either test
script. How, then, do they function? The answer is that the evalfile() has been pushed into a
file tess-common.sl, which TESS will transparently load if found within the current directory at
startup.

This exploits a common pattern within test suites, namely that prior to testing any component
within a package a test script must first load the package itself. Furthermore, tess-common.sl can
be used to define variables, data structures, or functions that might be commonly used amongst all
test scripts within a given suite.

2.3.2 Type Mismatch Exceptions

Consider the case

8 Chapter 2. Examples

tess_invoke(1, &add, "one", 2);

defined for add() (and the similar test defined for subtract()), which attempts to add an
Integer Type to a String Type and results in a type mismatch exception. Even with an
ERROR BLOCK defined S-Lang 1.x would not, on its own, catch this exception (although the forth-
coming S-Lang 2.x will). This is because S-Lang regards type mismatches as fatal errors, so the
interpreter will not permit execution to continue after they occur.

Because it can be useful to test such conditions, however, TESS relaxes this constraint by installing
an error handler which resets S-Lang internal state and allows scripts to continue processing. TESS
installs this handler by default at startup, but as noted in the function reference it may be deactivated
(or reactivated) by calling tess catch type errors().

2.3.3 Stack Maintenance

After each test TESS also reports the number and type (or value, for objects which are not aggre-
gates) of any items remaining on the S-Lang stack. Consider the line

Stack Contents:

(0)[String_Type]:hello there!

present in the output of add.t above. It shows that after test case 6 has completed the S-Lang stack
contains 1 item (as it should), namely the result of concatenating the strings ”hello” and ” there!”.

This provides an excellent way of validating the return values of exercised functions, without requir-
ing any additional work on the part of the test developer. Conversely, this feature also identifies
functions which create unintended side effects by leaving detritus on the stack.

2.3.4 Results Summary

Another point of interest from the add.t output is that the pass/fail statistics of each test script are
automatically summarized, again with zero work required on the part of the test developer. This
happens because TESS installs an exit handler which, by default, transparently calls tess summary

when the test application terminates. As noted in the function reference, this behavior may be
customized.

2.3.5 Exit Status

If the test application offers an exit intrinsic then TESS will invoke it at completion time, passing
in the number of failures observed while running the script. This enables higher-level Makefiles, or
tessrun, to take appropriate action, such as terminating when a non-zero status is returned.

Chapter 3

Function Reference

3.1 tess add eval paths

Synopsis

Add one or more directories to the S-Lang evalfile() search path

Usage

tess add eval paths(path1, [path2, ...])

Description

This function is a convenience wrapper around the set slang load path() function, making it
cleaner and simpler to augment the list of directories searched by the S-Lang interpreter when
evalfile() is invoked with an ambiguous file specification.

Notes

TESS automatically appends the current working directory, as well as ../src, ../share, and
../packages to the load path.

See Also

tess add import paths

3.2 tess add import paths

Synopsis

Add one or more directories to the S-Lang import() search path

Usage

tess add import paths(path1, [path2, ...])

Description

This function is a convenience wrapper around the set import module path() function, making
it cleaner and simpler to augment the list of directories searched by the S-Lang interpreter
when import() is invoked.

9

10 Chapter 3. Function Reference

Notes

TESS automatically appends ../src to the import path.

See Also

tess add eval paths

3.3 tess catch type errors

Synopsis

Give S-Lang ERROR block mechanism the ability to catch type mismatch errors

Usage

tess catch type errors([yes or no])

Description

This function augments the S-Lang ERROR block mechanism, giving it the ability to catch
type mismatch exceptions (which S-Lang 1.x formally considers uncatchably fatal). This fea-
ture is useful for a test framework, since it allows functions to be safely exercised against a
wide variety of types.

If the first passed argument evaluates to a boolean TRUE then the function will enable type
error catching. If either zero arguments are passed, or the first argument evaluates to boolean
FALSE, then type error catching will be disabled.

Notes

In S-Lang 2 all exceptions may be caught, which makes this function moot.

See Also

tess invoke

3.4 tess invoke

Synopsis

Execute a test case

Usage

tess invoke(expected to fail, function ref [, arg1, arg2, ...])

Description

Invoke the given function (by dereference), optionally passing in one or more arguments. The
first parameter, whose value should be either zero or one, indicates whether the function is
expected to signal an error when invoked in the manner given.

If the actual result of the call matches the expected result then the test case is said to ”pass,”
otherwise it is said to ”fail”. It is important to understand this: a failed test case is not
indicated by an error signal itself, but rather by whether or not the test case expected an error
to be signaled.

3.5. tess load component 11

Notes

See Also

tess catch type errors, tess summary

3.5 tess load component

Synopsis

Evaluate the named S-Lang script, and set the test component name accordingly

Usage

tess load component(filename)

Description

This function attempts to evalfile() the named script, using the usual S-Lang load mechansism,
and will set the TESS test component name to the filename if found.

The test component name is printed in the heading of results summaries, and uniquely identifies
a given test script. Typically the test component name is set to the ”basename” of the test
script itself (e.g. a script add.t sets Component = ”add”). This function provides a means of
customizing that default behavior while loading additional functionality to be exercised within
the test script.

Notes

See Also

3.6 tess summary

Synopsis

Summarize the results of a suite of tests

Usage

Integer Type tess summary()

Description

TESS automatically records the pass/fail result of each test case executed by tess invoke. By
default the results of this tally are emitted to stdout when tess summary is called, although
this may be disabled by setting the tess auto summarize intrinsic variable to 0. The return
value indicates the number of failed tests.

Notes

Under normal circumstances it should not be necessary to call this function explicitly, since
TESS transparently installs an exit handler which calls tess summary at application termina-
tion. Its return value is then passed to the operating so that, for example, a non-zero status
may be used to fatally terminate a ”make test” goal.

12 Chapter 3. Function Reference

See Also

tess invoke

Chapter 4

Utility Script Reference

4.1 tessrun

The tessrun script is intended to simplify the invocation of a suite of regression tests, and has a
command line usage synopsis of:

tessrun [-v] [application_name]

Specifying the -v (verbose) flag inhibits the redirection of stderr to /dev/null, while specifying an
application name overrides the default use of slsh as the test application.

The chief benefits of tessrun are that it yields simpler Makefiles which require fewer modifications.
For example, rather than having the make test rule within your regression test Makefile explicitly
loop over all .t files within its directory, the rule can simply invoke tessrun, perhaps as:

test:

tessrun $(TESS_APP) > test.out 2>&1

diff test.ref test.out

Since zero tests are explicitly referenced by name the Makefile need not change as new tests are
added to the regression suite. Nor need need it be modified simply to execute the test suite within
other applications (again, the default test application is slsh), since that can be achieved here
simply by overriding the definition of $(TEST APP) during the invocation of make:

unix% make -e TEST_APP=isis

The only constraint upon the test application is that it offers the S-Lang provide and require package
management functions.

13

	Introduction
	Motivation
	Model: Multiple Tests per Script
	Model: Single Test per Script
	Consistency and Reuse

	Examples
	Scripts
	Output
	Analysis
	tess-common.sl
	Type Mismatch Exceptions
	Stack Maintenance
	Results Summary
	Exit Status

	Function Reference
	tess_add_eval_paths
	tess_add_import_paths
	tess_catch_type_errors
	tess_invoke
	tess_load_component
	tess_summary

	Utility Script Reference
	tessrun

