
TRA(1) TRA(1)

NAME
minisync, tramkdb, trascan, trasrv, trafixdb � unidirectional replica synchronization

SYNOPSIS
minisync [ −Anftv ] [ −z n ] src dst [ paths ]

trascan replica [ paths ]

tramkdb dbfile replicaname

trasrv [ −i ifile ] [ −o option ] dbfile root

trafixdb −l

trafixdb [ −n ] dbfile [ outdbfile ]

DESCRIPTION
Tra is a file system synchronizer. It helps to manage the replication of a shared file system on
many hosts, automatically propagating updates when possible. The file system is optimistically
replicated: any replica is allowed to make any change at any time. Changes are propagated via
pairwise synchronization between replicas. Incomptible changes, called conflicts, are reported to
the user for manual resolution.

Minisync
Minisync tracks the modification history of each file as it is changed and copied from replica to
replica. The replica names on the command line are executable files, typically shell scripts, that
run trasrv with appropriate arguments. Replica names are further described a few paragraphs
later in this section.

The synchronization of a single file proceeds as follows (this is a description of the behavior, not
the implementation):

1. If the history of the file on src is a prefix of or equal to the history on dst, then dst
is up-to-date; do nothing.

2. If the history of the file on dst is a prefix of the history of the file on src, the file on
src is propagated to dst.

3. If neither history is a prefix of the other, the two files have diverged. Report a con­
flict.

Creation or deletion of a file is considered an event in the history of a file. Conflict names take the
form action/action, indicating how the histories have diverged; the first action corresponds to the
file on src and the second action corresponds to the file on dst. Action is one of update,
create, or delete. For example, an update/delete conflict indicates that since the files
on src and dst diverged, the file on src has been updated but the file on dst has been deleted. Of
course, these changes might have occurred on other replicas and propagated to src and dst.

Minisync performs a undirectional synchronization, propagating updates from the replica src to the
replica dst. If paths are specified, the synchronization is limited to files and directories in the trees
rooted at those paths. If no path is specified, the entire replica is synchronized.

The options are:

−A By default, when two identical files are in conflict, the conflict is automatically resolved.
The −A flag turns this auto-resolution off.

−n Do nothing. Print what would be done.

−f Resolve all conflicts in favor of the src (from) replica.

−t Resolve all conflicts in favor of the dst (to) replica.

−v Verbose; print file system operations as they are carried out.

−z Set deflate compression level, from 1 to 9.

The arguments src and dst are named by executables that establish connections to trasrv(8). If a
replica name does not begin with ./, ../, or /, it is prefixed with the path $home/lib/tra
(on Plan 9) or $HOME/.tra (on Unix).

1



TRA(1) TRA(1)

If the file $home/lib/tra/minisync.log (on Plan 9) or $HOME/.tra/minisync.log
(on Unix) exists, minisync appends a log of its actions to the file.

Tramkdb
File histories are kept in an on-disk database. Tramkdb initializes a new database. The bulk of
the data is kept in dbfile, which typically has a .tradb suffix. Auxiliary files dbfile.redo and
dbfile.redo2 hold block-level and database operation-level redo logs. Each replica has a name
that is used in the internal metadata and in the explanations of conflicts. This is the second argu­
ment to tramkdb and stored in the database. So that replicas can�t accidentally be configured with
identical names, the given replicaname is suffixed with a random 32-bit number.

Trascan
Trascan performs a file system scan of the named paths on replica (an executable interpreted
exactly as minisync�s src and dst arguments) and updates the database, but does not touch the file
system.

In order to detect updates reliably, the database includes SHA1 hashes of every file in the file sys­
tem. The first file system scan for a newly created replica can take a long time, since all the data
in the file system must be hashed. Trascan is a useful way to initialize the database without per­
forming any file system operations.

Trasrv
Trasrv is the per-replica server to which minisync connects. It needs to be told the database to
use and the root of the replicated file system. The −i option instructs trasrv to consult ifile for a
list of paths to include or exclude from replication. In the ifile, blank lines and lines beginning
with a sharp (#) are ignored. The other lines must be of the form verb pattern, where verb is
include or exclude and pattern is a shell-style file name pattern. To decide whether to
include a given path, each line in the file is consulted in order; the earliest pattern that matches
determines whether the path is included. If no pattern matches, the path is included. If no −i
option is given, a default rule set is used:

# default rule set for trasrv
exclude *.tradb*
exclude minisync.log

If the pattern is rooted, as in /a/b, then the pattern must match the entire path. If the pattern is
not rooted, as in *.tradb* or a/b, then the pattern need only match the end of the path.

The −o flag enables option , which is an arbitrary string. The collection of options includes:

setmode
Include file mode information in synchronizations. This causes changes to file modes to be
propagated to other replicas that have enabled the setmode option.

setuid
Include file owner information in synchronizations.

setgid
Include file group information in synchronizations.

setmtime
Include file modification time information in synchronizations.

mkwriteable
Make read-only files temporarily writeable for the purposes of update propagation. This is
useful primarily for propagating RCS files.

testdblog
Do not flush the database to disk when trasrv has finished. This is used to exercise the
redo2 database operation log.

Trafixdb
Trafixdb is the Tra database equivalent of the Unix utility fsck: it scans for inconsistencies and
fixes them, reporting the changes it makes. Unlike in some Unix file systems, inconsistencies can
not arise from surprise interruptions (e.g., killing a running trasrv). Updates to the database are
performed atomically, so the only source of inconsistencies is programmer error. Trafixdb is
updated when such errors are found and fixed in the actual database code. The command

trafixdb −l
displays a list of errors that trafixdb can repair, along with the date the bug was fixed in the

2



TRA(1) TRA(1)

database code.

EXAMPLES
This example demonstrates setting up replicas and running a simple synchronization.

$ cd /tmp
$ mkdir r1 r2
$ cat >t1 <<!
#!/bin/sh
trasrv t1.tradb /tmp/r1
!
$ cat >t2 <<!
#!/bin/sh
trasrv −r t2.tradb /tmp/r2
!
$ chmod +x t1 t2
$ tramkdb t1.tradb repl1
$ tramkdb t2.tradb repl2
$ echo hello world >r1/a
$ minisync −v ./t1 ./t2
copy /a
$ cat r2/a
hello world
$

A more full featured replica might be
g% cat lib/tra/emelie
#!/bin/rc
trasrv −o setmode,setgid /usr/rsc/lib/tra/emelie.tradb /usr/rsc
g%

Notice that files on remote machines may be replicated by running trasrv on a remote machine in
the shell script. For example,

g% cat .tra/wally
#!/bin/sh
ssh wally trasrv $HOME/.tra/xxx.tradb $HOME
g%

This is actually oversimplified: when using remote connections, in order to convince ssh to turn off
Nagle�s algorithm (which slows down our RPCs considerably), use

ssh −2 −q −e none −t −t
on Unix or

ssh −Rmp
on Plan 9. This has the side effect of causing ssh to allocate a pty for the connection, which
merges standard output and standard error. Since trasrv occasionally writes important informa­
tion on standard error, it is a good idea to use the programs stdmerge and stdsplit (see tra−
aux(1)) to keep them separate. A full example would then be:

g% cat .tra/wally
#!/bin/sh
ssh −2 −q −e none −t −t wally stdmerge trasrv \

$HOME $HOME/.tra/xxx.tradb | stdsplit
g%

SOURCE
cvs −d :pserver:anoncvs@cvs.pdos.lcs.mit.edu:/cvs co tra

TRACES
We are interested in collecting traces of synchronization activity for research purposes. We would
greatly appreciate it if you turn on logging (by creating or $home/lib/tra/minisync.log
on Plan 9 or $HOME/.tra/minisync.log on Unix) and mail us your log file occasionally (for
example, when the size starts to bother you, you might mail it and then zero it. Please compress
the logs before sending. For example:

# plan 9
g% gzip < lib/tra/minisync.log >/tmp/a
g% echo minisync logs | mail −a /tmp/a tralog@pdos.lcs.mit.edu

3



TRA(1) TRA(1)

g%
# unix
$ gzip < .tra/minisync.log |
uuencode minisync.log.gz |
mail tralog@pdos.lcs.mit.edu

$

The log contains the dates and times of your synchronizations, the names of the files being syn­
chronized, the names of the machines involved, and the minisync command lines. We promise not
to make the logs available to others without first appropriately anonymizing them.

4



TRA-AUX(1) TRA-AUX(1)

NAME
stdsplit, stdmerge, tradump, trascan � auxiliary Tra programs

SYNOPSIS
stdmerge cmd [ args ] | stdsplit

tradump dbfile

trascan replica [ path ]

DESCRIPTION
These are auxiliary tools meant to help in the use of tra(1).

Stdmerge executes the named command, folding standard error into standard output. Stdsplit
performs the opposite transformation. Thus,

ssh −t −t stdmerge command | stdsplit
keeps the standard output and error of command separate even though SSH has run it inside a
PTY, which necessarily merges the two. This seemingly odd contortion is useful for disabling
Nagle�s algorithm on a TCP connection using SSH.

Tradump writes a textual representation of the named dbfile to standard output. It is mainly use­
ful for debugging.

Trascan connects to replica and has it scan its file system for changes.

5


