
Xenomai Native skin API
2.4.8

Generated by Doxygen 1.5.6

Thu May 28 16:22:13 2009

Contents

1 Module Index 1

1.1 Modules . 1

2 Data Structure Index 3

2.1 Data Structures . 3

3 File Index 5

3.1 File List . 5

4 Module Documentation 7

4.1 Task Status . 7

4.1.1 Detailed Description . 7

4.2 Alarm services. 9

4.2.1 Detailed Description . 9

4.2.2 Function Documentation . 10

4.2.2.1 rt_alarm_create . 10

4.2.2.2 rt_alarm_create . 10

4.2.2.3 rt_alarm_delete . 11

4.2.2.4 rt_alarm_inquire . 12

4.2.2.5 rt_alarm_start . 13

4.2.2.6 rt_alarm_stop . 14

4.2.2.7 rt_alarm_wait . 14

4.3 Condition variable services. 16

4.3.1 Detailed Description . 16

4.3.2 Function Documentation . 17

4.3.2.1 rt_cond_bind . 17

4.3.2.2 rt_cond_broadcast . 18

4.3.2.3 rt_cond_create . 18

4.3.2.4 rt_cond_delete . 19

ii CONTENTS

4.3.2.5 rt_cond_inquire . 20

4.3.2.6 rt_cond_signal . 20

4.3.2.7 rt_cond_unbind . 21

4.3.2.8 rt_cond_wait . 21

4.4 Event flag group services. 23

4.4.1 Detailed Description . 23

4.4.2 Function Documentation . 24

4.4.2.1 rt_event_bind . 24

4.4.2.2 rt_event_clear . 25

4.4.2.3 rt_event_create . 25

4.4.2.4 rt_event_delete . 26

4.4.2.5 rt_event_inquire . 27

4.4.2.6 rt_event_signal . 28

4.4.2.7 rt_event_unbind . 28

4.4.2.8 rt_event_wait . 29

4.5 Memory heap services. 31

4.5.1 Detailed Description . 31

4.5.2 Function Documentation . 32

4.5.2.1 rt_heap_alloc . 32

4.5.2.2 rt_heap_bind . 33

4.5.2.3 rt_heap_create . 34

4.5.2.4 rt_heap_delete . 36

4.5.2.5 rt_heap_free . 36

4.5.2.6 rt_heap_inquire . 37

4.5.2.7 rt_heap_unbind . 38

4.6 Interrupt management services. 39

4.6.1 Function Documentation . 40

4.6.1.1 rt_intr_bind . 40

4.6.1.2 rt_intr_create . 41

4.6.1.3 rt_intr_create . 42

4.6.1.4 rt_intr_delete . 44

4.6.1.5 rt_intr_disable . 44

4.6.1.6 rt_intr_enable . 45

4.6.1.7 rt_intr_inquire . 45

4.6.1.8 rt_intr_unbind . 46

4.6.1.9 rt_intr_wait . 46

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

CONTENTS iii

4.7 Native Xenomai API. 48

4.7.1 Detailed Description . 48

4.8 Mutex services. 49

4.8.1 Detailed Description . 49

4.8.2 Function Documentation . 50

4.8.2.1 rt_mutex_acquire . 50

4.8.2.2 rt_mutex_bind . 51

4.8.2.3 rt_mutex_create . 52

4.8.2.4 rt_mutex_delete . 52

4.8.2.5 rt_mutex_inquire . 53

4.8.2.6 rt_mutex_release . 54

4.8.2.7 rt_mutex_unbind . 54

4.9 Message pipe services. 55

4.9.1 Detailed Description . 55

4.9.2 Function Documentation . 56

4.9.2.1 rt_pipe_alloc . 56

4.9.2.2 rt_pipe_create . 56

4.9.2.3 rt_pipe_delete . 58

4.9.2.4 rt_pipe_flush . 58

4.9.2.5 rt_pipe_free . 59

4.9.2.6 rt_pipe_read . 60

4.9.2.7 rt_pipe_receive . 61

4.9.2.8 rt_pipe_send . 63

4.9.2.9 rt_pipe_stream . 64

4.9.2.10 rt_pipe_write . 65

4.10 Message queue services. 66

4.10.1 Detailed Description . 66

4.10.2 Function Documentation . 67

4.10.2.1 rt_queue_alloc . 67

4.10.2.2 rt_queue_bind . 67

4.10.2.3 rt_queue_create . 69

4.10.2.4 rt_queue_delete . 70

4.10.2.5 rt_queue_free . 71

4.10.2.6 rt_queue_inquire . 71

4.10.2.7 rt_queue_read . 72

4.10.2.8 rt_queue_receive . 73

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

iv CONTENTS

4.10.2.9 rt_queue_send . 74

4.10.2.10 rt_queue_unbind . 75

4.10.2.11 rt_queue_write . 76

4.11 Counting semaphore services. 78

4.11.1 Detailed Description . 78

4.11.2 Function Documentation . 79

4.11.2.1 rt_sem_bind . 79

4.11.2.2 rt_sem_broadcast . 80

4.11.2.3 rt_sem_create . 80

4.11.2.4 rt_sem_delete . 81

4.11.2.5 rt_sem_inquire . 82

4.11.2.6 rt_sem_p . 82

4.11.2.7 rt_sem_unbind . 84

4.11.2.8 rt_sem_v . 84

4.12 Task management services. 85

4.12.1 Detailed Description . 85

4.12.2 Function Documentation . 87

4.12.2.1 rt_task_add_hook . 87

4.12.2.2 rt_task_bind . 88

4.12.2.3 rt_task_catch . 89

4.12.2.4 rt_task_create . 89

4.12.2.5 rt_task_delete . 91

4.12.2.6 rt_task_inquire . 92

4.12.2.7 rt_task_join . 92

4.12.2.8 rt_task_notify . 93

4.12.2.9 rt_task_receive . 94

4.12.2.10 rt_task_remove_hook . 95

4.12.2.11 rt_task_reply . 96

4.12.2.12 rt_task_resume . 97

4.12.2.13 rt_task_self . 97

4.12.2.14 rt_task_send . 98

4.12.2.15 rt_task_set_mode . 99

4.12.2.16 rt_task_set_periodic . 101

4.12.2.17 rt_task_set_priority . 102

4.12.2.18 rt_task_shadow . 103

4.12.2.19 rt_task_sleep . 104

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

CONTENTS v

4.12.2.20 rt_task_sleep_until . 105

4.12.2.21 rt_task_slice . 105

4.12.2.22 rt_task_spawn . 106

4.12.2.23 rt_task_start . 108

4.12.2.24 rt_task_suspend . 108

4.12.2.25 rt_task_unbind . 109

4.12.2.26 rt_task_unblock . 110

4.12.2.27 rt_task_wait_period . 110

4.12.2.28 rt_task_yield . 111

4.13 Timer management services. 112

4.13.1 Detailed Description . 112

4.13.2 Typedef Documentation . 113

4.13.2.1 RT_TIMER_INFO . 113

4.13.3 Function Documentation . 113

4.13.3.1 rt_timer_inquire . 113

4.13.3.2 rt_timer_ns2ticks . 114

4.13.3.3 rt_timer_ns2tsc . 114

4.13.3.4 rt_timer_read . 115

4.13.3.5 rt_timer_set_mode . 116

4.13.3.6 rt_timer_spin . 116

4.13.3.7 rt_timer_ticks2ns . 117

4.13.3.8 rt_timer_tsc . 117

4.13.3.9 rt_timer_tsc2ns . 118

5 Data Structure Documentation 119

5.1 rt_heap_info Struct Reference . 119

5.1.1 Detailed Description . 119

5.2 rt_mutex_info Struct Reference . 120

5.2.1 Detailed Description . 120

5.2.2 Field Documentation . 120

5.2.2.1 lockcnt . 120

5.2.2.2 nwaiters . 120

5.2.2.3 name . 120

5.3 rt_task_info Struct Reference . 121

5.3.1 Detailed Description . 121

5.3.2 Field Documentation . 121

5.3.2.1 bprio . 121

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

vi CONTENTS

5.3.2.2 cprio . 122

5.3.2.3 status . 122

5.3.2.4 relpoint . 122

5.3.2.5 name . 122

5.3.2.6 exectime . 122

5.3.2.7 modeswitches . 122

5.3.2.8 ctxswitches . 122

5.3.2.9 pagefaults . 122

5.4 rt_task_mcb Struct Reference . 124

5.4.1 Detailed Description . 124

5.4.2 Field Documentation . 124

5.4.2.1 flowid . 124

5.4.2.2 opcode . 124

5.4.2.3 data . 124

5.4.2.4 size . 124

5.5 rt_timer_info Struct Reference . 126

5.5.1 Detailed Description . 126

6 File Documentation 127

6.1 include/native/alarm.h File Reference . 127

6.1.1 Detailed Description . 127

6.2 include/native/cond.h File Reference . 129

6.2.1 Detailed Description . 129

6.3 include/native/event.h File Reference . 131

6.3.1 Detailed Description . 131

6.4 include/native/heap.h File Reference . 133

6.4.1 Detailed Description . 133

6.4.2 Typedef Documentation . 134

6.4.2.1 RT_HEAP_INFO . 134

6.5 include/native/intr.h File Reference . 135

6.5.1 Detailed Description . 135

6.6 include/native/misc.h File Reference . 137

6.6.1 Detailed Description . 137

6.7 include/native/mutex.h File Reference . 138

6.7.1 Detailed Description . 138

6.7.2 Typedef Documentation . 139

6.7.2.1 RT_MUTEX_INFO . 139

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

CONTENTS vii

6.8 include/native/pipe.h File Reference . 140

6.8.1 Detailed Description . 140

6.9 include/native/ppd.h File Reference . 142

6.9.1 Detailed Description . 142

6.10 include/native/queue.h File Reference . 143

6.10.1 Detailed Description . 143

6.11 include/native/sem.h File Reference . 145

6.11.1 Detailed Description . 145

6.12 include/native/task.h File Reference . 147

6.12.1 Detailed Description . 147

6.12.2 Typedef Documentation . 150

6.12.2.1 RT_TASK_INFO . 150

6.12.2.2 RT_TASK_MCB . 150

6.13 include/native/timer.h File Reference . 151

6.13.1 Detailed Description . 151

6.14 include/native/types.h File Reference . 153

6.14.1 Detailed Description . 153

6.15 ksrc/skins/native/module.c File Reference . 154

6.15.1 Detailed Description . 154

6.16 ksrc/skins/native/syscall.c File Reference . 155

6.16.1 Detailed Description . 155

6.17 ksrc/skins/native/alarm.c File Reference . 156

6.17.1 Detailed Description . 156

6.18 ksrc/skins/native/cond.c File Reference . 157

6.18.1 Detailed Description . 157

6.19 ksrc/skins/native/event.c File Reference . 159

6.19.1 Detailed Description . 159

6.20 ksrc/skins/native/heap.c File Reference . 161

6.20.1 Detailed Description . 161

6.21 ksrc/skins/native/intr.c File Reference . 162

6.21.1 Detailed Description . 162

6.22 ksrc/skins/native/mutex.c File Reference . 163

6.22.1 Detailed Description . 163

6.23 ksrc/skins/native/pipe.c File Reference . 164

6.23.1 Detailed Description . 164

6.24 ksrc/skins/native/queue.c File Reference . 166

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

viii CONTENTS

6.24.1 Detailed Description . 166

6.25 ksrc/skins/native/sem.c File Reference . 168

6.25.1 Detailed Description . 168

6.26 ksrc/skins/native/task.c File Reference . 170

6.26.1 Detailed Description . 170

6.27 ksrc/skins/native/timer.c File Reference . 173

6.27.1 Detailed Description . 173

7 Example Documentation 175

7.1 bound_task.c . 175

7.2 cond_var.c . 176

7.3 event_flags.c . 177

7.4 kernel_task.c . 178

7.5 local_heap.c . 179

7.6 msg_queue.c . 180

7.7 mutex.c . 182

7.8 pipe.c . 183

7.9 semaphore.c . 185

7.10 shared_mem.c . 186

7.11 sigxcpu.c . 187

7.12 trivial-periodic.c . 189

7.13 user_alarm.c . 191

7.14 user_irq.c . 192

7.15 user_task.c . 193

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Chapter 1

Module Index

1.1 Modules

Here is a list of all modules:

Native Xenomai API. 48
Task Status . 7
Alarm services. 9
Condition variable services. 16
Event flag group services. 23
Memory heap services. 31
Interrupt management services. 39
Mutex services. 49
Message pipe services. 55
Message queue services. 66
Counting semaphore services. 78
Task management services. 85
Timer management services. 112

2 Module Index

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Chapter 2

Data Structure Index

2.1 Data Structures

Here are the data structures with brief descriptions:

rt_heap_info (Structure containing heap-information useful to users) 119
rt_mutex_info (Structure containing mutex information useful to users) 120
rt_task_info (Structure containing task-information useful to users) 121
rt_task_mcb (Structure used in passing messages between tasks) 124
rt_timer_info (Structure containing timer-information useful to users) 126

4 Data Structure Index

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

include/native/alarm.h (This file is part of the Xenomai project) 127
include/native/cond.h (This file is part of the Xenomai project) 129
include/native/event.h (This file is part of the Xenomai project) 131
include/native/heap.h (This file is part of the Xenomai project) 133
include/native/intr.h (This file is part of the Xenomai project) 135
include/native/misc.h (This file is part of the Xenomai project) 137
include/native/mutex.h (This file is part of the Xenomai project) 138
include/native/pipe.h (This file is part of the Xenomai project) 140
include/native/ppd.h (This file is part of the Xenomai project) 142
include/native/queue.h (This file is part of the Xenomai project) 143
include/native/sem.h (This file is part of the Xenomai project) 145
include/native/syscall.h . ??
include/native/task.h (This file is part of the Xenomai project) 147
include/native/timer.h (This file is part of the Xenomai project) 151
include/native/types.h (This file is part of the Xenomai project) 153
ksrc/skins/native/alarm.c (This file is part of the Xenomai project) 156
ksrc/skins/native/cond.c (This file is part of the Xenomai project) 157
ksrc/skins/native/event.c (This file is part of the Xenomai project) 159
ksrc/skins/native/heap.c (This file is part of the Xenomai project) 161
ksrc/skins/native/intr.c (This file is part of the Xenomai project) 162
ksrc/skins/native/module.c (This file is part of the Xenomai project) 154
ksrc/skins/native/mutex.c (This file is part of the Xenomai project) 163
ksrc/skins/native/pipe.c (This file is part of the Xenomai project) 164
ksrc/skins/native/queue.c (This file is part of the Xenomai project) 166
ksrc/skins/native/sem.c (This file is part of the Xenomai project) 168
ksrc/skins/native/syscall.c (This file is part of the Xenomai project) 155
ksrc/skins/native/task.c (This file is part of the Xenomai project) 170
ksrc/skins/native/timer.c (This file is part of the Xenomai project) 173
src/skins/native/wrappers.h . ??

6 File Index

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Chapter 4

Module Documentation

4.1 Task Status

Collaboration diagram for Task Status:

Native Xenomai API. Task Status

4.1.1 Detailed Description

Defines used to specify task state and/or mode.

Defines

• #define T_BLOCKED XNPEND
See XNPEND.

• #define T_DELAYED XNDELAY
See XNDELAY.

• #define T_READY XNREADY
See XNREADY.

• #define T_DORMANT XNDORMANT
See XNDORMANT.

• #define T_STARTED XNSTARTED
See XNSTARTED.

• #define T_BOOST XNBOOST
See XNBOOST.

• #define T_LOCK XNLOCK
See XNLOCK.

8 Module Documentation

• #define T_RRB XNRRB
See XNRRB.

• #define T_NOSIG XNASDI
See XNASDI.

• #define T_SHIELD XNSHIELD
See XNSHIELD.

• #define T_WARNSW XNTRAPSW
See XNTRAPSW.

• #define T_RPIOFF XNRPIOFF
See XNRPIOFF.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.2 Alarm services. 9

4.2 Alarm services.

Collaboration diagram for Alarm services.:

Alarm services.Native Xenomai API.

4.2.1 Detailed Description

Alarms are general watchdog timers. Any Xenomai task may create any number of alarms and
use them to run a user-defined handler, after a specified initial delay has elapsed. Alarms can be
either one shot or periodic; in the latter case, the real-time kernel automatically reprograms the
alarm for the next shot according to a user-defined interval value.

Files

• file alarm.c

This file is part of the Xenomai project.

Functions

• int rt_alarm_create (RT_ALARM ∗alarm, const char ∗name, rt_alarm_t handler, void
∗cookie)

Create an alarm object from kernel space.

• int rt_alarm_delete (RT_ALARM ∗alarm)

Delete an alarm.

• int rt_alarm_start (RT_ALARM ∗alarm, RTIME value, RTIME interval)

Start an alarm.

• int rt_alarm_stop (RT_ALARM ∗alarm)

Stop an alarm.

• int rt_alarm_inquire (RT_ALARM ∗alarm, RT_ALARM_INFO ∗info)

Inquire about an alarm.

• int rt_alarm_create (RT_ALARM ∗alarm, const char ∗name)

Create an alarm object from user-space.

• int rt_alarm_wait (RT_ALARM ∗alarm)

Wait for the next alarm shot.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

10 Module Documentation

4.2.2 Function Documentation

4.2.2.1 int rt_alarm_create (RT_ALARM ∗ alarm, const char ∗ name)

Create an alarm object from user-space.

Initializes an alarm object from a user-space application. Alarms can be made periodic or oneshot,
depending on the reload interval value passed to rt_alarm_start() for them. In this mode, the
basic principle is to define some alarm server task which routinely waits for the next incoming
alarm event through the rt_alarm_wait() syscall.

Parameters:

alarm The address of an alarm descriptor Xenomai will use to store the alarm-related data.
This descriptor must always be valid while the alarm is active therefore it must be
allocated in permanent memory.

name An ASCII string standing for the symbolic name of the alarm. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created alarm.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the alarm.

• -EEXIST is returned if the name is already in use by some registered object.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• User-space task

Rescheduling: possible.

Note:

It is possible to combine kernel-based alarm handling with waiter threads pending on the
same alarm object from user-space through the rt_alarm_wait() service. For this purpose,
the rt_alarm_handler() routine which is internally invoked to wake up alarm servers in user-
space is accessible to user-provided alarm handlers in kernel space, and should be called
from there in order to unblock any thread sleeping on the rt_alarm_wait() service.

4.2.2.2 int rt_alarm_create (RT_ALARM ∗ alarm, const char ∗ name, rt_alarm_t handler, void
∗ cookie)

Create an alarm object from kernel space.

Create an object triggering an alarm routine at a specified time in the future. Alarms can be made
periodic or oneshot, depending on the reload interval value passed to rt_alarm_start() for them.
In kernel space, alarms are immediately notified on behalf of the timer interrupt to a user-defined
handler.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.2 Alarm services. 11

Parameters:

alarm The address of an alarm descriptor Xenomai will use to store the alarm-related data.
This descriptor must always be valid while the alarm is active therefore it must be
allocated in permanent memory.

name An ASCII string standing for the symbolic name of the alarm. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created alarm.

handler The address of the routine to call when the alarm expires. This routine will be passed
the address of the current alarm descriptor, and the opaque cookie.

cookie A user-defined opaque cookie the real-time kernel will pass to the alarm handler as
its second argument.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the alarm.

• -EEXIST is returned if the name is already in use by some registered object.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

Rescheduling: possible.

Note:

It is possible to combine kernel-based alarm handling with waiter threads pending on the
same alarm object from user-space through the rt_alarm_wait() service. For this purpose,
the rt_alarm_handler() routine which is internally invoked to wake up alarm servers in user-
space is accessible to user-provided alarm handlers in kernel space, and should be called
from there in order to unblock any thread sleeping on the rt_alarm_wait() service.

References rt_alarm_delete().

4.2.2.3 int rt_alarm_delete (RT_ALARM ∗ alarm)

Delete an alarm.

Destroy an alarm. An alarm exists in the system since rt_alarm_create() has been called to create
it, so this service must be called in order to destroy it afterwards.

Parameters:

alarm The descriptor address of the affected alarm.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

12 Module Documentation

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if alarm is not a alarm descriptor.

• -EIDRM is returned if alarm is a deleted alarm descriptor.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: never.

Referenced by rt_alarm_create().

4.2.2.4 int rt_alarm_inquire (RT_ALARM ∗ alarm, RT_ALARM_INFO ∗ info)

Inquire about an alarm.

Return various information about the status of a given alarm.

Parameters:

alarm The descriptor address of the inquired alarm.

info The address of a structure the alarm information will be written to.

The expiration date returned in the information block is converted to the current time unit. The
special value TM_INFINITE is returned if alarm is currently inactive/stopped. In single-shot
mode, it might happen that the alarm has already expired when this service is run (even if the
associated handler has not been fired yet); in such a case, 1 is returned.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if alarm is not a alarm descriptor.

• -EIDRM is returned if alarm is a deleted alarm descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.2 Alarm services. 13

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.2.2.5 int rt_alarm_start (RT_ALARM ∗ alarm, RTIME value, RTIME interval)

Start an alarm.

Program the trigger date of an alarm object. An alarm can be either periodic or oneshot, depending
on the reload value passed to this routine. The given alarm must have been previously created
by a call to rt_alarm_create().

Alarm handlers are always called on behalf of Xenomai’s internal timer tick handler, so the
Xenomai services which can be called from such handlers are restricted to the set of services
available on behalf of any ISR.

This service overrides any previous setup of the expiry date and reload interval for the given
alarm.

Parameters:

alarm The descriptor address of the affected alarm.

value The relative date of the initial alarm shot, expressed in clock ticks (see note).

interval The reload value of the alarm. It is a periodic interval value to be used for repro-
gramming the next alarm shot, expressed in clock ticks (see note). If interval is equal to
TM_INFINITE, the alarm will not be reloaded after it has expired.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if alarm is not a alarm descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

Note:

The initial value and interval will be interpreted as jiffies if the native skin is bound to a periodic
time base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

14 Module Documentation

4.2.2.6 int rt_alarm_stop (RT_ALARM ∗ alarm)

Stop an alarm.

Disarm an alarm object previously armed using rt_alarm_start() so that it will not trigger until is
is re-armed.

Parameters:

alarm The descriptor address of the released alarm.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if alarm is not a alarm descriptor.

• -EIDRM is returned if alarm is a deleted alarm descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.2.2.7 int rt_alarm_wait (RT_ALARM ∗ alarm)

Wait for the next alarm shot.

This user-space only call allows the current task to suspend execution until the specified alarm
triggers. The priority of the current task is raised above all other Xenomai tasks - except those
also undergoing an alarm or interrupt wait (see rt_intr_wait()) - so that it would preempt any of
them under normal circumstances (i.e. no scheduler lock).

Parameters:

alarm The descriptor address of the awaited alarm.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if alarm is not an alarm descriptor.

• -EPERM is returned if this service was called from a context which cannot sleep (e.g.
interrupt, non-realtime or scheduler locked).

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.2 Alarm services. 15

• -EIDRM is returned if alarm is a deleted alarm descriptor, including if the deletion occurred
while the caller was waiting for its next shot.

• -EINTR is returned if rt_task_unblock() has been called for the current task before the next
alarm shot.

Environments:

This service can be called from:

• User-space task

Rescheduling: always.

Examples:

user_alarm.c.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

16 Module Documentation

4.3 Condition variable services.

Collaboration diagram for Condition variable services.:

Native Xenomai API. Condition variable services.

4.3.1 Detailed Description

Condition variable services.

A condition variable is a synchronization object which allows tasks to suspend execution until
some predicate on shared data is satisfied. The basic operations on conditions are: signal the
condition (when the predicate becomes true), and wait for the condition, blocking the task exe-
cution until another task signals the condition. A condition variable must always be associated
with a mutex, to avoid a well-known race condition where a task prepares to wait on a condition
variable and another task signals the condition just before the first task actually waits on it.

Files

• file cond.c
This file is part of the Xenomai project.

Functions

• int rt_cond_create (RT_COND ∗cond, const char ∗name)
Create a condition variable.

• int rt_cond_delete (RT_COND ∗cond)
Delete a condition variable.

• int rt_cond_signal (RT_COND ∗cond)
Signal a condition variable.

• int rt_cond_broadcast (RT_COND ∗cond)
Broadcast a condition variable.

• int rt_cond_wait (RT_COND ∗cond, RT_MUTEX ∗mutex, RTIME timeout)
Wait on a condition.

• int rt_cond_inquire (RT_COND ∗cond, RT_COND_INFO ∗info)
Inquire about a condition variable.

• int rt_cond_bind (RT_COND ∗cond, const char ∗name, RTIME timeout)
Bind to a condition variable.

• static int rt_cond_unbind (RT_COND ∗cond)
Unbind from a condition variable.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.3 Condition variable services. 17

4.3.2 Function Documentation

4.3.2.1 int rt_cond_bind (RT_COND ∗ cond, const char ∗ name, RTIME timeout)

Bind to a condition variable.

This user-space only service retrieves the uniform descriptor of a given Xenomai condition vari-
able identified by its symbolic name. If the condition variable does not exist on entry, this service
blocks the caller until a condition variable of the given name is created.

Parameters:

name A valid NULL-terminated name which identifies the condition variable to bind to.

cond The address of a condition variable descriptor retrieved by the operation. Contents of
this memory is undefined upon failure.

timeout The number of clock ticks to wait for the registration to occur (see note). Passing
TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if cond or name is referencing invalid memory.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

18 Module Documentation

4.3.2.2 int rt_cond_broadcast (RT_COND ∗ cond)

Broadcast a condition variable.

If the condition variable is pended, all tasks currently waiting on it are immediately unblocked.

Parameters:

cond The descriptor address of the affected condition variable.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if cond is not a condition variable descriptor.

• -EIDRM is returned if cond is a deleted condition variable descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

4.3.2.3 int rt_cond_create (RT_COND ∗ cond, const char ∗ name)

Create a condition variable.

Create a synchronization object that allows tasks to suspend execution until some predicate on
shared data is satisfied.

Parameters:

cond The address of a condition variable descriptor Xenomai will use to store the variable-
related data. This descriptor must always be valid while the variable is active therefore
it must be allocated in permanent memory.

name An ASCII string standing for the symbolic name of the condition variable. When
non-NULL and non-empty, this string is copied to a safe place into the descriptor, and
passed to the registry package if enabled for indexing the created variable.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the condition variable.

• -EEXIST is returned if the name is already in use by some registered object.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.3 Condition variable services. 19

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_cond_delete().

4.3.2.4 int rt_cond_delete (RT_COND ∗ cond)

Delete a condition variable.

Destroy a condition variable and release all the tasks currently pending on it. A condition variable
exists in the system since rt_cond_create() has been called to create it, so this service must be called
in order to destroy it afterwards.

Parameters:

cond The descriptor address of the affected condition variable.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if cond is not a condition variable descriptor.

• -EIDRM is returned if cond is a deleted condition variable descriptor.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_cond_create().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

20 Module Documentation

4.3.2.5 int rt_cond_inquire (RT_COND ∗ cond, RT_COND_INFO ∗ info)

Inquire about a condition variable.

Return various information about the status of a given condition variable.

Parameters:

cond The descriptor address of the inquired condition variable.

info The address of a structure the condition variable information will be written to.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if cond is not a condition variable descriptor.

• -EIDRM is returned if cond is a deleted condition variable descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.3.2.6 int rt_cond_signal (RT_COND ∗ cond)

Signal a condition variable.

If the condition variable is pended, the first waiting task (by queuing priority order) is immediately
unblocked.

Parameters:

cond The descriptor address of the affected condition variable.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if cond is not a condition variable descriptor.

• -EIDRM is returned if cond is a deleted condition variable descriptor.

Environments:

This service can be called from:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.3 Condition variable services. 21

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

4.3.2.7 int rt_cond_unbind (RT_COND ∗ cond) [inline, static]

Unbind from a condition variable.

This user-space only service unbinds the calling task from the condition variable object previously
retrieved by a call to rt_cond_bind().

Parameters:

cond The address of a condition variable descriptor to unbind from.

Returns:

0 is always returned.

This service can be called from:

• User-space task.

Rescheduling: never.

4.3.2.8 int rt_cond_wait (RT_COND ∗ cond, RT_MUTEX ∗ mutex, RTIME timeout)

Wait on a condition.

This service atomically release the mutex and causes the calling task to block on the specified
condition variable. The caller will be unblocked when the variable is signaled, and the mutex
re-acquired before returning from this service.

Tasks pend on condition variables by priority order.

Parameters:

cond The descriptor address of the affected condition variable.

mutex The descriptor address of the mutex protecting the condition variable.

timeout The number of clock ticks to wait for the condition variable to be signaled (see note).
Passing TM_INFINITE causes the caller to block indefinitely until the condition variable
is signaled.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if mutex is not a mutex descriptor, or cond is not a condition variable
descriptor.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

22 Module Documentation

• -EIDRM is returned if mutex or cond is a deleted object descriptor, including if the deletion
occurred while the caller was sleeping on the variable.

• -ETIMEDOUT is returned if timeout expired before the condition variable has been signaled.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
condition variable has been signaled.

• -EWOULDBLOCK is returned if timeout equals TM_NONBLOCK.

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

References rt_mutex_acquire().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.4 Event flag group services. 23

4.4 Event flag group services.

Collaboration diagram for Event flag group services.:

Native Xenomai API. Event flag group services.

4.4.1 Detailed Description

An event flag group is a synchronization object represented by a long-word structure; every
available bit in such word can be used to map a user-defined event flag. When a flag is set, the
associated event is said to have occurred. Xenomai tasks and interrupt handlers can use event
flags to signal the occurrence of events to other tasks; those tasks can either wait for the events
to occur in a conjunctive manner (all awaited events must have occurred to wake up), or in a
disjunctive way (at least one of the awaited events must have occurred to wake up).

Files

• file event.c
This file is part of the Xenomai project.

Functions

• int rt_event_create (RT_EVENT ∗event, const char ∗name, unsigned long ivalue, int mode)
Create an event group.

• int rt_event_delete (RT_EVENT ∗event)
Delete an event group.

• int rt_event_signal (RT_EVENT ∗event, unsigned long mask)
Post an event group.

• int rt_event_wait (RT_EVENT ∗event, unsigned long mask, unsigned long ∗mask_r, int
mode, RTIME timeout)

Pend on an event group.

• int rt_event_clear (RT_EVENT ∗event, unsigned long mask, unsigned long ∗mask_r)
Clear an event group.

• int rt_event_inquire (RT_EVENT ∗event, RT_EVENT_INFO ∗info)
Inquire about an event group.

• int rt_event_bind (RT_EVENT ∗event, const char ∗name, RTIME timeout)
Bind to an event flag group.

• static int rt_event_unbind (RT_EVENT ∗event)
Unbind from an event flag group.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

24 Module Documentation

4.4.2 Function Documentation

4.4.2.1 int rt_event_bind (RT_EVENT ∗ event, const char ∗ name, RTIME timeout)

Bind to an event flag group.

This user-space only service retrieves the uniform descriptor of a given Xenomai event flag group
identified by its symbolic name. If the event flag group does not exist on entry, this service blocks
the caller until a event flag group of the given name is created.

Parameters:

name A valid NULL-terminated name which identifies the event flag group to bind to.

event The address of an event flag group descriptor retrieved by the operation. Contents of
this memory is undefined upon failure.

timeout The number of clock ticks to wait for the registration to occur (see note). Passing
TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if event or name is referencing invalid memory.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.4 Event flag group services. 25

4.4.2.2 int rt_event_clear (RT_EVENT ∗ event, unsigned long mask, unsigned long ∗mask_r)

Clear an event group.

Clears a set of flags from an event mask.

Parameters:

event The descriptor address of the affected event.

mask The set of events to be cleared.

mask_r If non-NULL, mask_r is the address of a memory location which will be written upon
success with the previous value of the event group before the flags are cleared.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if event is not an event group descriptor.

• -EIDRM is returned if event is a deleted event group descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.4.2.3 int rt_event_create (RT_EVENT ∗ event, const char ∗ name, unsigned long ivalue, int
mode)

Create an event group.

Event groups provide for task synchronization by allowing a set of flags (or "events") to be waited
for and posted atomically. An event group contains a mask of received events; any set of bits
from the event mask can be pended or posted in a single operation.

Tasks can wait for a conjunctive (AND) or disjunctive (OR) set of events to occur. A task pending
on an event group in conjunctive mode is woken up as soon as all awaited events are set in the
event mask. A task pending on an event group in disjunctive mode is woken up as soon as any
awaited event is set in the event mask.

Parameters:

event The address of an event group descriptor Xenomai will use to store the event-related
data. This descriptor must always be valid while the group is active therefore it must
be allocated in permanent memory.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

26 Module Documentation

name An ASCII string standing for the symbolic name of the group. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created event group.

ivalue The initial value of the group’s event mask.

mode The event group creation mode. The following flags can be OR’ed into this bitmask,
each of them affecting the new group:

• EV_FIFO makes tasks pend in FIFO order on the event group.

• EV_PRIO makes tasks pend in priority order on the event group.

Returns:

0 is returned upon success. Otherwise:

• -EEXIST is returned if the name is already in use by some registered object.

• -EPERM is returned if this service was called from an asynchronous context.

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the event group.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_event_delete().

4.4.2.4 int rt_event_delete (RT_EVENT ∗ event)

Delete an event group.

Destroy an event group and release all the tasks currently pending on it. An event group exists
in the system since rt_event_create() has been called to create it, so this service must be called in
order to destroy it afterwards.

Parameters:

event The descriptor address of the affected event group.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if event is not a event group descriptor.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.4 Event flag group services. 27

• -EIDRM is returned if event is a deleted event group descriptor.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_event_create().

4.4.2.5 int rt_event_inquire (RT_EVENT ∗ event, RT_EVENT_INFO ∗ info)

Inquire about an event group.

Return various information about the status of a specified event group.

Parameters:

event The descriptor address of the inquired event group.

info The address of a structure the event group information will be written to.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if event is not a event group descriptor.

• -EIDRM is returned if event is a deleted event group descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

28 Module Documentation

4.4.2.6 int rt_event_signal (RT_EVENT ∗ event, unsigned long mask)

Post an event group.

Post a set of bits to the event mask. All tasks having their wait request fulfilled by the posted
events are resumed.

Parameters:

event The descriptor address of the affected event.

mask The set of events to be posted.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if event is not an event group descriptor.

• -EIDRM is returned if event is a deleted event group descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

4.4.2.7 int rt_event_unbind (RT_EVENT ∗ event) [inline, static]

Unbind from an event flag group.

This user-space only service unbinds the calling task from the event flag group object previously
retrieved by a call to rt_event_bind().

Parameters:

event The address of an event flag group descriptor to unbind from.

Returns:

0 is always returned.

This service can be called from:

• User-space task.

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.4 Event flag group services. 29

4.4.2.8 int rt_event_wait (RT_EVENT ∗ event, unsigned long mask, unsigned long ∗ mask_r,
int mode, RTIME timeout)

Pend on an event group.

Waits for one or more events on the specified event group, either in conjunctive or disjunctive
mode.

If the specified set of bits is not set, the calling task is blocked. The task is not resumed until
the request is fulfilled. The event bits are NOT cleared from the event group when a request
is satisfied; rt_event_wait() will return immediately with success for the same event mask until
rt_event_clear() is called to clear those bits.

Parameters:

event The descriptor address of the affected event group.

mask The set of bits to wait for. Passing zero causes this service to return immediately with
a success value; the current value of the event mask is also copied to mask_r.

mask_r The value of the event mask at the time the task was readied.

mode The pend mode. The following flags can be OR’ed into this bitmask, each of them
affecting the operation:

• EV_ANY makes the task pend in disjunctive mode (i.e. OR); this means that the request is
fulfilled when at least one bit set into mask is set in the current event mask.

• EV_ALL makes the task pend in conjunctive mode (i.e. AND); this means that the request
is fulfilled when at all bits set into mask are set in the current event mask.

Parameters:

timeout The number of clock ticks to wait for fulfilling the request (see note). Passing TM_-
INFINITE causes the caller to block indefinitely until the request is fulfilled. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the request
cannot be satisfied immediately.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if event is not a event group descriptor.

• -EIDRM is returned if event is a deleted event group descriptor, including if the deletion
occurred while the caller was sleeping on it before the request has been satisfied.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the current event
mask value does not satisfy the request.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
request has been satisfied.

• -ETIMEDOUT is returned if the request has not been satisfied within the specified amount
of time.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

30 Module Documentation

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code or Interrupt service routine only if timeout is
equal to TM_NONBLOCK.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.5 Memory heap services. 31

4.5 Memory heap services.

Collaboration diagram for Memory heap services.:

Native Xenomai API. Memory heap services.

4.5.1 Detailed Description

Memory heaps are regions of memory used for dynamic memory allocation in a time-bounded
fashion. Blocks of memory are allocated and freed in an arbitrary order and the pattern of
allocation and size of blocks is not known until run time.

The implementation of the memory allocator follows the algorithm described in a USENIX 1988
paper called "Design of a General Purpose Memory Allocator for the 4.3BSD Unix Kernel" by
Marshall K. McKusick and Michael J. Karels.

Xenomai memory heaps are built over the nucleus’s heap objects, which in turn provide the
needed support for sharing a memory area between kernel and user-space using direct memory
mapping.

Files

• file heap.c
This file is part of the Xenomai project.

Functions

• int rt_heap_create (RT_HEAP ∗heap, const char ∗name, size_t heapsize, int mode)
Create a memory heap or a shared memory segment.

• int rt_heap_delete (RT_HEAP ∗heap)
Delete a real-time heap.

• int rt_heap_alloc (RT_HEAP ∗heap, size_t size, RTIME timeout, void ∗∗blockp)
Allocate a block or return the single segment base.

• int rt_heap_free (RT_HEAP ∗heap, void ∗block)
Free a block.

• int rt_heap_inquire (RT_HEAP ∗heap, RT_HEAP_INFO ∗info)
Inquire about a heap.

• int rt_heap_bind (RT_HEAP ∗heap, const char ∗name, RTIME timeout)
Bind to a mappable heap.

• int rt_heap_unbind (RT_HEAP ∗heap)
Unbind from a mappable heap.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

32 Module Documentation

4.5.2 Function Documentation

4.5.2.1 int rt_heap_alloc (RT_HEAP ∗ heap, size_t size, RTIME timeout, void ∗∗ blockp)

Allocate a block or return the single segment base.

This service allocates a block from the heap’s internal pool, or returns the address of the single
memory segment in the caller’s address space. Tasks may wait for some requested amount of
memory to become available from local heaps.

Parameters:

heap The descriptor address of the heap to allocate a block from.

size The requested size in bytes of the block. If the heap is managed as a single-block area
(H_SINGLE), this value can be either zero, or the same value given to rt_heap_create().
In that case, the same block covering the entire heap space will always be returned to
all callers of this service.

timeout The number of clock ticks to wait for a block of sufficient size to be available from
a local heap (see note). Passing TM_INFINITE causes the caller to block indefinitely
until some block is eventually available. Passing TM_NONBLOCK causes the service
to return immediately without waiting if no block is available on entry. This parameter
has no influence if the heap is managed as a single-block area since the entire heap space
is always available.

blockp A pointer to a memory location which will be written upon success with the address
of the allocated block, or the start address of the single memory segment. In the former
case, the block should be freed using rt_heap_free().

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if heap is not a heap descriptor, or heap is managed as a single-block
area (i.e. H_SINGLE mode) and size is non-zero but does not match the original heap size
passed to rt_heap_create().

• -EIDRM is returned if heap is a deleted heap descriptor.

• -ETIMEDOUT is returned if timeout is different from TM_NONBLOCK and no block is
available within the specified amount of time.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and no block is im-
mediately available on entry.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before any block
was available.

• -EPERM is returned if this service should block but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.5 Memory heap services. 33

• Kernel module initialization/cleanup code

• Interrupt service routine only if timeout is equal to TM_NONBLOCK, or the heap is managed
as a single-block area.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation. Operations on single-block heaps never start the rescheduling procedure.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

4.5.2.2 int rt_heap_bind (RT_HEAP ∗ heap, const char ∗ name, RTIME timeout)

Bind to a mappable heap.

This user-space only service retrieves the uniform descriptor of a given mappable Xenomai heap
identified by its symbolic name. If the heap does not exist on entry, this service blocks the caller
until a heap of the given name is created.

Parameters:

name A valid NULL-terminated name which identifies the heap to bind to.

heap The address of a heap descriptor retrieved by the operation. Contents of this memory
is undefined upon failure.

timeout The number of clock ticks to wait for the registration to occur (see note). Passing
TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if heap or name is referencing invalid memory.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

34 Module Documentation

• -ENOENT is returned if the special file /dev/rtheap (character-mode, major 10, minor 254)
is not available from the filesystem. This device is needed to map the shared heap memory
into the caller’s address space. udev-based systems should not need manual creation of
such device entry. Environments:

This service can be called from:

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Examples:

shared_mem.c.

4.5.2.3 int rt_heap_create (RT_HEAP ∗ heap, const char ∗ name, size_t heapsize, int mode)

Create a memory heap or a shared memory segment.

Initializes a memory heap suitable for time-bounded allocation requests of dynamic memory.
Memory heaps can be local to the kernel address space, or mapped to user-space.

In their simplest form, heaps are only accessible from kernel space, and are merely usable as
regular memory allocators.

Heaps existing in kernel space can be mapped by user-space processes to their own address space
provided H_MAPPABLE has been passed into the mode parameter.

By default, heaps support allocation of multiple blocks of memory in an arbitrary order. However,
it is possible to ask for single-block management by passing the H_SINGLE flag into the mode
parameter, in which case the entire memory space managed by the heap is made available as a
unique block. In this mode, all allocation requests made through rt_heap_alloc() will then return
the same block address, pointing at the beginning of the heap memory.

H_SHARED is a shorthand for creating shared memory segments transparently accessible from
kernel and user-space contexts, which are basically single-block, mappable heaps. By proper
use of a common name, all tasks can bind themselves to the same heap and thus share the same
memory space, which start address should be subsequently retrieved by a call to rt_heap_alloc().

Parameters:

heap The address of a heap descriptor Xenomai will use to store the heap-related data. This
descriptor must always be valid while the heap is active therefore it must be allocated
in permanent memory.

name An ASCII string standing for the symbolic name of the heap. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created heap. Mappable heaps must be
given a valid name.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.5 Memory heap services. 35

heapsize The size (in bytes) of the block pool which is going to be pre-allocated to the
heap. Memory blocks will be claimed and released to this pool. The block pool is not
extensible, so this value must be compatible with the highest memory pressure that
could be expected. A minimum of 2 ∗ PAGE_SIZE will be enforced for mappable heaps,
2 ∗ XNCORE_PAGE_SIZE otherwise.

mode The heap creation mode. The following flags can be OR’ed into this bitmask, each of
them affecting the new heap:

• H_FIFO makes tasks pend in FIFO order on the heap when waiting for available blocks.

• H_PRIO makes tasks pend in priority order on the heap when waiting for available blocks.

• H_MAPPABLE causes the heap to be sharable between kernel and user-space contexts.
Otherwise, the new heap is only available for kernel-based usage. This flag is implicitely
set when the caller is running in user-space. This feature requires the real-time support in
user-space to be configured in (CONFIG_XENO_OPT_PERVASIVE).

• H_SINGLE causes the entire heap space to be managed as a single memory block.

• H_SHARED is a shorthand for H_MAPPABLE|H_SINGLE, creating a global shared memory
segment accessible from both the kernel and user-space contexts.

• H_DMA causes the block pool associated to the heap to be allocated in physically contiguous
memory, suitable for DMA operations with I/O devices. heapsize beyond 128KiB will be
rounded up to a two expononent allocation.

• H_NONCACHED causes the heap not to be cached. This is necessary on platforms such as
ARM to share a heap between kernel and user-space. Note that this flag is not compatible
with the H_DMA flag.

Returns:

0 is returned upon success. Otherwise:

• -EEXIST is returned if the name is already in use by some registered object.

• -EINVAL is returned if heapsize is null, greater than the system limit, or name is null or empty
for a mappable heap.

• -ENOMEM is returned if not enough system memory is available to create or register the
heap. Additionally, and if H_MAPPABLE has been passed in mode, errors while mapping
the block pool in the caller’s address space might beget this return code too.

• -EPERM is returned if this service was called from an invalid context.

• -ENOSYS is returned if mode specifies H_MAPPABLE, but the real-time support in user-
space is unavailable.

Environments:

This service can be called from:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

36 Module Documentation

• Kernel module initialization/cleanup code

• User-space task (switches to secondary mode)

Rescheduling: possible.

References rt_heap_delete().

4.5.2.4 int rt_heap_delete (RT_HEAP ∗ heap)

Delete a real-time heap.

Destroy a heap and release all the tasks currently pending on it. A heap exists in the system since
rt_heap_create() has been called to create it, so this service must be called in order to destroy it
afterwards.

Parameters:

heap The descriptor address of the affected heap.

Returns:

0 is returned upon success. Otherwise:

• -EBUSY is returned if heap is in use by another process and the descriptor is not destroyed.

• -EINVAL is returned if heap is not a heap descriptor.

• -EIDRM is returned if heap is a deleted heap descriptor.

• -EPERM is returned if this service was called from an invalid context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• User-space task (switches to secondary mode).

Rescheduling: possible.

Referenced by rt_heap_create().

4.5.2.5 int rt_heap_free (RT_HEAP ∗ heap, void ∗ block)

Free a block.

This service releases a block to the heap’s internal pool. If some task is currently waiting for a
block so that it’s pending request could be satisfied as a result of the release, it is immediately
resumed.

If the heap is defined as a single-block area (i.e. H_SINGLE mode), this service leads to a null-effect
and always returns successfully.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.5 Memory heap services. 37

Parameters:

heap The address of the heap descriptor to which the block block belong.
block The address of the block to free.

Returns:

0 is returned upon success, or -EINVAL if block is not a valid block previously allocated by
the rt_heap_alloc() service.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

4.5.2.6 int rt_heap_inquire (RT_HEAP ∗ heap, RT_HEAP_INFO ∗ info)

Inquire about a heap.

Return various information about the status of a given heap.

Parameters:

heap The descriptor address of the inquired heap.
info The address of a structure the heap information will be written to.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if heap is not a message queue descriptor.

• -EIDRM is returned if heap is a deleted queue descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

References rt_heap_info::heapsize, rt_heap_info::mode, rt_heap_info::name, rt_heap_-
info::nwaiters, rt_heap_info::usablemem, and rt_heap_info::usedmem.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

38 Module Documentation

4.5.2.7 int rt_heap_unbind (RT_HEAP ∗ heap)

Unbind from a mappable heap.

This user-space only service unbinds the calling task from the heap object previously retrieved
by a call to rt_heap_bind().

Unbinding from a heap when it is no longer needed is especially important in order to properly
release the mapping resources used to attach the heap memory to the caller’s address space.

Parameters:

heap The address of a heap descriptor to unbind from.

Returns:

0 is always returned.

This service can be called from:

• User-space task.

Rescheduling: never.

Examples:

shared_mem.c.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.6 Interrupt management services. 39

4.6 Interrupt management services.

Collaboration diagram for Interrupt management services.:

Native Xenomai API. Interrupt management services.

Files

• file intr.c

This file is part of the Xenomai project.

Functions

• int rt_intr_create (RT_INTR ∗intr, const char ∗name, unsigned irq, rt_isr_t isr, rt_iack_t iack,
int mode)

Create an interrupt object from kernel space.

• int rt_intr_delete (RT_INTR ∗intr)

Delete an interrupt object.

• int rt_intr_enable (RT_INTR ∗intr)

Enable an interrupt object.

• int rt_intr_disable (RT_INTR ∗intr)

Disable an interrupt object.

• int rt_intr_inquire (RT_INTR ∗intr, RT_INTR_INFO ∗info)

Inquire about an interrupt object.

• int rt_intr_create (RT_INTR ∗intr, const char ∗name, unsigned irq, int mode)

Create an interrupt object from user-space.

• int rt_intr_wait (RT_INTR ∗intr, RTIME timeout)

Wait for the next interrupt.

• int rt_intr_bind (RT_INTR ∗intr, const char ∗name, RTIME timeout)

Bind to an interrupt object.

• static int rt_intr_unbind (RT_INTR ∗intr)

Unbind from an interrupt object.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

40 Module Documentation

4.6.1 Function Documentation

4.6.1.1 int rt_intr_bind (RT_INTR ∗ intr, const char ∗ name, RTIME timeout)

Bind to an interrupt object.

This user-space only service retrieves the uniform descriptor of a given Xenomai interrupt object
identified by its IRQ number. If the object does not exist on entry, this service blocks the caller
until an interrupt object of the given number is created. An interrupt is registered whenever a
kernel-space task invokes the rt_intr_create() service successfully for the given IRQ line.

Parameters:

intr The address of an interrupt object descriptor retrieved by the operation. Contents of
this memory is undefined upon failure.

name An ASCII string standing for the symbolic name of the interrupt object to search for.
timeout The number of clock ticks to wait for the registration to occur (see note). Passing

TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if intr is referencing invalid memory.

• -EINVAL is returned if irq is invalid.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.6 Interrupt management services. 41

4.6.1.2 int rt_intr_create (RT_INTR ∗ intr, const char ∗ name, unsigned irq, int mode)

Create an interrupt object from user-space.

Initializes and associates an interrupt object with an IRQ line from a user-space application. In
this mode, the basic principle is to define some interrupt server task which routinely waits for the
next incoming IRQ event through the rt_intr_wait() syscall.

When an interrupt occurs on the given irq line, any task pending on the interrupt object through
rt_intr_wait() is imediately awaken in order to deal with the hardware event. The interrupt
service code may then call any Xenomai service available from user-space.

Parameters:

intr The address of a interrupt object descriptor Xenomai will use to store the object-specific
data. This descriptor must always be valid while the object is active therefore it must be
allocated in permanent memory.

name An ASCII string standing for the symbolic name of the interrupt object. When non-
NULL and non-empty, this string is copied to a safe place into the descriptor, and passed
to the registry package if enabled for indexing the created interrupt objects.

irq The hardware interrupt channel associated with the interrupt object. This value is
architecture-dependent.

mode The interrupt object creation mode. The following flags can be OR’ed into this bitmask:

• I_NOAUTOENA asks Xenomai not to re-enable the IRQ line before awakening the interrupt
server task. This flag is functionally equivalent as always returning RT_INTR_NOENABLE
from a kernel space interrupt handler.

• I_PROPAGATE asks Xenomai to propagate the IRQ down the pipeline; in other words,
the interrupt occurrence is chained to Linux after it has been processed by the Xenomai
task. This flag is functionally equivalent as always returning RT_INTR_PROPAGATE from
a kernel space interrupt handler.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the interrupt object.

• -EBUSY is returned if the interrupt line is already in use by another interrupt object. Only
a single interrupt object can be associated to any given interrupt line using rt_intr_create()
at any time, regardless of the caller’s execution space (kernel or user).

Environments:

This service can be called from:

• User-space task

Rescheduling: possible.

Note:

The interrupt source associated to the interrupt descriptor remains masked upon creation.
rt_intr_enable() should be called for the new interrupt object to unmask it.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

42 Module Documentation

Examples:

user_irq.c.

4.6.1.3 int rt_intr_create (RT_INTR ∗ intr, const char ∗ name, unsigned irq, rt_isr_t isr,
rt_iack_t iack, int mode)

Create an interrupt object from kernel space.

Initializes and associates an interrupt object with an IRQ line. In kernel space, interrupts are
immediately notified to a user-defined handler or ISR (interrupt service routine).

When an interrupt occurs on the given irq line, the ISR is fired in order to deal with the hardware
event. The interrupt service code may call any non-suspensive Xenomai service.

Upon receipt of an IRQ, the ISR is immediately called on behalf of the interrupted stack context,
the rescheduling procedure is locked, and the interrupt source is masked at hardware level. The
status value returned by the ISR is then checked for the following values:

• RT_INTR_HANDLED indicates that the interrupt request has been fulfilled by the ISR.

• RT_INTR_NONE indicates the opposite to RT_INTR_HANDLED. The ISR must always
return this value when it determines that the interrupt request has not been issued by the
dedicated hardware device.

In addition, one of the following bits may be set by the ISR :

NOTE: use these bits with care and only when you do understand their effect on the system.
The ISR is not encouraged to use these bits in case it shares the IRQ line with other ISRs in the
real-time domain.

• RT_INTR_PROPAGATE tells Xenomai to require the real-time control layer to forward the
IRQ. For instance, this would cause the Adeos control layer to propagate the interrupt down
the interrupt pipeline to other Adeos domains, such as Linux. This is the regular way to
share interrupts between Xenomai and the Linux kernel.

• RT_INTR_NOENABLE asks Xenomai not to re-enable the IRQ line upon return of the
interrupt service routine.

A count of interrupt receipts is tracked into the interrupt descriptor, and reset to zero each time
the interrupt object is attached. Since this count could wrap around, it should be used as an
indication of interrupt activity only.

Parameters:

intr The address of a interrupt object descriptor Xenomai will use to store the object-specific
data. This descriptor must always be valid while the object is active therefore it must be
allocated in permanent memory.

name An ASCII string standing for the symbolic name of the interrupt object. When non-
NULL and non-empty, this string is copied to a safe place into the descriptor, and passed
to the registry package if enabled for indexing the created interrupt objects.

irq The hardware interrupt channel associated with the interrupt object. This value is
architecture-dependent.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.6 Interrupt management services. 43

isr The address of a valid interrupt service routine in kernel space. This handler will be
called each time the corresponding IRQ is delivered on behalf of an interrupt context.
A pointer to an internal information is passed to the routine which can use it to retrieve
the descriptor address of the associated interrupt object through the I_DESC() macro.

iack The address of an optional interrupt acknowledge routine, aimed at replacing the default
one. Only very specific situations actually require to override the default setting for this
parameter, like having to acknowledge non-standard PIC hardware. iack should return
a non-zero value to indicate that the interrupt has been properly acknowledged. If iack
is NULL, the default routine will be used instead.

mode The interrupt object creation mode. The following flags can be OR’ed into this bitmask,
each of them affecting the new interrupt object:

• I_SHARED enables IRQ-sharing with other interrupt objects.

• I_EDGE is an additional flag need to be set together with I_SHARED to enable IRQ-sharing
of edge-triggered interrupts.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the interrupt object.

• -EBUSY is returned if the interrupt line is already in use by another interrupt object. Only
a single interrupt object can be associated to any given interrupt line using rt_intr_create()
at any time.

• -EEXIST is returned if irq is already associated to an existing interrupt object.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task (note that in user-space the interface is different, see rt_intr_create())

Rescheduling: possible.

Note:

The interrupt source associated to the interrupt descriptor remains masked upon creation.
rt_intr_enable() should be called for the new interrupt object to unmask it.

References rt_intr_delete().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

44 Module Documentation

4.6.1.4 int rt_intr_delete (RT_INTR ∗ intr)

Delete an interrupt object.

Destroys an interrupt object. An interrupt exists in the system since rt_intr_create() has been
called to create it, so this service must be called in order to destroy it afterwards.

Any user-space task which might be currently pending on the interrupt object through the rt_-
intr_wait() service will be awaken as a result of the deletion, and return with the -EIDRM status.

Parameters:

intr The descriptor address of the affected interrupt object.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if intr is not a interrupt object descriptor.

• -EIDRM is returned if intr is a deleted interrupt object descriptor.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_intr_create().

4.6.1.5 int rt_intr_disable (RT_INTR ∗ intr)

Disable an interrupt object.

Disables the hardware interrupt line associated with an interrupt object. This operation inval-
idates further interrupt requests from the given source until the IRQ line is re-enabled anew
through rt_intr_enable().

Parameters:

intr The descriptor address of the interrupt object to enable.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if intr is not a interrupt object descriptor.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.6 Interrupt management services. 45

• -EIDRM is returned if intr is a deleted interrupt object descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: never.

4.6.1.6 int rt_intr_enable (RT_INTR ∗ intr)

Enable an interrupt object.

Enables the hardware interrupt line associated with an interrupt object. Over Adeos-based
systems which mask and acknowledge IRQs upon receipt, this operation is necessary to revalidate
the interrupt channel so that more interrupts from the same source can be notified.

Parameters:

intr The descriptor address of the interrupt object to enable.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if intr is not a interrupt object descriptor.

• -EIDRM is returned if intr is a deleted interrupt object descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: never.

4.6.1.7 int rt_intr_inquire (RT_INTR ∗ intr, RT_INTR_INFO ∗ info)

Inquire about an interrupt object.

Return various information about the status of a given interrupt object.

Parameters:

intr The descriptor address of the inquired interrupt object.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

46 Module Documentation

info The address of a structure the interrupt object information will be written to.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if intr is not a interrupt object descriptor.

• -EIDRM is returned if intr is a deleted interrupt object descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.6.1.8 int rt_intr_unbind (RT_INTR ∗ intr) [inline, static]

Unbind from an interrupt object.

This user-space only service unbinds the calling task from the interrupt object previously retrieved
by a call to rt_intr_bind().

Parameters:

intr The address of a interrupt object descriptor to unbind from.

Returns:

0 is always returned.

This service can be called from:

• User-space task.

Rescheduling: never.

4.6.1.9 int rt_intr_wait (RT_INTR ∗ intr, RTIME timeout)

Wait for the next interrupt.

This user-space only call allows the current task to suspend execution until the associated interrupt
event triggers. The priority of the current task is raised above all other Xenomai tasks - except
those also undergoing an interrupt or alarm wait (see rt_alarm_wait()) - so that it would preempt
any of them under normal circumstances (i.e. no scheduler lock).

Interrupt receipts are logged if they cannot be delivered immediately to some interrupt server
task, so that a call to rt_intr_wait() might return immediately if an IRQ is already pending on
entry of the service.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.6 Interrupt management services. 47

Parameters:

intr The descriptor address of the awaited interrupt.

timeout The number of clock ticks to wait for an interrupt to occur (see note). Passing
TM_INFINITE causes the caller to block indefinitely until an interrupt triggers. Passing
TM_NONBLOCK is invalid.

Returns:

A positive value is returned upon success, representing the number of pending interrupts to
process. Otherwise:

• -ETIMEDOUT is returned if no interrupt occurred within the specified amount of time.

• -EINVAL is returned if intr is not an interrupt object descriptor, or timeout is equal to
TM_NONBLOCK.

• -EIDRM is returned if intr is a deleted interrupt object descriptor, including if the deletion
occurred while the caller was waiting for its next interrupt.

• -EINTR is returned if rt_task_unblock() has been called for the current task before the next
interrupt occurrence.

Environments:

This service can be called from:

• User-space task

Rescheduling: always, unless an interrupt is already pending on entry.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Examples:

user_irq.c.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

48 Module Documentation

4.7 Native Xenomai API.

Collaboration diagram for Native Xenomai API.:

Message pipe services.

Alarm services.

Native Xenomai API.

Timer management services.

Memory heap services.

Task management services.

Message queue services.

Event flag group services.

Counting semaphore services.

Mutex services.

Interrupt management services.

Task Status

Condition variable services.

4.7.1 Detailed Description

The native Xenomai programming interface available to real-time applications. This API is built
over the abstract RTOS core implemented by the Xenomai nucleus.

Modules

• Task Status
Defines used to specify task state and/or mode.

• Alarm services.
• Condition variable services.
• Event flag group services.
• Memory heap services.
• Interrupt management services.
• Mutex services.
• Message pipe services.
• Message queue services.
• Counting semaphore services.
• Task management services.
• Timer management services.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.8 Mutex services. 49

4.8 Mutex services.

Collaboration diagram for Mutex services.:

Native Xenomai API. Mutex services.

4.8.1 Detailed Description

Mutex services.

A mutex is a MUTual EXclusion object, and is useful for protecting shared data structures from
concurrent modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any task), and locked (owned by one
task). A mutex can never be owned by two different tasks simultaneously. A task attempting to
lock a mutex that is already locked by another task is blocked until the latter unlocks the mutex
first.

Xenomai mutex services enforce a priority inheritance protocol in order to solve priority inver-
sions.

Files

• file mutex.c
This file is part of the Xenomai project.

Functions

• int rt_mutex_create (RT_MUTEX ∗mutex, const char ∗name)
Create a mutex.

• int rt_mutex_delete (RT_MUTEX ∗mutex)
Delete a mutex.

• int rt_mutex_acquire (RT_MUTEX ∗mutex, RTIME timeout)
Acquire a mutex.

• int rt_mutex_release (RT_MUTEX ∗mutex)
Unlock mutex.

• int rt_mutex_inquire (RT_MUTEX ∗mutex, RT_MUTEX_INFO ∗info)
Inquire about a mutex.

• int rt_mutex_bind (RT_MUTEX ∗mutex, const char ∗name, RTIME timeout)
Bind to a mutex.

• static int rt_mutex_unbind (RT_MUTEX ∗mutex)
Unbind from a mutex.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

50 Module Documentation

4.8.2 Function Documentation

4.8.2.1 int rt_mutex_acquire (RT_MUTEX ∗ mutex, RTIME timeout)

Acquire a mutex.

Attempt to lock a mutex. The calling task is blocked until the mutex is available, in which case
it is locked again before this service returns. Mutexes have an ownership property, which means
that their current owner is tracked. Xenomai mutexes are implicitely recursive and implement
the priority inheritance protocol.

Since a nested locking count is maintained for the current owner, rt_mutex_acquire() and rt_-
mutex_release() must be used in pairs.

Tasks pend on mutexes by priority order.

Parameters:

mutex The descriptor address of the mutex to acquire.
timeout The number of clock ticks to wait for the mutex to be available to the calling task (see

note). Passing TM_INFINITE causes the caller to block indefinitely until the mutex is
available. Passing TM_NONBLOCK causes the service to return immediately without
waiting if the mutex is still locked by another task.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if mutex is not a mutex descriptor.

• -EIDRM is returned if mutex is a deleted mutex descriptor, including if the deletion occurred
while the caller was sleeping on it.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the mutex is not
immediately available.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the mutex
has become available.

• -ETIMEDOUT is returned if the mutex cannot be made available to the calling task within
the specified amount of time.

• -EPERM is returned if this service was called from a context which cannot be given the
ownership of the mutex (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation. If the caller is blocked, the current owner’s priority might be temporarily
raised as a consequence of the priority inheritance protocol.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.8 Mutex services. 51

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Referenced by rt_cond_wait().

4.8.2.2 int rt_mutex_bind (RT_MUTEX ∗ mutex, const char ∗ name, RTIME timeout)

Bind to a mutex.

This user-space only service retrieves the uniform descriptor of a given Xenomai mutex identified
by its symbolic name. If the mutex does not exist on entry, this service blocks the caller until a
mutex of the given name is created.

Parameters:

name A valid NULL-terminated name which identifies the mutex to bind to.
mutex The address of a mutex descriptor retrieved by the operation. Contents of this memory

is undefined upon failure.
timeout The number of clock ticks to wait for the registration to occur (see note). Passing

TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if mutex or name is referencing invalid memory.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

52 Module Documentation

4.8.2.3 int rt_mutex_create (RT_MUTEX ∗ mutex, const char ∗ name)

Create a mutex.

Create a mutual exclusion object that allows multiple tasks to synchronize access to a shared
resource. A mutex is left in an unlocked state after creation.

Parameters:

mutex The address of a mutex descriptor Xenomai will use to store the mutex-related data.
This descriptor must always be valid while the mutex is active therefore it must be
allocated in permanent memory.

name An ASCII string standing for the symbolic name of the mutex. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created mutex.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the mutex.

• -EEXIST is returned if the name is already in use by some registered object.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_mutex_delete().

4.8.2.4 int rt_mutex_delete (RT_MUTEX ∗ mutex)

Delete a mutex.

Destroy a mutex and release all the tasks currently pending on it. A mutex exists in the system
since rt_mutex_create() has been called to create it, so this service must be called in order to
destroy it afterwards.

Parameters:

mutex The descriptor address of the affected mutex.

Returns:

0 is returned upon success. Otherwise:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.8 Mutex services. 53

• -EINVAL is returned if mutex is not a mutex descriptor.

• -EIDRM is returned if mutex is a deleted mutex descriptor.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_mutex_create().

4.8.2.5 int rt_mutex_inquire (RT_MUTEX ∗ mutex, RT_MUTEX_INFO ∗ info)

Inquire about a mutex.

Return various information about the status of a given mutex.

Parameters:

mutex The descriptor address of the inquired mutex.

info The address of a structure the mutex information will be written to.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if mutex is not a mutex descriptor.

• -EIDRM is returned if mutex is a deleted mutex descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

References rt_mutex_info::lockcnt, rt_mutex_info::name, and rt_mutex_info::nwaiters.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

54 Module Documentation

4.8.2.6 int rt_mutex_release (RT_MUTEX ∗ mutex)

Unlock mutex.

Release a mutex. If the mutex is pended, the first waiting task (by priority order) is immediately
unblocked and transfered the ownership of the mutex; otherwise, the mutex is left in an unlocked
state.

Parameters:

mutex The descriptor address of the released mutex.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if mutex is not a mutex descriptor.

• -EIDRM is returned if mutex is a deleted mutex descriptor.

• -EPERM is returned if mutex is not owned by the current task, or more generally if this
service was called from a context which cannot own any mutex (e.g. interrupt, or non-
realtime context).

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: possible.

4.8.2.7 int rt_mutex_unbind (RT_MUTEX ∗ mutex) [inline, static]

Unbind from a mutex.

This user-space only service unbinds the calling task from the mutex object previously retrieved
by a call to rt_mutex_bind().

Parameters:

mutex The address of a mutex descriptor to unbind from.

Returns:

0 is always returned.

This service can be called from:

• User-space task.

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.9 Message pipe services. 55

4.9 Message pipe services.

Collaboration diagram for Message pipe services.:

Message pipe services.Native Xenomai API.

4.9.1 Detailed Description

Message pipe services.

A message pipe is a two-way communication channel between Xenomai tasks and standard
Linux processes using regular file I/O operations on a pseudo-device. Pipes can be operated in a
message-oriented fashion so that message boundaries are preserved, and also in byte streaming
mode from real-time to standard Linux processes for optimal throughput.

Xenomai tasks open their side of the pipe using the rt_pipe_create() service; standard Linux
processes do the same by opening one of the /dev/rtpN special devices, where N is the minor
number agreed upon between both ends of each pipe. Additionally, named pipes are available
through the registry support, which automatically creates a symbolic link from entries under
/proc/xenomai/registry/native/pipes/ to the corresponding special device file.

Files

• file pipe.c
This file is part of the Xenomai project.

Functions

• int rt_pipe_create (RT_PIPE ∗pipe, const char ∗name, int minor, size_t poolsize)
Create a message pipe.

• int rt_pipe_delete (RT_PIPE ∗pipe)
Delete a message pipe.

• ssize_t rt_pipe_receive (RT_PIPE ∗pipe, RT_PIPE_MSG ∗∗msgp, RTIME timeout)
Receive a message from a pipe.

• ssize_t rt_pipe_read (RT_PIPE ∗pipe, void ∗buf, size_t size, RTIME timeout)
Read a message from a pipe.

• ssize_t rt_pipe_send (RT_PIPE ∗pipe, RT_PIPE_MSG ∗msg, size_t size, int mode)
Send a message through a pipe.

• ssize_t rt_pipe_write (RT_PIPE ∗pipe, const void ∗buf, size_t size, int mode)
Write a message to a pipe.

• ssize_t rt_pipe_stream (RT_PIPE ∗pipe, const void ∗buf, size_t size)
Stream bytes to a pipe.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

56 Module Documentation

• RT_PIPE_MSG ∗ rt_pipe_alloc (RT_PIPE ∗pipe, size_t size)
Allocate a message pipe buffer.

• int rt_pipe_free (RT_PIPE ∗pipe, RT_PIPE_MSG ∗msg)
Free a message pipe buffer.

• int rt_pipe_flush (RT_PIPE ∗pipe, int mode)
Flush the i/o queues associated with the kernel endpoint of a message pipe.

4.9.2 Function Documentation

4.9.2.1 RT_PIPE_MSG∗ rt_pipe_alloc (RT_PIPE ∗ pipe, size_t size)

Allocate a message pipe buffer.

This service allocates a message buffer from the pipe’s heap which can be subsequently filled by
the caller then passed to rt_pipe_send() for sending. The beginning of the available data area of
size contiguous bytes is accessible from P_MSGPTR(msg).

Parameters:

pipe The descriptor address of the affected pipe.

size The requested size in bytes of the buffer. This value should represent the size of the
payload data.

Returns:

The address of the allocated message buffer upon success, or NULL if the allocation fails.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

Rescheduling: never.

Referenced by rt_pipe_write().

4.9.2.2 int rt_pipe_create (RT_PIPE ∗ pipe, const char ∗ name, int minor, size_t poolsize)

Create a message pipe.

This service opens a bi-directional communication channel allowing data exchange between
Xenomai tasks and standard Linux processes. Pipes natively preserve message boundaries, but
can also be used in byte stream mode from Xenomai tasks to standard Linux processes.

rt_pipe_create() always returns immediately, even if no Linux process has opened the associated
special device file yet. On the contrary, the non real-time side could block upon attempt to open

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.9 Message pipe services. 57

the special device file until rt_pipe_create() is issued on the same pipe from a Xenomai task, unless
O_NONBLOCK has been specified to the open(2) system call.

Parameters:

pipe The address of a pipe descriptor Xenomai will use to store the pipe-related data. This
descriptor must always be valid while the pipe is active therefore it must be allocated
in permanent memory.

name An ASCII string standing for the symbolic name of the message pipe. When non-NULL
and non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created pipe.

Named pipes are supported through the use of the registry. When the registry support is enabled,
passing a valid name parameter when creating a message pipe subsequently allows standard
Linux processes to follow a symbolic link from /proc/xenomai/registry/pipes/name in order to
reach the associated special device (i.e. /dev/rtp∗), so that the specific minor information does not
need to be known from those processes for opening the proper device file. In such a case, both
sides of the pipe only need to agree upon a symbolic name to refer to the same data path, which
is especially useful whenever the minor number is picked up dynamically using an adaptive
algorithm, such as passing P_MINOR_AUTO as minor value.

Parameters:

minor The minor number of the device associated with the pipe. Passing P_MINOR_AUTO
causes the minor number to be auto-allocated. In such a case, the name parameter must
be valid so that user-space processes may subsequently follow the symbolic link that
will be automatically created from /proc/xenomai/registry/pipes/name to the allocated
pipe device entry (i.e. /dev/rtp∗).

poolsize Specifies the size of a dedicated buffer pool for the pipe. Passing 0 means that all
message allocations for this pipe are performed on the system heap.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the pipe, or if not enough memory could be obtained
from the selected buffer pool for allocating the internal streaming buffer.

• -EEXIST is returned if the name is already in use by some registered object.

• -ENODEV is returned if minor is different from P_MINOR_AUTO and is not a valid minor
number for the pipe special device either (i.e. /dev/rtp∗).

• -EBUSY is returned if minor is already open.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

58 Module Documentation

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_pipe_delete().

4.9.2.3 int rt_pipe_delete (RT_PIPE ∗ pipe)

Delete a message pipe.

This service deletes a pipe previously created by rt_pipe_create(). Data pending for transmission
to non real-time processes are lost.

Parameters:

pipe The descriptor address of the affected pipe.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if pipe is not a pipe descriptor.

• -EIDRM is returned if pipe is a closed pipe descriptor.

• -ENODEV or -EBADF can be returned if pipe is scrambled.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_pipe_create().

4.9.2.4 int rt_pipe_flush (RT_PIPE ∗ pipe, int mode)

Flush the i/o queues associated with the kernel endpoint of a message pipe.

This service flushes all data pending for consumption by the remote side in user-space for the
given message pipe. Upon success, no data remains to be read from the remote side of the
connection.

The user-space equivalent is a call to: ioctl(pipefd, XNPIPEIOC_FLUSH, 0).

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.9 Message pipe services. 59

Parameters:

pipe The descriptor address of the pipe to flush.

mode A mask indicating which queues need to be flushed; the following flags may be
combined in a single flush request:

• XNPIPE_IFLUSH causes the input queue to be flushed (i.e. data coming from user-space to
the kernel endpoint will be discarded).

• XNPIPE_OFLUSH causes the output queue to be flushed (i.e. data going to user-space from
the kernel endpoint will be discarded).

Returns:

Zero is returned upon success. Otherwise:

• -EINVAL is returned if pipe is not a pipe descriptor.

• -EIDRM is returned if pipe is a closed pipe descriptor.

• -ENODEV or -EBADF are returned if pipe is scrambled.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

Rescheduling: never.

4.9.2.5 int rt_pipe_free (RT_PIPE ∗ pipe, RT_PIPE_MSG ∗ msg)

Free a message pipe buffer.

This service releases a message buffer returned by rt_pipe_receive() to the pipe’s heap.

Parameters:

pipe The descriptor address of the affected pipe.

msg The address of the message buffer to free.

Returns:

0 is returned upon success, or -EINVAL if msg is not a valid message buffer previously
allocated by the rt_pipe_alloc() service.

Environments:

This service can be called from:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

60 Module Documentation

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

Rescheduling: never.

Referenced by rt_pipe_read(), and rt_pipe_write().

4.9.2.6 ssize_t rt_pipe_read (RT_PIPE ∗ pipe, void ∗ buf, size_t size, RTIME timeout)

Read a message from a pipe.

This service retrieves the next message written to the associated special device in user-space.
rt_pipe_read() always preserves message boundaries, which means that all data sent through
the same write(2) operation to the special device will be gathered in a single message by this
service. This services differs from rt_pipe_receive() in that it copies back the payload data to a
user-defined memory area, instead of returning a pointer to the internal message buffer holding
such data.

Unless otherwise specified, the caller is blocked for a given amount of time if no data is immedi-
ately available on entry.

Parameters:

pipe The descriptor address of the pipe to read from.

buf A pointer to a memory location which will be written upon success with the read message
contents.

size The count of bytes from the received message to read up into buf . If size is lower than
the actual message size, -ENOBUFS is returned since the incompletely received message
would be lost. If size is zero, this call returns immediately with no other action.

timeout The number of clock ticks to wait for some message to arrive (see note). Passing TM_-
INFINITE causes the caller to block indefinitely until some data is eventually available.
Passing TM_NONBLOCK causes the service to return immediately without waiting if
no data is available on entry.

Returns:

The number of read bytes copied to the buf is returned upon success. Otherwise:

• 0 is returned if the peer closed the channel while rt_pipe_read() was reading from it. There
is no way to distinguish this situation from an empty message return using rt_pipe_read().
One should rather call rt_pipe_receive() whenever this information is required.

• -EINVAL is returned if pipe is not a pipe descriptor.

• -EIDRM is returned if pipe is a closed pipe descriptor.

• -ENODEV or -EBADF are returned if pipe is scrambled.

• -ETIMEDOUT is returned if timeout is different from TM_NONBLOCK and no data is
available within the specified amount of time.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.9 Message pipe services. 61

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and no data is imme-
diately available on entry.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before any data
was available.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

• -ENOBUFS is returned if size is not large enough to collect the message data.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if timeout is equal to TM_NONBLOCK.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

References rt_pipe_free(), and rt_pipe_receive().

4.9.2.7 ssize_t rt_pipe_receive (RT_PIPE ∗ pipe, RT_PIPE_MSG ∗∗ msgp, RTIME timeout)

Receive a message from a pipe.

This service retrieves the next message written to the associated special device in user-space.
rt_pipe_receive() always preserves message boundaries, which means that all data sent through
the same write(2) operation to the special device will be gathered in a single message by this
service. This service differs from rt_pipe_read() in that it returns a pointer to the internal buffer
holding the message, which improves performances by saving a data copy to a user-provided
buffer, especially when large messages are involved.

Unless otherwise specified, the caller is blocked for a given amount of time if no data is immedi-
ately available on entry.

Parameters:

pipe The descriptor address of the pipe to receive from.
msgp A pointer to a memory location which will be written upon success with the address

of the received message. Once consumed, the message space should be freed using
rt_pipe_free(). The application code can retrieve the actual data and size carried by the
message by respectively using the P_MSGPTR() and P_MSGSIZE() macros. ∗msgp is
set to NULL and zero is returned to the caller, in case the peer closed the channel while
rt_pipe_receive() was reading from it.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

62 Module Documentation

timeout The number of clock ticks to wait for some message to arrive (see note). Passing TM_-
INFINITE causes the caller to block indefinitely until some data is eventually available.
Passing TM_NONBLOCK causes the service to return immediately without waiting if
no data is available on entry.

Returns:

The number of read bytes available from the received message is returned upon success; this
value will be equal to P_MSGSIZE(∗msgp). Otherwise:

• 0 is returned and ∗msgp is set to NULL if the peer closed the channel while rt_pipe_receive()
was reading from it. This is to be distinguished from an empty message return, where ∗msgp
points to a valid - albeit empty - message block (i.e. P_MSGSIZE(∗msgp) == 0).

• -EINVAL is returned if pipe is not a pipe descriptor.

• -ENODEV or -EBADF are returned if pipe is scrambled.

• -ETIMEDOUT is returned if timeout is different from TM_NONBLOCK and no data is
available within the specified amount of time.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and no data is imme-
diately available on entry.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before any data
was available.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if timeout is equal to TM_NONBLOCK.

• Kernel-based task

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Referenced by rt_pipe_read().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.9 Message pipe services. 63

4.9.2.8 ssize_t rt_pipe_send (RT_PIPE ∗ pipe, RT_PIPE_MSG ∗ msg, size_t size, int mode)

Send a message through a pipe.

This service writes a complete message to be received from the associated special device. rt_-
pipe_send() always preserves message boundaries, which means that all data sent through a
single call of this service will be gathered in a single read(2) operation from the special device.
This service differs from rt_pipe_write() in that it accepts a canned message buffer, instead of a
pointer to the raw data to be sent. This call is useful whenever the caller wants to prepare the
message contents separately from its sending, which does not require to have all the data to be
sent available at once but allows for incremental updates of the message, and also saves a message
copy, since rt_pipe_send() deals internally with message buffers.

Parameters:

pipe The descriptor address of the pipe to send to.

msg The address of the message to be sent. The message space must have been allocated
using the rt_pipe_alloc() service. Once passed to rt_pipe_send(), the memory pointed
to by msg is no more under the control of the application code and thus should not be
referenced by it anymore; deallocation of this memory will be automatically handled as
needed. As a special exception, msg can be NULL and will not be dereferenced if size is
zero.

size The size in bytes of the message (payload data only). Zero is a valid value, in which
case the service returns immediately without sending any message. This parameter
allows you to actually send less data than you reserved using the rt_pipe_alloc() service,
which may be the case if you did not know how much space you needed at the time of
allocation. In all other cases it may be more convenient to just pass P_MSGSIZE(msg).

mode A set of flags affecting the operation:

• P_URGENT causes the message to be prepended to the output queue, ensuring a LIFO
ordering.

• P_NORMAL causes the message to be appended to the output queue, ensuring a FIFO
ordering.

Returns:

Upon success, this service returns size. Upon error, one of the following error codes is
returned:

• -EINVAL is returned if pipe is not a pipe descriptor.

• -EPIPE is returned if the associated special device is not yet open.

• -EIDRM is returned if pipe is a closed pipe descriptor.

• -ENODEV or -EBADF are returned if pipe is scrambled.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

64 Module Documentation

• Interrupt service routine

• Kernel-based task

Rescheduling: possible.

Referenced by rt_pipe_write().

4.9.2.9 ssize_t rt_pipe_stream (RT_PIPE ∗ pipe, const void ∗ buf, size_t size)

Stream bytes to a pipe.

This service writes a sequence of bytes to be received from the associated special device. Unlike
rt_pipe_send(), this service does not preserve message boundaries. Instead, an internal buffer is
filled on the fly with the data, which will be consumed as soon as the receiver wakes up.

Data buffers sent by the rt_pipe_stream() service are always transmitted in FIFO order (i.e. P_-
NORMAL mode).

Parameters:

pipe The descriptor address of the pipe to write to.
buf The address of the first data byte to send. The data will be copied to an internal buffer

before transmission.
size The size in bytes of the buffer. Zero is a valid value, in which case the service returns

immediately without buffering any data.

Returns:

The number of bytes sent upon success; this value may be lower than size, depending on the
available space in the internal buffer. Otherwise:

• -EINVAL is returned if pipe is not a pipe descriptor.

• -EPIPE is returned if the associated special device is not yet open.

• -EIDRM is returned if pipe is a closed pipe descriptor.

• -ENODEV or -EBADF are returned if pipe is scrambled.

• -ENOSYS is returned if the byte streaming mode has been disabled at configuration time by
nullifying the size of the pipe buffer (see CONFIG_XENO_OPT_NATIVE_PIPE_BUFSZ).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.9 Message pipe services. 65

4.9.2.10 ssize_t rt_pipe_write (RT_PIPE ∗ pipe, const void ∗ buf, size_t size, int mode)

Write a message to a pipe.

This service writes a complete message to be received from the associated special device. rt_-
pipe_write() always preserves message boundaries, which means that all data sent through a
single call of this service will be gathered in a single read(2) operation from the special device.
This service differs from rt_pipe_send() in that it accepts a pointer to the raw data to be sent,
instead of a canned message buffer. This call is useful whenever the caller does not need to
prepare the message contents separately from its sending.

Parameters:

pipe The descriptor address of the pipe to write to.
buf The address of the first data byte to send. The data will be copied to an internal buffer

before transmission.
size The size in bytes of the message (payload data only). Zero is a valid value, in which

case the service returns immediately without sending any message.
mode A set of flags affecting the operation:

• P_URGENT causes the message to be prepended to the output queue, ensuring a LIFO
ordering.

• P_NORMAL causes the message to be appended to the output queue, ensuring a FIFO
ordering.

Returns:

Upon success, this service returns size. Upon error, one of the following error codes is
returned:

• -EINVAL is returned if pipe is not a pipe descriptor.

• -EPIPE is returned if the associated special device is not yet open.

• -ENOMEM is returned if not enough buffer space is available to complete the operation.

• -EIDRM is returned if pipe is a closed pipe descriptor.

• -ENODEV or -EBADF are returned if pipe is scrambled.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_pipe_alloc(), rt_pipe_free(), and rt_pipe_send().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

66 Module Documentation

4.10 Message queue services.

Collaboration diagram for Message queue services.:

Native Xenomai API. Message queue services.

4.10.1 Detailed Description

Queue services.

Message queueing is a method by which real-time tasks can exchange or pass data through a
Xenomai-managed queue of messages. Messages can vary in length and be assigned different
types or usages. A message queue can be created by one task and used by multiple tasks that
send and/or receive messages to the queue.

This implementation is based on a zero-copy scheme for message buffers. Message buffer pools
are built over the nucleus’s heap objects, which in turn provide the needed support for exchanging
messages between kernel and user-space using direct memory mapping.

Files

• file queue.c
This file is part of the Xenomai project.

Functions

• int rt_queue_create (RT_QUEUE ∗q, const char ∗name, size_t poolsize, size_t qlimit, int
mode)

Create a message queue.

• int rt_queue_delete (RT_QUEUE ∗q)
Delete a message queue.

• void ∗ rt_queue_alloc (RT_QUEUE ∗q, size_t size)
Allocate a message queue buffer.

• int rt_queue_free (RT_QUEUE ∗q, void ∗buf)
Free a message queue buffer.

• int rt_queue_send (RT_QUEUE ∗q, void ∗mbuf, size_t size, int mode)
Send a message to a queue.

• int rt_queue_write (RT_QUEUE ∗q, const void ∗buf, size_t size, int mode)
Write a message to a queue.

• ssize_t rt_queue_receive (RT_QUEUE ∗q, void ∗∗bufp, RTIME timeout)
Receive a message from a queue.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.10 Message queue services. 67

• ssize_t rt_queue_read (RT_QUEUE ∗q, void ∗buf, size_t size, RTIME timeout)
Read a message from a queue.

• int rt_queue_inquire (RT_QUEUE ∗q, RT_QUEUE_INFO ∗info)
Inquire about a message queue.

• int rt_queue_bind (RT_QUEUE ∗q, const char ∗name, RTIME timeout)
Bind to a shared message queue.

• int rt_queue_unbind (RT_QUEUE ∗q)
Unbind from a shared message queue.

4.10.2 Function Documentation

4.10.2.1 void∗ rt_queue_alloc (RT_QUEUE ∗ q, size_t size)

Allocate a message queue buffer.

This service allocates a message buffer from the queue’s internal pool which can be subsequently
filled by the caller then passed to rt_queue_send() for sending.

Parameters:

q The descriptor address of the affected queue.
size The requested size in bytes of the buffer. Zero is an acceptable value, meaning that

the message will not carry any payload data; the receiver will thus receive a zero-sized
message.

Returns:

The address of the allocated message buffer upon success, or NULL if the allocation fails.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

Referenced by rt_queue_write().

4.10.2.2 int rt_queue_bind (RT_QUEUE ∗ q, const char ∗ name, RTIME timeout)

Bind to a shared message queue.

This user-space only service retrieves the uniform descriptor of a given shared Xenomai message
queue identified by its symbolic name. If the queue does not exist on entry, this service blocks
the caller until a queue of the given name is created.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

68 Module Documentation

Parameters:

name A valid NULL-terminated name which identifies the queue to bind to.

q The address of a queue descriptor retrieved by the operation. Contents of this memory is
undefined upon failure.

timeout The number of clock ticks to wait for the registration to occur (see note). Passing
TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if q or name is referencing invalid memory.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked). This error may also be returned
whenever the call attempts to bind from a user-space application to a local queue defined
from kernel space (i.e. Q_SHARED was not passed to rt_queue_create()).

• -ENOENT is returned if the special file /dev/rtheap (character-mode, major 10, minor 254)
is not available from the filesystem. This device is needed to map the memory pool used
by the shared queue into the caller’s address space. udev-based systems should not need
manual creation of such device entry.

Environments:

This service can be called from:

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Examples:

msg_queue.c.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.10 Message queue services. 69

4.10.2.3 int rt_queue_create (RT_QUEUE ∗ q, const char ∗ name, size_t poolsize, size_t
qlimit, int mode)

Create a message queue.

Create a message queue object that allows multiple tasks to exchange data through the use of
variable-sized messages. A message queue is created empty. Message queues can be local to the
kernel space, or shared between kernel and user-space.

This service needs the special character device /dev/rtheap (10,254) when called from user-space
tasks.

Parameters:

q The address of a queue descriptor Xenomai will use to store the queue-related data. This
descriptor must always be valid while the message queue is active therefore it must be
allocated in permanent memory.

name An ASCII string standing for the symbolic name of the queue. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created queue. Shared queues must be
given a valid name.

poolsize The size (in bytes) of the message buffer pool which is going to be pre-allocated to
the queue. Message buffers will be claimed and released to this pool. The buffer pool
memory is not extensible, so this value must be compatible with the highest message
pressure that could be expected.

qlimit This parameter allows to limit the maximum number of messages which can be
queued at any point in time. Sending to a full queue begets an error. The special value
Q_UNLIMITED can be passed to specify an unlimited amount.

mode The queue creation mode. The following flags can be OR’ed into this bitmask, each of
them affecting the new queue:

• Q_FIFO makes tasks pend in FIFO order on the queue for consuming messages.

• Q_PRIO makes tasks pend in priority order on the queue.

• Q_SHARED causes the queue to be sharable between kernel and user-space tasks. Other-
wise, the new queue is only available for kernel-based usage. This flag is implicitely set
when the caller is running in user-space. This feature requires the real-time support in
user-space to be configured in (CONFIG_XENO_OPT_PERVASIVE).

• Q_DMA causes the buffer pool associated to the queue to be allocated in physically con-
tiguous memory, suitable for DMA operations with I/O devices. A 128Kb limit exists for
poolsize when this flag is passed.

Returns:

0 is returned upon success. Otherwise:

• -EEXIST is returned if the name is already in use by some registered object.

• -EINVAL is returned if poolsize is null, greater than the system limit, or name is null or empty
for a shared queue.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

70 Module Documentation

• -ENOMEM is returned if not enough system memory is available to create or register the
queue. Additionally, and if Q_SHARED has been passed in mode, errors while mapping the
buffer pool in the caller’s address space might beget this return code too.

• -EPERM is returned if this service was called from an invalid context.

• -ENOSYS is returned if mode specifies Q_SHARED, but the real-time support in user-space
is unavailable.

• -ENOENT is returned if /dev/rtheap can’t be opened.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• User-space task (switches to secondary mode)

Rescheduling: possible.

References rt_queue_delete().

4.10.2.4 int rt_queue_delete (RT_QUEUE ∗ q)

Delete a message queue.

Destroy a message queue and release all the tasks currently pending on it. A queue exists in the
system since rt_queue_create() has been called to create it, so this service must be called in order
to destroy it afterwards.

Parameters:

q The descriptor address of the affected queue.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if q is not a message queue descriptor.

• -EIDRM is returned if q is a deleted queue descriptor.

• -EPERM is returned if this service was called from an asynchronous context.

• -EBUSY is returned if an attempt is made to delete a shared queue which is still bound to a
process.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• User-space task (switches to secondary mode).

Rescheduling: possible.

Referenced by rt_queue_create().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.10 Message queue services. 71

4.10.2.5 int rt_queue_free (RT_QUEUE ∗ q, void ∗ buf)

Free a message queue buffer.

This service releases a message buffer returned by rt_queue_receive() to the queue’s internal pool.

Parameters:

q The descriptor address of the affected queue.

buf The address of the message buffer to free. Even zero-sized messages carrying no payload
data must be freed, since they are assigned a valid memory space to store internal
information.

Returns:

0 is returned upon success, or -EINVAL if buf is not a valid message buffer previously
allocated by the rt_queue_alloc() service, or the caller did not get ownership of the message
through a successful return from rt_queue_receive().

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

Referenced by rt_queue_read().

4.10.2.6 int rt_queue_inquire (RT_QUEUE ∗ q, RT_QUEUE_INFO ∗ info)

Inquire about a message queue.

Return various information about the status of a given queue.

Parameters:

q The descriptor address of the inquired queue.

info The address of a structure the queue information will be written to.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if q is not a message queue descriptor.

• -EIDRM is returned if q is a deleted queue descriptor.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

72 Module Documentation

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.10.2.7 ssize_t rt_queue_read (RT_QUEUE ∗ q, void ∗ buf, size_t size, RTIME timeout)

Read a message from a queue.

This service retrieves the next message available from the given queue. Unless otherwise specified,
the caller is blocked for a given amount of time if no message is immediately available on entry.
This services differs from rt_queue_receive() in that it copies back the payload data to a user-
defined memory area, instead of returning a pointer to the message buffer holding such data.

Parameters:

q The descriptor address of the message queue to read from.

buf A pointer to a memory area which will be written upon success with the message
contents. The internal message buffer conveying the data is automatically freed by this
call.

size The length in bytes of the memory area pointed to by buf . Messages larger than size are
truncated appropriately.

timeout The number of clock ticks to wait for some message to arrive (see note). Passing
TM_INFINITE causes the caller to block indefinitely until some message is eventually
available. Passing TM_NONBLOCK causes the service to return immediately without
waiting if no message is available on entry.

Returns:

The number of bytes available from the received message is returned upon success, which
might be greater than the actual number of bytes copied to the destination buffer if the
message has been truncated. Zero is a possible value corresponding to a zero-sized message
passed to rt_queue_send() or rt_queue_write(). Otherwise:

• -EINVAL is returned if q is not a message queue descriptor.

• -EIDRM is returned if q is a deleted queue descriptor.

• -ETIMEDOUT is returned if timeout is different from TM_NONBLOCK and no message is
available within the specified amount of time.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and no message is
immediately available on entry.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.10 Message queue services. 73

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before any data
was available.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if timeout is equal to TM_NONBLOCK.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

References rt_queue_free(), and rt_queue_receive().

4.10.2.8 ssize_t rt_queue_receive (RT_QUEUE ∗ q, void ∗∗ bufp, RTIME timeout)

Receive a message from a queue.

This service retrieves the next message available from the given queue. Unless otherwise specified,
the caller is blocked for a given amount of time if no message is immediately available on entry.

Parameters:

q The descriptor address of the message queue to receive from.

bufp A pointer to a memory location which will be written upon success with the address
of the received message. Once consumed, the message space should be freed using
rt_queue_free().

timeout The number of clock ticks to wait for some message to arrive (see note). Passing
TM_INFINITE causes the caller to block indefinitely until some message is eventually
available. Passing TM_NONBLOCK causes the service to return immediately without
waiting if no message is available on entry.

Returns:

The number of bytes available from the received message is returned upon success. Zero is a
possible value corresponding to a zero-sized message passed to rt_queue_send(). Otherwise:

• -EINVAL is returned if q is not a message queue descriptor.

• -EIDRM is returned if q is a deleted queue descriptor.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

74 Module Documentation

• -ETIMEDOUT is returned if timeout is different from TM_NONBLOCK and no message is
available within the specified amount of time.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and no message is
immediately available on entry.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before any data
was available.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if timeout is equal to TM_NONBLOCK.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Referenced by rt_queue_read().

4.10.2.9 int rt_queue_send (RT_QUEUE ∗ q, void ∗ mbuf, size_t size, int mode)

Send a message to a queue.

This service sends a complete message to a given queue. The message must have been allocated
by a previous call to rt_queue_alloc().

Parameters:

q The descriptor address of the message queue to send to.

mbuf The address of the message buffer to be sent. The message buffer must have been allo-
cated using the rt_queue_alloc() service. Once passed to rt_queue_send(), the memory
pointed to by mbuf is no more under the control of the sender and thus should not be
referenced by it anymore; deallocation of this memory must be handled on the receiving
side.

size The size in bytes of the message. Zero is a valid value, in which case an empty message
will be sent.

mode A set of flags affecting the operation:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.10 Message queue services. 75

• Q_URGENT causes the message to be prepended to the message queue, ensuring a LIFO
ordering.

• Q_NORMAL causes the message to be appended to the message queue, ensuring a FIFO
ordering.

• Q_BROADCAST causes the message to be sent to all tasks currently waiting for messages.
The message is not copied; a reference count is maintained instead so that the message will
remain valid until the last receiver releases its own reference using rt_queue_free(), after
which the message space will be returned to the queue’s internal pool.

Returns:

Upon success, this service returns the number of receivers which got awaken as a result of
the operation. If zero is returned, no task was waiting on the receiving side of the queue, and
the message has been enqueued. Upon error, one of the following error codes is returned:

• -EINVAL is returned if q is not a message queue descriptor, or mbuf is not a valid message
buffer obtained from a previous call to rt_queue_alloc().

• -EIDRM is returned if q is a deleted queue descriptor.

• -ENOMEM is returned if queuing the message would exceed the limit defined for the queue
at creation.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_queue_write().

4.10.2.10 int rt_queue_unbind (RT_QUEUE ∗ q)

Unbind from a shared message queue.

This user-space only service unbinds the calling task from the message queue object previously
retrieved by a call to rt_queue_bind().

Unbinding from a message queue when it is no more needed is especially important in order to
properly release the mapping resources used to attach the shared queue memory to the caller’s
address space.

Parameters:

q The address of a queue descriptor to unbind from.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

76 Module Documentation

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if q is invalid or not bound.

This service can be called from:

• User-space task.

Rescheduling: never.

Examples:

msg_queue.c.

4.10.2.11 int rt_queue_write (RT_QUEUE ∗ q, const void ∗ buf, size_t size, int mode)

Write a message to a queue.

This service writes a complete message to a given queue. This service differs from rt_queue_send()
in that it accepts a pointer to the raw data to be sent, instead of a canned message buffer.

Parameters:

q The descriptor address of the message queue to write to.

buf The address of the message data to be written to the queue. A message buffer will be
allocated internally to convey the data.

size The size in bytes of the message data. Zero is a valid value, in which case an empty
message will be sent.

mode A set of flags affecting the operation:

• Q_URGENT causes the message to be prepended to the message queue, ensuring a LIFO
ordering.

• Q_NORMAL causes the message to be appended to the message queue, ensuring a FIFO
ordering.

• Q_BROADCAST causes the message to be sent to all tasks currently waiting for messages.
The message is not copied; a reference count is maintained instead so that the message will
remain valid until all receivers get a copy of the message, after which the message space
will be returned to the queue’s internal pool.

Returns:

Upon success, this service returns the number of receivers which got awaken as a result of
the operation. If zero is returned, no task was waiting on the receiving side of the queue, and
the message has been enqueued. Upon error, one of the following error codes is returned:

• -EINVAL is returned if q is not a message queue descriptor.

• -EIDRM is returned if q is a deleted queue descriptor.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.10 Message queue services. 77

• -ENOMEM is returned if queuing the message would exceed the limit defined for the queue
at creation, or if no memory can be obtained to convey the message data internally.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_queue_alloc(), and rt_queue_send().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

78 Module Documentation

4.11 Counting semaphore services.

Collaboration diagram for Counting semaphore services.:

Native Xenomai API. Counting semaphore services.

4.11.1 Detailed Description

A counting semaphore is a synchronization object granting Xenomai tasks a concurrent access to
a given number of resources maintained in an internal counter variable. The semaphore is used
through the P ("Proberen", from the Dutch "test and decrement") and V ("Verhogen", increment)
operations. The P operation waits for a unit to become available from the count, and the V
operation releases a resource by incrementing the unit count by one.

If no more than a single resource is made available at any point in time, the semaphore enforces
mutual exclusion and thus can be used to serialize access to a critical section. However, mutexes
should be used instead in order to prevent priority inversions.

Files

• file sem.c
This file is part of the Xenomai project.

Functions

• int rt_sem_create (RT_SEM ∗sem, const char ∗name, unsigned long icount, int mode)
Create a counting semaphore.

• int rt_sem_delete (RT_SEM ∗sem)
Delete a semaphore.

• int rt_sem_p (RT_SEM ∗sem, RTIME timeout)
Pend on a semaphore.

• int rt_sem_v (RT_SEM ∗sem)
Signal a semaphore.

• int rt_sem_broadcast (RT_SEM ∗sem)
Broadcast a semaphore.

• int rt_sem_inquire (RT_SEM ∗sem, RT_SEM_INFO ∗info)
Inquire about a semaphore.

• int rt_sem_bind (RT_SEM ∗sem, const char ∗name, RTIME timeout)
Bind to a semaphore.

• static int rt_sem_unbind (RT_SEM ∗sem)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.11 Counting semaphore services. 79

Unbind from a semaphore.

4.11.2 Function Documentation

4.11.2.1 int rt_sem_bind (RT_SEM ∗ sem, const char ∗ name, RTIME timeout)

Bind to a semaphore.

This user-space only service retrieves the uniform descriptor of a given Xenomai semaphore
identified by its symbolic name. If the semaphore does not exist on entry, this service blocks the
caller until a semaphore of the given name is created.

Parameters:

name A valid NULL-terminated name which identifies the semaphore to bind to.
sem The address of a semaphore descriptor retrieved by the operation. Contents of this

memory is undefined upon failure.
timeout The number of clock ticks to wait for the registration to occur (see note). Passing

TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if sem or name is referencing invalid memory.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

80 Module Documentation

4.11.2.2 int rt_sem_broadcast (RT_SEM ∗ sem)

Broadcast a semaphore.

Unblock all tasks waiting on a semaphore. Awaken tasks return from rt_sem_p() as if the
semaphore has been signaled. The semaphore count is zeroed as a result of the operation.

Parameters:

sem The descriptor address of the affected semaphore.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if sem is not a semaphore descriptor.

• -EIDRM is returned if sem is a deleted semaphore descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

4.11.2.3 int rt_sem_create (RT_SEM ∗ sem, const char ∗ name, unsigned long icount, int
mode)

Create a counting semaphore.

Parameters:

sem The address of a semaphore descriptor Xenomai will use to store the semaphore-related
data. This descriptor must always be valid while the semaphore is active therefore it
must be allocated in permanent memory.

name An ASCII string standing for the symbolic name of the semaphore. When non-NULL
and non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created semaphore.

icount The initial value of the semaphore count.

mode The semaphore creation mode. The following flags can be OR’ed into this bitmask,
each of them affecting the new semaphore:

• S_FIFO makes tasks pend in FIFO order on the semaphore.

• S_PRIO makes tasks pend in priority order on the semaphore.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.11 Counting semaphore services. 81

• S_PULSE causes the semaphore to behave in "pulse" mode. In this mode, the V (signal)
operation attempts to release a single waiter each time it is called, but without incrementing
the semaphore count if no waiter is pending. For this reason, the semaphore count in pulse
mode remains zero.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to register the semaphore.

• -EEXIST is returned if the name is already in use by some registered object.

• -EINVAL is returned if the icount is non-zero and mode specifies a pulse semaphore.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_sem_delete().

4.11.2.4 int rt_sem_delete (RT_SEM ∗ sem)

Delete a semaphore.

Destroy a semaphore and release all the tasks currently pending on it. A semaphore exists in the
system since rt_sem_create() has been called to create it, so this service must be called in order to
destroy it afterwards.

Parameters:

sem The descriptor address of the affected semaphore.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if sem is not a semaphore descriptor.

• -EIDRM is returned if sem is a deleted semaphore descriptor.

• -EPERM is returned if this service was called from an asynchronous context.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

82 Module Documentation

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_sem_create().

4.11.2.5 int rt_sem_inquire (RT_SEM ∗ sem, RT_SEM_INFO ∗ info)

Inquire about a semaphore.

Return various information about the status of a given semaphore.

Parameters:

sem The descriptor address of the inquired semaphore.

info The address of a structure the semaphore information will be written to.

Returns:

0 is returned and status information is written to the structure pointed at by info upon success.
Otherwise:

• -EINVAL is returned if sem is not a semaphore descriptor.

• -EIDRM is returned if sem is a deleted semaphore descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.11.2.6 int rt_sem_p (RT_SEM ∗ sem, RTIME timeout)

Pend on a semaphore.

Acquire a semaphore unit. If the semaphore value is greater than zero, it is decremented by
one and the service immediately returns to the caller. Otherwise, the caller is blocked until the
semaphore is either signaled or destroyed, unless a non-blocking operation has been required.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.11 Counting semaphore services. 83

Parameters:

sem The descriptor address of the affected semaphore.

timeout The number of clock ticks to wait for a semaphore unit to be available (see note).
Passing TM_INFINITE causes the caller to block indefinitely until a unit is available.
Passing TM_NONBLOCK causes the service to return immediately without waiting if
no unit is available.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if sem is not a semaphore descriptor.

• -EIDRM is returned if sem is a deleted semaphore descriptor, including if the deletion
occurred while the caller was sleeping on it for a unit to become available.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the semaphore
value is zero.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before a
semaphore unit has become available.

• -ETIMEDOUT is returned if no unit is available within the specified amount of time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if timeout is equal to TM_NONBLOCK.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

84 Module Documentation

4.11.2.7 int rt_sem_unbind (RT_SEM ∗ sem) [inline, static]

Unbind from a semaphore.

This user-space only service unbinds the calling task from the semaphore object previously
retrieved by a call to rt_sem_bind().

Parameters:

sem The address of a semaphore descriptor to unbind from.

Returns:

0 is always returned.

This service can be called from:

• User-space task.

Rescheduling: never.

4.11.2.8 int rt_sem_v (RT_SEM ∗ sem)

Signal a semaphore.

Release a semaphore unit. If the semaphore is pended, the first waiting task (by queuing order)
is immediately unblocked; otherwise, the semaphore value is incremented by one.

Parameters:

sem The descriptor address of the affected semaphore.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if sem is not a semaphore descriptor.

• -EIDRM is returned if sem is a deleted semaphore descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 85

4.12 Task management services.

Collaboration diagram for Task management services.:

Native Xenomai API. Task management services.

4.12.1 Detailed Description

Xenomai provides a set of multitasking mechanisms. The basic process object performing actions
in Xenomai is a task, a logically complete path of application code. Each Xenomai task is an
independent portion of the overall application code embodied in a C procedure, which executes
on its own stack context.

The Xenomai scheduler ensures that concurrent tasks are run according to one of the supported
scheduling policies. Currently, the Xenomai scheduler supports fixed priority-based FIFO and
round-robin policies.

Files

• file task.c
This file is part of the Xenomai project.

Functions

• int rt_task_create (RT_TASK ∗task, const char ∗name, int stksize, int prio, int mode)
Create a new real-time task.

• int rt_task_start (RT_TASK ∗task, void(∗entry)(void ∗cookie), void ∗cookie)
Start a real-time task.

• int rt_task_suspend (RT_TASK ∗task)
Suspend a real-time task.

• int rt_task_resume (RT_TASK ∗task)
Resume a real-time task.

• int rt_task_delete (RT_TASK ∗task)
Delete a real-time task.

• int rt_task_yield (void)
Manual round-robin.

• int rt_task_set_periodic (RT_TASK ∗task, RTIME idate, RTIME period)
Make a real-time task periodic.

• int rt_task_wait_period (unsigned long ∗overruns_r)
Wait for the next periodic release point.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

86 Module Documentation

• int rt_task_set_priority (RT_TASK ∗task, int prio)
Change the base priority of a real-time task.

• int rt_task_sleep (RTIME delay)
Delay the calling task (relative).

• int rt_task_sleep_until (RTIME date)
Delay the calling task (absolute).

• int rt_task_unblock (RT_TASK ∗task)
Unblock a real-time task.

• int rt_task_inquire (RT_TASK ∗task, RT_TASK_INFO ∗info)
Inquire about a real-time task.

• int rt_task_add_hook (int type, void(∗routine)(void ∗cookie))
Install a task hook.

• int rt_task_remove_hook (int type, void(∗routine)(void ∗cookie))
Remove a task hook.

• int rt_task_catch (void(∗handler)(rt_sigset_t))
Install a signal handler.

• int rt_task_notify (RT_TASK ∗task, rt_sigset_t signals)
Send signals to a task.

• int rt_task_set_mode (int clrmask, int setmask, int ∗mode_r)
Change task mode bits.

• RT_TASK ∗ rt_task_self (void)
Retrieve the current task.

• int rt_task_slice (RT_TASK ∗task, RTIME quantum)
Set a task’s round-robin quantum.

• ssize_t rt_task_send (RT_TASK ∗task, RT_TASK_MCB ∗mcb_s, RT_TASK_MCB ∗mcb_r,
RTIME timeout)

Send a message to a task.

• int rt_task_receive (RT_TASK_MCB ∗mcb_r, RTIME timeout)
Receive a message from a task.

• int rt_task_reply (int flowid, RT_TASK_MCB ∗mcb_s)
Reply to a task.

• static int rt_task_spawn (RT_TASK ∗task, const char ∗name, int stksize, int prio, int mode,
void(∗entry)(void ∗cookie), void ∗cookie)

Spawn a new real-time task.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 87

• int rt_task_shadow (RT_TASK ∗task, const char ∗name, int prio, int mode)
Turns the current Linux task into a native Xenomai task.

• int rt_task_bind (RT_TASK ∗task, const char ∗name, RTIME timeout)
Bind to a real-time task.

• static int rt_task_unbind (RT_TASK ∗task)
Unbind from a real-time task.

• int rt_task_join (RT_TASK ∗task)
Wait on the termination of a real-time task.

4.12.2 Function Documentation

4.12.2.1 int rt_task_add_hook (int type, void(∗)(void ∗cookie) routine)

Install a task hook.

The real-time kernel allows to register user-defined routines which get called whenever a specific
scheduling event occurs. Multiple hooks can be chained for a single event type, and get called on
a FIFO basis.

The scheduling is locked while a hook is executing.

Parameters:

type Defines the kind of hook to install:

• T_HOOK_START: The user-defined routine will be called on behalf of the starter task
whenever a new task starts. An opaque cookie is passed to the routine which can use it to
retrieve the descriptor address of the started task through the T_DESC() macro.

• T_HOOK_DELETE: The user-defined routine will be called on behalf of the deletor task
whenever a task is deleted. An opaque cookie is passed to the routine which can use it to
retrieve the descriptor address of the deleted task through the T_DESC() macro.

• T_HOOK_SWITCH: The user-defined routine will be called on behalf of the resuming task
whenever a context switch takes place. An opaque cookie is passed to the routine which
can use it to retrieve the descriptor address of the task which has been switched in through
the T_DESC() macro.

Parameters:

routine The address of the user-supplied routine to call.

Returns:

0 is returned upon success. Otherwise, one of the following error codes indicates the cause
of the failure:

• -EINVAL is returned if type is incorrect.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

88 Module Documentation

• -ENOMEM is returned if not enough memory is available from the system heap to add the
new hook.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

Rescheduling: never.

4.12.2.2 int rt_task_bind (RT_TASK ∗ task, const char ∗ name, RTIME timeout)

Bind to a real-time task.

This user-space only service retrieves the uniform descriptor of a given Xenomai task identified
by its symbolic name. If the task does not exist on entry, this service blocks the caller until a task
of the given name is created.

Parameters:

name A valid NULL-terminated name which identifies the task to bind to.

task The address of a task descriptor retrieved by the operation. Contents of this memory is
undefined upon failure.

timeout The number of clock ticks to wait for the registration to occur (see note). Passing
TM_INFINITE causes the caller to block indefinitely until the object is registered. Passing
TM_NONBLOCK causes the service to return immediately without waiting if the object
is not registered on entry.

Returns:

0 is returned upon success. Otherwise:

• -EFAULT is returned if task or name is referencing invalid memory.

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the
retrieval has completed.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and the searched
object is not registered on entry.

• -ETIMEDOUT is returned if the object cannot be retrieved within the specified amount of
time.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 89

• User-space task (switches to primary mode)

Rescheduling: always unless the request is immediately satisfied or timeout specifies a non-
blocking operation.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Examples:

bound_task.c.

4.12.2.3 int rt_task_catch (void(∗)(rt_sigset_t) handler)

Install a signal handler.

This service installs a signal handler for the current task. Signals are discrete events tasks can
receive each time they resume execution. When signals are pending upon resumption, handler
is fired to process them. Signals can be sent using rt_task_notify(). A task can block the signal
delivery by passing the T_NOSIG bit to rt_task_set_mode().

Calling this service implicitely unblocks the signal delivery for the caller.

Parameters:

handler The address of the user-supplied routine to fire when signals are pending for the
task. This handler is passed the set of pending signals as its first and only argument.

Returns:

0 upon success, or:

• -EPERM is returned if this service was not called from a real-time task context.

Environments:

This service can be called from:

• Kernel-based task

Rescheduling: possible.

4.12.2.4 int rt_task_create (RT_TASK ∗ task, const char ∗ name, int stksize, int prio, int
mode)

Create a new real-time task.

Creates a real-time task, either running in a kernel module or in user-space depending on the
caller’s context.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

90 Module Documentation

Parameters:

task The address of a task descriptor Xenomai will use to store the task-related data. This
descriptor must always be valid while the task is active therefore it must be allocated in
permanent memory.

The task is left in an innocuous state until it is actually started by rt_task_start().

Parameters:

name An ASCII string standing for the symbolic name of the task. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created task.

stksize The size of the stack (in bytes) for the new task. If zero is passed, a reasonable
pre-defined size will be substituted.

prio The base priority of the new task. This value must range from [1 .. 99] (inclusive) where
1 is the lowest effective priority.

mode The task creation mode. The following flags can be OR’ed into this bitmask, each of
them affecting the new task:

• T_FPU allows the task to use the FPU whenever available on the platform. This flag is
forced for user-space tasks.

• T_SUSP causes the task to start in suspended mode. In such a case, the thread will have to
be explicitly resumed using the rt_task_resume() service for its execution to actually begin.

• T_CPU(cpuid) makes the new task affine to CPU # cpuid. CPU identifiers range from 0 to
RTHAL_NR_CPUS - 1 (inclusive).

• T_JOINABLE (user-space only) allows another task to wait on the termination of the new
task. This implies that rt_task_join() is actually called for this task to clean up any user-space
located resources after its termination.

Passing T_FPU|T_CPU(1) in the mode parameter thus creates a task with FPU support enabled
and which will be affine to CPU #1.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to create or register the task.

• -EEXIST is returned if the name is already in use by some registered object.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 91

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_task_spawn().

4.12.2.5 int rt_task_delete (RT_TASK ∗ task)

Delete a real-time task.

Terminate a task and release all the real-time kernel resources it currently holds. A task exists
in the system since rt_task_create() has been called to create it, so this service must be called in
order to destroy it afterwards.

Native tasks implement a mechanism by which they are immune from deletion by other tasks
while they run into a deemed safe section of code. This feature is used internally by the native skin
in order to prevent tasks from being deleted in the middle of a critical section, without resorting
to interrupt masking when the latter is not an option. For this reason, the caller of rt_task_delete()
might be blocked and a rescheduling take place, waiting for the target task to exit such critical
section.

The DELETE hooks are called on behalf of the calling context (if any). The information stored in
the task control block remains valid until all hooks have been called.

Parameters:

task The descriptor address of the affected task. If task is NULL, the current task is deleted.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor.

• -EPERM is returned if task is NULL but not called from a task context, or this service was
called from an asynchronous context.

• -EINTR is returned if rt_task_unblock() has been invoked for the caller while it was waiting
for task to exit a safe section. In such a case, the deletion process has been aborted and task
remains unaffected.

• -EIDRM is returned if task is a deleted task descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code only if task is non-NULL.

• Kernel-based task

• Any user-space context (conforming call)

Rescheduling: always if task is NULL, and possible if the deleted task is currently running into a
safe section.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

92 Module Documentation

4.12.2.6 int rt_task_inquire (RT_TASK ∗ task, RT_TASK_INFO ∗ info)

Inquire about a real-time task.

Return various information about the status of a given task.

Parameters:

task The descriptor address of the inquired task. If task is NULL, the current task is inquired.

info The address of a structure the task information will be written to. Passing NULL is
valid, in which case the system is only probed for existence of the specified task.

Returns:

0 is returned if the task exists, and status information is written to the structure pointed at by
info if non-NULL. Otherwise:

• -EINVAL is returned if task is not a task descriptor.

• -EPERM is returned if task is NULL but not called from a task context.

• -EIDRM is returned if task is a deleted task descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if task is non-NULL.

• Kernel-based task

• User-space task

Rescheduling: never.

References rt_task_info::bprio, rt_task_info::cprio, rt_task_info::ctxswitches, rt_task_-
info::exectime, rt_task_info::modeswitches, rt_task_info::name, rt_task_info::pagefaults, rt_-
task_info::relpoint, and rt_task_info::status.

4.12.2.7 int rt_task_join (RT_TASK ∗ task)

Wait on the termination of a real-time task.

This user-space only service blocks the caller in non-real-time context until task has terminated.
Note that the specified task must have been created with the T_JOINABLE mode flag set.

Parameters:

task The address of a task descriptor to join.

Returns:

0 is returned upon success. Otherwise:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 93

• -EINVAL is returned if the task was not created with T_JOINABLE set or some other task is
already waiting on the termination.

• -EDEADLK is returned if task refers to the caller.

This service can be called from:

• User-space task.

Rescheduling: always unless the task was already terminated.

4.12.2.8 int rt_task_notify (RT_TASK ∗ task, rt_sigset_t signals)

Send signals to a task.

This service sends a set of signals to a given task. A task can install a signal handler using the
rt_task_catch() service to process them.

Parameters:

task The descriptor address of the affected task which must have been previously created
by the rt_task_create() service.

signals The set of signals to make pending for the task. This set is OR’ed with the current
set of pending signals for the task; there is no count of occurence maintained for each
available signal, which is either pending or cleared.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor.

• -EPERM is returned if task is NULL but not called from a real-time task context.

• -EIDRM is returned if task is a deleted task descriptor.

• -ESRCH is returned if task has not set any signal handler.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if task is non-NULL.

• Kernel-based task

• User-space task

Rescheduling: possible.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

94 Module Documentation

4.12.2.9 int rt_task_receive (RT_TASK_MCB ∗ mcb_r, RTIME timeout)

Receive a message from a task.

This service is part of the synchronous message passing support available to Xenomai tasks. It
allows the caller to receive a variable-sized message sent from another task using the rt_task_-
send() service. The sending task is blocked until the caller invokes rt_task_reply() to finish the
transaction.

A basic message control block is used to store the location and size of the data area to receive
from the client, in addition to a user-defined operation code.

Parameters:

mcb_r The address of a message control block referring to the receive message area. The
fields from this control block should be set as follows:

• mcb_r->data should contain the address of a buffer large enough to collect the data sent by
the remote task;

• mcb_r->size should contain the size in bytes of the buffer space pointed at by mcb_r->data.
If mcb_r->size is lower than the actual size of the received message, no data copy takes
place and -ENOBUFS is returned to the caller. See note.

Upon return, mcb_r->opcode will contain the operation code sent from the remote task using
rt_task_send().

Parameters:

timeout The number of clock ticks to wait for receiving a message (see note). Passing TM_-
INFINITE causes the caller to block indefinitely until a remote task eventually sends a
message. Passing TM_NONBLOCK causes the service to return immediately without
waiting if no remote task is currently waiting for sending a message.

Returns:

A strictly positive value is returned upon success, representing a flow identifier for the
opening transaction; this token should be passed to rt_task_reply(), in order to send back a
reply to and unblock the remote task appropriately. Otherwise:

• -ENOBUFS is returned if mcb_r does not point at a message area large enough to collect the
remote task’s message.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and no remote task is
currently waiting for sending a message to the caller.

• -ETIMEDOUT is returned if no message was received within the timeout.

• -EINTR is returned if rt_task_unblock() has been called for the caller before any message
was available.

• -EPERM is returned if this service was called from a context which cannot sleep (e.g.
interrupt, non-realtime or scheduler locked).

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 95

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: Always.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.
When called from a user-space task, this service may need to allocate some temporary buffer
space from the system heap to hold the received data if the size of the latter exceeds a certain
amount; the threshold before allocation is currently set to 64 bytes.

References rt_task_mcb::data, rt_task_mcb::opcode, and rt_task_mcb::size.

4.12.2.10 int rt_task_remove_hook (int type, void(∗)(void ∗cookie) routine)

Remove a task hook.

This service allows to remove a task hook previously registered using rt_task_add_hook().

Parameters:

type Defines the kind of hook to uninstall. Possible values are:

• T_HOOK_START

• T_HOOK_DELETE

• T_HOOK_SWITCH

Parameters:

routine The address of the user-supplied routine to remove from the hook list.

Returns:

0 is returned upon success. Otherwise, one of the following error codes indicates the cause
of the failure:

• -EINVAL is returned if type is incorrect.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

96 Module Documentation

4.12.2.11 int rt_task_reply (int flowid, RT_TASK_MCB ∗ mcb_s)

Reply to a task.

This service is part of the synchronous message passing support available to Xenomai tasks. It
allows the caller to send back a variable-sized message to the client task, once the initial message
from this task has been pulled using rt_task_receive() and processed. As a consequence of this
call, the remote task will be unblocked from the rt_task_send() service.

A basic message control block is used to store the location and size of the data area to send back,
in addition to a user-defined status code.

Parameters:

flowid The flow identifier returned by a previous call to rt_task_receive() which uniquely
identifies the current transaction.

mcb_s The address of an optional message control block referring to the message to be sent
back. If mcb_s is NULL, the client will be unblocked without getting any reply data.
When mcb_s is valid, the fields from this control block should be set as follows:

• mcb_s->data should contain the address of the payload data to send to the remote task.

• mcb_s->size should contain the size in bytes of the payload data pointed at by mcb_s->data.
0 is a legitimate value, and indicates that no payload data will be transferred. In the latter
case, mcb_s->data will be ignored. See note.

• mcb_s->opcode is an opaque status code carried during the message transfer the caller can
fill with any appropriate value. It will be made available "as is" to the remote task into the
status code field by the rt_task_send() service. If mcb_s is NULL, 0 will be returned to the
client into the status code field.

Returns:

O is returned upon success. Otherwise:

• -ENXIO is returned if flowid does not match the expected identifier returned from the latest
call of the current task to rt_task_receive(), or if the remote task stopped waiting for the
reply in the meantime (e.g. the client could have been deleted or forcibly unblocked).

• -EPERM is returned if this service was called from an invalid context (e.g. interrupt, or
non-primary).

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: Always.

Note:

When called from a user-space task, this service may need to allocate some temporary buffer
space from the system heap to hold the reply data if the size of the latter exceeds a certain
amount; the threshold before allocation is currently set to 64 bytes.

References rt_task_mcb::data, rt_task_mcb::opcode, and rt_task_mcb::size.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 97

4.12.2.12 int rt_task_resume (RT_TASK ∗ task)

Resume a real-time task.

Forcibly resume the execution of a task which has been previously suspended by a call to rt_-
task_suspend().

The suspension nesting count is decremented so that rt_task_resume() will only resume the task
if this count falls down to zero as a result of the current invocation.

Parameters:

task The descriptor address of the affected task.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor.

• -EIDRM is returned if task is a deleted task descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible if the suspension nesting level falls down to zero as a result of the current
invocation.

4.12.2.13 RT_TASK∗ rt_task_self (void)

Retrieve the current task.

Return the current task descriptor address.

Returns:

The address of the caller’s task descriptor is returned upon success, or NULL if the calling
context is asynchronous (i.e. not a Xenomai task).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine Those will cause a NULL return.

• Kernel-based task

• User-space task

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

98 Module Documentation

4.12.2.14 ssize_t rt_task_send (RT_TASK ∗ task, RT_TASK_MCB ∗mcb_s, RT_TASK_MCB ∗
mcb_r, RTIME timeout)

Send a message to a task.

This service is part of the synchronous message passing support available to Xenomai tasks. It
allows the caller to send a variable-sized message to another task, waiting for the remote to receive
the initial message by a call to rt_task_receive(), then reply to it using rt_task_reply().

A basic message control block is used to store the location and size of the data area to send or
retrieve upon reply, in addition to a user-defined operation code.

Parameters:

task The descriptor address of the recipient task.

mcb_s The address of the message control block referring to the message to be sent. The
fields from this control block should be set as follows:

• mcb_s->data should contain the address of the payload data to send to the remote task.

• mcb_s->size should contain the size in bytes of the payload data pointed at by mcb_s->data.
0 is a legitimate value, and indicates that no payload data will be transferred. In the latter
case, mcb_s->data will be ignored. See note.

• mcb_s->opcode is an opaque operation code carried during the message transfer the caller
can fill with any appropriate value. It will be made available "as is" to the remote task into
the operation code field by the rt_task_receive() service.

Parameters:

mcb_r The address of an optional message control block referring to the reply message area.
If mcb_r is NULL and a reply is sent back by the remote task, the reply message will be
discarded, and -ENOBUFS will be returned to the caller. When mcb_r is valid, the fields
from this control block should be set as follows:

• mcb_r->data should contain the address of a buffer large enough to collect the reply data
from the remote task.

• mcb_r->size should contain the size in bytes of the buffer space pointed at by mcb_r->data.
If mcb_r->size is lower than the actual size of the reply message, no data copy takes place
and -ENOBUFS is returned to the caller. See note.

Upon return, mcb_r->opcode will contain the status code sent back from the remote task using
rt_task_reply(), or 0 if unspecified.

Parameters:

timeout The number of clock ticks to wait for the remote task to reply to the initial mes-
sage (see note). Passing TM_INFINITE causes the caller to block indefinitely until the
remote task eventually replies. Passing TM_NONBLOCK causes the service to return
immediately without waiting if the remote task is not waiting for messages (i.e. if task
is not currently blocked on the rt_task_receive() service); however, the caller will wait
indefinitely for a reply from that remote task if present.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 99

Returns:

A positive value is returned upon success, representing the length (in bytes) of the reply
message returned by the remote task. 0 is a success status, meaning either that mcb_r was
NULL on entry, or that no actual message was passed to the remote call to rt_task_reply().
Otherwise:

• -ENOBUFS is returned if mcb_r does not point at a message area large enough to collect the
remote task’s reply. This includes the case where mcb_r is NULL on entry albeit the remote
task attempts to send a reply message.

• -EWOULDBLOCK is returned if timeout is equal to TM_NONBLOCK and task is not cur-
rently blocked on the rt_task_receive() service.

• -EIDRM is returned if task has been deleted while waiting for a reply.

• -EINTR is returned if rt_task_unblock() has been called for the caller before any reply was
available.

• -EPERM is returned if this service should block, but was called from a context which cannot
sleep (e.g. interrupt, non-realtime or scheduler locked).

• -ESRCH is returned if task cannot be found (when called from user-space only).

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: Always.

Note:

The timeout value will be interpreted as jiffies if the native skin is bound to a periodic time
base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.
When called from a user-space task, this service may need to allocate some temporary buffer
space from the system heap to hold both the sent and the reply data if this cumulated size
exceeds a certain amount; the threshold before allocation is currently set to 64 bytes.

References rt_task_mcb::data, rt_task_mcb::flowid, rt_task_mcb::opcode, and rt_task_mcb::size.

4.12.2.15 int rt_task_set_mode (int clrmask, int setmask, int ∗ mode_r)

Change task mode bits.

Each Xenomai task has a set of internal bits determining various operating conditions; the rt_-
task_set_mode() service allows to alter three of them, respectively controlling:

• whether the task locks the rescheduling procedure,

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

100 Module Documentation

• whether the task undergoes a round-robin scheduling,

• whether the task blocks the delivery of signals.

To this end, rt_task_set_mode() takes a bitmask of mode bits to clear for disabling the correspond-
ing modes, and another one to set for enabling them. The mode bits which were previously in
effect can be returned upon request.

The following bits can be part of the bitmask:

• T_LOCK causes the current task to lock the scheduler. Clearing this bit unlocks the sched-
uler.

• T_RRB causes the current task to be marked as undergoing the round-robin scheduling
policy. If the task is already undergoing the round-robin scheduling policy at the time this
service is called, the time quantum remains unchanged.

• T_NOSIG disables the asynchronous signal delivery for the current task.

• T_SHIELD enables the interrupt shield for the current user-space task. When engaged, the
interrupt shield protects the Xenomai task running in secondary mode from any preemption
by the regular Linux interrupt handlers, without delaying in any way the Xenomai interrupt
handling. The shield is operated on a per-task basis at each context switch, depending on
the setting of this flag. This flag is cleared by default for new user-space tasks. This
feature is only available if the CONFIG_XENO_OPT_ISHIELD option has been enabled at
configuration time; otherwise, this flag is simply ignored.

• When set, T_WARNSW causes the SIGXCPU signal to be sent to the current user-space task
whenever it switches to the secondary mode. This feature is useful to detect unwanted
migrations to the Linux domain.

• T_RPIOFF disables thread priority coupling between Xenomai and Linux schedulers. This
bit prevents the root Linux thread from inheriting the priority of the running shadow
Xenomai thread. Use CONFIG_XENO_OPT_RPIOFF to globally disable priority coupling.

• T_PRIMARY can be passed to switch the current user-space task to primary mode (setmask
|= T_PRIMARY), or secondary mode (clrmask |= T_PRIMARY). Upon return from rt_task_-
set_mode(), the user-space task will run into the specified domain.

Normally, this service can only be called on behalf of a regular real-time task, either running in
kernel or user-space. However, as a special exception, requests for setting/clearing the T_LOCK
bit from asynchronous contexts are silently dropped, and the call returns successfully if no other
mode bits have been specified. This is consistent with the fact that Xenomai enforces a scheduler
lock until the outer interrupt handler has returned.

Parameters:

clrmask A bitmask of mode bits to clear for the current task, before setmask is applied. 0 is
an acceptable value which leads to a no-op.

setmask A bitmask of mode bits to set for the current task. 0 is an acceptable value which
leads to a no-op.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 101

mode_r If non-NULL, mode_r must be a pointer to a memory location which will be written
upon success with the previous set of active mode bits. If NULL, the previous set of
active mode bits will not be returned.

Returns:

0 is returned upon success, or:

• -EINVAL if either setmask or clrmask specifies invalid bits. T_PRIMARY is invalid for kernel-
based tasks.

• -EPERM is returned if this service was not called from a real-time task context.

Environments:

This service can be called from:

• Kernel-based task

• User-space task

Rescheduling: possible, if T_LOCK has been passed into clrmask and the calling context is a task.

References T_LOCK, T_NOSIG, T_RRB, T_SHIELD, and T_WARNSW.

4.12.2.16 int rt_task_set_periodic (RT_TASK ∗ task, RTIME idate, RTIME period)

Make a real-time task periodic.

Make a task periodic by programing its first release point and its period in the processor time
line. Subsequent calls to rt_task_wait_period() will delay the task until the next periodic release
point in the processor timeline is reached.

Parameters:

task The descriptor address of the affected task. This task is immediately delayed until the
first periodic release point is reached. If task is NULL, the current task is set periodic.

idate The initial (absolute) date of the first release point, expressed in clock ticks (see note).
The affected task will be delayed until this point is reached. If idate is equal to TM_NOW,
the current system date is used, and no initial delay takes place.

period The period of the task, expressed in clock ticks (see note). Passing TM_INFINITE
attempts to stop the task’s periodic timer; in the latter case, the routine always exits
succesfully, regardless of the previous state of this timer.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor, or period is different from TM_INFINITE
but shorter than the scheduling latency value for the target system, as available from
/proc/xenomai/latency.

• -EIDRM is returned if task is a deleted task descriptor.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

102 Module Documentation

• -ETIMEDOUT is returned if idate is different from TM_INFINITE and represents a date in
the past.

• -EWOULDBLOCK is returned if the system timer is not active.

• -EPERM is returned if task is NULL but not called from a task context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code or interrupt only if task is non-NULL.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always if the operation affects the current task and idate has not elapsed yet.

Note:

The idate and period values will be interpreted as jiffies if the native skin is bound to a periodic
time base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

4.12.2.17 int rt_task_set_priority (RT_TASK ∗ task, int prio)

Change the base priority of a real-time task.

Changing the base priority of a task does not affect the priority boost the target task might have
obtained as a consequence of a previous priority inheritance.

Parameters:

task The descriptor address of the affected task.

prio The new task priority. This value must range from [1 .. 99] (inclusive) where 1 is the
lowest effective priority.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor, or if prio is invalid.

• -EPERM is returned if task is NULL but not called from a task context.

• -EIDRM is returned if task is a deleted task descriptor.

Side-effects:

• This service calls the rescheduling procedure.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 103

• Assigning the same priority to a running or ready task moves it to the end of its priority
group, thus causing a manual round-robin.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if task is non-NULL.

• Kernel-based task

• User-space task

Rescheduling: possible if task is the current one.

4.12.2.18 int rt_task_shadow (RT_TASK ∗ task, const char ∗ name, int prio, int mode)

Turns the current Linux task into a native Xenomai task.

Creates a real-time task running in the context of the calling regular Linux task in user-space.

Parameters:

task The address of a task descriptor Xenomai will use to store the task-related data. This
descriptor must always be valid while the task is active therefore it must be allocated in
permanent memory.

The current context is switched to primary execution mode and returns immediately, unless
T_SUSP has been passed in the mode parameter.

Parameters:

name An ASCII string standing for the symbolic name of the task. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created task.

prio The base priority which will be set for the current task. This value must range from [1
.. 99] (inclusive) where 1 is the lowest effective priority.

mode The task creation mode. The following flags can be OR’ed into this bitmask, each of
them affecting the new task:

• T_FPU allows the task to use the FPU whenever available on the platform. This flag is
forced for this call, therefore it can be omitted.

• T_SUSP causes the task to enter the suspended mode after it has been put under Xenomai’s
control. In such a case, a call to rt_task_resume() will be needed to wake up the current task.

• T_CPU(cpuid) makes the current task affine to CPU # cpuid. CPU identifiers range from
0 to RTHAL_NR_CPUS - 1 (inclusive). The calling task will migrate to another processor
before this service returns if the current one is not part of the CPU affinity mask.

Passing T_CPU(0)|T_CPU(1) in the mode parameter thus defines a task affine to CPUs #0 and #1.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

104 Module Documentation

Returns:

0 is returned upon success. Otherwise:

• -EBUSY is returned if the current Linux task is already mapped to a Xenomai context.

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to create or register the task.

• -EEXIST is returned if the name is already in use by some registered object.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• User-space task (enters primary mode)

Rescheduling: possible.

4.12.2.19 int rt_task_sleep (RTIME delay)

Delay the calling task (relative).

Delay the execution of the calling task for a number of internal clock ticks.

Parameters:

delay The number of clock ticks to wait before resuming the task (see note). Passing zero
causes the task to return immediately with no delay.

Returns:

0 is returned upon success, otherwise:

• -EINTR is returned if rt_task_unblock() has been called for the sleeping task before the sleep
time has elapsed.

• -EWOULDBLOCK is returned if the system timer is inactive.

• -EPERM is returned if this service was called from a context which cannot sleep (e.g.
interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless a null delay is given.

Note:

The delay value will be interpreted as jiffies if the native skin is bound to a periodic time base
(see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 105

4.12.2.20 int rt_task_sleep_until (RTIME date)

Delay the calling task (absolute).

Delay the execution of the calling task until a given date is reached.

Parameters:

date The absolute date in clock ticks to wait before resuming the task (see note). As a special
case, TM_INFINITE is an acceptable value that makes the caller block indefinitely, until
rt_task_unblock() is called against it. Otherwise, any wake up date in the past causes
the task to return immediately with no delay.

Returns:

0 is returned upon success. Otherwise:

• -EINTR is returned if rt_task_unblock() has been called for the sleeping task before the sleep
time has elapsed.

• -ETIMEDOUT is returned if date has already elapsed.

• -EWOULDBLOCK is returned if the system timer is inactive, and

Date:

is valid but different from TM_INFINITE.

• -EPERM is returned if this service was called from a context which cannot sleep (e.g.
interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always unless a date in the past is given.

Note:

The date value will be interpreted as jiffies if the native skin is bound to a periodic time base
(see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

4.12.2.21 int rt_task_slice (RT_TASK ∗ task, RTIME quantum)

Set a task’s round-robin quantum.

Set the time credit allotted to a task undergoing the round-robin scheduling. As a side-effect,
rt_task_slice() refills the current quantum of the target task.

Parameters:

task The descriptor address of the affected task. If task is NULL, the current task is considered.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

106 Module Documentation

quantum The round-robin quantum for the task expressed in clock ticks (see note).

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor, or if quantum is zero.

• -ENODEV is returned if the native skin is not bound to a periodic time base (see CONFIG_-
XENO_OPT_NATIVE_PERIOD), in which case round-robin scheduling is not available.

• -EPERM is returned if task is NULL but not called from a task context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if task is non-NULL.

• Kernel-based task

• User-space task

Rescheduling: never.

Note:

The quantum value is always interpreted as a count of jiffies.

4.12.2.22 int rt_task_spawn (RT_TASK ∗ task, const char ∗ name, int stksize, int prio, int
mode, void(∗)(void ∗cookie) entry, void ∗ cookie) [inline, static]

Spawn a new real-time task.

Creates and immediately starts a real-time task, either running in a kernel module or in user-space
depending on the caller’s context. This service is a simple shorthand for rt_task_create() followed
by a call to rt_task_start().

Parameters:

task The address of a task descriptor Xenomai will use to store the task-related data. This
descriptor must always be valid while the task is active therefore it must be allocated in
permanent memory.

name An ASCII string standing for the symbolic name of the task. When non-NULL and
non-empty, this string is copied to a safe place into the descriptor, and passed to the
registry package if enabled for indexing the created task.

stksize The size of the stack (in bytes) for the new task. If zero is passed, a reasonable
pre-defined size will be substituted.

prio The base priority of the new task. This value must range from [1 .. 99] (inclusive) where
1 is the lowest effective priority.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 107

mode The task creation mode. The following flags can be OR’ed into this bitmask, each of
them affecting the new task:

• T_FPU allows the task to use the FPU whenever available on the platform. This flag is
forced for user-space tasks.

• T_SUSP causes the task to start in suspended mode. In such a case, the thread will have to
be explicitly resumed using the rt_task_resume() service for its execution to actually begin.

• T_CPU(cpuid) makes the new task affine to CPU # cpuid. CPU identifiers range from 0 to
RTHAL_NR_CPUS - 1 (inclusive).

• T_JOINABLE (user-space only) allows another task to wait on the termination of the new
task. This implies that rt_task_join() is actually called for this task to clean up any user-space
located resources after its termination.

Passing T_FPU|T_CPU(1) in the mode parameter thus creates a task with FPU support enabled
and which will be affine to CPU #1.

Parameters:

entry The address of the task’s body routine. In other words, it is the task entry point.

cookie A user-defined opaque cookie the real-time kernel will pass to the emerging task as
the sole argument of its entry point.

Returns:

0 is returned upon success. Otherwise:

• -ENOMEM is returned if the system fails to get enough dynamic memory from the global
real-time heap in order to create the new task’s stack space or register the task.

• -EEXIST is returned if the name is already in use by some registered object.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

References rt_task_create(), and rt_task_start().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

108 Module Documentation

4.12.2.23 int rt_task_start (RT_TASK ∗ task, void(∗)(void ∗cookie) entry, void ∗ cookie)

Start a real-time task.

Start a (newly) created task, scheduling it for the first time. This call releases the target task from
the dormant state.

The TSTART hooks are called on behalf of the calling context (if any, see rt_task_add_hook()).

Parameters:

task The descriptor address of the affected task which must have been previously created
by the rt_task_create() service.

entry The address of the task’s body routine. In other words, it is the task entry point.

cookie A user-defined opaque cookie the real-time kernel will pass to the emerging task as
the sole argument of its entry point.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor.

• -EIDRM is returned if task is a deleted task descriptor.

• -EBUSY is returned if task is already started.

• -EPERM is returned if this service was called from an asynchronous context.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Kernel-based task

• User-space task

Rescheduling: possible.

Referenced by rt_task_spawn().

4.12.2.24 int rt_task_suspend (RT_TASK ∗ task)

Suspend a real-time task.

Forcibly suspend the execution of a task. This task will not be eligible for scheduling until it is
explicitly resumed by a call to rt_task_resume(). In other words, the suspended state caused by a
call to rt_task_suspend() is cumulative with respect to the delayed and blocked states caused by
other services, and is managed separately from them.

A nesting count is maintained so that rt_task_suspend() and rt_task_resume() must be used in
pairs.

Receiving a Linux signal causes the suspended task to resume immediately.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 109

Parameters:

task The descriptor address of the affected task. If task is NULL, the current task is suspended.

Returns:

0 is returned upon success. Otherwise:

• -EINTR is returned if a Linux signal has been received by the suspended task.

• -EINVAL is returned if task is not a task descriptor.

• -EPERM is returned if the addressed task is not allowed to sleep (i.e. scheduler locked).

• -EIDRM is returned if task is a deleted task descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine only if task is non-NULL.

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always if task is NULL.

4.12.2.25 int rt_task_unbind (RT_TASK ∗ task) [inline, static]

Unbind from a real-time task.

This user-space only service unbinds the calling task from the task object previously retrieved by
a call to rt_task_bind().

Parameters:

task The address of a task descriptor to unbind from.

Returns:

0 is always returned.

This service can be called from:

• User-space task.

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

110 Module Documentation

4.12.2.26 int rt_task_unblock (RT_TASK ∗ task)

Unblock a real-time task.

Break the task out of any wait it is currently in. This call clears all delay and/or resource wait
condition for the target task. However, rt_task_unblock() does not resume a task which has been
forcibly suspended by a previous call to rt_task_suspend(). If all suspensive conditions are gone,
the task becomes eligible anew for scheduling.

Parameters:

task The descriptor address of the affected task.

Returns:

0 is returned upon success. Otherwise:

• -EINVAL is returned if task is not a task descriptor.

• -EIDRM is returned if task is a deleted task descriptor.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: possible.

4.12.2.27 int rt_task_wait_period (unsigned long ∗ overruns_r)

Wait for the next periodic release point.

Make the current task wait for the next periodic release point in the processor time line.

Parameters:

overruns_r If non-NULL, overruns_r must be a pointer to a memory location which will be
written with the count of pending overruns. This value is copied only when rt_task_-
wait_period() returns -ETIMEDOUT or success; the memory location remains unmodi-
fied otherwise. If NULL, this count will never be copied back.

Returns:

0 is returned upon success; if overruns_r is valid, zero is copied to the pointed memory
location. Otherwise:

• -EWOULDBLOCK is returned if rt_task_set_periodic() has not previously been called for
the calling task.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.12 Task management services. 111

• -EINTR is returned if rt_task_unblock() has been called for the waiting task before the next
periodic release point has been reached. In this case, the overrun counter is reset too.

• -ETIMEDOUT is returned if a timer overrun occurred, which indicates that a previous
release point has been missed by the calling task. If overruns_r is valid, the count of pending
overruns is copied to the pointed memory location.

• -EPERM is returned if this service was called from a context which cannot sleep (e.g.
interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel-based task

• User-space task (switches to primary mode)

Rescheduling: always, unless the current release point has already been reached. In the latter
case, the current task immediately returns from this service without being delayed.

4.12.2.28 int rt_task_yield (void)

Manual round-robin.

Move the current task to the end of its priority group, so that the next equal-priority task in ready
state is switched in.

Returns:

0 is returned upon success. Otherwise:

• -EPERM is returned if this service was called from a context which cannot sleep (e.g.
interrupt, non-realtime or scheduler locked).

Environments:

This service can be called from:

• Kernel-based task

• User-space task

Rescheduling: always if a next equal-priority task is ready to run, otherwise, this service leads to
a no-op.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

112 Module Documentation

4.13 Timer management services.

Collaboration diagram for Timer management services.:

Native Xenomai API. Timer management services.

4.13.1 Detailed Description

Timer-related services allow to control the Xenomai system timer which is used in all timed
operations.

Files

• file timer.h
This file is part of the Xenomai project.

• file timer.c
This file is part of the Xenomai project.

Data Structures

• struct rt_timer_info
Structure containing timer-information useful to users.

Typedefs

• typedef struct rt_timer_info RT_TIMER_INFO
Structure containing timer-information useful to users.

Functions

• SRTIME rt_timer_ns2tsc (SRTIME ns)
Convert nanoseconds to local CPU clock ticks.

• SRTIME rt_timer_tsc2ns (SRTIME ticks)
Convert local CPU clock ticks to nanoseconds.

• RTIME rt_timer_tsc (void)
Return the current TSC value.

• RTIME rt_timer_read (void)
Return the current system time.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.13 Timer management services. 113

• SRTIME rt_timer_ns2ticks (SRTIME ns)

Convert nanoseconds to internal clock ticks.

• SRTIME rt_timer_ticks2ns (SRTIME ticks)

Convert internal clock ticks to nanoseconds.

• int rt_timer_inquire (RT_TIMER_INFO ∗info)

Inquire about the timer.

• void rt_timer_spin (RTIME ns)

Busy wait burning CPU cycles.

• int rt_timer_set_mode (RTIME nstick)

Set the system clock rate.

4.13.2 Typedef Documentation

4.13.2.1 typedef struct rt_timer_info RT_TIMER_INFO

Structure containing timer-information useful to users.

See also:

rt_timer_inquire()

4.13.3 Function Documentation

4.13.3.1 int rt_timer_inquire (RT_TIMER_INFO ∗ info)

Inquire about the timer.

Return various information about the status of the system timer.

Parameters:

info The address of a structure the timer information will be written to.

Returns:

This service always returns 0.

The information block returns the period and the current system date. The period can have the
following values:

• TM_UNSET is a special value indicating that the system timer is inactive. A call to rt_-
timer_set_mode() re-activates it.

• TM_ONESHOT is a special value indicating that the timer has been set up in oneshot mode.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

114 Module Documentation

• Any other period value indicates that the system timer is currently running in periodic
mode; it is a count of nanoseconds representing the period of the timer, i.e. the duration of
a periodic tick or "jiffy".

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

References rt_timer_info::date, rt_timer_info::period, and rt_timer_info::tsc.

4.13.3.2 SRTIME rt_timer_ns2ticks (SRTIME ns)

Convert nanoseconds to internal clock ticks.

Convert a count of nanoseconds to internal clock ticks. This routine operates on signed nanosec-
ond values.

Parameters:

ns The count of nanoseconds to convert.

Returns:

The corresponding value expressed in internal clock ticks.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.13.3.3 SRTIME rt_timer_ns2tsc (SRTIME ns)

Convert nanoseconds to local CPU clock ticks.

Convert a count of nanoseconds to local CPU clock ticks. This routine operates on signed
nanosecond values.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.13 Timer management services. 115

Parameters:

ns The count of nanoseconds to convert.

Returns:

The corresponding value expressed in CPU clock ticks.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.13.3.4 RTIME rt_timer_read (void)

Return the current system time.

Return the current time maintained by the master time base.

Returns:

The current time expressed in clock ticks (see note).

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

Note:

The value returned will represent a count of jiffies if the native skin is bound to a periodic
time base (see CONFIG_XENO_OPT_NATIVE_PERIOD), or nanoseconds otherwise.

Examples:

trivial-periodic.c.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

116 Module Documentation

4.13.3.5 int rt_timer_set_mode (RTIME nstick)

Set the system clock rate.

This routine switches to periodic timing mode and sets the clock tick rate, or resets the current
timing mode to aperiodic/oneshot mode depending on the value of the nstick parameter. Since the
native skin automatically sets its time base according to the configured policy and period at load
time (see CONFIG_XENO_OPT_NATIVE_PERIOD), calling rt_timer_set_mode() is not required
from applications unless the pre-defined mode and period need to be changed dynamically.

This service sets the time unit which will be relevant when specifying time intervals to the services
taking timeout or delays as input parameters. In periodic mode, clock ticks will represent periodic
jiffies. In oneshot mode, clock ticks will represent nanoseconds.

Parameters:

nstick The time base period in nanoseconds. If this parameter is equal to the special TM_-
ONESHOT value, the time base is set to operate in a tick-less fashion (i.e. oneshot
mode). Other values are interpreted as the time between two consecutive clock ticks in
periodic timing mode (i.e. clock HZ = 1e9 / nstick).

Returns:

0 is returned on success. Otherwise:

• -ENODEV is returned if the underlying architecture does not support the requested periodic
timing. Aperiodic/oneshot timing is always supported.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• User-space task

Rescheduling: never.

4.13.3.6 void rt_timer_spin (RTIME ns)

Busy wait burning CPU cycles.

Enter a busy waiting loop for a count of nanoseconds. The precision of this service largely
depends on the availability of a time stamp counter on the current CPU.

Since this service is usually called with interrupts enabled, the caller might be preempted by other
real-time activities, therefore the actual delay might be longer than specified.

Parameters:

ns The time to wait expressed in nanoseconds.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

4.13 Timer management services. 117

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.13.3.7 SRTIME rt_timer_ticks2ns (SRTIME ticks)

Convert internal clock ticks to nanoseconds.

Convert a count of internal clock ticks to nanoseconds. This routine operates on signed tick
values.

Parameters:

ticks The count of internal clock ticks to convert.

Returns:

The corresponding value expressed in nanoseconds.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

4.13.3.8 RTIME rt_timer_tsc (void)

Return the current TSC value.

Return the value of the time stamp counter (TSC) maintained by the CPU of the underlying
architecture.

Returns:

The current value of the TSC.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

118 Module Documentation

4.13.3.9 SRTIME rt_timer_tsc2ns (SRTIME ticks)

Convert local CPU clock ticks to nanoseconds.

Convert a local CPU clock ticks to nanoseconds. This routine operates on signed tick values.

Parameters:

ticks The count of local CPU clock ticks to convert.

Returns:

The corresponding value expressed in nanoseconds.

Environments:

This service can be called from:

• Kernel module initialization/cleanup code

• Interrupt service routine

• Kernel-based task

• User-space task

Rescheduling: never.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Chapter 5

Data Structure Documentation

5.1 rt_heap_info Struct Reference

5.1.1 Detailed Description

Structure containing heap-information useful to users.

See also:

rt_heap_inquire()

The documentation for this struct was generated from the following file:

• include/native/heap.h

120 Data Structure Documentation

5.2 rt_mutex_info Struct Reference

5.2.1 Detailed Description

Structure containing mutex information useful to users.

See also:

rt_mutex_inquire()

Data Fields

• int lockcnt
Lock nesting level (> 0 means "locked").

• int nwaiters
Number of pending tasks.

• char name [XNOBJECT_NAME_LEN]
Symbolic name.

5.2.2 Field Documentation

5.2.2.1 int rt_mutex_info::lockcnt

Lock nesting level (> 0 means "locked").

Referenced by rt_mutex_inquire().

5.2.2.2 int rt_mutex_info::nwaiters

Number of pending tasks.

Referenced by rt_mutex_inquire().

5.2.2.3 char rt_mutex_info::name[XNOBJECT_NAME_LEN]

Symbolic name.

Referenced by rt_mutex_inquire().

The documentation for this struct was generated from the following file:

• include/native/mutex.h

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

5.3 rt_task_info Struct Reference 121

5.3 rt_task_info Struct Reference

5.3.1 Detailed Description

Structure containing task-information useful to users.

See also:

rt_task_inquire()

Data Fields

• int bprio

Base priority.

• int cprio

Current priority.

• unsigned status

Task’s status.

• RTIME relpoint

Time of next release.

• char name [XNOBJECT_NAME_LEN]

Symbolic name assigned at creation.

• RTIME exectime

Execution time in primary mode in nanoseconds.

• int modeswitches

Number of primary->secondary mode switches.

• int ctxswitches

Number of context switches.

• int pagefaults

Number of triggered page faults.

5.3.2 Field Documentation

5.3.2.1 int rt_task_info::bprio

Base priority.

Referenced by rt_task_inquire().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

122 Data Structure Documentation

5.3.2.2 int rt_task_info::cprio

Current priority.

May change through Priority Inheritance.

Referenced by rt_task_inquire().

5.3.2.3 unsigned rt_task_info::status

Task’s status.

See also:

Task Status

Referenced by rt_task_inquire().

5.3.2.4 RTIME rt_task_info::relpoint

Time of next release.

Referenced by rt_task_inquire().

5.3.2.5 char rt_task_info::name[XNOBJECT_NAME_LEN]

Symbolic name assigned at creation.

Referenced by rt_task_inquire().

5.3.2.6 RTIME rt_task_info::exectime

Execution time in primary mode in nanoseconds.

Referenced by rt_task_inquire().

5.3.2.7 int rt_task_info::modeswitches

Number of primary->secondary mode switches.

Referenced by rt_task_inquire().

5.3.2.8 int rt_task_info::ctxswitches

Number of context switches.

Referenced by rt_task_inquire().

5.3.2.9 int rt_task_info::pagefaults

Number of triggered page faults.

Referenced by rt_task_inquire().

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

5.3 rt_task_info Struct Reference 123

The documentation for this struct was generated from the following file:

• include/native/task.h

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

124 Data Structure Documentation

5.4 rt_task_mcb Struct Reference

5.4.1 Detailed Description

Structure used in passing messages between tasks.

See also:

rt_task_send(), rt_task_reply(), rt_task_receive()

Data Fields

• int flowid
Flow identifier.

• int opcode
Operation code.

• caddr_t data
Message address.

• size_t size
Message size (bytes).

5.4.2 Field Documentation

5.4.2.1 int rt_task_mcb::flowid

Flow identifier.

Referenced by rt_task_send().

5.4.2.2 int rt_task_mcb::opcode

Operation code.

Referenced by rt_task_receive(), rt_task_reply(), and rt_task_send().

5.4.2.3 caddr_t rt_task_mcb::data

Message address.

Referenced by rt_task_receive(), rt_task_reply(), and rt_task_send().

5.4.2.4 size_t rt_task_mcb::size

Message size (bytes).

Referenced by rt_task_receive(), rt_task_reply(), and rt_task_send().

The documentation for this struct was generated from the following file:

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

5.4 rt_task_mcb Struct Reference 125

• include/native/task.h

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

126 Data Structure Documentation

5.5 rt_timer_info Struct Reference

5.5.1 Detailed Description

Structure containing timer-information useful to users.

See also:

rt_timer_inquire()

The documentation for this struct was generated from the following file:

• include/native/timer.h

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Chapter 6

File Documentation

6.1 include/native/alarm.h File Reference

6.1.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for alarm.h:

include/native/alarm.h

native/types.h nucleus/timer.h nucleus/synch.h native/ppd.h

nucleus/types.h nucleus/pod.h nucleus/ppd.h nucleus/heap.h

mailto:rpm@xenomai.org

128 File Documentation

This graph shows which files directly or indirectly include this file:

include/native/alarm.h

ksrc/skins/native/alarm.c ksrc/skins/native/module.c ksrc/skins/native/syscall.c

Functions

• int rt_alarm_create (RT_ALARM ∗alarm, const char ∗name, rt_alarm_t handler, void
∗cookie)

Create an alarm object from kernel space.

• int rt_alarm_delete (RT_ALARM ∗alarm)
Delete an alarm.

• int rt_alarm_start (RT_ALARM ∗alarm, RTIME value, RTIME interval)
Start an alarm.

• int rt_alarm_stop (RT_ALARM ∗alarm)
Stop an alarm.

• int rt_alarm_inquire (RT_ALARM ∗alarm, RT_ALARM_INFO ∗info)
Inquire about an alarm.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.2 include/native/cond.h File Reference 129

6.2 include/native/cond.h File Reference

6.2.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for cond.h:

include/native/cond.h

native/mutex.h

native/types.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/cond.h

ksrc/skins/native/cond.c ksrc/skins/native/module.c ksrc/skins/native/syscall.c

Functions

• int rt_cond_bind (RT_COND ∗cond, const char ∗name, RTIME timeout)

Bind to a condition variable.

• static int rt_cond_unbind (RT_COND ∗cond)

Unbind from a condition variable.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

130 File Documentation

• int rt_cond_create (RT_COND ∗cond, const char ∗name)
Create a condition variable.

• int rt_cond_delete (RT_COND ∗cond)
Delete a condition variable.

• int rt_cond_signal (RT_COND ∗cond)
Signal a condition variable.

• int rt_cond_broadcast (RT_COND ∗cond)
Broadcast a condition variable.

• int rt_cond_wait (RT_COND ∗cond, RT_MUTEX ∗mutex, RTIME timeout)
Wait on a condition.

• int rt_cond_inquire (RT_COND ∗cond, RT_COND_INFO ∗info)
Inquire about a condition variable.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.3 include/native/event.h File Reference 131

6.3 include/native/event.h File Reference

6.3.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for event.h:

include/native/event.h

nucleus/synch.h native/types.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/event.h

ksrc/skins/native/event.c ksrc/skins/native/module.c ksrc/skins/native/syscall.c

Functions

• int rt_event_bind (RT_EVENT ∗event, const char ∗name, RTIME timeout)
Bind to an event flag group.

• static int rt_event_unbind (RT_EVENT ∗event)
Unbind from an event flag group.

• int rt_event_create (RT_EVENT ∗event, const char ∗name, unsigned long ivalue, int mode)
Create an event group.

• int rt_event_delete (RT_EVENT ∗event)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

132 File Documentation

Delete an event group.

• int rt_event_signal (RT_EVENT ∗event, unsigned long mask)
Post an event group.

• int rt_event_wait (RT_EVENT ∗event, unsigned long mask, unsigned long ∗mask_r, int
mode, RTIME timeout)

Pend on an event group.

• int rt_event_clear (RT_EVENT ∗event, unsigned long mask, unsigned long ∗mask_r)
Clear an event group.

• int rt_event_inquire (RT_EVENT ∗event, RT_EVENT_INFO ∗info)
Inquire about an event group.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.4 include/native/heap.h File Reference 133

6.4 include/native/heap.h File Reference

6.4.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for heap.h:

include/native/heap.h

nucleus/synch.h

nucleus/heap.h

native/types.h native/ppd.h

nucleus/types.h nucleus/pod.h nucleus/ppd.h

This graph shows which files directly or indirectly include this file:

include/native/heap.h

ksrc/skins/native/heap.c ksrc/skins/native/module.c ksrc/skins/native/syscall.c

Data Structures

• struct rt_heap_info

Structure containing heap-information useful to users.

Typedefs

• typedef struct rt_heap_info RT_HEAP_INFO

Structure containing heap-information useful to users.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

134 File Documentation

Functions

• int rt_heap_create (RT_HEAP ∗heap, const char ∗name, size_t heapsize, int mode)
Create a memory heap or a shared memory segment.

• int rt_heap_delete (RT_HEAP ∗heap)
Delete a real-time heap.

• int rt_heap_alloc (RT_HEAP ∗heap, size_t size, RTIME timeout, void ∗∗blockp)
Allocate a block or return the single segment base.

• int rt_heap_free (RT_HEAP ∗heap, void ∗block)
Free a block.

• int rt_heap_inquire (RT_HEAP ∗heap, RT_HEAP_INFO ∗info)
Inquire about a heap.

6.4.2 Typedef Documentation

6.4.2.1 typedef struct rt_heap_info RT_HEAP_INFO

Structure containing heap-information useful to users.

See also:

rt_heap_inquire()

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.5 include/native/intr.h File Reference 135

6.5 include/native/intr.h File Reference

6.5.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2005 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for intr.h:

include/native/intr.h

nucleus/intr.h native/types.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/intr.h

ksrc/skins/native/intr.c ksrc/skins/native/module.c ksrc/skins/native/syscall.c

Functions

• int rt_intr_bind (RT_INTR ∗intr, const char ∗name, RTIME timeout)
Bind to an interrupt object.

• static int rt_intr_unbind (RT_INTR ∗intr)
Unbind from an interrupt object.

• int rt_intr_create (RT_INTR ∗intr, const char ∗name, unsigned irq, int mode)
Create an interrupt object from user-space.

• int rt_intr_wait (RT_INTR ∗intr, RTIME timeout)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

136 File Documentation

Wait for the next interrupt.

• int rt_intr_delete (RT_INTR ∗intr)
Delete an interrupt object.

• int rt_intr_enable (RT_INTR ∗intr)
Enable an interrupt object.

• int rt_intr_disable (RT_INTR ∗intr)
Disable an interrupt object.

• int rt_intr_inquire (RT_INTR ∗intr, RT_INTR_INFO ∗info)
Inquire about an interrupt object.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.6 include/native/misc.h File Reference 137

6.6 include/native/misc.h File Reference

6.6.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2005 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for misc.h:

include/native/misc.h

native/types.h native/ppd.h

nucleus/types.h nucleus/pod.h nucleus/ppd.h nucleus/heap.h

This graph shows which files directly or indirectly include this file:

include/native/misc.h

ksrc/skins/native/module.c ksrc/skins/native/syscall.c

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

138 File Documentation

6.7 include/native/mutex.h File Reference

6.7.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for mutex.h:

include/native/mutex.h

native/types.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/mutex.h

include/native/cond.h

ksrc/skins/native/cond.c ksrc/skins/native/module.c ksrc/skins/native/syscall.c

ksrc/skins/native/mutex.c

Data Structures

• struct rt_mutex_info
Structure containing mutex information useful to users.

Typedefs

• typedef struct rt_mutex_info RT_MUTEX_INFO

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.7 include/native/mutex.h File Reference 139

Structure containing mutex information useful to users.

Functions

• int rt_mutex_bind (RT_MUTEX ∗mutex, const char ∗name, RTIME timeout)
Bind to a mutex.

• static int rt_mutex_unbind (RT_MUTEX ∗mutex)
Unbind from a mutex.

• int rt_mutex_create (RT_MUTEX ∗mutex, const char ∗name)
Create a mutex.

• int rt_mutex_delete (RT_MUTEX ∗mutex)
Delete a mutex.

• int rt_mutex_acquire (RT_MUTEX ∗mutex, RTIME timeout)
Acquire a mutex.

• int rt_mutex_release (RT_MUTEX ∗mutex)
Unlock mutex.

• int rt_mutex_inquire (RT_MUTEX ∗mutex, RT_MUTEX_INFO ∗info)
Inquire about a mutex.

6.7.2 Typedef Documentation

6.7.2.1 typedef struct rt_mutex_info RT_MUTEX_INFO

Structure containing mutex information useful to users.

See also:

rt_mutex_inquire()

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

140 File Documentation

6.8 include/native/pipe.h File Reference

6.8.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for pipe.h:

include/native/pipe.h

nucleus/pipe.h

nucleus/heap.h

native/types.h native/ppd.h

nucleus/types.h nucleus/pod.h nucleus/ppd.h

This graph shows which files directly or indirectly include this file:

include/native/pipe.h

ksrc/skins/native/module.c ksrc/skins/native/pipe.c ksrc/skins/native/syscall.c

Functions

• int rt_pipe_create (RT_PIPE ∗pipe, const char ∗name, int minor, size_t poolsize)

Create a message pipe.

• int rt_pipe_delete (RT_PIPE ∗pipe)

Delete a message pipe.

• ssize_t rt_pipe_read (RT_PIPE ∗pipe, void ∗buf, size_t size, RTIME timeout)

Read a message from a pipe.

• ssize_t rt_pipe_write (RT_PIPE ∗pipe, const void ∗buf, size_t size, int mode)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.8 include/native/pipe.h File Reference 141

Write a message to a pipe.

• ssize_t rt_pipe_stream (RT_PIPE ∗pipe, const void ∗buf, size_t size)
Stream bytes to a pipe.

• ssize_t rt_pipe_receive (RT_PIPE ∗pipe, RT_PIPE_MSG ∗∗msg, RTIME timeout)
Receive a message from a pipe.

• ssize_t rt_pipe_send (RT_PIPE ∗pipe, RT_PIPE_MSG ∗msg, size_t size, int mode)
Send a message through a pipe.

• RT_PIPE_MSG ∗ rt_pipe_alloc (RT_PIPE ∗pipe, size_t size)
Allocate a message pipe buffer.

• int rt_pipe_free (RT_PIPE ∗pipe, RT_PIPE_MSG ∗msg)
Free a message pipe buffer.

• int rt_pipe_flush (RT_PIPE ∗pipe, int mode)
Flush the i/o queues associated with the kernel endpoint of a message pipe.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

142 File Documentation

6.9 include/native/ppd.h File Reference

6.9.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2007 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for ppd.h:

include/native/ppd.h

nucleus/pod.h nucleus/ppd.h nucleus/heap.h

This graph shows which files directly or indirectly include this file:

include/native/ppd.h

include/native/alarm.h include/native/heap.hinclude/native/misc.hinclude/native/pipe.h include/native/queue.h

ksrc/skins/native/alarm.c ksrc/skins/native/module.cksrc/skins/native/syscall.c ksrc/skins/native/heap.cksrc/skins/native/pipe.c ksrc/skins/native/queue.c

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.10 include/native/queue.h File Reference 143

6.10 include/native/queue.h File Reference

6.10.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for queue.h:

include/native/queue.h

nucleus/synch.h

nucleus/heap.h

native/types.h native/ppd.h

nucleus/types.h nucleus/pod.h nucleus/ppd.h

This graph shows which files directly or indirectly include this file:

include/native/queue.h

ksrc/skins/native/module.c ksrc/skins/native/queue.c ksrc/skins/native/syscall.c

Functions

• int rt_queue_create (RT_QUEUE ∗q, const char ∗name, size_t poolsize, size_t qlimit, int
mode)

Create a message queue.

• int rt_queue_delete (RT_QUEUE ∗q)
Delete a message queue.

• void ∗ rt_queue_alloc (RT_QUEUE ∗q, size_t size)
Allocate a message queue buffer.

• int rt_queue_free (RT_QUEUE ∗q, void ∗buf)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

144 File Documentation

Free a message queue buffer.

• int rt_queue_send (RT_QUEUE ∗q, void ∗buf, size_t size, int mode)
Send a message to a queue.

• int rt_queue_write (RT_QUEUE ∗q, const void ∗buf, size_t size, int mode)
Write a message to a queue.

• ssize_t rt_queue_receive (RT_QUEUE ∗q, void ∗∗bufp, RTIME timeout)
Receive a message from a queue.

• ssize_t rt_queue_read (RT_QUEUE ∗q, void ∗bufp, size_t size, RTIME timeout)
Read a message from a queue.

• int rt_queue_inquire (RT_QUEUE ∗q, RT_QUEUE_INFO ∗info)
Inquire about a message queue.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.11 include/native/sem.h File Reference 145

6.11 include/native/sem.h File Reference

6.11.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for sem.h:

include/native/sem.h

nucleus/synch.h native/types.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/sem.h

ksrc/skins/native/module.c ksrc/skins/native/sem.c ksrc/skins/native/syscall.c

Functions

• int rt_sem_bind (RT_SEM ∗sem, const char ∗name, RTIME timeout)
Bind to a semaphore.

• static int rt_sem_unbind (RT_SEM ∗sem)
Unbind from a semaphore.

• int rt_sem_create (RT_SEM ∗sem, const char ∗name, unsigned long icount, int mode)
Create a counting semaphore.

• int rt_sem_delete (RT_SEM ∗sem)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

146 File Documentation

Delete a semaphore.

• int rt_sem_p (RT_SEM ∗sem, RTIME timeout)
Pend on a semaphore.

• int rt_sem_v (RT_SEM ∗sem)
Signal a semaphore.

• int rt_sem_broadcast (RT_SEM ∗sem)
Broadcast a semaphore.

• int rt_sem_inquire (RT_SEM ∗sem, RT_SEM_INFO ∗info)
Inquire about a semaphore.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.12 include/native/task.h File Reference 147

6.12 include/native/task.h File Reference

6.12.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for task.h:

include/native/task.h

nucleus/core.h nucleus/thread.h native/types.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/task.h

ksrc/skins/native/alarm.c ksrc/skins/native/cond.c ksrc/skins/native/event.c ksrc/skins/native/heap.c ksrc/skins/native/intr.c ksrc/skins/native/module.c ksrc/skins/native/mutex.c ksrc/skins/native/queue.c ksrc/skins/native/sem.c ksrc/skins/native/syscall.c ksrc/skins/native/task.c

Data Structures

• struct rt_task_info
Structure containing task-information useful to users.

• struct rt_task_mcb
Structure used in passing messages between tasks.

Defines

• #define T_BLOCKED XNPEND
See XNPEND.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

148 File Documentation

• #define T_DELAYED XNDELAY
See XNDELAY.

• #define T_READY XNREADY
See XNREADY.

• #define T_DORMANT XNDORMANT
See XNDORMANT.

• #define T_STARTED XNSTARTED
See XNSTARTED.

• #define T_BOOST XNBOOST
See XNBOOST.

• #define T_LOCK XNLOCK
See XNLOCK.

• #define T_RRB XNRRB
See XNRRB.

• #define T_NOSIG XNASDI
See XNASDI.

• #define T_SHIELD XNSHIELD
See XNSHIELD.

• #define T_WARNSW XNTRAPSW
See XNTRAPSW.

• #define T_RPIOFF XNRPIOFF
See XNRPIOFF.

Typedefs

• typedef struct rt_task_info RT_TASK_INFO
Structure containing task-information useful to users.

• typedef struct rt_task_mcb RT_TASK_MCB
Structure used in passing messages between tasks.

Functions

• int rt_task_shadow (RT_TASK ∗task, const char ∗name, int prio, int mode)
Turns the current Linux task into a native Xenomai task.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.12 include/native/task.h File Reference 149

• int rt_task_bind (RT_TASK ∗task, const char ∗name, RTIME timeout)
Bind to a real-time task.

• static int rt_task_unbind (RT_TASK ∗task)
Unbind from a real-time task.

• int rt_task_join (RT_TASK ∗task)
Wait on the termination of a real-time task.

• int rt_task_create (RT_TASK ∗task, const char ∗name, int stksize, int prio, int mode)
Create a new real-time task.

• int rt_task_start (RT_TASK ∗task, void(∗fun)(void ∗cookie), void ∗cookie)
Start a real-time task.

• int rt_task_suspend (RT_TASK ∗task)
Suspend a real-time task.

• int rt_task_resume (RT_TASK ∗task)
Resume a real-time task.

• int rt_task_delete (RT_TASK ∗task)
Delete a real-time task.

• int rt_task_yield (void)
Manual round-robin.

• int rt_task_set_periodic (RT_TASK ∗task, RTIME idate, RTIME period)
Make a real-time task periodic.

• int rt_task_wait_period (unsigned long ∗overruns_r)
Wait for the next periodic release point.

• int rt_task_set_priority (RT_TASK ∗task, int prio)
Change the base priority of a real-time task.

• int rt_task_sleep (RTIME delay)
Delay the calling task (relative).

• int rt_task_sleep_until (RTIME date)
Delay the calling task (absolute).

• int rt_task_unblock (RT_TASK ∗task)
Unblock a real-time task.

• int rt_task_inquire (RT_TASK ∗task, RT_TASK_INFO ∗info)
Inquire about a real-time task.

• int rt_task_notify (RT_TASK ∗task, rt_sigset_t signals)
Send signals to a task.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

150 File Documentation

• int rt_task_set_mode (int clrmask, int setmask, int ∗mode_r)
Change task mode bits.

• RT_TASK ∗ rt_task_self (void)
Retrieve the current task.

• int rt_task_slice (RT_TASK ∗task, RTIME quantum)
Set a task’s round-robin quantum.

• ssize_t rt_task_send (RT_TASK ∗task, RT_TASK_MCB ∗mcb_s, RT_TASK_MCB ∗mcb_r,
RTIME timeout)

Send a message to a task.

• int rt_task_receive (RT_TASK_MCB ∗mcb_r, RTIME timeout)
Receive a message from a task.

• int rt_task_reply (int flowid, RT_TASK_MCB ∗mcb_s)
Reply to a task.

• static int rt_task_spawn (RT_TASK ∗task, const char ∗name, int stksize, int prio, int mode,
void(∗entry)(void ∗cookie), void ∗cookie)

Spawn a new real-time task.

6.12.2 Typedef Documentation

6.12.2.1 typedef struct rt_task_info RT_TASK_INFO

Structure containing task-information useful to users.

See also:

rt_task_inquire()

6.12.2.2 typedef struct rt_task_mcb RT_TASK_MCB

Structure used in passing messages between tasks.

See also:

rt_task_send(), rt_task_reply(), rt_task_receive()

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.13 include/native/timer.h File Reference 151

6.13 include/native/timer.h File Reference

6.13.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for timer.h:

include/native/timer.h

native/types.h nucleus/timer.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/timer.h

ksrc/skins/native/alarm.c ksrc/skins/native/module.c ksrc/skins/native/syscall.c ksrc/skins/native/task.c ksrc/skins/native/timer.c

Data Structures

• struct rt_timer_info

Structure containing timer-information useful to users.

Typedefs

• typedef struct rt_timer_info RT_TIMER_INFO

Structure containing timer-information useful to users.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

152 File Documentation

Functions

• SRTIME rt_timer_ns2tsc (SRTIME ns)
Convert nanoseconds to local CPU clock ticks.

• SRTIME rt_timer_tsc2ns (SRTIME ticks)
Convert local CPU clock ticks to nanoseconds.

• RTIME rt_timer_tsc (void)
Return the current TSC value.

• RTIME rt_timer_read (void)
Return the current system time.

• SRTIME rt_timer_ns2ticks (SRTIME ns)
Convert nanoseconds to internal clock ticks.

• SRTIME rt_timer_ticks2ns (SRTIME ticks)
Convert internal clock ticks to nanoseconds.

• int rt_timer_inquire (RT_TIMER_INFO ∗info)
Inquire about the timer.

• void rt_timer_spin (RTIME ns)
Busy wait burning CPU cycles.

• int rt_timer_set_mode (RTIME nstick)
Set the system clock rate.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.14 include/native/types.h File Reference 153

6.14 include/native/types.h File Reference

6.14.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for types.h:

include/native/types.h

nucleus/types.h

This graph shows which files directly or indirectly include this file:

include/native/types.h

include/native/alarm.h

include/native/mutex.h

include/native/event.h include/native/heap.h include/native/intr.hinclude/native/misc.hinclude/native/pipe.h include/native/queue.h include/native/sem.h include/native/task.h include/native/timer.h

ksrc/skins/native/alarm.cksrc/skins/native/module.cksrc/skins/native/syscall.c

include/native/cond.h

ksrc/skins/native/cond.c ksrc/skins/native/mutex.cksrc/skins/native/event.c ksrc/skins/native/heap.c ksrc/skins/native/intr.cksrc/skins/native/pipe.c ksrc/skins/native/queue.c ksrc/skins/native/sem.c ksrc/skins/native/task.c ksrc/skins/native/timer.c

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

154 File Documentation

6.15 ksrc/skins/native/module.c File Reference

6.15.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for module.c:

ksrc/skins/native/module.c

nucleus/pod.h

nucleus/registry.h linux/init.h native/syscall.hnative/task.h native/timer.h native/sem.h native/event.h

native/mutex.h

native/cond.hnative/pipe.h native/queue.h native/heap.h native/alarm.h native/intr.hnative/misc.h

asm/xenomai/syscall.hnucleus/core.hnucleus/thread.h

native/types.h

nucleus/types.h

nucleus/timer.h nucleus/synch.hnucleus/pipe.h

nucleus/heap.h

native/ppd.h

nucleus/ppd.h

nucleus/intr.h

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.16 ksrc/skins/native/syscall.c File Reference 155

6.16 ksrc/skins/native/syscall.c File Reference

6.16.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for syscall.c:

ksrc/skins/native/syscall.c

linux/ioport.h

nucleus/pod.h nucleus/heap.h

nucleus/shadow.h nucleus/registry.hnative/syscall.h native/task.h native/timer.h native/sem.h native/event.h

native/mutex.h

native/cond.h native/queue.h native/heap.hnative/alarm.h native/intr.h native/pipe.hnative/misc.h

asm/xenomai/syscall.h nucleus/core.h nucleus/thread.h

native/types.h

nucleus/types.h

nucleus/timer.h nucleus/synch.h native/ppd.h

nucleus/ppd.h

nucleus/intr.h nucleus/pipe.h

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

156 File Documentation

6.17 ksrc/skins/native/alarm.c File Reference

6.17.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for alarm.c:

ksrc/skins/native/alarm.c

nucleus/pod.h

nucleus/registry.h

nucleus/heap.h

native/task.h native/alarm.h native/timer.h

nucleus/core.h nucleus/thread.h native/types.h

nucleus/types.h

nucleus/timer.hnucleus/synch.h native/ppd.h

nucleus/ppd.h

Functions

• int rt_alarm_create (RT_ALARM ∗alarm, const char ∗name, rt_alarm_t handler, void
∗cookie)

Create an alarm object from kernel space.

• int rt_alarm_delete (RT_ALARM ∗alarm)
Delete an alarm.

• int rt_alarm_start (RT_ALARM ∗alarm, RTIME value, RTIME interval)
Start an alarm.

• int rt_alarm_stop (RT_ALARM ∗alarm)
Stop an alarm.

• int rt_alarm_inquire (RT_ALARM ∗alarm, RT_ALARM_INFO ∗info)
Inquire about an alarm.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.18 ksrc/skins/native/cond.c File Reference 157

6.18 ksrc/skins/native/cond.c File Reference

6.18.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for cond.c:

ksrc/skins/native/cond.c

nucleus/pod.h nucleus/registry.h nucleus/heap.h native/task.h

native/mutex.h

native/cond.h

nucleus/core.h nucleus/thread.h

native/types.h

nucleus/types.h

Functions

• int rt_cond_create (RT_COND ∗cond, const char ∗name)
Create a condition variable.

• int rt_cond_delete (RT_COND ∗cond)
Delete a condition variable.

• int rt_cond_signal (RT_COND ∗cond)
Signal a condition variable.

• int rt_cond_broadcast (RT_COND ∗cond)
Broadcast a condition variable.

• int rt_cond_wait (RT_COND ∗cond, RT_MUTEX ∗mutex, RTIME timeout)
Wait on a condition.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

158 File Documentation

• int rt_cond_inquire (RT_COND ∗cond, RT_COND_INFO ∗info)
Inquire about a condition variable.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.19 ksrc/skins/native/event.c File Reference 159

6.19 ksrc/skins/native/event.c File Reference

6.19.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for event.c:

ksrc/skins/native/event.c

nucleus/pod.h nucleus/registry.h nucleus/heap.h native/task.h native/event.h

nucleus/core.h nucleus/thread.h native/types.h

nucleus/types.h

nucleus/synch.h

Functions

• int rt_event_create (RT_EVENT ∗event, const char ∗name, unsigned long ivalue, int mode)
Create an event group.

• int rt_event_delete (RT_EVENT ∗event)
Delete an event group.

• int rt_event_signal (RT_EVENT ∗event, unsigned long mask)
Post an event group.

• int rt_event_wait (RT_EVENT ∗event, unsigned long mask, unsigned long ∗mask_r, int
mode, RTIME timeout)

Pend on an event group.

• int rt_event_clear (RT_EVENT ∗event, unsigned long mask, unsigned long ∗mask_r)
Clear an event group.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

160 File Documentation

• int rt_event_inquire (RT_EVENT ∗event, RT_EVENT_INFO ∗info)
Inquire about an event group.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.20 ksrc/skins/native/heap.c File Reference 161

6.20 ksrc/skins/native/heap.c File Reference

6.20.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for heap.c:

ksrc/skins/native/heap.c

nucleus/pod.h

nucleus/registry.hnative/task.hnative/heap.h

nucleus/core.h nucleus/thread.hnative/types.h

nucleus/types.h

nucleus/synch.h

nucleus/heap.h

native/ppd.h

nucleus/ppd.h

Functions

• int rt_heap_create (RT_HEAP ∗heap, const char ∗name, size_t heapsize, int mode)
Create a memory heap or a shared memory segment.

• int rt_heap_delete (RT_HEAP ∗heap)
Delete a real-time heap.

• int rt_heap_alloc (RT_HEAP ∗heap, size_t size, RTIME timeout, void ∗∗blockp)
Allocate a block or return the single segment base.

• int rt_heap_free (RT_HEAP ∗heap, void ∗block)
Free a block.

• int rt_heap_inquire (RT_HEAP ∗heap, RT_HEAP_INFO ∗info)
Inquire about a heap.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

162 File Documentation

6.21 ksrc/skins/native/intr.c File Reference

6.21.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2005 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for intr.c:

ksrc/skins/native/intr.c

nucleus/pod.h nucleus/registry.h nucleus/heap.h native/task.h native/intr.h

nucleus/core.h nucleus/thread.h native/types.h

nucleus/types.h

nucleus/intr.h

Functions

• int rt_intr_create (RT_INTR ∗intr, const char ∗name, unsigned irq, rt_isr_t isr, rt_iack_t iack,
int mode)

Create an interrupt object from kernel space.

• int rt_intr_delete (RT_INTR ∗intr)
Delete an interrupt object.

• int rt_intr_enable (RT_INTR ∗intr)
Enable an interrupt object.

• int rt_intr_disable (RT_INTR ∗intr)
Disable an interrupt object.

• int rt_intr_inquire (RT_INTR ∗intr, RT_INTR_INFO ∗info)
Inquire about an interrupt object.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.22 ksrc/skins/native/mutex.c File Reference 163

6.22 ksrc/skins/native/mutex.c File Reference

6.22.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for mutex.c:

ksrc/skins/native/mutex.c

nucleus/pod.h nucleus/registry.h nucleus/heap.h native/task.h native/mutex.h

nucleus/core.h nucleus/thread.h native/types.h

nucleus/types.h

Functions

• int rt_mutex_create (RT_MUTEX ∗mutex, const char ∗name)
Create a mutex.

• int rt_mutex_delete (RT_MUTEX ∗mutex)
Delete a mutex.

• int rt_mutex_acquire (RT_MUTEX ∗mutex, RTIME timeout)
Acquire a mutex.

• int rt_mutex_release (RT_MUTEX ∗mutex)
Unlock mutex.

• int rt_mutex_inquire (RT_MUTEX ∗mutex, RT_MUTEX_INFO ∗info)
Inquire about a mutex.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

164 File Documentation

6.23 ksrc/skins/native/pipe.c File Reference

6.23.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for pipe.c:

ksrc/skins/native/pipe.c

nucleus/pod.h nucleus/heap.h

nucleus/registry.hnative/pipe.h

nucleus/pipe.hnative/types.hnative/ppd.h

nucleus/types.hnucleus/ppd.h

Functions

• int rt_pipe_create (RT_PIPE ∗pipe, const char ∗name, int minor, size_t poolsize)
Create a message pipe.

• int rt_pipe_delete (RT_PIPE ∗pipe)
Delete a message pipe.

• ssize_t rt_pipe_receive (RT_PIPE ∗pipe, RT_PIPE_MSG ∗∗msgp, RTIME timeout)
Receive a message from a pipe.

• ssize_t rt_pipe_read (RT_PIPE ∗pipe, void ∗buf, size_t size, RTIME timeout)
Read a message from a pipe.

• ssize_t rt_pipe_send (RT_PIPE ∗pipe, RT_PIPE_MSG ∗msg, size_t size, int mode)
Send a message through a pipe.

• ssize_t rt_pipe_write (RT_PIPE ∗pipe, const void ∗buf, size_t size, int mode)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.23 ksrc/skins/native/pipe.c File Reference 165

Write a message to a pipe.

• ssize_t rt_pipe_stream (RT_PIPE ∗pipe, const void ∗buf, size_t size)
Stream bytes to a pipe.

• RT_PIPE_MSG ∗ rt_pipe_alloc (RT_PIPE ∗pipe, size_t size)
Allocate a message pipe buffer.

• int rt_pipe_free (RT_PIPE ∗pipe, RT_PIPE_MSG ∗msg)
Free a message pipe buffer.

• int rt_pipe_flush (RT_PIPE ∗pipe, int mode)
Flush the i/o queues associated with the kernel endpoint of a message pipe.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

166 File Documentation

6.24 ksrc/skins/native/queue.c File Reference

6.24.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for queue.c:

ksrc/skins/native/queue.c

nucleus/pod.h

nucleus/registry.hnative/task.hnative/queue.h

nucleus/core.h nucleus/thread.hnative/types.h

nucleus/types.h

nucleus/synch.h

nucleus/heap.h

native/ppd.h

nucleus/ppd.h

Functions

• int rt_queue_create (RT_QUEUE ∗q, const char ∗name, size_t poolsize, size_t qlimit, int
mode)

Create a message queue.

• int rt_queue_delete (RT_QUEUE ∗q)
Delete a message queue.

• void ∗ rt_queue_alloc (RT_QUEUE ∗q, size_t size)
Allocate a message queue buffer.

• int rt_queue_free (RT_QUEUE ∗q, void ∗buf)
Free a message queue buffer.

• int rt_queue_send (RT_QUEUE ∗q, void ∗mbuf, size_t size, int mode)
Send a message to a queue.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.24 ksrc/skins/native/queue.c File Reference 167

• int rt_queue_write (RT_QUEUE ∗q, const void ∗buf, size_t size, int mode)
Write a message to a queue.

• ssize_t rt_queue_receive (RT_QUEUE ∗q, void ∗∗bufp, RTIME timeout)
Receive a message from a queue.

• ssize_t rt_queue_read (RT_QUEUE ∗q, void ∗buf, size_t size, RTIME timeout)
Read a message from a queue.

• int rt_queue_inquire (RT_QUEUE ∗q, RT_QUEUE_INFO ∗info)
Inquire about a message queue.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

168 File Documentation

6.25 ksrc/skins/native/sem.c File Reference

6.25.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for sem.c:

ksrc/skins/native/sem.c

nucleus/pod.h nucleus/registry.h nucleus/heap.h native/task.h native/sem.h

nucleus/core.h nucleus/thread.h native/types.h

nucleus/types.h

nucleus/synch.h

Functions

• int rt_sem_create (RT_SEM ∗sem, const char ∗name, unsigned long icount, int mode)
Create a counting semaphore.

• int rt_sem_delete (RT_SEM ∗sem)
Delete a semaphore.

• int rt_sem_p (RT_SEM ∗sem, RTIME timeout)
Pend on a semaphore.

• int rt_sem_v (RT_SEM ∗sem)
Signal a semaphore.

• int rt_sem_broadcast (RT_SEM ∗sem)
Broadcast a semaphore.

• int rt_sem_inquire (RT_SEM ∗sem, RT_SEM_INFO ∗info)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.25 ksrc/skins/native/sem.c File Reference 169

Inquire about a semaphore.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

170 File Documentation

6.26 ksrc/skins/native/task.c File Reference

6.26.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for task.c:

ksrc/skins/native/task.c

nucleus/pod.h nucleus/heap.h nucleus/registry.h native/task.h native/timer.h

nucleus/core.h nucleus/thread.h native/types.h

nucleus/types.h

nucleus/timer.h

Functions

• int rt_task_create (RT_TASK ∗task, const char ∗name, int stksize, int prio, int mode)
Create a new real-time task.

• int rt_task_start (RT_TASK ∗task, void(∗entry)(void ∗cookie), void ∗cookie)
Start a real-time task.

• int rt_task_suspend (RT_TASK ∗task)
Suspend a real-time task.

• int rt_task_resume (RT_TASK ∗task)
Resume a real-time task.

• int rt_task_delete (RT_TASK ∗task)
Delete a real-time task.

• int rt_task_yield (void)

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

6.26 ksrc/skins/native/task.c File Reference 171

Manual round-robin.

• int rt_task_set_periodic (RT_TASK ∗task, RTIME idate, RTIME period)
Make a real-time task periodic.

• int rt_task_wait_period (unsigned long ∗overruns_r)
Wait for the next periodic release point.

• int rt_task_set_priority (RT_TASK ∗task, int prio)
Change the base priority of a real-time task.

• int rt_task_sleep (RTIME delay)
Delay the calling task (relative).

• int rt_task_sleep_until (RTIME date)
Delay the calling task (absolute).

• int rt_task_unblock (RT_TASK ∗task)
Unblock a real-time task.

• int rt_task_inquire (RT_TASK ∗task, RT_TASK_INFO ∗info)
Inquire about a real-time task.

• int rt_task_add_hook (int type, void(∗routine)(void ∗cookie))
Install a task hook.

• int rt_task_remove_hook (int type, void(∗routine)(void ∗cookie))
Remove a task hook.

• int rt_task_catch (void(∗handler)(rt_sigset_t))
Install a signal handler.

• int rt_task_notify (RT_TASK ∗task, rt_sigset_t signals)
Send signals to a task.

• int rt_task_set_mode (int clrmask, int setmask, int ∗mode_r)
Change task mode bits.

• RT_TASK ∗ rt_task_self (void)
Retrieve the current task.

• int rt_task_slice (RT_TASK ∗task, RTIME quantum)
Set a task’s round-robin quantum.

• ssize_t rt_task_send (RT_TASK ∗task, RT_TASK_MCB ∗mcb_s, RT_TASK_MCB ∗mcb_r,
RTIME timeout)

Send a message to a task.

• int rt_task_receive (RT_TASK_MCB ∗mcb_r, RTIME timeout)
Receive a message from a task.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

172 File Documentation

• int rt_task_reply (int flowid, RT_TASK_MCB ∗mcb_s)
Reply to a task.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

6.27 ksrc/skins/native/timer.c File Reference 173

6.27 ksrc/skins/native/timer.c File Reference

6.27.1 Detailed Description

This file is part of the Xenomai project.

Note:

Copyright (C) 2004 Philippe Gerum <rpm@xenomai.org>

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Include dependency graph for timer.c:

ksrc/skins/native/timer.c

nucleus/pod.h native/timer.h

native/types.h nucleus/timer.h

nucleus/types.h

Functions

• int rt_timer_inquire (RT_TIMER_INFO ∗info)
Inquire about the timer.

• void rt_timer_spin (RTIME ns)
Busy wait burning CPU cycles.

• int rt_timer_set_mode (RTIME nstick)
Set the system clock rate.

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

mailto:rpm@xenomai.org

174 File Documentation

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Chapter 7

Example Documentation

7.1 bound_task.c

#include <sys/mman.h>
#include <native/task.h>

#define SIGNALS (0x1|0x4) /* Signals to send */

RT_TASK task_desc;

int main (int argc, char *argv[])

{
int err;

mlockall(MCL_CURRENT|MCL_FUTURE);

/* Bind to a task which has been created elsewhere, either in
kernel or user-space. The call will block us until such task is
created with the expected name. */

err = rt_task_bind(&task_desc,"SomeTaskName",TM_NONBLOCK);

if (!err)
/* Send signals to the bound task */
rt_task_notify(&task_desc,SIGNALS);

/* ... */
}

176 Example Documentation

7.2 cond_var.c

#include <native/mutex.h>
#include <native/cond.h>

RT_COND cond_desc;

RT_MUTEX mutex_desc;

int shared_event = 0;

void foo (void)

{
int err;

/* Create a condition variable and a mutex guarding it; we could
also have attempted to bind to some pre-existing objects, using
rt_cond_bind() and rt_mutex_bind() instead of creating them. */

err = rt_mutex_create(&mutex_desc,"MyCondMutex");
err = rt_cond_create(&cond_desc,"MyCondVar");

/* Now, wait for some task to post the shared event... */

rt_mutex_acquire(&mutex_desc,TM_INFINITE);

while (!shared_event && !err)
err = rt_cond_wait(&cond_desc,&mutex_desc,TM_INFINITE);

rt_mutex_release(&mutex_desc);

/* ... */
}

void bar (void)

{
/* ... */

/* Post the shared event. */

rt_mutex_acquire(&mutex_desc,TM_INFINITE);

shared_event = 1;
rt_cond_signal(&cond_desc);

rt_mutex_release(&mutex_desc);

/* ... */
}

void cleanup (void)

{
rt_cond_delete(&cond_desc);
rt_mutex_delete(&mutex_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.3 event_flags.c 177

7.3 event_flags.c

#include <native/event.h>

#define EVENT_INIT 0x0 /* No flags present at init */
#define EVENT_MODE EV_PRIO /* Tasks will wait by priority order */
#define EVENT_WAIT_MASK (0x1|0x2|0x4) /* List of monitored events */
#define EVENT_SIGNAL_MASK (0x2) /* List of events to send */

RT_EVENT ev_desc;

void foo (void)

{
unsigned long mask_ret;
int err;

/* Create an event flag; we could also have attempted to bind to
some pre-existing object, using rt_event_bind() instead of
creating it. */

err = rt_event_create(&ev_desc,
"MyEventFlagGroup",
EVENT_INIT,
EVENT_MODE);

/* Now, wait for some task to post some event flags... */

err = rt_event_wait(&ev_desc,
EVENT_WAIT_MASK,
&mask_ret,
EV_ANY, /* Disjunctive wait */
TM_INFINITE);

/* ... */
}

void bar (void)

{
/* ... */

/* Post some events. */

rt_event_signal(&ev_desc,EVENT_SIGNAL_MASK);

/* ... */
}

void cleanup (void)

{
rt_event_delete(&ev_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

178 Example Documentation

7.4 kernel_task.c

#include <native/task.h>

#define TASK_PRIO 99 /* Highest RT priority */
#define TASK_MODE T_FPU|T_CPU(0) /* Uses FPU, bound to CPU #0 */
#define TASK_STKSZ 4096 /* Stack size (in bytes) */

RT_TASK task_desc;

void task_body (void *cookie)

{
for (;;) {
/* ... "cookie" should be NULL ... */
}

}

int init_module (void)

{
int err;

/* ... */

err = rt_task_create(&task_desc,
"MyTaskName",
TASK_STKSZ,
TASK_PRIO,
TASK_MODE);

if (!err)
rt_task_start(&task_desc,&task_body,NULL);

/* ... */
}

void cleanup_module (void)

{
rt_task_delete(&task_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.5 local_heap.c 179

7.5 local_heap.c

#include <native/heap.h>

#define HEAP_SIZE (256*1024)
#define HEAP_MODE 0 /* Local heap. */

RT_HEAP heap_desc;

int init_module (void)

{
void *block;
int err;

/* Create a 256Kb heap usable for dynamic memory allocation of
variable-size blocks in kernel space. */

err = rt_heap_create(&heap_desc,"MyHeapName",HEAP_SIZE,HEAP_MODE);

if (err)
fail();

/* Request a 16-bytes block, asking for a non-blocking call since
only Xenomai tasks may block. */

err = rt_heap_alloc(&heap_desc,16,TM_NONBLOCK,&block);

if (err)
goto no_memory;

/* Free the block: */
rt_heap_free(&heap_desc,block);

/* ... */
}

void cleanup_module (void)

{
rt_heap_delete(&heap_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

180 Example Documentation

7.6 msg_queue.c

#include <sys/mman.h>
#include <stdio.h>
#include <string.h>
#include <native/task.h>
#include <native/queue.h>

#define TASK_PRIO 99 /* Highest RT priority */
#define TASK_MODE 0 /* No flags */
#define TASK_STKSZ 0 /* Stack size (use default one) */

RT_QUEUE q_desc;

RT_TASK task_desc;

void consumer (void *cookie)

{
ssize_t len;
void *msg;
int err;

/* Bind to a queue which has been created elsewhere, either in
kernel or user-space. The call will block us until such queue
is created with the expected name. The queue should have been
created with the Q_SHARED mode set, which is implicit when
creation takes place in user-space. */

err = rt_queue_bind(&q_desc,"SomeQueueName",TM_INFINITE);

if (err)
fail();

/* Collect each message sent to the queue by the queuer() routine,
until the queue is eventually removed from the system by a call
to rt_queue_delete(). */

while ((len = rt_queue_receive(&q_desc,&msg,TM_INFINITE)) > 0)
{
printf("received message> len=%d bytes, ptr=%p, s=%s\n",

len,msg,(const char *)msg);
rt_queue_free(&q_desc,msg);
}

/* We need to unbind explicitly from the queue in order to
properly release the underlying memory mapping. Exiting the
process unbinds all mappings automatically. */

rt_queue_unbind(&q_desc);

if (len != -EIDRM)
/* We received some unexpected error notification. */
fail();

/* ... */
}

int main (int argc, char *argv[])

{
static char *messages[] = { "hello", "world", NULL };
int n, len;
void *msg;

mlockall(MCL_CURRENT|MCL_FUTURE);

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.6 msg_queue.c 181

err = rt_task_create(&task_desc,
"MyTaskName",
TASK_STKSZ,
TASK_PRIO,
TASK_MODE);

if (!err)
rt_task_start(&task_desc,&task_body,NULL);

/* ... */

for (n = 0; messages[n] != NULL; n++)
{
len = strlen(messages[n]) + 1;
/* Get a message block of the right size. */
msg = rt_queue_alloc(&q_desc,len);

if (!msg)
/* No memory available. */
fail();

strcpy(msg,messages[n]);
rt_queue_send(&q_desc,msg,len,Q_NORMAL);
}

rt_task_delete(&task_desc);
}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

182 Example Documentation

7.7 mutex.c

#include <native/mutex.h>

RT_MUTEX mutex_desc;

int main (int argc, char *argv[])

{
int err;

/* Create a mutex; we could also have attempted to bind to some
pre-existing object, using rt_mutex_bind() and rt_mutex_bind()
instead of creating it. In any case, priority inheritance is
automatically enforced for mutual exclusion locks. */

err = rt_mutex_create(&mutex_desc,"MyMutex");

/* Now, grab the mutex lock, run the critical section, then
release the lock: */

rt_mutex_acquire(&mutex_desc,TM_INFINITE);

/* ... Critical section ... */

rt_mutex_release(&mutex_desc);

/* ... */
}

void cleanup (void)

{
rt_mutex_delete(&mutex_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.8 pipe.c 183

7.8 pipe.c

#include <sys/types.h>
#include <fcntl.h>
#include <string.h>
#include <stdio.h>
#include <native/pipe.h>

#define PIPE_MINOR 0

/* User-space side */

int pipe_fd;

int main(int argc, char *argv[])
{

char devname[32], buf[16];

/* ... */

sprintf(devname, "/dev/rtp%d", PIPE_MINOR);
pipe_fd = open(devname, O_RDWR);

if (pipe_fd < 0)
fail();

/* Wait for the prompt string "Hello"... */
read(pipe_fd, buf, sizeof(buf));

/* Then send the reply string "World": */
write(pipe_fd, "World", sizeof("World"));

/* ... */
}

void cleanup(void)
{

close(pipe_fd);
}

/* Kernel-side */

#define TASK_PRIO 0 /* Highest RT priority */
#define TASK_MODE T_FPU|T_CPU(0) /* Uses FPU, bound to CPU #0 */
#define TASK_STKSZ 4096 /* Stack size (in bytes) */

RT_TASK task_desc;

RT_PIPE pipe_desc;

void task_body(void)
{

RT_PIPE_MSG *msgout, *msgin;
int err, len, n;

for (;;) {
/* ... */

len = sizeof("Hello");
/* Get a message block of the right size in order to
initiate the message-oriented dialog with the
user-space process. Sending a continuous stream of
bytes is also possible using rt_pipe_stream(), in
which case no message buffer needs to be
preallocated. */

msgout = rt_pipe_alloc(len);

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

184 Example Documentation

if (!msgout)
fail();

/* Send prompt message "Hello" (the output buffer will be freed
automatically)... */

strcpy(RT_PIPE_MSGPTR(msgout), "Hello");
rt_pipe_send(&pipe_desc, msgout, len, P_NORMAL);

/* Then wait for the reply string "World": */
n = rt_pipe_receive(&pipe_desc, &msgin, TM_INFINITE);

if (n < 0) {
printf("receive error> errno=%d\n", n);
continue;

}

if (n == 0) {
if (msg == NULL) {

printf("pipe closed by peer while reading\n");
continue;

}

printf("empty message received\n");
} else

printf("received msg> %s, size=%d\n", P_MSGPTR(msg),
P_MSGSIZE(msg));

/* Free the received message buffer. */
rt_pipe_free(&pipe_desc, msgin);

/* ... */
}

}

init init_module(void)
{

int err;

err = rt_pipe_create(&pipe_desc, NULL, PIPE_MINOR);

if (err)
fail();

/* ... */

err = rt_task_create(&task_desc,
"MyTaskName", TASK_STKSZ, TASK_PRIO, TASK_MODE);

if (!err)
rt_task_start(&task_desc, &task_body, NULL);

/* ... */
}

void cleanup_module(void)
{

rt_pipe_delete(&pipe_desc);
rt_task_delete(&task_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.9 semaphore.c 185

7.9 semaphore.c

#include <native/sem.h>

#define SEM_INIT 1 /* Initial semaphore count */
#define SEM_MODE S_FIFO /* Wait by FIFO order */

RT_SEM sem_desc;

void foo (void)

{
int err;

/* Create a semaphore; we could also have attempted to bind to
some pre-existing object, using rt_sem_bind() instead of
creating it. */

err = rt_sem_create(&sem_desc,"MySemaphore",SEM_INIT,SEM_MODE);

for (;;) {

/* Now, wait for a semaphore unit... */
rt_sem_p(&sem_desc,TM_INFINITE);

/* ... */

/* then release it. */
rt_sem_v(&sem_desc);

/* ... */
}

}

void cleanup (void)

{
rt_sem_delete(&sem_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

186 Example Documentation

7.10 shared_mem.c

#include <native/heap.h>

RT_HEAP heap_desc;

void *shared_mem; /* Start address of the shared memory segment */

/* A shared memory segment with Xenomai is implemented as a mappable
real-time heap object managed as a single memory block. In this
mode, the allocation routine always returns the start address of
the heap memory to all callers, and the free routine always leads
to a no-op. */

int main (int argc, char *argv[])

{
int err;

/* Bind to a shared heap which has been created elsewhere, either
in kernel or user-space. Here we cannot wait and the heap must
be available at once, since the caller is not a Xenomai-enabled
thread. The heap should have been created with the H_SHARED
mode set. */

err = rt_heap_bind(&heap_desc,"SomeShmName",TM_NONBLOCK);

if (err)
fail();

/* Get the address of the shared memory segment. The "size" and
"timeout" arguments are unused here. */

rt_heap_alloc(&heap_desc,0,TM_NONBLOCK,&shared_mem);

/* ... */
}

void cleanup (void)

{
/* We need to unbind explicitly from the heap in order to
properly release the underlying memory mapping. Exiting the
process unbinds all mappings automatically. */

rt_heap_unbind(&heap_desc);
}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.11 sigxcpu.c 187

7.11 sigxcpu.c

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <getopt.h>
#include <execinfo.h>
#include <native/task.h>

RT_TASK task;

void task_body (void *cookie)

{
/* Ask Xenomai to warn us upon switches to secondary mode. */
rt_task_set_mode(0, T_WARNSW, NULL);

/* A real-time task always starts in primary mode. */

for (;;) {
rt_task_sleep(1000000000);
/* Running in primary mode... */
printf("Switched to secondary mode\n");
/* ...printf() => write(2): we have just switched to secondary
mode: SIGXCPU should have been sent to us by now. */

}
}

void warn_upon_switch(int sig __attribute__((unused)))

{
void *bt[32];
int nentries;

/* Dump a backtrace of the frame which caused the switch to
secondary mode: */

nentries = backtrace(bt,sizeof(bt) / sizeof(bt[0]));
backtrace_symbols_fd(bt,nentries,fileno(stdout));

}

int main (int argc, char **argv)

{
int err;

signal(SIGXCPU, warn_upon_switch);

err = rt_task_create(&task,"mytask",0,1,T_FPU);

if (err)
{
fprintf(stderr,"failed to create task, code %d\n",err);
return 0;
}

err = rt_task_start(&task,&task_body,NULL);

if (err)
{
fprintf(stderr,"failed to start task, code %d\n",err);
return 0;
}

pause();

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

188 Example Documentation

return 0;
}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.12 trivial-periodic.c 189

7.12 trivial-periodic.c

#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <sys/mman.h>

#include <native/task.h>
#include <native/timer.h>

RT_TASK demo_task;

/* NOTE: error handling omitted. */

void demo(void *arg)
{

RTIME now, previous;

/*
* Arguments: &task (NULL=self),
* start time,
* period (here: 1 s)
*/
rt_task_set_periodic(NULL, TM_NOW, 1000000000);
previous = rt_timer_read();

while (1) {
rt_task_wait_period(NULL);
now = rt_timer_read();

/*
* NOTE: printf may have unexpected impact on the timing of
* your program. It is used here in the critical loop
* only for demonstration purposes.
*/
printf("Time since last turn: %ld.%06ld ms\n",

(long)(now - previous) / 1000000,
(long)(now - previous) % 1000000);
previous = now;

}
}

void catch_signal(int sig)
{
}

int main(int argc, char* argv[])
{

signal(SIGTERM, catch_signal);
signal(SIGINT, catch_signal);

/* Avoids memory swapping for this program */
mlockall(MCL_CURRENT|MCL_FUTURE);

/*
* Arguments: &task,
* name,
* stack size (0=default),
* priority,
* mode (FPU, start suspended, ...)
*/
rt_task_create(&demo_task, "trivial", 0, 99, 0);

/*
* Arguments: &task,
* task function,
* function argument

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

190 Example Documentation

*/
rt_task_start(&demo_task, &demo, NULL);

pause();

rt_task_delete(&demo_task);
}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.13 user_alarm.c 191

7.13 user_alarm.c

#include <sys/mman.h>
#include <native/task.h>
#include <native/alarm.h>

#define TASK_PRIO 99 /* Highest RT priority */
#define TASK_MODE 0 /* No flags */
#define TASK_STKSZ 0 /* Stack size (use default one) */

#define ALARM_VALUE 500000 /* First shot at now + 500 us */
#define ALARM_INTERVAL 250000 /* Period is 250 us */

RT_ALARM alarm_desc;

RT_TASK server_desc;

void alarm_server (void *cookie)

{
for (;;) {

/* Wait for the next alarm to trigger. */
err = rt_alarm_wait(&alarm_desc);

if (!err) {
/* Process the alarm shot. */

}
}

}

int main (int argc, char *argv[])

{
int err;

mlockall(MCL_CURRENT|MCL_FUTURE);

/* ... */

err = rt_alarm_create(&alarm_desc,"MyAlarm");

err = rt_alarm_start(&alarm_desc,
ALARM_VALUE,
ALARM_INTERVAL);

/* ... */

err = rt_task_create(&server_desc,
"MyAlarmServer",
TASK_STKSZ,
TASK_PRIO,
TASK_MODE);

if (!err)
rt_task_start(&server_desc,&alarm_server,NULL);

/* ... */
}

void cleanup (void)

{
rt_alarm_delete(&alarm_desc);
rt_task_delete(&server_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

192 Example Documentation

7.14 user_irq.c

#include <sys/mman.h>
#include <native/task.h>
#include <native/intr.h>

#define IRQ_NUMBER 7 /* Intercept interrupt #7 */
#define TASK_PRIO 99 /* Highest RT priority */
#define TASK_MODE 0 /* No flags */
#define TASK_STKSZ 0 /* Stack size (use default one) */

RT_INTR intr_desc;

RT_TASK server_desc;

void irq_server (void *cookie)

{
for (;;) {

/* Wait for the next interrupt on channel #7. */
err = rt_intr_wait(&intr_desc,TM_INFINITE);

if (!err) {
/* Process interrupt. */

}
}

}

int main (int argc, char *argv[])

{
int err;

mlockall(MCL_CURRENT|MCL_FUTURE);

/* ... */

err = rt_intr_create(&intr_desc,"MyIrq",IRQ_NUMBER,0);

/* ... */

err = rt_task_create(&server_desc,
"MyIrqServer",
TASK_STKSZ,
TASK_PRIO,
TASK_MODE);

if (!err)
rt_task_start(&server_desc,&irq_server,NULL);

/* ... */
}

void cleanup (void)

{
rt_intr_delete(&intr_desc);
rt_task_delete(&server_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

7.15 user_task.c 193

7.15 user_task.c

#include <sys/mman.h>
#include <native/task.h>

#define TASK_PRIO 99 /* Highest RT priority */
#define TASK_MODE 0 /* No flags */
#define TASK_STKSZ 0 /* Stack size (use default one) */

RT_TASK task_desc;

void task_body (void *cookie)

{
for (;;) {
/* ... "cookie" should be NULL ... */
}

}

int main (int argc, char *argv[])

{
int err;

mlockall(MCL_CURRENT|MCL_FUTURE);

/* ... */

err = rt_task_create(&task_desc,
"MyTaskName",
TASK_STKSZ,
TASK_PRIO,
TASK_MODE);

if (!err)
rt_task_start(&task_desc,&task_body,NULL);

/* ... */
}

void cleanup (void)

{
rt_task_delete(&task_desc);

}

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

Index

alarm
rt_alarm_create, 10
rt_alarm_delete, 11
rt_alarm_inquire, 12
rt_alarm_start, 13
rt_alarm_stop, 13
rt_alarm_wait, 14

Alarm services., 9

bprio
rt_task_info, 121

cond
rt_cond_bind, 17
rt_cond_broadcast, 17
rt_cond_create, 18
rt_cond_delete, 19
rt_cond_inquire, 19
rt_cond_signal, 20
rt_cond_unbind, 21
rt_cond_wait, 21

Condition variable services., 16
Counting semaphore services., 78
cprio

rt_task_info, 121
ctxswitches

rt_task_info, 122

data
rt_task_mcb, 124

event
rt_event_bind, 24
rt_event_clear, 24
rt_event_create, 25
rt_event_delete, 26
rt_event_inquire, 27
rt_event_signal, 27
rt_event_unbind, 28
rt_event_wait, 28

Event flag group services., 23
exectime

rt_task_info, 122

flowid
rt_task_mcb, 124

heap.h
RT_HEAP_INFO, 134

include/native/alarm.h, 127
include/native/cond.h, 129
include/native/event.h, 131
include/native/heap.h, 133
include/native/intr.h, 135
include/native/misc.h, 137
include/native/mutex.h, 138
include/native/pipe.h, 140
include/native/ppd.h, 142
include/native/queue.h, 143
include/native/sem.h, 145
include/native/task.h, 147
include/native/timer.h, 151
include/native/types.h, 153
interrupt

rt_intr_bind, 40
rt_intr_create, 40, 42
rt_intr_delete, 43
rt_intr_disable, 44
rt_intr_enable, 45
rt_intr_inquire, 45
rt_intr_unbind, 46
rt_intr_wait, 46

Interrupt management services., 39

ksrc/skins/native/alarm.c, 156
ksrc/skins/native/cond.c, 157
ksrc/skins/native/event.c, 159
ksrc/skins/native/heap.c, 161
ksrc/skins/native/intr.c, 162
ksrc/skins/native/module.c, 154
ksrc/skins/native/mutex.c, 163
ksrc/skins/native/pipe.c, 164
ksrc/skins/native/queue.c, 166
ksrc/skins/native/sem.c, 168
ksrc/skins/native/syscall.c, 155
ksrc/skins/native/task.c, 170
ksrc/skins/native/timer.c, 173

lockcnt
rt_mutex_info, 120

Memory heap services., 31

INDEX 195

Message pipe services., 55
Message queue services., 66
modeswitches

rt_task_info, 122
mutex

rt_mutex_acquire, 50
rt_mutex_bind, 51
rt_mutex_create, 51
rt_mutex_delete, 52
rt_mutex_inquire, 53
rt_mutex_release, 53
rt_mutex_unbind, 54

Mutex services., 49
mutex.h

RT_MUTEX_INFO, 139

name
rt_mutex_info, 120
rt_task_info, 122

Native Xenomai API., 48
native_heap

rt_heap_alloc, 32
rt_heap_bind, 33
rt_heap_create, 34
rt_heap_delete, 36
rt_heap_free, 36
rt_heap_inquire, 37
rt_heap_unbind, 37

native_queue
rt_queue_alloc, 67
rt_queue_bind, 67
rt_queue_create, 68
rt_queue_delete, 70
rt_queue_free, 70
rt_queue_inquire, 71
rt_queue_read, 72
rt_queue_receive, 73
rt_queue_send, 74
rt_queue_unbind, 75
rt_queue_write, 76

native_timer
RT_TIMER_INFO, 113
rt_timer_inquire, 113
rt_timer_ns2ticks, 114
rt_timer_ns2tsc, 114
rt_timer_read, 115
rt_timer_set_mode, 115
rt_timer_spin, 116
rt_timer_ticks2ns, 117
rt_timer_tsc, 117
rt_timer_tsc2ns, 117

nwaiters
rt_mutex_info, 120

opcode
rt_task_mcb, 124

pagefaults
rt_task_info, 122

pipe
rt_pipe_alloc, 56
rt_pipe_create, 56
rt_pipe_delete, 58
rt_pipe_flush, 58
rt_pipe_free, 59
rt_pipe_read, 60
rt_pipe_receive, 61
rt_pipe_send, 62
rt_pipe_stream, 64
rt_pipe_write, 64

relpoint
rt_task_info, 122

rt_alarm_create
alarm, 10

rt_alarm_delete
alarm, 11

rt_alarm_inquire
alarm, 12

rt_alarm_start
alarm, 13

rt_alarm_stop
alarm, 13

rt_alarm_wait
alarm, 14

rt_cond_bind
cond, 17

rt_cond_broadcast
cond, 17

rt_cond_create
cond, 18

rt_cond_delete
cond, 19

rt_cond_inquire
cond, 19

rt_cond_signal
cond, 20

rt_cond_unbind
cond, 21

rt_cond_wait
cond, 21

rt_event_bind
event, 24

rt_event_clear
event, 24

rt_event_create
event, 25

rt_event_delete

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

196 INDEX

event, 26
rt_event_inquire

event, 27
rt_event_signal

event, 27
rt_event_unbind

event, 28
rt_event_wait

event, 28
rt_heap_alloc

native_heap, 32
rt_heap_bind

native_heap, 33
rt_heap_create

native_heap, 34
rt_heap_delete

native_heap, 36
rt_heap_free

native_heap, 36
RT_HEAP_INFO

heap.h, 134
rt_heap_info, 119
rt_heap_inquire

native_heap, 37
rt_heap_unbind

native_heap, 37
rt_intr_bind

interrupt, 40
rt_intr_create

interrupt, 40, 42
rt_intr_delete

interrupt, 43
rt_intr_disable

interrupt, 44
rt_intr_enable

interrupt, 45
rt_intr_inquire

interrupt, 45
rt_intr_unbind

interrupt, 46
rt_intr_wait

interrupt, 46
rt_mutex_acquire

mutex, 50
rt_mutex_bind

mutex, 51
rt_mutex_create

mutex, 51
rt_mutex_delete

mutex, 52
RT_MUTEX_INFO

mutex.h, 139
rt_mutex_info, 120

lockcnt, 120

name, 120
nwaiters, 120

rt_mutex_inquire
mutex, 53

rt_mutex_release
mutex, 53

rt_mutex_unbind
mutex, 54

rt_pipe_alloc
pipe, 56

rt_pipe_create
pipe, 56

rt_pipe_delete
pipe, 58

rt_pipe_flush
pipe, 58

rt_pipe_free
pipe, 59

rt_pipe_read
pipe, 60

rt_pipe_receive
pipe, 61

rt_pipe_send
pipe, 62

rt_pipe_stream
pipe, 64

rt_pipe_write
pipe, 64

rt_queue_alloc
native_queue, 67

rt_queue_bind
native_queue, 67

rt_queue_create
native_queue, 68

rt_queue_delete
native_queue, 70

rt_queue_free
native_queue, 70

rt_queue_inquire
native_queue, 71

rt_queue_read
native_queue, 72

rt_queue_receive
native_queue, 73

rt_queue_send
native_queue, 74

rt_queue_unbind
native_queue, 75

rt_queue_write
native_queue, 76

rt_sem_bind
semaphore, 79

rt_sem_broadcast
semaphore, 79

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

INDEX 197

rt_sem_create
semaphore, 80

rt_sem_delete
semaphore, 81

rt_sem_inquire
semaphore, 82

rt_sem_p
semaphore, 82

rt_sem_unbind
semaphore, 83

rt_sem_v
semaphore, 84

rt_task_add_hook
task, 87

rt_task_bind
task, 88

rt_task_catch
task, 89

rt_task_create
task, 89

rt_task_delete
task, 91

RT_TASK_INFO
task.h, 150

rt_task_info, 121
bprio, 121
cprio, 121
ctxswitches, 122
exectime, 122
modeswitches, 122
name, 122
pagefaults, 122
relpoint, 122
status, 122

rt_task_inquire
task, 91

rt_task_join
task, 92

RT_TASK_MCB
task.h, 150

rt_task_mcb, 124
data, 124
flowid, 124
opcode, 124
size, 124

rt_task_notify
task, 93

rt_task_receive
task, 93

rt_task_remove_hook
task, 95

rt_task_reply
task, 95

rt_task_resume

task, 96
rt_task_self

task, 97
rt_task_send

task, 97
rt_task_set_mode

task, 99
rt_task_set_periodic

task, 101
rt_task_set_priority

task, 102
rt_task_shadow

task, 103
rt_task_sleep

task, 104
rt_task_sleep_until

task, 104
rt_task_slice

task, 105
rt_task_spawn

task, 106
rt_task_start

task, 107
rt_task_suspend

task, 108
rt_task_unbind

task, 109
rt_task_unblock

task, 109
rt_task_wait_period

task, 110
rt_task_yield

task, 111
RT_TIMER_INFO

native_timer, 113
rt_timer_info, 126
rt_timer_inquire

native_timer, 113
rt_timer_ns2ticks

native_timer, 114
rt_timer_ns2tsc

native_timer, 114
rt_timer_read

native_timer, 115
rt_timer_set_mode

native_timer, 115
rt_timer_spin

native_timer, 116
rt_timer_ticks2ns

native_timer, 117
rt_timer_tsc

native_timer, 117
rt_timer_tsc2ns

native_timer, 117

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

198 INDEX

semaphore
rt_sem_bind, 79
rt_sem_broadcast, 79
rt_sem_create, 80
rt_sem_delete, 81
rt_sem_inquire, 82
rt_sem_p, 82
rt_sem_unbind, 83
rt_sem_v, 84

size
rt_task_mcb, 124

status
rt_task_info, 122

task
rt_task_add_hook, 87
rt_task_bind, 88
rt_task_catch, 89
rt_task_create, 89
rt_task_delete, 91
rt_task_inquire, 91
rt_task_join, 92
rt_task_notify, 93
rt_task_receive, 93
rt_task_remove_hook, 95
rt_task_reply, 95
rt_task_resume, 96
rt_task_self, 97
rt_task_send, 97
rt_task_set_mode, 99
rt_task_set_periodic, 101
rt_task_set_priority, 102
rt_task_shadow, 103
rt_task_sleep, 104
rt_task_sleep_until, 104
rt_task_slice, 105
rt_task_spawn, 106
rt_task_start, 107
rt_task_suspend, 108
rt_task_unbind, 109
rt_task_unblock, 109
rt_task_wait_period, 110
rt_task_yield, 111

Task management services., 85
Task Status, 7
task.h

RT_TASK_INFO, 150
RT_TASK_MCB, 150

Timer management services., 112

Generated on Thu May 28 16:22:13 2009 for Xenomai Native skin API by Doxygen

	Module Index
	Modules

	Data Structure Index
	Data Structures

	File Index
	File List

	Module Documentation
	Task Status
	Detailed Description

	Alarm services.
	Detailed Description
	Function Documentation
	rt_alarm_create
	rt_alarm_create
	rt_alarm_delete
	rt_alarm_inquire
	rt_alarm_start
	rt_alarm_stop
	rt_alarm_wait

	Condition variable services.
	Detailed Description
	Function Documentation
	rt_cond_bind
	rt_cond_broadcast
	rt_cond_create
	rt_cond_delete
	rt_cond_inquire
	rt_cond_signal
	rt_cond_unbind
	rt_cond_wait

	Event flag group services.
	Detailed Description
	Function Documentation
	rt_event_bind
	rt_event_clear
	rt_event_create
	rt_event_delete
	rt_event_inquire
	rt_event_signal
	rt_event_unbind
	rt_event_wait

	Memory heap services.
	Detailed Description
	Function Documentation
	rt_heap_alloc
	rt_heap_bind
	rt_heap_create
	rt_heap_delete
	rt_heap_free
	rt_heap_inquire
	rt_heap_unbind

	Interrupt management services.
	Function Documentation
	rt_intr_bind
	rt_intr_create
	rt_intr_create
	rt_intr_delete
	rt_intr_disable
	rt_intr_enable
	rt_intr_inquire
	rt_intr_unbind
	rt_intr_wait

	Native Xenomai API.
	Detailed Description

	Mutex services.
	Detailed Description
	Function Documentation
	rt_mutex_acquire
	rt_mutex_bind
	rt_mutex_create
	rt_mutex_delete
	rt_mutex_inquire
	rt_mutex_release
	rt_mutex_unbind

	Message pipe services.
	Detailed Description
	Function Documentation
	rt_pipe_alloc
	rt_pipe_create
	rt_pipe_delete
	rt_pipe_flush
	rt_pipe_free
	rt_pipe_read
	rt_pipe_receive
	rt_pipe_send
	rt_pipe_stream
	rt_pipe_write

	Message queue services.
	Detailed Description
	Function Documentation
	rt_queue_alloc
	rt_queue_bind
	rt_queue_create
	rt_queue_delete
	rt_queue_free
	rt_queue_inquire
	rt_queue_read
	rt_queue_receive
	rt_queue_send
	rt_queue_unbind
	rt_queue_write

	Counting semaphore services.
	Detailed Description
	Function Documentation
	rt_sem_bind
	rt_sem_broadcast
	rt_sem_create
	rt_sem_delete
	rt_sem_inquire
	rt_sem_p
	rt_sem_unbind
	rt_sem_v

	Task management services.
	Detailed Description
	Function Documentation
	rt_task_add_hook
	rt_task_bind
	rt_task_catch
	rt_task_create
	rt_task_delete
	rt_task_inquire
	rt_task_join
	rt_task_notify
	rt_task_receive
	rt_task_remove_hook
	rt_task_reply
	rt_task_resume
	rt_task_self
	rt_task_send
	rt_task_set_mode
	rt_task_set_periodic
	rt_task_set_priority
	rt_task_shadow
	rt_task_sleep
	rt_task_sleep_until
	rt_task_slice
	rt_task_spawn
	rt_task_start
	rt_task_suspend
	rt_task_unbind
	rt_task_unblock
	rt_task_wait_period
	rt_task_yield

	Timer management services.
	Detailed Description
	Typedef Documentation
	RT_TIMER_INFO

	Function Documentation
	rt_timer_inquire
	rt_timer_ns2ticks
	rt_timer_ns2tsc
	rt_timer_read
	rt_timer_set_mode
	rt_timer_spin
	rt_timer_ticks2ns
	rt_timer_tsc
	rt_timer_tsc2ns

	Data Structure Documentation
	rt_heap_info Struct Reference
	Detailed Description

	rt_mutex_info Struct Reference
	Detailed Description
	Field Documentation
	lockcnt
	nwaiters
	name

	rt_task_info Struct Reference
	Detailed Description
	Field Documentation
	bprio
	cprio
	status
	relpoint
	name
	exectime
	modeswitches
	ctxswitches
	pagefaults

	rt_task_mcb Struct Reference
	Detailed Description
	Field Documentation
	flowid
	opcode
	data
	size

	rt_timer_info Struct Reference
	Detailed Description

	File Documentation
	include/native/alarm.h File Reference
	Detailed Description

	include/native/cond.h File Reference
	Detailed Description

	include/native/event.h File Reference
	Detailed Description

	include/native/heap.h File Reference
	Detailed Description
	Typedef Documentation
	RT_HEAP_INFO

	include/native/intr.h File Reference
	Detailed Description

	include/native/misc.h File Reference
	Detailed Description

	include/native/mutex.h File Reference
	Detailed Description
	Typedef Documentation
	RT_MUTEX_INFO

	include/native/pipe.h File Reference
	Detailed Description

	include/native/ppd.h File Reference
	Detailed Description

	include/native/queue.h File Reference
	Detailed Description

	include/native/sem.h File Reference
	Detailed Description

	include/native/task.h File Reference
	Detailed Description
	Typedef Documentation
	RT_TASK_INFO
	RT_TASK_MCB

	include/native/timer.h File Reference
	Detailed Description

	include/native/types.h File Reference
	Detailed Description

	ksrc/skins/native/module.c File Reference
	Detailed Description

	ksrc/skins/native/syscall.c File Reference
	Detailed Description

	ksrc/skins/native/alarm.c File Reference
	Detailed Description

	ksrc/skins/native/cond.c File Reference
	Detailed Description

	ksrc/skins/native/event.c File Reference
	Detailed Description

	ksrc/skins/native/heap.c File Reference
	Detailed Description

	ksrc/skins/native/intr.c File Reference
	Detailed Description

	ksrc/skins/native/mutex.c File Reference
	Detailed Description

	ksrc/skins/native/pipe.c File Reference
	Detailed Description

	ksrc/skins/native/queue.c File Reference
	Detailed Description

	ksrc/skins/native/sem.c File Reference
	Detailed Description

	ksrc/skins/native/task.c File Reference
	Detailed Description

	ksrc/skins/native/timer.c File Reference
	Detailed Description

	Example Documentation
	bound_task.c
	cond_var.c
	event_flags.c
	kernel_task.c
	local_heap.c
	msg_queue.c
	mutex.c
	pipe.c
	semaphore.c
	shared_mem.c
	sigxcpu.c
	trivial-periodic.c
	user_alarm.c
	user_irq.c
	user_task.c

