
Viewmol
Version 2.4

by

Jörg-Rüdiger Hill

October 13, 2003

1 Purpose

VIEWMOL is a graphical front end for computational chemistry programs. It is able to graphically aid in the
generation of molecular structures for computations and to visualize their results. The program’s capabilities
include:� Building and editing of molecules� Visualization of the geometry of a molecule� Tracing of a geometry optimization or a MD trajectory� Animation of normal vibrations or to show them as arrows� Drawing of IR, Raman, and inelastic neutron scattering spectra� Drawing of an MO energy level or density of states diagram� Drawing of basis functions, molecular orbitals, and electron densities� Display of forces acting on each atom in a certain configuration� Display of Miller planes in crystals� Calculation of thermodynamic properties for molecules and reactions� Drawings generated by VIEWMOL can be saved as TIFF, PNG, HPGL, or PostScript files� Animations of normal modes can be converted to a video file (MPEG), e. g. for inclusion into World

Wide Web documents (requires additional programs available on the Internet)� Interface to the ray tracing program POVRAY (input file generation and use of POVRAY from within
VIEWMOL)� Input and output in a variety of formats, new formats can be added easily by the user

VIEWMOL includes a Python interpreter for automation.

At present VIEWMOL includes input filters for DISCOVER, DMOL
�
, GAMESS, GAUSSIAN 9X, GULP,

MOPAC, PQS, and TURBOMOLE outputs as well as for PDB files (VIEWMOL is therefore suited as a viewer
for structural data on the World Wide Web). Structures can be saved as Accelrys’ car-files, MDL files, and
TURBOMOLE coordinate files. VIEWMOL can generate input files for GAUSSIAN 9X. VIEWMOL’s file
format has been added to OPENBABEL so that OPENBABEL can serve as an input as well as an output filter
for coordinates.

VIEWMOL supports a space ball as input device.

2 Copyright, Bug Reports, Feature Requests

VIEWMOL is copyright c
�

1996-2003 by Jörg-Rüdiger Hill and others. All rights reserved. VIEWMOL

is licensed under the GNU General Public License, version 2. A copy of this license can be found in

1

the file COPYRIGHT distributed with VIEWMOL. If you redistribute VIEWMOL, the entire contents of
this distribution must be distributed, including the README, the sources, examples, scripts, tests, and the
complete contents of the doc directory.

If new input filters to read outputs of other programs or other valuable features are added or a bug is fixed
the author would welcome if the additions are sent to him for inclusion into the next release of VIEWMOL.

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

VIEWMOL shall be quoted as follows:

Program VIEWMOL, Version 2.4, Jörg-Rüdiger Hill, 2003.

VIEWMOL has been thoroughly tested on the computer systems mentioned below, but it cannot be excluded
that there are any further bugs.

Please, report bugs at:
https://sourceforge.net/tracker/?func=add&group id=6845&atid=106845

or to: joehill@users.sourceforge.net
Feature requests should be submitted to:

https://sourceforge.net/tracker/?func=add&group id=6845&atid=356845
Support requests should go to:

https://sourceforge.net/tracker/?func=add&group id=6845&atid=206845

There is also a discussion forum for VIEWMOL at
https://sourceforge.net/forum/forum.php?forum id=21242.

3 Installation

VIEWMOL 2.4 was developed on an Athlon PC with an Nvidia graphics card running Red Hat Linux 9.
Hardware acceleration for 3D is not strictly necessary, but recommended. VIEWMOL also works with

2

Brian Paul’s OpenGL compatible library Mesa. VIEWMOL has been ported to PCs with FreeBSD, Silicon
Graphics computers, IBM RS/6000, DEC Alpha, Suns, Hewlett Packard 9000/735, Macintoshs with MacOS
X, and Windows PCs using the Cygwin tools. Since Mesa runs on any machine which has the X Window
System it should be possible to run VIEWMOL on any machine which supports the X Window System.
However, for best performance a native OpenGL implementation is recommended.

Binaries are presently supported on the following operating systems:� PC: Linux 2.4.x, FreeBSD 5.1� Macintosh: MacOS X (courtesy of Gert von Helden, helden@fhi-berlin.mpg.de)

On these operating systems the program was tested. Others may also work, but this is not certified. Previous
versions of VIEWMOL have also been tested on the following systems:� DEC Alpha: OSF1 V4.0 (tested only with Mesa; courtesy of Pablo Vitoria Garcia, qibvi-

gap@lg.ehu.es)� IBM: AIX 4.1� HP: HP–UX 9.5 (tested only with Mesa),� SGI: Irix 6.3� Sun: SunOS (courtesy of Keith Refson, Keith.Refson@earth.ox.ac.uk)� PC: Microsoft Windows using Cygwin (courtesy of Noda Tomoyuki, noda.tomoyuki@canon.co.jp)

but since the author does not have access to any of these systems testing of newer versions was not possible.
It can, however, be assumed that VIEWMOL will at least compile on these systems.

VIEWMOL 2.4 is provided precompiled for a number of architectures. Precompiled binaries are packaged
separately from source, documentation, and examples:� x86 Linux viewmol-2.4.bin.Linux.tgz� x86 FreeBSD viewmol-2.4.bin.FreeBSD.tgz� Macintosh viewmol-2.4.bin.MacOSX.tgz

VIEWMOL can be downloaded from:� SourceForge
http://viewmol.sourceforge.net/

Before installing VIEWMOL you need to make sure that the following software/libraries are available:� OpenGL or Mesa (libGL.so, libGLU.so or libMesaGL.so, libMesaGLU.so)
This is probably only relevant for installations on Linux. Most Linux distri-
butions now include support for OpenGL programs. Mesa can be found at
http://sourceforge.net/projects/mesa3d.

3

� X Window System
This is only relevant for installations on Microsoft Windows and Macintoshs. For Microsoft Windows
Cygwin needs to be installed which includes the X Window System http://www.cygwin.com/.
Apple distributes the X Window System for Mac OS X at http://www.apple.com/macosx/.� Motif or Lesstif (libXm.so)
This is probably only relevant for installations on Linux, Microsoft Windows, and Macintoshs.
Motif can be found at http://www.motifzone.org/download/. Lesstif can be found at
http://www.lesstif.org/. For Microsoft Windows Cygwin includes Lesstif. For Mac OS X
the Fink distribution http://fink.sourceforge.net/ includes Lesstif.� Python ��� 2.2
Linux distributions usually include Python. For other systems you need to obtain Python from
http://www.python.org/� TIFF library (libtiff.so)
Linux distributions include this library. On Silicon Graphics this library is installed if the ifl_eoe
and ifl_dev packages have been installed. For other systems you need to obtain and compile this
library (e. g. from ftp://ftp.remotesensing.org/pub/libtiff)� PNG library (libpng.so)
Linux distributions include this library. For other systems you need to obtain and compile this library
(from Sourceforge under http://libpng.sourceforge.net/)

Installation of the program is simple. VIEWMOL comes as gzipped tar file,
viewmol-2.4.src.tgz. Unzip and untar it using gunzip viewmol-2.4.src.tgz and
tar -xvf viewmol-2.4.src.tar. You get six subdirectories, source, doc, scripts, tests,
locale, and examples, and the configuration file viewmolrc. Copy all files you got into an
arbitrary directory. If you want to install precompiled binaries, download the appropriate file for your
operating system and unpack it from the same directory you unpacked the source code. This will create
a subdirectory in the source directory which holds the binaries (the name of this directory starts with the
name of your operating system as you get it from uname -s and may contain a CPU specific ending).
If you run the supported operating systems you have to set the environment variable $VIEWMOLPATH
to point to the directory where you unpacked VIEWMOL (the compiled-in default for VIEWMOLPATH is
/usr/local/lib/viewmol) and the installation is complete. Otherwise you have to recompile the
program (cf. p. 5). The program uses dynamical memory allocation so that every size of a molecule can be
handled which fits the hardware limits of your computer.

The installation directory also contains a file viewmolrc. You might have a look into this file and adapt it
to your needs. The format is described at page 45. In general the defaults should work fine.

VIEWMOL uses by default English as language, but it has been written so that other languages can easily be
used1. The distribution contains localized versions of all the program messages, menus, dialog boxes etc. in
the directory locale (currently for English, French, German, Hungarian, Polish, Russian, and Spanish).
If you want to use a different language for a system wide installation, copy the corresponding Viewmol
file to your applications default directory (usually /usr/lib/X11/app-defaults). If you want to
use a different language only for some users, instruct them to configure the language through VIEWMOL’s

1This manual assumes that the English version of VIEWMOL is used. The shortcuts for other languages are different, but obvious
in the menus.

4

Configuration menu. VIEWMOL will run without any of the localized files installed. So if you are
happy with English and want to change only a few settings you do not need to install any of the files from
the locale directory.

VIEWMOL needs a few external programs for some of its functions. Once you have installed VIEWMOL and
set VIEWMOLPATH, you can start VIEWMOL, press Cancel in the file selection box which will appear,
and press the right mouse button in the blue VIEWMOL window. A popup menu will appear where the last
but one option is Configuration Choosing this option displays a dialog where you can set path
names to four external programs. These are (including their defaults)2 :

Location of Web browser: mozilla %s
Location of Moloch: moloch
Location of Rayshade: x-povray +I%s +O%s +W%d +H%d
Location of display program for images: xv %s

If these program are installed and can be found in your path VIEWMOL will automatically display the correct
path names in the dialog. The %s and %d are placeholders for the file name and dimensions and are required
for programs which use command line arguments. Once you have set these path names, choose Save from
the buttons in the dialog and these settings will be stored permanently in $HOME/.Xdefaults.

The correct installation of VIEWMOL can be tested through the included test scripts (cf. p. 55).

4 Compilation

VIEWMOL 2.4 has been written in C. For compilation of VIEWMOL you need a C compiler. TIFF files are
supported by the freely available TIFF library which is also necessary to compile the program. It can be
found on many ftp sites, e. g. at ftp://ftp.remotesensing.org/pub/libtiff/. PNG files are
supported by the freely available PNG library which is also necessary to compile the program. It can be
found at http://libpng.sourceforge.net/. If you want to link VIEWMOL with Mesa instead of
with OpenGL you will need Mesa (http://www.mesa3d.org/).

Linux users need Motif to compile and run the program (if the program complains about
“viewmol: can’t load library ’libXm.so.1’” Motif is missing). Motif is
available from http://www.motifzone.org/download/. The Motif clone Lesstif
(http://www.lesstif.org/) can be used with Viewmol starting with version 0.81. There are,
however, some glitches with Lesstif (e. g. shortcuts don’t work).

If you want to recompile the program and you are running one of the supported operating systems you may
type make. The shell script getmachine determines the operating system you are running and sets some
options for the compiler. If this does not work you should have a look into the Makefile. The options set
are explained there. They are the following:� OPT

The optimization flag for your compiler (on Linux -O6 -mcpu=X where X may be pentium or
pentiumpro; -O2 otherwise).

2Moloch may be called TurboPROP if you got TURBOMOLE from Accelrys Inc.

5

� CFLAGS
Additional flags for C compiler, used to handle special optimizations and some incompatibilities be-
tween different Unix versions.� LDFLAGS
Additional flags needed for linker, currently only used for SGI to distinguish between different library
versions.� INCLUDE
The path to the include files. This is set to point to the include files for libtiff, libpng, and Python (the
script asks the user for these paths at the beginning, there is really no need to change anything in the
file here).� LIBRARY
The path to the additional libraries required. These are libtiff, libpng, and the Python library (the
script asks the user for these paths at the beginning, there is really no need to change anything in the
file here).� LIBS
The libraries needed to link VIEWMOL. They may differ between different operating systems.

The getmachine shell script will ask you for the path names to the TIFF, PNG and Python libraries
and to the include files necessary with these libraries. You may specify these path names using environment
variables if you put the name of the variable in parentheses (e. g. $(HOME)). These path names are assigned
to the LIBTIFF, TIFFINCLUDE, LIBPNG, PNGINCLUDE, PYTHONINCLUDE, and LIBPYTHON flags
and stored in a file .config.<OS> where <OS> is the output of the uname -s command on your
machine. If this file already exists, getmachine does not ask for these path names.

Silicon Graphics compilers on 64-bit operating systems (IRIX64 – R8000, R10000, R12000) will produce
a lot of warning messages concerning casts of pointers to integers. These can be safely ignored.

The make procedure will build the program in a directory whose name depends on the operating system and
type of CPU you are using. You will find all executables in this directory. After compilation follow the steps
under Installation to complete the installation. If you have compiled VIEWMOL yourself it is recommended
that you use the included test scripts to ensure VIEWMOL is functioning correctly (cf. p. 55).

5 Synopsis

VIEWMOL can be called as follows:

viewmol [[-bio | -dmol | -gamess | -gauss | -gulp | -mopac |
-pdb | -pqs | -tm | -tmmsi] file]

VIEWMOL has an automatic file format detection algorithm build in and should be able to identify output
files of the programs supported without user intervention. VIEWMOL will also run Python scripts given on
the command line when the Python script has the string python within the first 1024 characters (this is
usually the case if the script starts with the common #!/usr/local/bin/python or similar first line).
If VIEWMOL is called without parameters it will bring up a file selection box to select the file to be viewed.

6

If the option -bio is used the file name of a DISCOVER file has to be specified. One can use the .car, the
.cor, or the .arc file of DISCOVER. VIEWMOL also looks for a file with the extension .hessian and
tries to read the vibrational spectrum from it, if it was found.

If the option -dmol is used the file name of a DMOL/DSOLID/DMOL
�

output file has to be specified.

If the option -gamess is used the file name of a GAMESS output file has to be specified.

If the option -gauss is used the file name of a GAUSSIAN 9X output file has to be specified.

If the option -gulp is used the file name of a GULP output file has to be specified.

If the option -mopac is used the file name of a MOPAC output file has to be specified. VIEWMOL also looks
for a file with the extension .gpt and reads information about basis sets and MOs from it, if it was found.

If the option -pdb is used the file name of a PDB file has to be specified.

If the option -pqs is used the file name of a PQS output file has to be specified.

If the options -tm or -tmmsi are used the file name of a TURBOMOLE file containing at least the data
group $coord has to be specified. -tm reads the original TURBOMOLE output while -tmmsi allows
VIEWMOL to read TURBOMOLE outputs from the TURBOMOLE version distributed by Accelrys (the only
difference is the ordering of the normal modes in the control file).

6 Usage and Operating Modes

6.1 Data Read From Input Files� DISCOVER

The file names for DISCOVER files can be file_name.car,
file_name.cor, or file_name.arc. The base name is used to construct the file name
file_name.hessian (the file with frequencies and normal coordinates). All necessary data are
extracted from these files.� DMOL/DSOLID/DMOL

�
The necessary data are collected from the .outmol file.� GAMESS

GAMESS output files are first checked for the occurrence of the string GAMESS. If it is found the
necessary data are collected from this file.� GAUSSIAN 9X

Gaussian output files are first checked for the occurrence of the string Enter-
ing Gaussian System. If it is found the necessary data are collected from this file. To
use the wave function related topics in VIEWMOL with GAUSSIAN outputs GAUSSIAN must run with
GFPRINT and Iop(5/33=1)3 to print basis set and MO coefficients. Due to the vastly different
outputs created by the GAUSSIAN 9X series of programs, it is not guaranteed that a particular output
can be successfully read. The common types of output have been tested, but non-default routes
through the program might have generated output which cannot be read.

3GAUSSIAN 98 seems to have a bug with respect to this option – no MO coefficients are printed anymore. Use Iop(5/33=2)
instead which, unfortunately, also prints the density matrix.

7

� MOPAC

VIEWMOL first checks for the presence of a file with the extension .gpt and the same basename as
the MOPAC output file. This file is generated if MOPAC has been run with the keyword GRAPH.
If such a file is found coordinates, basis functions, and MO coefficients are read from this file.
If such a file does not exist, coordinates are read from the MOPAC output file under the header
CARTESIAN COORDINATES. Finally, vibrational frequencies and normal modes are read from the
MOPAC output file, if present.� PDB files
Only the cartesian coordinates and atomic symbols are read from this file, the connectivity information
is ignored and will be determined by VIEWMOL itself.� PQS
Coordinates are read from the section identified by Coordinates (Angstroms). Forces, the
energy, vibrational frequencies, and normal modes are collected from the corresponding sections of
the output.� TURBOMOLE

The program reads the following data groups from the control file:

– $atoms

– $basis

– $pople
The basis functions are read from these data groups. These data will be read only if they are
available.

– $closed shells, $alpha shells, $beta shells
These data group are read to determine which molecular orbitals are occupied by how many
electrons. The data is necessary for the calculation of electron densities.

– $coord
The cartesian coordinates of the molecule calculated. This data group must be available.

– $grad
The cartesian coordinates and gradients of all previous steps of a geometry optimization. This
data group will be read only if it is available.

– $scfmo
The symmetry labels, energies, and MO coefficients for closed shells are read from this data
group. These data will be read if they are available and if the file contains either converged or
first order molecular orbitals.

– $uhfmo_alpha

– $uhfmo_beta
The symmetry labels, energies, and MO coefficients for open shells are read from this data
group. These data will be read if they are available and if the file contains either converged or
first order molecular orbitals.

– $symmetry
The point group of the molecule. This data group will be read only if it is available.

– $title
The title of the calculation. This data group will be read only if it is available.

8

– $vibrational spectrum

– $vibrational normal modes
The results of a force constant calculation. These two data groups will be read only if they are
available.

6.2 The Main Window

The program displays the molecule according to the coordinates in the main window. Following manipula-
tions are possible (cf. Figure 1):� Holding down the left mouse button and moving the mouse horizontally

This rotates the molecule, the view point, or a light source around the y axis.� Holding down the left mouse button and moving the mouse vertically
This rotates the molecule, the view point, or a light source around the x axis.� Holding down the middle mouse button and moving the mouse horizontally
This rotates the molecule, the view point, or a light source around the z axis.� Holding down one of the shift keys and the left mouse button and moving the mouse
This moves (translates) the molecule or an annotation.� Holding down one of the shift keys and the middle button and moving the mouse
The scaling of the molecule is changed.� Pressing the cursor keys for moving up ���	� or down ��
	�
The scaling of the molecule is changed. By pressing ���	� the molecule will be enlarged and by
pressing ��
	� the molecule will be made smaller.� Clicking on an atom with the left mouse button
This selects this atom, you will hear a beep. If you have clicked on one atom and then pressed the

right mouse button, the average of all bond lengths at this atom is displayed. If you have clicked on
two atoms and then pressed the right mouse button, the distance between these two atoms is displayed.
If you have clicked on three atoms and then pressed the right mouse button, the angle between these
three atoms is displayed. If you have clicked on four atoms and then pressed the right mouse button,
the torsion angle between these four atoms is displayed. To delete the displayed values use either the
Geometry menu items or repeat the steps above. Clicking with the left mouse button on an atom
may also be necessary for setting or selecting some atom specific values (vide infra).� Holding down one of the shift keys and clicking on a molecule with the left mouse button
The molecule is selected. The window title will show the name of this molecule. All subsequent
translations/rotations act only on this molecule.� Pressing the right mouse button without clicking on an atom before
A menu will appear. The menu contains the following topics (the key combination in parentheses can
be used as a shortcut in the English version):

– Molecule ...
A submenu is provided with the following topics:

9

Shift + Shift +

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

+Shift

or

Figure 1: How the mouse can be used to manipulate a molecule or an annotation in the main window.

10

� Load molecule ...
Brings up a file selection box to load a molecule.� Save molecule ...
Brings up a format selection dialog and a file selection box to save the currently selected
molecule to file. Output formats are supported through external filters (similar to the input
filters) and can be installed using options in the viewmolrc file (cf. p. 45). Coordinates
and bond information are passed to the corresponding output filter which writes the file.
Currently, the only output formats provided are Accelrys car-files, MDL mol-files, and
TURBOMOLE.� Delete molecule ...
Deletes the currently selected molecule.� New molecule ...
Brings up the molecule editor and starts the building of a new molecule (cf. p. 27).� Modify molecule ...
Brings up the molecule editor to modify an existing molecule (cf. p. 27).

– Select molecule
Provides a submenu with the names of all molecules currently loaded and an item All and
can be used to change the currently selected molecule. Other possibilities to select a molecule
consist of clicking on the molecule (preferably while holding the shift key down) or pressing the
Tab key, which cycles through all entries in the Select molecule submenu.

– Wire model (Alt+W)
The molecule will be drawn with lines. This is the default.

– Stick model (Alt+T)
The molecule will be drawn with sticks.

– Ball and stick model (Alt+A)
The molecule will be drawn with balls and sticks.

– CPK model (Alt+C)
The molecule will be drawn with CPKs.

– Geometry ...
A submenu is provided with the following topics:� Clear all (Ctrl+A)

If this topic is selected all labels of bond lengths, bond angles, and torsion angles are deleted.� Clear last (Ctrl+L)
If this topic is selected the label of a bond length, bond angle, or torsion angle created last
is deleted.� Undo geometry change (Ctrl+U)
If this topic is selected, the last geometry change (cf. p. 27) is reversed. All geometry
changes are buffered in the undo buffer and can be reversed one by one by repeatedly using
this menu item. Geometry changes can also be reversed through the molecule editor.

– Bond types ...
Brings up the dialog box shown in Figure 2.� single only

All bonds are drawn as single bonds.

11

Figure 2: The dialog box for setting options for bonds.� multiple
VIEWMOL determines the bond order for each bond considering connectivity and elements
only (only the following elements are used in the determination of bond orders: H, C, N, O,
F, Si, P, S, Cl, Ge, Br, I). VIEWMOL then draws bonds with the corresponding bond order.
Bond orders can also be changed in the molecule editor.� conjugated
VIEWMOL determines bond orders as for the “multiple” option. It then determines whether
multiple bonds are conjugated and draws them as such. This is the default, but can be
overwritten using resources (see p. 46).� Show hydrogen bonds
This button toggles the display of hydrogen bonds. Hydrogen bonds are determined auto-
matically by VIEWMOL based on a distance threshold.� Threshold for hydrogen bonds [Ang]
This slider can be used to set the distance threshold for the automatic determination of
hydrogen bonds. A hydrogen bond is shown if the distance between a hydrogen atom and
another atom is larger than the sum of their radii, but smaller than this threshold. The default
is 2 Å.� Scale radius for all atoms by
This menu and the slider beneath it can be used to scale the Van der Waals radius for an
element. Since the Van der Waals radius determines the connectivity of the atoms in the
molecule, changing it will also change the connectivity. The option menu can be used to
select which element to scale and the slider allows to set the scaling factor.

– Wave function ... (Alt+V)
The dialog box shown in Figure 3 is presented. This topic is only available with the outputs of

12

Figure 3: The dialog box for setting options for wave function related topics.

electronic structure programs (such as TURBOMOLE, GAUSSIAN, or MOPAC), and even then
only if either MO coefficients and basis functions or a grid with an orbital could be read in.
If TURBOMOLE output is used and the point group of the molecule in $symmetry is not C � ,
TURBOMOLE’s moloch program must be available (vide supra, p. 5) and only basis functions,
occupied MO’s, and electron densities can be drawn in this case. Since TURBOMOLE can handle
up to g functions and GAUSSIAN can handle up to f functions the same limitations apply to
VIEWMOL.
If any wave function related drawing is displayed and the grid resolution is changed the drawing
disappears and the recalculation has to be explicitly demanded by selecting this menu item again,
since large molecules require significant time for the recalculation. At the top of this dialog box
are five buttons which can be used to select the property which shall be shown.� All off

This topic disables the drawing of any wave function related topic. This is the default.� Basis function
This topic allows drawing of basis functions. After selecting it and closing the wave func-
tion dialog VIEWMOL prompts for an atom in its main window. Clicking on an atom with
the left mouse button will present a dialog box with all basis functions centered on this atom.
After selecting one of these basis functions and pressing the OK button the corresponding

13

basis function will be drawn.� Basis function in MO
This topic allows drawing of basis functions multiplied by the corresponding coefficient in
a molecular orbital. This topic works similar to the previous one, except that the menu will
show the MO coefficients in front of all basis functions. If no molecular orbital has been
selected in the MO energy diagram window a warning message will be displayed.� Molecular orbital
This topic allows the drawing of a molecular orbital. If no molecular orbital has been
selected in the MO energy diagram window a warning message will be displayed.� Electron density
This topic allows the drawing of the total electron density.

If grids have been read in there will be additional buttons to select one of these grids. If no basis
functions and MO coefficients have been read in, but grids only the buttons to select a grid and
the “All off” button are displayed (cf. right screenshot in Fig. 3).
Next to these buttons there is a slider which can be used to select the value of the isosurface used
to draw the property selected. Following this slider another three buttons allow the selection of
the interpolation method used in drawing the property.� None

No interpolation is done. The resulting drawing normally has a lot of edges.� Linear
A linear interpolation is done between grid points. This gives a much smoother surface.� Logarithmic
A logarithmic interpolation is done between grid points. This improves the quality of draw-
ing further.

The default is linear, but this can be overwritten in the resource file (vide infra, p. 46). Following
is another slider with can be used to set the resolution of the grid. As higher the number selected
here as finer the grid and as smoother the resulting surface, but the calculation time goes with
the third power of this number. Default is 20, but this can be overwritten in the resource file
(vide infra, p. 46). At the bottom of the dialog box is a toggle button which can be used to
turn automatic recalculation of MOs etc. on whenever the energy level is changed. Since these
calculations can be quite time consuming, this button is off by default, but this can be overwritten
in the resource file (vide infra, p. 46).

– Energy level diagram (Alt+E)
A new window will appear which shows the calculated energies of the MOs in an energy level
diagram. This topic is only available using DMOL, GAMESS, GAUSSIAN 9X, MOPAC, or TUR-
BOMOLE outputs. In TURBOMOLE outputs either the data group $scfmo or the data groups
$uhfmo_alpha and $uhfmo_betamust be available.

– Optimization history (Alt+O)
A diagram is plotted in a second window which shows the energies and gradient norms of the
geometry optimization. With the cursor keys for moving to the left ���� and to the right �����
one can see how the geometry optimization works. Alternatively, the red cross can be dragged
with the mouse.

– Show forces (Alt+F)
The calculated forces acting on the atoms are drawn as arrows. This topic is not available using
DISCOVER outputs. The topic is also not available, if no forces were found for the current
coordinates.

14

Figure 4: The dialog box for handling thermodynamics calculations.

– Spectrum (Alt+S)
A new window will appear which shows the calculated spectrum for the molecule. This topic is
only available if a force constants calculation has been performed.

– Thermodynamics (Alt+Y)
The dialog box shown in Figure 4 is displayed. On the top of this dialog box a number of tabs

can be found. All tabs except the last one allow to select the display of thermodynamical data
for one of the molecules loaded in VIEWMOL. The last tab will display thermodynamical data
for one or more defined reactions among the molecules loaded.
The screen for a molecule shows the title of that molecule on top. Underneath the molecular
mass (in g/mol), the symmetry number, and either the rotational constants (for molecules in
cm � �) or the density (for solids in g/cm

�
) are displayed on the left hand side. On the right hand

side there is a popup menu which allows the user to select whether this molecule should be a
reactant or a product in a reaction, or whether it is not involved in a reaction at all. The last item
in this popup menu, All reactions, will force VIEWMOL to determine a linear independent
set of possible reactions between all molecules where this item has been selected.
The remainder of the screen shows thermodynamical data for the molecule. On the left hand

15

Figure 5: The dialog box for modifying the unit cell.

side there are a number of buttons which can be used to select which contributions (translation,
pV, rotation, vibration) to include in the total which is used to calculate thermodynamical data
for a reaction. The enthalphy, entropy, Gibbs energy, and heat capacity are listed to the right,
split into contributions from translation, pV, rotation, and vibration.
The screen for reactions (not shown) shows the reaction equation on top. Underneath the val-
ues of reaction enthalphy, entropy, Gibbs energy, heat capacity, and the (decadic) logarithm of
the equilibrium constant are listed. The electronic and statistical-mechanic contributions to the
reaction enthalphy are listed separately.
At the bottom all screens share a popup menu for selecting the units to be used (Joules, calories,
or thermochemical calories) and two sliders. The top slider can be used to select the tempera-
ture at which the thermodynamical data are to be calculated, the bottom slider serves the same
purpose for the pressure.

– Unit cell (Alt+N)
The dialog box shown in Figure 5 is displayed. The first button on the left, visible, allows

to turn the display of the unit cell on or off. The three sliders on the left hand side can be used
to increase or decrease the number of unit cells displayed in each crystallographic direction. By
default between one and five unit cells can be selected.
The first button on the right, Show Miller plane, allows to turn the display of Miller planes
on or off. The three sliders underneath this button can be used to select the Miller plane to be
displayed. By default, all combinations between -5 and 5 for the Miller indices are possible.

– Show ellipsoid of inertia (Alt+I)
The display of the ellipsoid of inertia is toggled.

– Drawing modes ... (Alt+M)
The dialog box shown in Figure 6 is provided:� with dots

Drawing of sticks, balls, CPKs and/or molecular orbitals is done as a dot cloud.

16

Figure 6: The dialog box for setting options for drawing style.� with lines
Drawing of sticks, balls, CPKs and/or molecular orbitals is done with meshes.� with surface
Drawing of sticks, balls, CPKs and/or molecular orbitals is done with an opaque surface
which has the properties defined in the viewmolrc file (these properties hold for sticks as
well as for balls or CPKs).� Lines while rotating
If this option is selected the drawing of the molecule will be done with lines during trans-
lations and rotations. This speeds up movements on low-end graphics systems. The default
is off, but this can be changed in the resource file.� Orthographic projection
The molecule is drawn using an orthographic projection.� Perspective projection
The molecule is drawn using a perspective projection. This kind of projection resembles
more closely the way the human eye perceives things.� Move molecule
If this button is selected all translations and rotations carried out with the mouse act on the
currently selected molecule.� Move view point
If this button is selected all translations and rotations carried out with the mouse act on the

17

viewpoint. This option is only available if perspective projection is used. Moving the view
point allows the user to move into a molecule.� Move light 1
If this button is selected all translations and rotations carried out with the mouse act on light
1.� Move light 2
If this button is selected all translations and rotations carried out with the mouse act on light
2.� Lights on/off, Light 1� Lights on/off, Light 2
These two button can be used to switch lights on and off. Lights have only an effect if
the drawing mode is “with surface” and either the stick, ball-and-stick, or CPK model is
selected.� Resolution of spheres
The number of polygons used for the drawing of sticks, balls and/or CPKs is changed. A
higher value makes the surfaces more smoothly looking, but also decreases drawing speed.
A lower value makes the surfaces rougher looking, but increases drawing speed.� Line width
The line width used for drawing the molecule as wire frame model can be selected. A value
of 0 means dynamic determination of the line width based on the size of the window. This
value is the default.

– Ground color (Alt+G)
The color editor appears in a separate window which can be used to change the color of the
ground if perspective drawing is enabled (see description of the color editor below, p. 30).

– Background color (Alt+B)
The color editor appears in a separate window which can be used to change the background
color of the window (see description of the color editor below, p. 30).

– Label atoms (Alt+L)
The atoms are labeled with atom symbols from input files. A number counting the atoms ac-
cording to their order in the input is concatenated to the symbol.

– Annotate (Ctrl+N)
Annotations can be created in the main window using this topic. After selecting this topic the
cursor turns into a text input cursor. Clicking at any point in the main window now allows
to enter an arbitrary text string. Pressing � return � ends the annotation function. Existing
annotations can be edited by simply clicking on them or deleted by deleting all characters in the
string. Annotations can be moved in the same way as the molecule can be moved: hold a shift
key down, click on the annotation and move the mouse. Annotations support the clipboard, i. e.
annotations can be cut and pasted between applications.

– Run script
This topic pops up a second menu which can contain any number of items each representing
an installed Python script. At least one entry is always present Select ... which allows the
user to run arbitrary Python scripts.� Select ... (Ctrl+R)

A file selection box is displayed which allows the selection of a Python script to be run
within VIEWMOL.

18

Figure 7: The dialog box for setting options to save a drawing

– Save drawing (Alt+D)
The dialog box shown in Figure 7 is provided which can be used to set file formats, file names

and other options for writing the drawing to a file.� TIFF
The current drawing of the molecule is written out as a TIFF file. The “TIFF compression”
menu permits the selection of a compression algorithm. If normal modes are animated
while this option is selected a series of 20 TIFF files will be written out, each containing a
single frame of the animation. If the optimization history is animated when this option is
selected one TIFF file will be written for each conformation of the molecule encountered in
the optimization.� PNG
The current drawing of the molecule is written out as a PNG file. The “Background trans-
parent” check box allows to create a PNG file with a transparent background. If normal
modes are animated while this option is selected a series of 20 PNG files will be written
out, each containing a single frame of the animation. If the optimization history is ani-
mated when this option is selected one PNG file will be written for each conformation of
the molecule encountered in the optimization. By using standard image manipulation tools
available on the Internet it is possible to generate a video file (MPEG) from these TIFF or
PNG files which can be included in multimedia documents (vide infra, p. 44).� HPGL
The current drawing of the molecule is written out as a HPGL file for plotting on a plotter
or a laser printer. This topic is not available if the drawing is done with sticks, balls, or

19

CPKs and surfaces or when animations are running.� PostScript
The current drawing of the molecule is written out as a PostScript file. If this topic is
selected while the drawing is done with sticks, balls, or CPKs and surfaces a PostScript file
containing a bitmap is created. Such a file can become rather large (the size depends on
the size of the window) and it is not resolution independent which can result in artefacts on
printing.� Povray
The current drawing of the molecule is written out as an input file for POVRAY 3.5. This
topic is only available if the drawing is done with sticks, balls, or CPKs. If molecular
orbitals are drawn this topic is only available if the MO is drawn with a surface. If normal
modes are animated while this option is selected a series of 20 input files for POVRAY will
be written out, each containing a single frame of the animation.� Landscape� Portrait
The orientation of the drawing on the page can be chosen if the drawing is written out as
either a HPGL or a Postscript file.� TIFF compression
Can be used to select the compression mode for TIFF files. Due to a software patent on the
LZW compression algorithm this compression cannot be provided.� Background transparent
If a PNG file is to be written this check box can be used to specify a transparent background.� File
The name for the file to be generated.� Select
Brings up a file selection box to select the name for the file to be generated.� Paper size
Can be used to select the paper size for HPGL and PostScript outputs.� Paper width in mm� Paper height in mm
Input user defined paper width and height. Only available if “Paper size” is set to “User
defined”.

– Help/Manual (Alt+H)
This topic opens a window with the VIEWMOL manual. It requires that the file viewmol.html
can be accessed in the location $VIEWMOLPATH/doc.

– Configuration ...
The dialog box shown in Figure 8 is provided. At the top of this dialog the language VIEW-

MOL uses in its interface can be selected. VIEWMOL loads its language specific data from files
Viewmol from the directory $VIEWMOLPATH/locale/X where X stands for a language
identifier. The four text input fields can be used to specify the location of helper programs
VIEWMOL needs for some of its operations. If the corresponding program was found in the path
the dialog box will already show the correct information. If the programs specified here need
file names as parameters, put %s as a place holder for the file name in the command.
A the bottom is a button Save which allows the information entered in this dialog as well as
some other settings to be stored as resources in $HOME/.Xdefaults. The following settings

20

Figure 8: The dialog box for setting configuration options.

are saved: position and size of all open windows, window colors, selected model, selected draw-
ing mode, selected bond type, setting of “lines while rotating”, selected interpolation mode,
resolution of spheres, line width, selected isosurface, selected resolution for density of states,
setting of “automatic recalculation”, paper size, and hydrogen bond threshold. Note: On Linux
the setting of resources is kept across different invocations of the program. Saving the configura-
tion and restarting VIEWMOL will therefore apparently not work. To get rid of the old resource
settings issue the command xrdb -remove $HOME/.Xdefaults or log out and in again.

– Quit Viewmol (Q)
This quits the program.

6.3 The Spectrum Window

Choosing Spectrum from the main window menu will result in a new window showing the calculated
spectrum for the molecule. In this window the mouse acts as follows:� Clicking with the left mouse button on a line in the spectrum

The molecule shows the corresponding normal vibration.� Clicking with the middle mouse button in the window, holding it down and moving the mouse
This displays a rubber band box with which one can zoom into the spectrum.� Pressing the right mouse button
A menu will appear.

The menu contains the following topics:

21

Figure 9: The dialog box for setting options for the spectrum

– Settings for spectrum ... (Alt+S)
Selecting this topic displays the dialog box shown in Figure 9.� Type of spectrum

The buttons labeled All modes, IR active modes, Raman
active modes, and Inelastic neutron scattering can be used to se-
lect the type of spectrum desired. IR active modes are the default.� Animation
The buttons labeled Animate, Draw arrows, and Distort can be used to select
whether the normal modes are to be shown animated or with arrows or whether you want
to distort the molecule along a normal mode. A distorted molecule can be saved using the
Save molecule option from the main menu. Animation is the default.� Line shapes
The buttons Line spectrum and Gaussian spectrum can be used to select whether
the spectrum is drawn as simple line spectrum or whether a Gaussian band shape [1] should
be applied. Line spectrum is the default.� Set weights for inelastic neutron scattering
When you activate this option you can enter a value in the field to the right. After choosing
the OK button all weights are drawn at the atoms in the main window and you can set an
atom’s weight just by clicking on it with the left mouse button. All weights are set initially to

22

zero, so that selecting Inelastic neutron scattering as spectrum type produces
nothing.� Wave numbers shown on top
This option controls the orientation of the spectrum. The default is to have zero intensity
on top with the bands pointing downwards. If this option is deactivated zero intensity is at
the bottom and the bands are pointing upwards.� Show grid
This option controls whether a grid is shown in the spectrum window. The default is on.� Line width
The value entered in this text box controls the line width of the drawing in the spectrum
window.� Temperature
This slider can be used to set the temperature. The temperature is used for the calculation
of the inelastic neutron scattering intensities and for the Gaussian shaped spectrum.� Amplitude
This slider can be used to change the amplitude of the vibration. Its value is multiplied with
the standard amplitude of a vibration. This slider can also be used to change the distortion
of the molecule while Distort is selected.� Scale wave numbers
This slider can be used to scale the wave numbers.

– Select molecule
Provides a submenu with the names of all molecules currently loaded and can be used to change
the molecule for the currently displayed spectrum. Another possibility to select a molecule
consists of pressing the Tab key, which cycles through all entries in the Select molecule
submenu.

– Imaginary wave numbers
If the conformation of the molecule is a saddle point you have imaginary wave numbers. The
corresponding “normal modes” can be shown by selecting a imaginary wave number from this
submenu.

– Read observed spectrum ... (Alt+R)
This topic can be used to read a spectrum from a file and display it along the calculated spectrum.
Selecting this topic opens a file selection box to chose the file. This file has to contain a spectrum
with one wave number and intensity per line. All points read are connected by a line to form a
continuous spectrum (there is currently no possibility to read a line spectrum). Lines with a ’#’
or a letter in the first column are ignored.

– Delete observed spectrum ... (Alt+E)
This topic deletes a spectrum read with “Read observed spectrum”.

– Zoom out (Alt+Z)
This topic can be used to zoom out of the spectrum after previous zoom-ins. The zoom mecha-
nism stores all previous enlargement steps. By selecting this topic you move back one step.

– Save drawing (Alt+D)
The same dialog box as for Save drawing in the main menu is shown and allows you to save
the spectrum as a TIFF, PNG, HPGL, or PostScript file (cf. p. 19).

– Foreground color (Alt+F)
The foreground color of the spectrum can be changed using the color editor (vide infra, p. 30).

23

Figure 10: The dialog box for setting options for the optimization history

– Background color (Alt+B)
The background color of the spectrum can be changed using the color editor (vide infra, p. 30).

– Quit spectrum (Alt+Q)
This closes the spectrum window.� Pressing the arrow keys ����� and ���� , respectively

The next lower and higher wave number, respectively is selected and the molecule shows the corre-
sponding normal vibration. Normal vibrations of imaginary wave numbers can be displayed in this
manner, too.

6.4 The Optimization History Window

Choosing Optimization history from the main window menu will result in a new window showing
the energy and gradient norm in dependence of the step number of the geometry optimization. In this
window the mouse acts as follows:� Pressing the left mouse button and holding it down

The red cross showing the actual step of the geometry optimization can be moved with the mouse.
The main window shows the corresponding geometry. Changing the actual step can also be achieved
using the cursor keys for moving to the left ���� and to the right ����� , respectively.� Pressing the right mouse button
A menu will appear.

The menu contains the following topics:

– Settings for history ... (Alt+S)
Selecting this topic displays the dialog box shown in Figure 10.� Energies

If this button is selected the energy curve is drawn. The default is on.� Gradient norms
If this button is selected the gradient norm curve is drawn. The default is on.� Scales
This button toggles drawing of the scales on and off. The default is on.

24

– Select molecule
Provides a submenu with the names of all molecules currently loaded and can be used to
change the molecule for the currently displayed optimization history. Another possibility to
select a molecule consists of pressing the Tab key, which cycles through all entries in the
Select molecule submenu.

– Animate (Alt+A)
Selecting this topic will animate the optimization history. To stop the animation select this topic
again.

– Save drawing (Alt+D)
The same dialog box as for Save drawing in the main menu is shown and allows you to save
the optimization history as a TIFF, PNG, HPGL, or PostScript file (cf. p. 19).

– Color for energy (Alt+E)
The color for the energy curve can be changed using the color editor (vide infra, p. 30).

– Color for gradient norm (Alt+G)
The color for the gradient norm curve can be changed using the color editor (vide infra, p. 30).

– Background color (Alt+B)
The background color of the diagram can be changed using the color editor (vide infra, p. 30).

– Quit history (Q)
This closes the optimization history window.

6.5 The Energy Level Diagram Window

Choosing Energy level diagram from the main window menu will result in a new window showing
the calculated MO energies in an energy level diagram. In this window the mouse acts as follows:� Clicking with the left mouse button on a line

A box appears containing the symmetry and the energy for this MO. Selecting a MO can also be
achieved by pressing the cursor keys for moving up ���	� and down ��
	� , respectively.� Clicking in the window, pressing the middle mouse button and holding it down
With the rubber band box drawn one can zoom into the diagram.� Pressing the right mouse button
A menu will appear.

The menu contains the following topics:

– Settings for energy level diagram ... (Alt+S)
Selecting this topic displays the dialog shown in Figure 11.� Units

The four buttons can be used to select the energy unit. Available are Hartrees (default),
kJ/mol, eV, and cm � � .� Resolution for density of states
This slider can be used to change the resolution for the density of states. A smaller value
results in a higher resolution. The default is 0.01. The minimum, maximum, and default
values can be set in the resource file. (vide infra, p. 46).

25

Figure 11: The dialog box for setting the energy units for the MO energy level diagram

– Select molecule
Provides a submenu with the names of all molecules currently loaded and can be used to
change the molecule for the currently displayed energy level diagram. Another possibility to
select a molecule consists of pressing the Tab key, which cycles through all entries in the
Select molecule submenu.

– Transition (Alt+T)
This topic can be used to calculate the energy for a transition between two MO’s. This topic is
available only if one MO was selected by clicking on it. Choosing this menu topic followed by
clicking on an other MO draws a line showing the transition and a box containing the symmetry
labels and the energy difference between these two MO’s. Further clicks on other MO’s repeat
calculations of energy differences. To leave this mode click either somewhere in the window
were no MO’s are or select this topic from the menu again.

– Zoom out (Alt+Z)
This topic can be used to zoom out of the diagram after previous zoom-ins. The zoom mecha-
nism stores all previous enlargement steps. By selecting this topic you move back one step.

– Save drawing (Alt+D)
The same dialog box as for Save drawing in the main menu is shown and allows you to save
the energy level diagram as a TIFF, PNG, HPGL, or PostScript file (cf. p. 19).

– Draw density of states (Alt+D)
This topic can be used to toggle between the density of states and the energy level diagram. The
energy level diagram is the default.

– Foreground color (Alt+F)
The foreground color of the diagram can be changed using the color editor (vide infra, p. 30).

– Background color (Alt+B)
The background color of the diagram can be changed using the color editor (vide infra, p. 30).

– Quit energy diagram (Q)
This closes the energy level diagram window.

26

7 Editing molecules

VIEWMOL allows the building and editing of molecules. Bond lengths, bond angles, and torsion angles of
an existing molecule can be changed, atoms can be replaced and added or deleted. New molecules can be
build.

7.1 Changing bond lengths, bond angles, and torsion angles

To change a bond length, a bond angle, or a torsion angle click on the corresponding atoms and then press
the right mouse button. This will display the length of the bond and the value of the bond or torsion angle,
respectively (cf. p. 9). Now click on the number with the left mouse button. A cursor will appear and the
value displayed can be changed. After pressing Return the new value for the bond length, bond angle, or
torsion angle will be set. The atom which has been clicked on first (and all atoms connected to it) will be
moved. It is impossible to change bond lengths, bond angles, or torsion angles if they are part of a ring. All
changes in geometry can be reversed by using Undo geometry change from the Geometrymenu or
the corresponding button in the molecule editor dialog box. The number of undos is unlimited.

7.2 Adding or replacing atoms

From the main window menu select the Modify molecule entry in the Molecule submenu. The dialog
box shown in Figure 12 is displayed. The upper part contains the periodic table of elements and allows the
selection of the element to be added or used as replacement.

In the middle there are a number of buttons for selecting different operations and certain defaults. These are
the following:� Change geometry

If this item has been chosen atoms can be selected with the mouse and geometry changes carried out
as described in the previous section.� Add atom
An atom of the element selected in the periodic table will be attached to the atom in the molecule
clicked on with the left mouse button. The new bond will have the bond order selected in the editor
dialog box and a bond length which is 90 % of the sum of the atomic radii (read from the viewmolrc
file). The local geometry of the atom clicked on will be changed to reflect the current coordination
of this atom (two bond partners – linear, three – trigonal planar, four – tetrahedral, five – trigonal
bipyramidal, six – octahedral, seven – pentagonal bipyramidal etc.).� Delete atom
An atom clicked on with the left mouse button will be deleted. If Deleting atoms
changes local geometry is turned on the local geometry of the atom(s) connected to the
deleted one will be changed in the same way as described under Add atom. Otherwise the local
geometry remains as before.� Replace atom
The atom clicked on with the left mouse button is replaced by the element selected in the periodic
table. Bond lengths are adjusted to reflect the new element as long as the atom changed is not part of
a ring.

27

Figure 12: The molecule editor

28

� Create bond
A new bond will be created between the two atoms clicked on with the left mouse button. This bond
will have the order selected under Bonds are.� Remove bond
The bond between the two atoms clicked on with the left mouse button is deleted. Bonds created or
removed by the user have precedence over bonds created automatically. This means that once a bond
has been created by the user only the user can remove it and vice versa regardless of what happens to
the molecule.� Change bond order
The bond between the two atoms clicked on with the left mouse button is assigned the bond border
selected under Bonds are.� Torsion angles default to
While building a molecule bond lengths of newly created bonds are set to 90 % of the sum of the
atomic radii of the bonded atoms and bond angles are assigned according to the coordination. Torsion
angles can be selected from this menu. Available values are trans (180 �), cis (90 �), gauche (60 �), and� gauche (����� �). This allows the construction of more complicated molecules. The torsion angle is
always measured along the backbone of a molecule, i. e. while building e. g. a hydrocarbon chain
the torsion angle is always measured between the carbon atoms. The backbone of a molecule is
determined by counting all atoms attached to one atom and following the bonds which connect the
atoms with the largest number of other atoms attached.� Bonds are
This menu allows the selection of the bond order for bonds. Available are single, double, and triple.
Bond conjugation and hydrogen bonds are determined automatically according to the respective set-
tings in the Bond type menu.� Deleting atoms changes local geometry
If an atom is deleted the local geometry of the atom(s) bonded to it can either be left unchanged or
modified according to the new coordination. This switch can be used to select which behavior is
preferred.

In the bottom row of the molecule editor dialog box is a button Undo geometry change which can be
used to reverse all changes to the molecule (except changes to bonds). The number of undos is unlimited.

7.3 Example: Building cyclohexane

Cyclohexane in its chair configuration has a structure which seems quite complicated to generate, but
it can easily be built using VIEWMOL’s molecule builder. First, start VIEWMOL without any parame-
ter on the command line and press Cancel in the file selection box which pops up. You should now
have an empty window on your screen. Press the right mouse button within this window and select
Molecule/New molecule ... from the pop-up menu. The molecule editor will open up. We start
building cyclohexane by building one of the tetrahedra:� Select C from the periodic table.

29

� Click with the left mouse button in VIEWMOL’s window. This will place the first carbon atom at the
origin.� Click with the left mouse button on the first carbon atom. This will attach the second carbon atom to
the first.� Click with the left mouse button on the second carbon atom. This will attach the third carbon atom to
the second.� Select H from the periodic table and click twice on the central carbon atom. The molecule should now
look like the left one in Figure 13.

To continue building cyclohexane we have to remember that the torsion angles among the carbon atoms al-
ternate between gauche and � gauche which can be determined easily by looking at the Newman projection:

H

H

H
HH

H
H

2

2

H

H

C

C

H

� Select C again and set the default torsion angle to gauche.� Click on one of the end carbon atoms. Then select H and click on the same carbon atom two more
times.� Change the default torsion angle to � gauche and repeat the last two steps on the just added carbon
atom. The molecule should now look like the one in the middle of Figure 13.� Change the default torsion angle to gauche again and add a carbon atom and one hydrogen atom to
the last carbon atom. The molecule will now look like the right one in Figure 13.� Change the default torsion angle to trans and add the second hydrogen atom to the carbon atom added
last.� Now change the default torsion angle to � gauche and add one hydrogen atom to the next carbon atom
in the ring, then change the default torsion angle to trans and add the second hydrogen atom.� Finally, complete cyclohexane by adding first a hydrogen with the default set to trans and than a
hydrogen with the default set to gauche to the next carbon atom in the ring.

8 The color editor

All menus contain items for changing colors. Selecting one of these items displays the color editor (cf.
Figure 14). In the first row of the color editor dialog box are a number of different colored boxes. You can

30

Figure 13: Building cyclohexane

Figure 14: The color editor

select one of these colors just by clicking in the corresponding box with the left mouse button. The color
you want to change in the picture changes, too, but this is not a permanent change until you click the OK
button.

If none of the colors in the boxes satisfies your needs you can set up your own color by moving one of the
sliders for red, green, or blue with the left mouse button. The color in the picture you want to change shows
the currently selected color and by clicking the OK button you change your color permanently.

If the color editor has been brought up to edit the background color of the main window three buttons labeled
Smooth are present. Activating any of these buttons will create a color ramp for the corresponding color
and mix it with the other RGB components. The slider for this color then has no effect. That way interesting
shading effects in the background can be generated.

9 Script tools

VIEWMOL can be extended using Python scripts. A number of such scripts are part of the VIEWMOL

distribution and come installed in the “Run script” menu or as output filter. The following scripts are

31

Figure 15: The dialog to change atom colors

included:� Demonstration
This script runs a short demonstration of VIEWMOL’s capabilities. It can be interrupted by pressing
Ctrl-C.� Set atom colors
This script allows to interactively change the colors for an element. It allows to save the changes to the
viewmolrc file so that manual editing of this file might no longer be necessary. If started from the
“Set atom colors” submenu entry a dialog as shown in Fig. 15 is presented4 . The pulldown menu at
the top allows to select which element to operate on. It contains all the elements from the molecule(s)
currently loaded in VIEWMOL. The four colored boxes and associated buttons allow the selection of
the element color, the emission color, the ambient color, and the specular color. Pressing the button
brings up a color selection dialog. Beneath the buttons there are two sliders which allow to change
the transparency and the shininess for the selected element. The three buttons at the bottom allow
the user to confirm the changes and therefore apply them permanently to the molecule(s), to confirm
the changes and also save them in the $HOME/.viewmolrc file in the users HOME directory, or to
cancel the changes and reverting back to the original colors.� Template
This is a script template which shows how to make Python scripts register themselves with VIEWMOL.
It does nothing useful.� UFF optimization
If you have TURBOMOLE this script can be used to perform a geometry optimization using the UFF

4This script requires Tkinter and the Python Mega Widgets (Pmw) to be installed. Tkinter is usually available with Python. The
Python Mega Widgets can be found at http://pmw.sourceforge.net/.

32

module shipping with TURBOMOLE. The necessary input files are generated, the UFF optimization is
performed, and the resulting structure is read back.� Gaussian 98 input file
This script generates a complete input file for GAUSSIAN 98. It is not accessible from the “Run

script” menu, but is installed as output filter and can therefore be accessed through the “Molecule/Save
molecule ...” menu items. The script presents the dialog shown in Fig. 16 which allows setting of
various options for GAUSSIAN 98. This script is courtesy of Stephan Schenk (stephan.schenk@uni-
jena.de).

10 Programming VIEWMOL with Python

VIEWMOL can be programmed using Python. The Python interpreter embedded in VIEWMOL has been
extended by the modules:� atom� element� energylevel� history� label� light� molecule� spectrum� viewmol

which allow Python programs access to VIEWMOL’s internal data model and functions. Each module pro-
vides a number of functions for use in Python programs.

10.1 The atom module

getElement()
Returns the element object for an atom.

coordinates([x, y, z])
Sets or returns the Cartesian coordinates for an atom. If x, y, and z are given as doubles the Cartesian
coordinates are set to x, y, and z. Otherwise a tupel with the x, y, and z coordinates and the name of
an atom is returned.

radius([rad])
Sets or returns the Van der Waals radius for an atom. If rad is given it has to be a double. The Van der
Waals radius is measured in Ångstrøms.

33

Figure 16: The dialog to create an input file for GAUSSIAN 98

34

radiusScaleFactor([scaleFactor])
Sets or returns the scale factor for the radius of an atom. If scaleFactor is given it has to be a double.
The scale factor must be greater than or equal zero.

neutronScatteringFactor([factor])
Sets or returns the neutron scattering factor for an atom. If factor is given it has to be a double. The
neutron scattering factor must be greater than or equal zero.

name([name])
Sets or returns the name of an atom. If name is given it has to be a string. The maximum length of the
string is eight characters.

replace(elementSymbol)
Replaces the atom with an atom of element elementSymbol. elementSymbol has to be a string and a
valid element symbol.

delete()
Deletes this atom. Note: Atoms cannot be deleted using Python’s del operator since Python works
on VIEWMOL’s data structures.

10.2 The element module

getSymbol()
Returns the element symbol for an element.

darkColor([red, green, blue])
Sets or returns the red, green, and blue values for the darkest part of an atom of an element. If red,
green, and blue are given they have to be floats between 0.0 and 1.0. If the color is queried, it is
returned as a tupel of red, green, and blue values.

lightColor([red, green, blue])
Sets or returns the red, green, and blue values for the lightest part of an atom of an element. If red,
green, and blue are given they have to be floats between 0.0 and 1.0. If the color is queried, it is
returned as a tupel of red, green, and blue values.

emissionColor([red, green, blue])
Sets or returns the red, green, and blue values of the color an atom of an element emits. If red, green,
and blue are given they have to be floats between 0.0 and 1.0. If the color is queried, it is returned as
a tupel of red, green, and blue values.

ambientColor([red, green, blue])
Sets or returns the red, green, and blue values of the ambient color of an atom of an element. If red,
green, and blue are given they have to be floats between 0.0 and 1.0. If the color is queried, it is
returned as a tupel of red, green, and blue values.

specularColor([red, green, blue])
Sets or returns the red, green, and blue values of the specular color of an atom of an element. If red,
green, and blue are given they have to be floats between 0.0 and 1.0. If the color is queried, it is
returned as a tupel of red, green, and blue values.

shininess([shininess])
Sets or returns the shininess of an atom of an element. If shininess is given it has to be a float between

35

0.0 and 128.0.

transperancy([transperancy])
Sets or returns the transperancy of an atom of an element. If transperancy is given it has to be a float
between 0.0 and 1.0.

10.3 The energylevel module

show()
Displays the energy level diagram window for a molecule.

unit([unit])
Sets or returns the energy unit for the energy level diagram. unit has to be one of the integer constants
HARTREE, KJ/MOL, EV, or 1/CM defined in the energylevelmodule.

resolution([resolution])
Sets or returns the resolution for the energy level diagram. resolution has to be a double greater than
zero.

mode([mode])
Sets or returns the mode for the energy level diagram. mode has to be one of the integer constants
ENERGY_LEVELS or DENSITY_OF_STATES defined in the energylevelmodule.

selectMO(mo1, [mo2])
Selects one or two molecular orbitals. mo1 and mo2 have to be integers between 0 and the number of
molecular orbitals.

deselect()
Deselects molecular orbitals which have been selected with a call to selectMO.

saveDrawing(format, filename)
Saves the energy level diagram to file. format has to be one of the integer constants TIFF, PNG,
HPGL, or POSTSCRIPT defined in the viewmol module. filename has to be a string containing the
name of the file the drawing is saved to.

The energy level diagram window can be closed by deleting the energylevel object.

10.4 The history module

show()
Displays the optimization history window for a molecule.

showEnergy(status)
Sets the displays of the energy curve to status. status has to be one of the integer constants ON or OFF
defined in the viewmolmodule.

showGradient(status)
Sets the displays of the gradient curve to status. status has to be one of the integer constants ON or
OFF defined in the viewmol module.

showScales(status)
Sets the displays of the scales to status. status has to be one of the integer constants ON or OFF defined
in the viewmolmodule.

36

animate(status)
Sets the animation of the optimization history to status. status has to be one of the integer constants
ON or OFF defined in the viewmolmodule.

iteration([iteration])
Sets or returns the iteration displayed. iteration has to be an integer between 0 and the number of
optimization steps for this molecule.

saveDrawing(format, filename)
Saves the energy level diagram to file. format has to be one of the integer constants TIFF, PNG,
HPGL, or POSTSCRIPT defined in the viewmol module, filename the name of the file the drawing
is saved to.

The optimization history window can be closed by deleting the history object.

10.5 The label module

label([mode])
Creates a new label. mode is an optional integer denoting whether the label is editable by the
user, moveable by the user, or both. In the first case mode has to be set to the integer constant
EDITABLE, in the second case to the integer constant MOVEABLE, and in the last case to EDITABLE
| MOVEABLE. The integer constants are defined in the labelmodule. The default mode is editable
and moveable.

translate(x, y, z)
Sets the postion of a label. x, y, and z are integers specifying the coordinates of the label in pixels.
The z coordinate has no effect.

text([text])
Sets or returns the text of an label. If present text has to be a string. The maximum number of
characters for a label is limited to 255.

setColor(red, green, blue, alpha)
Sets the red, green, blue, and alpha components of a label’s color. red, green, blue, and alpha have to
be floats between 0.0 and 1.0. The default color for a label is black.

delete()
Deletes a label.

10.6 The light module

rotate(x, y, z)
Rotates a light. x, y, and z are the angles the light is to be rotated about the x, y, and z axis, respectively.
These are integers and are measured in degrees.

switch(status)
Switches a light on or off. status is one of the integer constants ON or OFF defined in the viewmol
module.

37

10.7 The molecule module

molecule()
Creates a new instance of a molecule object and returns a reference to it. Note: To obtain object
references to molecules already loaded into VIEWMOL use the getMolecules function of the
viewmol module.

translate(x, y, z)
Translates (shifts) molecule by x, y, and z along the x, y, and z axis, respectively. x, y, and z have to
be integers and are measured in pixels of the screen.

rotate(x, y, z)
Rotates molecule by x, y, and z about x, y, and z axis, respectively. x, y, and z have to be integers and
are measured in degrees.

getSpectrum()
Creates a new instance of a spectrum object and returns a reference to it if there is spectral information
associated with this molecule.

getEnergyLevels()
Creates a new instance of an energy level object and returns a reference to it if there is information
about energy levels associated with this molecule.

getHistory()
Creates a new instance of a history object and returns a reference to it if there is information about the
optimization history associated with this molecule.

showForces(status)
Sets the display of forces for all molecules to status. status has to be one of the integer constants ON
or OFF defined in the viewmolmodule.

getAtoms()
Returns a list containing references to all atom objects the molecule is composed off.

getBonds()
Returns a list of tupels describing all bonds in the molecule. The tupels consists of three inte-
gers (atom1, atom2, order) where atom1 and atom2 are the indices of the two atoms
forming the bond and order is the bond order. The bond order can be one of the con-
stants HYDROGENBOND, CONJUGATED, SINGLE, DOUBLE, or TRIPLE for hydrogen/Van der
Waals, conjugated, single, double, and triple bonds, respectively. These constants are defined in the
moleculemodule.

getWavenumbers()
Returns a list of tupels describing all wave numbers of the molecule. The tu-
pel consists of four floats and one string (waveNumber, IRIntensity,
RamanIntensity, INSIntensity, symmetry) where waveNumber is the wave
number in cm � � , IRIntensity, RamanIntensity, and INSIntensity are the IR, Raman,
and inelastic neutron scattering intensities in per cent, and symmetry is a label describing the
symmetry of the mode.

getMOEnergies()
Returns a list of tupels providing information about all molecular orbitals of
the molecule. The tupel consists of two floats, one integer, and one string

38

(energy, occupation, spin, symmetry) where energy is the energy of the molecular
orbital in Hartrees, occupation is the number of electrons in this orbital, spin in one of the
constants ALPHA+BETA, ALPHA, or BETA describing what spin has been assigned to this orbital,
and symmetry is a label describing the symmetry of the molecular orbital. The constants are
defined in the moleculemodule.

title([title])
Sets or returns the title of a molecule. title has to be a string. The maximum length of the title is
limited to 255 characters.

bondAverage(atom)
Returns the average of the lengths of all bonds involving atom atom in Ångstrøms. atom is an atom
object.

bondLength(atom1, atom2, [length, unit])
Returns or sets the length of the bond between atoms atom1 and atom2. atom1 and atom2 have to be
atom objects, the bond length is returned in Ångstrøms. If length and unit are given, the bond length
is set. length is a double, unit a string containing either Ang, au or bohr, or pm for Ångstrøms,
atomic units, or picometers. Everything else is interpreted as Ångstrøms.

bondAngle(atom1, atom2, atom3, [angle])
Returns or sets the bond angle atom1–atom2–atom3. atom1, atom2, atom3 are atom objects. If angle
is given the bond angle is set. angle has to be a double and is measured in degrees.

torsionAngle(atom1, atoms2, atom3, atom4, [torsionAngle])
Returns or sets the torsion angle atom1–atom2–atom3–atom4. atom1, atom2, atom3, atom4 are atom
objects. If torsionAngle is given the torsion angle is set. torsionAngle has to be a double and is
measured in degrees.

getThermodynamics(property, type)
Returns a thermodynamical property of the molecule. property and type are integers. property can
be one of the integer constants ENTHALPY, ENTROPY, GIBBS_ENERGY, or HEAT_CAPACITY
defined in the molecule module. type can be one of the integer constants TRANSLATION, PV,
ROTATION, VIBRATION, or TOTAL also defined in the molecule module. The returned thermo-
dynamic property will be in SI units.

reaction([side])
Sets or returns whether the molecule is a reactant or a product in a reaction. side is an integer and
can be set to one of the integer constants REACTANT, PRODUCT, or ALLREACTIONS defined in the
moleculemodule.

showElectrons(type, [gridResolution, interpolation])
Displays wave function related properties of the molecule. type is an integer and can be set to
one of the integer constants BASIS_FUNCTION, BASIS_IN_MO, MO, or DENSITY defined in the
molecule module. gridResolution is a double specifying the resolution of the grid used to calcu-
late the isosurface. Larger values for gridResolution result in smoother displays. interpolation is an
optional integer and can be one of the integer constants IP_NONE (no interpolation), IP_LINEAR
(linear interpolation), or IP_LOG (logarithmic interpolation) defined in the moleculemodule.

showGrid(which, [interpolation])
Displays a property which has been read as a grid. which is an integer between 1 and the number of
grids which have been read for this molecule and identifies the grid to be shown. interpolation is an

39

optional integer and can be one of the integer constants IP_NONE (no interpolation), IP_LINEAR
(linear interpolation), or IP_LOG (logarithmic interpolation) defined in the moleculemodule.

selectBasisfunction(atom, name, count)
Selects a basis function for display. atom is an atom object specifying which atom the ba-
sis function belongs to. name is a string specifying what kind of basis function (s, p,
d, etc.) to select. count is an integer specifying which of the s, p, d, etc. func-
tions to select. Assume atom 1 is a carbon atom in a calculation using a DZVP ba-
sis set. It therefore has three s functions. selectBasisfunction(1, "s", 1) would
select the 1s function, selectBasisfunction(1, "s", 2) the first 2s function, and
selectBasisfunction(1, "s", 3) the second 2s function.

unitCell(visible, [afac, bfac, cfac])
Sets visibility and number of replicas of unit cell. visible has to be one of the integer constants ON or
OFF defined in the viewmolmodule to turn display of the unit cell on or off. afac, bfac, and cfac are
doubles specifying the number of replicas of the unit cell to be displayed along the a, b, and c axis,
respectively. Fractions are allowed for afac, bfac, and cfac.

millerPlane(visible, [h, k, l])
Sets visibility and orientation of Miller plane. visible has to be one of the integer constants ON or OFF
defined in the viewmol module to turn display of a Miller plane on or off. h, k, and l are integers
specifying the Miller indices of the plane to display.

addAtom(symbol, [attach])
Adds an atom to the molecule. symbol is a string containing the element symbol of the atom to add.
attach is an atom object specifying the atom the newly added atom should be attached to. attach can
be omitted, but this is only useful for adding the first atom to a molecule.

10.8 The spectrum module

show()
Displays the spectrum window for a molecule.

mode([mode])
Displays the mode specified or returns the mode displayed. mode has to be an integer between 1 and
the maximum number of vibrational modes for this molecule.

deselect()
Deselects modes previously selected with a call to mode.

type([type])
Sets or returns the type of the spectrum displayed. type has to be one of the integer constants
ALLMODES, IRMODES, RAMANMODES, or INSMODES defined in the spectrum module to set the
display to all modes, IR active modes, Raman active modes, or inelastic neutron scattering display.

display([type])
Sets or returns the way normal modes are displayed. type has to be one of the integer constants
ANIMATE, ARROWS, or DISTORT defined in the spectrum module to display normal modes ani-
mated, with arrows, or as distortion.

style([style])
Sets or returns the display style of the spectrum. style has to be one of the integer constants LINES or

40

GAUSSIANS defined in the spectrum module to set the display style to line spectrum or gaussian
spectrum.

amplitude([amplitude])
Sets or returns the amplitude of a normal mode. amplitude has to be a double.

scaleFactor([factor])
Sets or returns the scale factor for the wave numbers in a spectrum. factor has to be a double.

zoom(x1, y1, x2, y2)
Sets the zoom of the spectrum. x1, y1, x2, and y2 are doubles specifying the minimum and maximum
values of wave numbers and intensities, respectively, to be displayed. x1 and x2 as well as y1 and y2
cannot be equal.

saveDrawing(format, filename)
Saves the spectrum to file. format has to be one of the constants TIFF, PNG, HPGL, or POSTSCRIPT
defined in the viewmolmodule, filename the name of the file the drawing is to be saved to.

The spectrum window can be closed by deleting the spectrum object.

10.9 The viewmol module

load(filename)
Loads a molecule into VIEWMOL. filename has to be a string containing the name (and path if neces-
sary) of the file to load.

save(molecule, filename, format)
Saves molecule molecule in the format format to file filename. molecule has to be a molecule object,
filename a string giving the name of the file (including path, if appropriate) the molecule is to be saved
to, and format a string describing the format in which the molecule is to be saved. format can be any
of the strings given after the output keyword in viewmolrc (currently car, arc, mol, or tm).

delete(molecule)
Deletes molecule molecule. molecule has to be a molecule object. Note: Molecules cannot be deleted
using Python’s del operator since Python works on VIEWMOL’s data structures.

getMolecules()
Returns a list of the molecules loaded into VIEWMOL.

getLights()
Returns a list of the available lights.

getLabels()
Returns a list of all labels known to VIEWMOL.

model([model])
Sets or returns the model used to display molecules. model has to be one of the integer constants
WIREMODEL, STICKMODEL, BALLMODEL, or CPKMODEL defined in the viewmol module to set
the model to wire model, stick model, ball-and-stick model, and CPK model, respectively.

drawingMode([mode])
Sets or returns the drawing mode for molecules. mode has to be one of the integer constants DOT,
LINE, or SURFACE defined in the viewmolmodule to set the drawing mode correspondingly.

41

projection([projection])
Sets or returns the projection. projection has to be one of the integer constants ORTHO or
PERSPECTIVE defined in the viewmolmodule.

sphereResolution([resolution])
Sets or returns the resolution for spheres and cylinders. resolution has to be an integer. Higher
resolutions result in smoother looking spheres and cylinders.

lineWidth([width])
Sets or returns the line width for wire model displays. width has to be an integer. If width is set to
zero the line width is calculated based on the size of the window.

groundColor([red, green, blue])
Sets or returns the color of the ground displayed if the projection is set to PERSPECTIVE. red, green,
and blue are floats specifying the red, green, and blue components of the ground color. They have to
be between 0.0 and 1.0. If the ground color is retrieved, a tupel with the red, green, and blue values is
returned.

backgroundColor([red, green, blue])
Sets or returns the color of the background. red, green, and blue are floats specifying the red, green,
and blue components of the background color. They have to be between 0.0 and 1.0. If the background
color is retrieved, a tupel with the red, green, and blue values is returned.

labelAtoms(status)
Specifies whether atoms should be labeled. status is an integer set to one of the constants ON or OFF
defined in the viewmolmodule.

saveDrawing(format, filename)
Saves the drawing to file. format has to be one of the constants TIFF, PNG, HPGL, POSTSCRIPT,
or RAYTRACER defined in the viewmol module, filename the name of the file the drawing is to be
saved to.

isosurface([level])
Sets or returns which isosurface to display for wave function related drawings. level has to be a
double.

showThermodynamics([select])
Displays the thermodynamics dialog. select is an integer specifying which tab to display. This inte-
ger has to be either the integer constant REACTION defined in the viewmol module or an integer
between 1 and the number of molecule loaded. In the first case the reaction page is displayed, in all
other cases the page for the corresponding molecule is shown.

redraw()
Redraws the main window of VIEWMOL. Redraws are necessary to make changes visible performed
using other methods of the viewmolmodule.

getFramesPerSecond()
Returns the drawing speed of the last redraw of VIEWMOL’s main window in frames per second.

write(string)
Write string to the Python message dialog.

registerMenuItem(moduleName)
Add moduleName to the “Run script” menu.

42

showWarnings(warning)
Controls the display of warning messages. warning is an integer set to one of the constants ON or OFF
defined in the viewmolmodule. If warnings are turned off no dialog boxes requiring user interaction
are displayed while a Python script is running.

getWindowSize()
Returns a tupel containing the size of VIEWMOL’s main window in pixels. The tupel consists of
(width, height).

quit()
Quits VIEWMOL.

10.10 Installing Python scripts in the “Run script” menu

Python scripts can be installed as menu entries in the “Run script” submenu. For this to work the Python
script needs to implement a class with the same name as the script. This class needs to provide at least the
methods register and run. The register method is passed a language setting as abbreviation of a
locale (currently en_US, fr, de, hu, pl, ru, or es). The method needs to call the registerMenuItem
function implemented in the viewmol module to pass a string back which will appear as the identification
of this script in the submenu.

The run method does not take any argument, but is the entry point for the script when the user selects the
corresponding menu item in the “Run script” submenu.

A minimal Python script which will install itself in the “Run script” menu would be the following (available
at $VIEWMOLPATH/scripts/template.py):

import viewmol

class template:
def run(self):
print "This is a script template which just prints this silly message."

def register(self, language):
viewmol.registerMenuItem("Script template")

The following three lines are not necessary for running this script
from the "Run script" menu, but allow the script to also be run
standalone
if __name__ == ’__main__’:
script=template()
script.run()

All scripts which are to appear in the “Run script” menu have to be installed in the scripts subdirectory
under VIEWMOLPATH.

43

11 Adapting the Program to a Different Language

VIEWMOL has been written to take full advantage of the language independence of the X Window System.
All program messages, menus, dialog box texts etc. are stored outside of the program in resource files.
Therefore it is possible that different users can run the same VIEWMOL executable in different languages
on the same computer. Currently, seven languages are supported: English, French5, German, Hungar-
ian6, Polish7, Russian8, and Spanish9. To adapt VIEWMOL to another language only the Viewmol file in
$VIEWMOLPATH/locale/en_US has to be translated and copied into the corresponding language direc-
tory under $VIEWMOLPATH/locale. For a native speaker of the language this will take between 45 and
60 minutes.

The Viewmol files provided with VIEWMOL have three sections. The first section is related to the in-
stallation of external support programs, the second section contains default settings (see p. 46). The third
section contains all language dependent messages and this is the only section which needs translation. To
translate, translate everything right of the colon. The strings ’%s’, ’%d’, or ’%f’ mark the position of names
or numbers which are filled in by the program and must remain in the translated version at the appropriate
position. After translation install the new Viewmol file as described in the Installation section (cf. p. 2) and
VIEWMOL will talk in your language. The author would appreciate to get a copy of the translated resource
file for inclusion in the next public release.

The internationalization of Python scripts is handled using the gettext fa-
cility available with Python. Messages for Python scripts are stored in the
$VIEWMOLPATH/locale/X/LC_MESSAGES/Viewmol.pofile where X is an abbreviation indicating
the language. All lines starting with msgstr need to be translated. After the translation the corresponding
binary files can be created by executing make translations in the $VIEWMOLPATH/source
directory.

12 The making of multimedia files

If normal modes or the optimization history are animated and the user selects Save drawing/TIFF
or Save drawing/PNG from the main window menu a series of TIFF or PNG files is written out, one
for each frame of the animation (currently 20 frames for normal modes which cannot be changed by the
user). These TIFF or PNG files can easily be converted to a video file (MPEG) showing the animation using
standard image manipulation tools from the Internet. One possible MPEG encoder is mpeg_encodewhich
is available from mm-ftp.CS.Berkeley.EDU via anonymous ftp. This encoder expects its input files either in
PPM, PNM, or YUV format. To convert the TIFF files written by VIEWMOL you can use the PBMPLUS
or NETPBM libraries which have a filter tifftopnm (you also need pnmflip, since tifftopnm changes the
orientation of the picture). The following shell script will do the conversion (for sh and ksh users) if the
default files from VIEWMOL have been used:

for i in vm_image*.tiff

5Many thanks to Ludovic Douillard (douillard@DRECAM.cea.fr).
6Many thanks to Gábor Magyarfalvi (gmagyarf@para.chem.elte.hu).
7Many thanks to Nikodem Kuznik (nikodem@zeus.polsl.gliwice.pl).
8My Russian is a little bit rusty. Apologies for any grammar mistakes and/or unrecognizable meanings. I would appreciate a

check by a native speaker.
9Many thanks to Jose R. Valverde (jrvalverde@cnb.uam.es).

44

do
j=‘basename $i tiff‘pnm
tifftopnm $i | pnmflip -topbottom > $j

done

The resulting PNM files can then be processed by mpeg_encode to produce a MPEG file which can, e. g.,
be included in a World Wide Web document.

Selecting Save drawing/Povray from the main window menu with an animation running will write
a series of input files for POVRAY. These files can also be processed by POVRAY and used to generate a
movie of the animation. This process can, however, be very time consuming.

13 Data files

VIEWMOL uses a data file named viewmolrc for getting information about atoms and available input
and output filters. There may be three of these files. VIEWMOL looks at first in the current directory for
this file, then in the users HOME directory for a file .viewmolrc and finally in the directory where the
environment variable VIEWMOLPATH points to. In one of these three locations such a file must be found.
The file should contain the following data:� Lines of the format:

option � name of option ��� name of input filter � [� command line options for input filter �]
” � characteristic string � ”
These lines define the input filters for VIEWMOL and the command line options connected with them
(i. e. you can change the command line option if you want). � option � is the command line op-
tion VIEWMOL expects on its command line or the word default. The input filter connected with
default is used if no command line option is passed to VIEWMOL. If no default input filter is
specified VIEWMOL displays a file selection box. � name of input filter � is the path to and name of
the input filter executable. If the input filter requires command line option (e. g. a file name) they can
be specified after the name of the input filter. ’%s’ is used as a placeholder for file names. The path
or name of the input filter can contain environment variables or the string $OSNAME. The latter is re-
placed by the subdirectory name for the machine VIEWMOL is currently running on. ” � characteristic
string � ” is a string which is used to identify the type of a particular file. The first 1024 characters of
an input file passed to VIEWMOL are scanned for this string and the input filter connected with the
string is then used to read the file. Therefore these strings have to be unique for each input filter and
have to be in every file of a certain type within the first 1024 characters. Since most programs write
their names out at the beginning these restrictions seem to be no problem.� Lines of the format:
output � reference to resources ��� name of output filter � [� command line options for output filter �]
’%s’
These lines define the output filters for VIEWMOL. � reference to resources � is an arbitrary string
which must refer to a resource in the $VIEWMOLPATH/locale/en_US/Viewmol file. This
string is used to provide the label for the output filter in the output filter selection box. � name of
output filter � is the path to and name of the output filter executable. All output filters should at least
accept the name of the output file from their command lines. If additional parameters are required
they can also be specified after the name of the output filter. ’%s’ is used as a placeholder for the

45

output file name. Environment variables or the string $OSNAME can be used in the same way as for
input filters.� Lines of the format:� symbol ��� rad ��� rd ��� gd ��� bd ��� rl ��� gl ��� bl ��� surface �� symbol � is an atomic symbol, � rad � is the Van der Waals radius of this atom in Ångstrøms, � rd � ,� gd � and � bd � are the red, green and blue color for the darkest part of this atom and � rl � , � gl �
and � bl � are the red, green and blue color for the lightest part of the atom. There are five reserved
strings for � symbol � . If � symbol � is bd the following description describes a hydrogen bond. The� rad � field is also interpreted as the radius of all bond sticks. All other fields are only applied to
hydrogen bonds. uc specifies a unit cell corner. Radius and color given here affect the appearance
of the unit cell. ps and ms specify the surface properties for the positive and negative isosurface,
respectively, used to draw wave function related topics. In these cases the radius is not used. ??
specifies the properties for atoms where the atomic symbol could not be found. � surface � is an
optional specification for the surface used when stick, ball, or CPK drawing with surfaces is activated.� surface � is a list of one or more of the following options

– emission � r ��� g ��� b �
The emission color of the surface. Using this option causes the surface to emit light. � r � , � g � ,
and � b � are the red, green and blue components for the light color.

– ambient � r ��� g ��� b �
The ambient light which is reflected by the surface. � r � , � g � , and � b � are the red, green and
blue components for the light color.

– specular � r ��� g ��� b �
The specular light which is reflected by the surface. � r � , � g � , and � b � are the red, green and
blue components for the light color.

– shininess � n �
A parameter which determines the kind of reflection. � n � can be in the range 0 ... 128.

– alpha � n �
This parameter determines the transparency of the surface. 0.0 indicates an opaque surface, 1.0
a fully transparent one.

All color specifications can be between 0.0 and 1.0. The total length of a line specifying an atom is
restricted to 132 characters. The keywords for the surface specifications can be abbreviated with the
first two letters.

Any line starting with ’#’ is treated as a comment.

VIEWMOL makes extensive use of X Windows resources. All standard search algorithms for the location of
the resources apply (see e. g. O’Reilly books on the X Window System). VIEWMOL has English resources
compiled in. Resources for other languages are provided in the directory $VIEWMOLPATH/locale and
might be installed as described in the installation section of this manual (p. 2).

The following resources are used to specify the defaults. They can be overwritten in the user’s
$HOME/.Xdefaults file or, in part, by the configuration options available in the program. Defaults
configurable from within the program are marked with an asterisk (*).

Viewmol*geometry: 500x500+50+50 (*)

46

Viewmol.history.geometry: 500x250+50+590 (*)
Viewmol.spectrum.geometry: 500x250+50+590 (*)
Viewmol.MODiagram.geometry: 250x500+565+50 (*)
Viewmol.Bell: <no default>
Viewmol.model: wire (*)
Viewmol.drawingMode: surface (*)
Viewmol.bondType: conjugated (*)
Viewmol.sphereResolution: 20 (*)
Viewmol.lineWidth: 0 (*)
Viewmol.simplifyWhileRotating: False (*)
Viewmol.interpolation: linear (*)
Viewmol.bondLength: %7.4f Ang
Viewmol.bondAngle: %7.2f deg
Viewmol.torsionAngle: %7.2f deg
Viewmol.wavenumbers: 0:5000
Viewmol.isosurface: 0.05 (*)
Viewmol.densityResolution: 0.01 (*)
Viewmol.reservedColors: 0
Viewmol.hydrogenBondThreshold: 2.0 (*)
Viewmol.automaticRecalculation: False (*)
Viewmol.thermoUnits: joules (*)
Viewmol*spectrumForm*amplitudeSlider.decimalPoints: 2
Viewmol*spectrumForm*amplitudeSlider.minimum: -250
Viewmol*spectrumForm*amplitudeSlider.maximum: 250
Viewmol*spectrumForm*scaleSlider.decimalPoints: 2
Viewmol*spectrumForm*scaleSlider.minimum: 50
Viewmol*spectrumForm*scaleSlider.maximum: 150
Viewmol*thermoForm*pressureSlider.decimalPoints: 2
Viewmol*thermoForm*pressureSlider.minimum: 1
Viewmol*thermoForm*pressureSlider.maximum: 1000
Viewmol*wavefunctionForm*level.decimalPoints: 3
Viewmol*wavefunctionForm*level.minimum: 1
Viewmol*wavefunctionForm*level.maximum: 100
Viewmol*wavefunctionForm*grid.minimum: 4
Viewmol*wavefunctionForm*grid.maximum: 40
Viewmol*wavefunctionForm*grid.value: 20
Viewmol*MODiagramForm*resolution.minimum: 1
Viewmol*MODiagramForm*resolution.maximum: 1000
Viewmol*MODiagramForm*resolution.decimalPoints: 3
Viewmol*MODiagramForm*resolution.value: 10
Viewmol*unitcellForm*avalue.minimum: 10
Viewmol*unitcellForm*avalue.maximum: 50
Viewmol*unitcellForm*avalue.decimalPoints: 1
Viewmol*unitcellForm*bvalue.minimum: 10
Viewmol*unitcellForm*bvalue.maximum: 50
Viewmol*unitcellForm*bvalue.decimalPoints: 1
Viewmol*unitcellForm*cvalue.minimum: 10

47

Viewmol*unitcellForm*cvalue.maximum: 50
Viewmol*unitcellForm*cvalue.decimalPoints: 1
Viewmol*unitcellForm*hvalue.minimum: -5
Viewmol*unitcellForm*hvalue.maximum: 5
Viewmol*unitcellForm*kvalue.minimum: -5
Viewmol*unitcellForm*kvalue.maximum: 5
Viewmol*unitcellForm*lvalue.minimum: -5
Viewmol*unitcellForm*lvalue.maximum: 5
Viewmol*bondForm*thresholdSlider.minimum: 100
Viewmol*bondForm*thresholdSlider.maximum: 250
Viewmol*bondForm*thresholdSlider.decimalPoints: 2
Viewmol*bondForm*scaleRadius.minimum: 1
Viewmol*bondForm*scaleRadius.maximum: 200
Viewmol*bondForm*scaleRadius.decimalPoints: 2
Viewmol*infoForm*text*rows: 6
Viewmol*infoForm*text*columns: 80
Viewmol.paperSize: A4 (*)
Viewmol.elementSortOrder: C,H,N,O,S
Viewmol.viewer*font: variable
Viewmol.spectrum*font: variable
Viewmol.history*font: variable
Viewmol.MODiagram*font: variable
Viewmol.viewer.background: white (*)
Viewmol.viewer.foreground: gray75 (*)
Viewmol*spectrum.spectrum.background: white (*)
Viewmol*spectrum.spectrum.foreground: black (*)
Viewmol*history.history.background: white (*)
Viewmol*history.history.foreground: blue (*)
Viewmol*MODiagram.MODiagram.background: white (*)
Viewmol*MODiagram.MODiagram.foreground: black (*)
Viewmol.MODiagram.MODiagram.greekFont:

-adobe-symbol-medium-r-normal--14-*
Viewmol*foreground: black (*)

The Viewmol.Bell resource is the only resource which does not have a default. As long as this resource
is not set the standard keyboard bell is rung as soon as a selection in one of the windows is made by mouse
click. This resource can be set to the name (and command line parameters) of any program which shall be
run instead, preferably one which produces a nicer sound effect.

The Viewmol.model resource can be set to wire, stick, ball, or cpk. The Viewmol.drawingMode
resource can be set to dot, line, or surface. The Viewmol.bondType resource can be set to single,
multiple, or conjugated. The Viewmol.interpolation resource can be set to none, linear, or loga-
rithmic. The resources for specifying formats for bond lengths, bond angles, and torsion angles have to
contain a valid C format string for printing a floating point number. The resource for the bond lengths
recognizes Ang, pm, bohr, and au in the format string as units and converts the bond lengths accordingly.
The Viewmol.reservedColors resource can be used to limited the number of colors allocated by
VIEWMOL if it runs in colormap mode. VIEWMOL tries to allocate as much colors as it can. This might
interfere with others program. In this case Viewmol.reservedColors can be used to tell VIEWMOL

48

to leave the specified number of colors unallocated. The Viewmol.thermoUnits resource can be set
to joules, calories, or thermochemical calories. In case of the specifications for the sliders the values given
for minimum and maximum have to be multiplied by � ��� �"!$#&%('*),+.-"#0/2143 . I. e., if the number of decimals is to
be changed also minimum and maximum have to be changed. Paper sizes currently recognized are A5, A4,
A3, Letter, Legal, and � width � x � height � where � width � and � height � are in millimeters.

The Viewmol.viewer.foreground resource is used for the color of the ground if perspective drawing
is enabled.

14 Programming Your Own Input Filter

VIEWMOL can be easily adapted to read outputs of other programs or other file formats. All you have to
do is to write a new input filter which extracts the data from the corresponding file. These input filters are
stand-alone programs and can be written in every programming language you want. Examples in C and awk
are included.

The input filter has to read the following data from the output file and write them to its standard output in the
format described below. This format follows the file format of TURBOMOLE very closely. A few sections
had to be extended to allow data which is currently not supported by TURBOMOLE (e. g. unit cells).� the cartesian coordinates and atom symbols (required)

Write to standard output in the following format:

$coord factor
x1 y1 z1 symbol1 xyz
x2 y2 z2 symbol2 xyz
...

factor is the conversion factor the coordinates have to be multiplied with to convert them to
Ångstrøms. Any combination of x, y, and z at the end of the line (optional) indicates that the cor-
responding atom has been kept fixed in that direction during a geometry optimization. Consequently,
VIEWMOL will not draw the forces acting on this atom in the fixed direction.� the title (optional)
Write to standard output in the following format:

$title
title� the wave numbers and intensities (optional)
Write to standard output in the following format:

$vibrational spectrum
symmetry1 wavenumber1 IR-intensity1 Raman-intensity1
symmetry2 wavenumber2 IR-intensity2 Raman-intensity2
...

49

symmetry is the symmetry label for the vibrational mode, wavenumber is its wave number and
IR-intensity and Raman-intensity are its IR and Raman intensity, respectively. If the sym-
metry labels for the vibrational modes are unknown they should be set to a default (e. g. A1).� normal coordinates (optional)
Write to standard output in the following format:

$vibrational normal modes
i1 i2 nm(1,1) nm(2,1) nm(3,1) nm(4,1) nm(5,1)
i1 i2 nm(6,1) ... nm(3*natom,1)
i1 i2 nm(1,2) nm(2,2) nm(3,2) nm(4,2) nm(5,2)
i1 i2 nm(6,2) ... nm(3*natom,2)
...
i1 i2 nm(1,nmodes) ... nm(5,nmodes)
i1 i2 nm(6,nmodes) ... nm(3*natom,nmodes)

i1 and i2 are integers which are skipped during reading. nm(i,j) are the normal mode coefficients.
They have to be provided ordered by cartesian coordinates (all x components of the first atom first,
then all y components of the first atom etc.).� optimization history or MD trajectory (optional)
Write to standard output in the following format:

$grad factor
cycle = nc SCF energy = E_nc |dE/dxyz| = gradnorm_nc
[unitcell a b c alpha beta gamma]
[unitcell vectors
xa ya za
xb yb zb
xc yc zc]

x1 y1 z1 symbol1
x2 y2 z2 symbol2
...
xn yn zn symboln
gx1 gy1 gz1
gx2 gy2 gz2
...
gxn gyn gzn
cycle = nc+1 SCF energy = E_nc+1 |dE/dxyz| = gradnorm_nc+1
...

factor is the conversion factor the coordinates have to be multiplied with to convert them to
Ångstrøms. nc is a counter for the cycle, E_nc is the energy for the configuration of cycle nc,
and gradnorm_nc is the gradient norm of cycle nc. The line starting with unitcell is optional
and can be used to specify the current unit cell, e. g. during a constant pressure MD run. Unit cells can
be specified either by providing the lengths of the edges and the angles between them or by providing
the three vectors which span the unit cell. The x, y, and z are the cartesian coordinates for each atom,
symbol is the atomic symbol. The gx, gy, and gz are the gradients for each atom. This structure
can be repeated for as many cycles as necessary.

50

� MO energies and coefficients (optional)
Write to standard output in the following format for closed shell systems:

$scfmo [symmetrized] [gaussian]
n symmetry_label_n eigenvalue=MO_E_n nsaos=norb

moc(n,1) moc(n,2) moc(n,3) moc(n,4)
moc(n,5) ... moc(n,norb)

n+1 symmetry_label_n+1 eigenvalue=MO_E_n+1 nsaos=norb
...

or for open shell systems:

$uhfmo_alpha [symmetrized] [gaussian]
n symmetry_label_n eigenvalue=MO_E_n nsaos=norb

moc(n,1) moc(n,2) moc(n,3) moc(n,4)
moc(n,5) ... moc(n,norb)

n+1 symmetry_label_n+1 eigenvalue=MO_E_n+1 nsaos=norb
...

$uhfmo_beta [symmetrized] [gaussian]
n symmetry_label_n eigenvalue=MO_E_n nsaos=norb

moc(n,1) moc(n,2) moc(n,3) moc(n,4)
moc(n,5) ... moc(n,norb)

n+1 symmetry_label_n+1 eigenvalue=MO_E_n+1 nsaos=norb
...

The string symmetrized is optional and can be used to notify VIEWMOL of the fact that the MO
coefficients are with respect to symmetrized AOs rather than with respect to AOs. VIEWMOL needs
moloch from the TURBOMOLE package to handle symmetrized AOs. If moloch is not installed and
symmetrized AOs are input, MOs and electron densities cannot be drawn. The string gaussian is
also optional and notifies VIEWMOL that the MO coefficients are normalized and ordered GAUSSIAN

style. n is a counter counting the MOs, symmetry_label_n is the symmetry label for MO n,
MO_E_n is the MO energy for MO n, and norb is the total number of orbitals. The moc(n,i) are
the MO coefficients for MO n.� basis functions and occupation numbers (optional)
Write to standard output in the following format:

$atoms
atom_symbol1 list_of_indices1 \
basis=basis_set_name1

atom_symbol2 list_of_indices2 \
basis=basis_set_name2

...
$basis
*
basis_set_name1

51

*
number_of_primitives angular_momentum
exponent1 coefficient1
exponent2 coefficient2
...
exponentn coefficientn
number_of_primitives angular_momentum
...

*
basis_set_name2
*
...

*
$closed shells
symmetry_label list_of_indices (2)

$alpha shells
symmetry_label list_of_indices (1)

$beta shells
symmetry_label list_of_indices (1)

$pople [6d/10f/15g]

atom_symbol is the atom symbol of an element and list_of_indices contains the indices of
all atoms of the particular element according to the list of coordinates read in under $coord. The list
can be either comma separated and/or contain hyphens for indicating ranges (e. g. c 1,3,7-10 is a valid
descriptor). Basis_set_name can be an arbitrary string describing a particular basis set. It is only
used to find the corresponding basis set in the list read under basis. This list simply states the name
for a basis set and then lists the primitive functions which make up a contracted Gaussians starting
with the number of primitives in that particular contracted Gaussian and its angular momentum (s,
p, d, f, ...). Than the exponents and contraction coefficients are listed line by line. This is repeated
for all contracted Gaussians of that particular basis set. $closed shells, $alpha shells,
and $beta shells are used to tell VIEWMOL which MOs are occupied with how many electrons.
symmetry_label is the symmetry label for a number of MOs and list_of_indices is a list
of integers stating which of the MOs of that particular symmetry are occupied by either one or two
electron(s). This list can be either comma-separated or contain hyphens to indicate ranges of MOs.
Note: $closed shells, $alpha shells, and $beta shells have to appear after $scfmo
in the output written by the input filter. $pople is used to indicate that d, f, or g functions have 6,
10, or 15 components instead of 5, 7, or 9. Note: This data group has to appear after the $coord or
$grad in the output. Otherwise VIEWMOL will fail.� grid files
Write to standard output in the following form:

$grid #n
origin x y z
vector1 x y z
vector2 x y z
vector3 x y z
grid1 start s delta d points np

52

grid2 start s delta d points np
grid3 start s delta d points np
type ty
title for this grid
t
plotdata
d(1,1,1) d(1,1,2) d(1,1,n) ... d(1,2,1)
... d(1,n,n) d(2,1,1) ... d(n,n,n)

here n is an integer identifying the grid. origin is used to specify the x, y, and z coordinates of
the origin of the grid. vector1, vector2, and vector3 are used to specify the three vectors
spanning the grid. grid1, grid2, and grid3 are used to specify the starting point, s, the step size,
d, and the number of points, np, on each of the three vectors spanning the grid. ty can be either
mo or density specifying whether the data represents a molecular orbital or a density. t is a string
giving the grid a title which is used in the wave function dialog to allow the user to select the grid.
Finally, d(i,j,k) are the values for the property at each grid point.� the unit cell (optional)
Write to standard output in one of the following forms:

$unitcell a b c alpha beta gamma

or

$unitcell vectors
xa ya za
xb yb zb
xc yc zc

where each row contains the components of one of the three vectors spanning the unit cell (this is also
known as the Bravais matrix).� errors occuring during file processing (optional)
Write to standard output in the following form:

$error errorLabel severity additionalInformation

errorLabel is an arbitrary one word label which refers to an error message in the resources.
severity is a label for the severity of the error. Set it to 0 if the program can continue despite this er-
ror. Set it to 1 if the program must stop. additionalInformation is any additional information
you want to be displayed in the error message (e. g. the name of a file which was not found). Cur-
rently, the following errorLabels are in use: noFile, notConverged,unsupportedVersion,
wrongFiletype,noCoordinates,noEnergy, and unknownErrorMessage. If your input
filter wants to return an error because it is missing coordinates in the input file “dummy.inp” you can
have it writing the following line to standard output:

$error missingCoordinates 1 dummy.inp

53

Figure 17: The error dialog produced by the sample error message

Then you have to specify a resource for the error message in
$HOME/.Xdefaults:

Viewmol.missingCoordinates: The file %s does not
contain any coordinates.

With these two lines in place any encounter of no coordinates in an input file will lead to the display
of the error dialog in Figure 17. There is no need to recompile VIEWMOL to achieve this.

The last line of the data written to standard output by the input filter must be $end.

The input filter can be installed by adding a line to the viewmolrc file.

15 Programming Your Own Output Filter

VIEWMOL can be easily adapted to write files in any format. All you have to do is to write a new output
filter which formats the data provided by VIEWMOL. These output filters are stand-alone programs and can
be written in every programming language you want. Examples in awk are included.

The output filter has to accept the following data from its standard input and write them to a file whose name
is given as a command line parameter to the filter. VIEWMOL passes the following data groups to the output
filter:� the unit cell (if present) is sent in the following format (a, b, and c in atomic units, the angle in degrees)

$unitcell a b c alpha beta gamma� the cartesian coordinates are sent in the following format (in atomic units)

$coord
x1 y1 z1 symbol1
x2 y2 z2 symbol2
...� the bond information is sent in the following format

54

$bonds
atom1 atom2 bond_order
...

where atom1 and atom2 are the numbers of the atoms according to the list in $coord which form
the bond. bond_order is the actual order of the bond, ��5 if the bond is part of a conjugated system,
or � � if it is a hydrogen bond.

$end is passed to the output filter as last line.

16 Test Scripts

VIEWMOL now contains a number of test scripts which can be used to check the correct functioning of the
software. These test scripts are located in the tests subdirectory. The following scripts are available� autotest.py

This script executes all the functionality of VIEWMOL which is accessible through Python. It requires
the examples in the examples subdirectory. To start the script call it from the “Run script/Select ...”
menu item.� importtest.py
This script tests the functionality of the Gamess and Turbomole input filters by automatically loading
all examples which come with either Gamess or Turbomole. It requires Tix/Tkinter and the examples
from Gamess or Turbomole. The examples can be installed in an arbitrary directory. To start the script
call it from the “Run script/Select ...” menu item.

17 Limitations

VIEWMOL currently cannot handle GAUSSIAN outputs which contain cartesian f functions (10f).

If VIEWMOL runs in color map (that should only happen on IBM RS6000 with Sabine graphics adapters if
anybody still has one of these, in this case the background of the title screen has a constant color instead of
the usual dark top and lighter bottom) shadows are not drawn if the drawing mode is “with surface”.

On some graphics boards VIEWMOL will not be able to get a stencil buffer (notably Intel graphics chips).
VIEWMOL will silently continue without the stencil buffer, but this will result in artefacts in the shadows
drawn.

If TIFF or PNG files are saved make sure no other window (including dialog boxes) overlaps with the
window to be saved. The information is read from the screen and overlapping windows might show up in
the saved file (this is hardware dependent).

HPGL outputs for drawings which are labeled with non-latin characters will not contain any labels. HPGL
output has only support for German umlauts, Postscript provides all ISO-8859-1 and KOI-8 characters.

If VIEWMOL runs on FreeBSD there are problems with saving molecules in any format. The output filters
never return and therefore VIEWMOL seems to hang. Pressing Ctrl-C in the terminal VIEWMOL was started

55

from terminates the output filter and makes VIEWMOL work again, but no meaningful information is put
into the output file. A work-around for this problem is currently not known.

VIEWMOL is usable with Lesstif (� 0.81). There are, however, some glitches, e. g. shortcuts don’t work.

18 Frequently asked questions

1. VIEWMOL on Linux reports on start up:
viewmol: can’t load library ’libMesaGLU.so.3’
or another library.
VIEWMOL does not find a dynamical linked library it needs. The reason for this is that either the
library is not installed, the wrong version is installed, or the dynamic linker is not set up to find this
library. VIEWMOL needs the following dynamic libraries:

libtiff.so.3
libpng12.so.0
libz.so.1
libGLU.so.1
libGL.so.1
libXm.so.3
libXmu.so.6
libXp.so.6
libXi.so.6
libXext.so.6
libXt.so.6
libX11.so.6
libpthread.so.0
libutil.so.1
libdl.so.2
libm.so.6
libc.so.6
libjpeg.so.62
libstdc++.so.5
libgcc_s.so.1
libGLcore.so.1
libSM.so.6
libICE.so.6
/lib/ld-linux.so.2

These libraries can normally be found in /lib, /usr/lib, and
/usr/X11R6/lib. The dynamic linker checks the major version number and will refuse
any library where the major version number does not match. The minor version number does not
matter. The dynamic linker has to be set up to search the directories which contain these libraries.
This is done in the file /etc/ld.so.conf. After modifying this file run ldconfig -v as root.
Alternatively, the environment variable LD_LIBRARY_PATH can be set to point to these directories.

2. VIEWMOL on Linux reports on start up:
viewmol: Symbol ’jpeg_resync_to_restart’ is not

56

defined.
There are two different versions of libtiff.so distributed with different Linux distributions. One
contains jpeg code (Debian) the other doesn’t (RedHat). VIEWMOL has now been linked with the
version which does not contain jpeg code so that this error will probably not occur anymore. If this
error occurs only a recompilation will help. Please notify the maker of your Linux distribution so that
they can make their distribution compatible.

3. When I try to recompile VIEWMOL I get a lot of error messages:

cc -c -Wall -DLINUX -I/usr/compat/linux/usr/include/GL/
-I/usr/compat/linux/usr/include/gr/ -O6 -m486
-fomit-frame-pointer
../annotate.c
../annotate.c:19: X11/StringDefs.h: No such file or directory
../annotate.c:20: X11/cursorfont.h: No such file or directory
../annotate.c:21: Xm/Xm.h: No such file or directory
../annotate.c:22: Xm/Text.h: No such file or directory
In file included from ../annotate.c:24:
../viewmol.h:20: X11/Intrinsic.h: No such file or directory
../viewmol.h:21: GL/gl.h: No such file or directory
../viewmol.h:22: GL/glx.h: No such file or directory
*** Error code 1

To recompile VIEWMOL you need to install the X Window System and OpenGL development envi-
ronments which, in most Linux distributions, are separate packages. In this case you are missing all
X Window System and OpenGL header files. You also need the development environment of lesstif
or Motif for all header files in /usr/include/Xm.

4. While trying to recompile VIEWMOL the link step fails with:

ld:
Unresolved: __eprintf

*** Error code 1 (bu21)

or a similar message referring to __eprintf (encountered on SGIs and IBMs so far only). There is
a problem with the TIFF library you are linking with. If you have built the library yourself make sure
it was built on the same machine as where you try to link VIEWMOL. If you have been trying to use a
vendor supplied version of the TIFF library try to download and compile the library yourself.

5. Parts of one or more of VIEWMOL windows are not drawn while VIEWMOL runs on a Linux system
with a Nvidia graphics card:
Some of the Nvidia drivers have this problem if full-scene antialiasing is enabled. Set the environment
variable __GL_FSAA_MODE to 0 before starting VIEWMOL to disable full-scene antialiasing and see
if the problem disappers.

57

19 History, Authors, and Contributors

VIEWMOL started its life somewhere in 1991 as a tool to draw IR and Raman spectra from Turbomole
outputs. Since drawing only spectra soon turned out to be insufficient for writing a PhD thesis, capabilities
were added to draw the molecule and animate normal modes. Since other people in the Arbeitsgruppe
Quantenchemie at Humboldt University in Berlin got interested in the program and wanted extensions for
other program’s output Andreas Bünger (a then 16 year old high school student on a practical course in the
group) and Andreas Bleiber started to write an input filter for GAUSSIAN 9X. Arne Dummer wrote a filter
for DMOL. In the course of the research performed in the group other capabilities were asked for and added
by the original authors and by Mariann Krossner (calculation of inelastic neutron scattering intensities)
and Andries de Man (extension of GAUSSIAN 9X input filter to read density functional outputs). Version
1.2 was presented at the German/Austrian Academic Software Award competition in 1993 and honored as
outstanding achievement.

With the advent of Linux it was recognized that the original Fortran/IrisGL version would be difficult to
port to more affordable hardware. Version 2.0 of the program was a complete rewrite in C/OpenGL by
Jörg-Rüdiger Hill now mainly done on a Linux system. Development of the program continues on Linux.

Contributions, mainly in form of bug reports, code snippets, and enhancement requests have come from a
number of people. In no particular order (and hopefully without forgetting somebody) I want to thank:� George P. Ford (gford@smu.edu)� Dan Moenster Jensen (Dan.M.Jensen@uni-c.dk)� John Nicholas (jb nicholas@pnl.gov)� Konrad Hinsen (hinsen@ibs.ibs.fr)� Marc Pedulla (pedulla+@pitt.edu)� Stanislav Bohm (Stanislav.Bohm@vscht.cz)� Rinaldo Poli (poli@u-bourgogne.fr)� Martin Brändle (braendle@inorg.chem.ethz.ch)� Martin G. Schütz (schuetz@theochem.uni-stuttgart.de)� Ödön Farkas (farkas@para.chem.elte.hu)� Peter Pulay (pulay@comp.uark.edu)� M. Fabien Gutierrez (gutierre@irsamc1.ups-tlse.fr)� Eric I. Arnoth (earnoth@UDel.Edu)� Pedro A. M. Vazquez (vazquez@iqm.unicamp.br)� Keith Refson (Keith.Refson@earth.ox.ac.uk)� Pablo Vitoria Garcia (qibvigap@lg.ehu.es)� Andrew Dalke (dalke@bioreason.com)

58

� Marcus Gastreich (ghost@pcgate.thch.uni-bonn.de)� Frank Schneider (uzs93a@uni-bonn.de)� Stephen P. Molnar (smolnar@jadeinc.com)� Michael Bootz (bootz@cup.uni-muenchen.de)� David Haring (dave@ibp.cz)� Ulf Ryde (Ulf.Ryde@teokem.lu.se)� Dermot Brougham (Dermot.Brougham@dcu.ie)� Shin Ick-Dong (a9523303@chunma.yu.ac.kr)� Drew Parsons (dparsons@emerall.com)� Bernard Delley (bernard.delley@psi.ch)� Nelson Henrique Morgon (morgon@canario.iqm.unicamp.br)� Masao Kawamura (kawamura@mlb.co.jp)� Rene Windiks (rene.windiks@psi.ch)� Fulvio Ciriaco (ciriaco@chimica.uniba.it)� Julien Bossert (bossert@quantix.u-strasbg.fr)� Gábor Magyarfalvi (gmagyarf@para.chem.elte.hu)� Gert von Helden (helden@fhi-berlin.mpg.de)� Sebastian Canagaratna (s-canagaratna@onu.edu)� Stephan Schenk (stephan.schenk@uni-jena.de)� Noda Tomoyuki (noda.tomoyuki@canon.co.jp)� Michael Patzschke (michaelp@chem.helsinki.fi)� Ulrich Wedig (U.Wedig@fkf.mpg.de)� Ivan Powis (Ivan.Powis@nottingham.ac.uk)� Lars Hecking (lhecking@users.sourceforge.net)� Yuusuke Sato (ysato@msl.rdc.toshiba.co.jp)

I also have to thank Mark J. Kilgard (mjk@nvidia.com) and Brian Paul (brian paul@avid.com) who posted
a number of the algorithms used in VIEWMOL on the Internet.

Translations of VIEWMOL’s interface to other languages have been provided by:� French: Ludovic Douillard (douillard@DRECAM.cea.fr)

59

� Hungarian: Gábor Magyarfalvi (gmagyarf@para.chem.elte.hu)� Polish: Nikodem Kuznik (nikodem@zeus.polsl.gliwice.pl)� Spanish: Jose R. Valverde (jrvalverde@cnb.uam.es)

References

[1] R. D. Amos, N. C. Handy, and P. Palmieri. Vibrational properties of (R)-methylthiirane from Møller-
Plesset perturbation theory. J. Chem. Phys., 93:5796, 1990.

20 Appendix: Thermodynamics

The thermodynamical calculations performed by VIEWMOL are using the following formulas:� Enthalphy

– Translation 6879� �:<;�=
– pV (molecule) >@?A� ;�=
– pV (solid) >@?A�B>@?
– Rotation (linear molecule) 6DCE� ;�=
– Rotation (non-linear molecule) 6FC9� �: ;�=
– Vibration 6EGF��HJI KML

#ONQPSRT #5 U L
#ANQPSRT #�VXW�Y[Z � NQPSRT #M\�]_^

=a`� � VXWbYcZ � NQPSRT #M\�]_^
=a`ed (1)� Entropy

– Translation f 7 �hg5 ; U ;jilknm]S^ => o 5�prq]_^ =H I N
:ts � u :Xv

(2)

– Rotation (linear molecule) f C � ;xw � U ilk o]_^ =y N	z
s|{

(3)

– Rotation (non-linear molecule)f C � ; 5 K~} U ilknm py o]_^ =
NQP

s � �
z����

v d (4)

– Vibration f G � ; L
# o NQPSRT #]_^ = VXW�Y�Z � N	PSRT # \�] ^

=a`� � VXW�Y�Z � NQPSRT #M\�]_^
=a` � ilk o � � VXWbY o � NQPSRT #]_^ = s�s�s

(5)

� Heat capacity

60

– Translation � 7� ���: ;
– Rotation (linear molecule) � C� � ;
– Rotation (non-linear molecule) � C� � � : ;
– Vibration

� G� � ; L
# o NQPSRT #] ^ = s : VXW�Y�Z � N	P_RT #M\�]S^

=a`Z � � VXWbY�Z � NQPSRT #~\�]_^
=a`�` : (6);

gas constant,
=

temperature, > pressure, ? volume, H�I Avogadro’s number, N Planck’s number, P speed
of light, RT # wave number,]b^ Boltzmann’s number, q molecular mass, z , � , and � rotational constants, y
symmetry number. Only wave numbers which are larger than 10 cm � � are included.

61

