
0.1 probit.mixed: Mixed effects probit Regression

Use generalized multi-level linear regression if you have covariates that are grouped according
to one or more classification factors. The probit model is appropriate when the dependent
variable is dichotomous.

While generally called multi-level models in the social sciences, this class of models is often
referred to as mixed-effects models in the statistics literature and as hierarchical models in a
Bayesian setting. This general class of models consists of linear models that are expressed as
a function of both fixed effects, parameters corresponding to an entire population or certain
repeatable levels of experimental factors, and random effects, parameters corresponding to
individual experimental units drawn at random from a population.

Syntax

z.out <- zelig(formula= y ~ x1 + x2 + tag(z1 + z2 | g),

data=mydata, model="probit.mixed")

z.out <- zelig(formula= list(mu=y ~ xl + x2 + tag(z1, gamma | g),

gamma= ~ tag(w1 + w2 | g)), data=mydata, model="probit.mixed")

Inputs

zelig() takes the following arguments for mixed:

� formula: a two-sided linear formula object describing the systematic component of
the model, with the response on the left of a ˜ operator and the fixed effects terms,
separated by + operators, on the right. Any random effects terms are included with
the notation tag(z1 + ... + zn | g) with z1 + ... + zn specifying the model
for the random effects and g the grouping structure. Random intercept terms are
included with the notation tag(1 | g).
Alternatively, formula may be a list where the first entry, mu, is a two-sided linear
formula object describing the systematic component of the model, with the repsonse
on the left of a˜operator and the fixed effects terms, separated by + operators, on the
right. Any random effects terms are included with the notation tag(z1, gamma | g)

with z1 specifying the individual level model for the random effects, g the grouping
structure and gamma references the second equation in the list. The gamma equation is
one-sided linear formula object with the group level model for the random effects on
the right side of a˜operator. The model is specified with the notation tag(w1 + ...

+ wn | g) with w1 + ... + wn specifying the group level model and g the grouping
structure.

Additional Inputs

In addition, zelig() accepts the following additional arguments for model specification:
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� data: An optional data frame containing the variables named in formula. By default,
the variables are taken from the environment from which zelig() is called.

� na.action: A function that indicates what should happen when the data contain NAs.
The default action (na.fail) causes zelig() to print an error message and terminate
if there are any incomplete observations.

Additionally, users may with to refer to lmer in the package lme4 for more information,
including control parameters for the estimation algorithm and their defaults.

Examples

1. Basic Example with First Differences

Attach sample data:

> data(voteincome)

Estimate model:

> z.out1 <- zelig(vote ~ education + age + female + tag(1 |

+ state), data = voteincome, model = "probit.mixed")

Summarize regression coefficients and estimated variance of random effects:

> summary(z.out1)

Set explanatory variables to their default values, with high (80th percentile) and low
(20th percentile) values for education:

> x.high <- setx(z.out1, education = quantile(voteincome$education,

+ 0.8))

> x.low <- setx(z.out1, education = quantile(voteincome$education,

+ 0.2))

Generate first differences for the effect of high versus low education on voting:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)
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Mixed effects probit Regression Model

Let Yij be the binary dependent variable, realized for observation j in group i as yij which
takes the value of either 0 or 1, for i = 1, . . . ,M , j = 1, . . . , ni.

� The stochastic component is described by a Bernoulli distribution with mean vector
πij.

Yij ∼ Bernoulli(yij|πij) = π
yij

ij (1− πij)
1−yij

where
πij = Pr(Yij = 1)

� The q-dimensional vector of random effects, bi, is restricted to be mean zero, and
therefore is completely characterized by the variance covarance matrix Ψ, a (q × q)
symmetric positive semi-definite matrix.

bi ∼ Normal(0, Ψ)

� The systematic component is

πij ≡ Φ(Xijβ + Zijbi)

where Φ(µ) is the cumulative distribution function of the Normal distribution with
mean 0 and unit variance, and
where Xij is the (ni × p × M) array of known fixed effects explanatory variables, β
is the p-dimensional vector of fixed effects coefficients, Zij is the (ni × q × M) array
of known random effects explanatory variables and bi is the q-dimensional vector of
random effects.

Quantities of Interest

� The predicted values (qi$pr) are draws from the Binomial distribution with mean
equal to the simulated expected value, πij for

πij = Φ(Xijβ + Zijbi)

given Xij and Zij and simulations of of β and bi from their posterior distributions.
The estimated variance covariance matrices are taken as correct and are themselves
not simulated.

� The expected values (qi$ev) are simulations of the predicted probability of a success
given draws of β from its posterior:

E(Yij|Xij) = πij = Φ(Xijβ).
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� The first difference (qi$fd) is given by the difference in predicted probabilities, condi-
tional on Xij and X ′

ij, representing different values of the explanatory variables.

FD(Yij|Xij, X
′
ij) = Pr(Yij = 1|Xij)− Pr(Yij = 1|X ′

ij)

� The risk ratio (qi$rr) is defined as

RR(Yij|Xij, X
′
ij) =

Pr(Yij = 1|Xij)

Pr(Yij = 1|X ′
ij)

� In conditional prediction models, the average predicted treatment effect (qi$att.pr)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− ̂Yij(tij = 0)},

where tij is a binary explanatory variable defining the treatment (tij = 1) and control
(tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
Yij(tij = 0), the counterfactual predicted value of Yij for observations in the treatment
group, under the assumption that everything stays the same except that the treatment
indicator is switched to tij = 0.

� In conditional prediction models, the average expected treatment effect (qi$att.ev)
for the treatment group is given by

1∑M
i=1

∑ni

j=1 tij

M∑
i=1

ni∑
j:tij=1

{Yij(tij = 1)− E[Yij(tij = 0)]},

where tij is a binary explanatory variable defining the treatment (tij = 1) and con-
trol (tij = 0) groups. Variation in the simulations is due to uncertainty in simulating
E[Yij(tij = 0)], the counterfactual expected value of Yij for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to tij = 0.

Output Values

The output of each Zelig command contains useful information which you may view. You
may examine the available information in z.out by using slotNames(z.out), see the fixed
effect coefficients by using summary(z.out)@coefs, and a default summary of information
through summary(z.out). Other elements available through the operator are listed below.

� From the zelig() output stored in summary(z.out), you may extract:

– fixef: numeric vector containing the conditional estimates of the fixed effects.
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– ranef: numeric vector containing the conditional modes of the random effects.

– frame: the model frame for the model.

� From the sim() output stored in s.out, you may extract quantities of interest stored
in a data frame:

– qi$pr: the simulated predicted values drawn from the distributions defined by
the expected values.

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences in the expected values for the values specified
in x and x1.

– qi$ate.pr: the simulated average predicted treatment effect for the treated from
conditional prediction models.

– qi$ate.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How to Cite

To cite the probit.mixed Zelig model:

Delia Bailey and Ferdinand Alimadhi. 2007. ”probit.mixed: Mixed effects pro-
bit model” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

Mixed effects probit regression is part of lme4 package by Douglas M. Bates (Bates 2007).
For a detailed discussion of mixed-effects models, please see ?
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