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1 Concept

A wide range of numerical problems can be efficiently solved using derivatives in one way
or the other. While from a strictly mathematical point of view the derivative is a well-defined
object, its computation is anything but trivial.

A classical approach is finite differences. Let f be differentiable at some point x. Clearly, for
a certain h small enough

f ′(x) ≈ f(x + h)− f(x)
h

The problem with finite differences is twofold. One issue – probably the more important one –
is accuracy. Being necessarily an approximation, its quality largely depends on a sensible choice
of h. Large values, obviously, make for a poor estimate of the actual derivative; small ones,
on the other hand, are prone to computational artefacts such as cancellation. While there are
strategies to cope with this dilemma they normally do so – and that is the second concern – at
the expense of additional evaluations of your function. Central differences, for instance, requires
a total of 2n evaluations, where n is the dimension of the domain space. If, to make matters
worse, the computation is carried out within an iterative loop, you forfeit a good deal of the
algorithmic efficiency that may have motivated the use of derivatives in the first place.

The concept of Automatic Differentiation is altogether different from the above. Unlike finite
differences, it provides a means to analytically compute the derivative of a function at a given
inner point of its domain. A straightforward approach – the one implemented by the extension
– is to introduce a new data-type, often referred to in the literature as differential number or
gradient. Basically, this is a compound of the value itself and the associated derivative. The
fundamental idea is to define the common operators on the set of differential numbers according
to the well-know rules of elementary calculus. Hence, multiplication becomes

∗ :
(

x
ẋ

)
,

(
y
ẏ

)
7→

(
xy

ẋy + xẏ

)
Likewise, the addition of two differential numbers would have to be

+ :
(

x
ẋ

)
,

(
y
ẏ

)
7→

(
x + y
ẋ + ẏ

)
and so on for the remaining cases. Now consider that a function, in practice, is implemented
by a computer program, which in turn is made up of discrete instructions. Control flow may
bifurcate depending on switch-statements, but, no matter how complex its structure, eventually
it is a sequence of elementary operations. By overloading all or most of these in the above
described manner you create an ideally complete algebra of differential numbers, where

f(
(

x
1

)
) =

(
f(x)

Dxf(x)

)
Thus, all you have to do is create an initial gradient and pass it on to the computer program,
which will then construct the derivative Dxf(x) along with the output f(x) simultaneously.

With AD you elude the two principal drawbacks of numerical differentiation outlined previ-
ously. First of all, it is more reliable in that you no longer have to worry about approximation
errors. Although accuracy, of course, is ultimately bounded by machine precision, it can make
a difference if you get 16 instead of, say, 10 correct figures. The other advantage is maybe less
apparent and of minor relevance to most users. However, in cases where cost is a non-negligible
factor, it may be not indifferent that the number of evaluations does not scale with the problem
size. Whether your function depends on 5 or, say, 500 variables, one pass will do either way.
Due to the computational overhead implied by every single operation this comes at the price of
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a slowed-down execution during that single pass. We shall rely on vectorized code for a good
performance here.

Today Automatic Differentiation is a widely used technology in both industry
and academic sience. Implementations cover almost every language or application
commonly used for numerical computations, the most popular being Fortran, C, and
Matlab. For further discussion of the topic and relevant links see, for instance,
http://www-sop.inria.fr/tropics/ad/whatisad.html, the INRIA site dedicated to AD.

http://www-sop.inria.fr/tropics/ad/whatisad.html
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2 Octave AD-Extension

2.1 License Information and Disclaimer

Copyright c© 2006, 2007 Thomas Kasper
This program is free software; you can redistribute it and/or modify it under the terms of

the GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

You should have received a copy of the GNU General Public License along with this program;
if not, see ¡http://www.gnu.org/licenses/¿.

2.2 Prerequisites

• GNU Octave 3.0

The maintainer will do his best to retain upward compatibility, though at the current pace
of releases this seems an audacious promise.

2.3 New Features

• Easy installation thanks to Octave’s new packaging system

• Enhanced testsuite and improved documentation

• Support for n-d arrays allowing gradients of arbitrary dimensions

• Handling of minimum norm solutions for over- and underdetermined linear systems

• Implementation of gradients by (complex) sparse matrix operations

2.4 Download and Installation

The current release (‘ad-0.9.19.tar.gz’, as of this writing) is available for download as a
gzipped archive at http://home.cs.tum.edu/~kasper/ad/index.html#download.

Install by typing pkg install ad-x.x.x.tar.gz at the octave prompt. For advanced options
and general information about the new package manager invoke the online documentation with
help pkg or consult the Octave-Forge website at http://octave.sf.net.

2.5 Testsuite

It is recommended that you run the integrated testscript after installation to make sure the
entire AD-functionality is available to you. Be prepared that it takes a couple of seconds before
the results are reported.

octave:1> fid = fopen ("ad.log", "wt");
octave:2> ga (fid)
PASSES 289 out of 289 tests

Note that the vast majority of tests are statistical and involve randomly generated data.
This may occasionally result in noise exceeding the specified tolerance. Do let me know if any
of the tests repeatedly fail on your system. Before you report a bug, however, please check the
log does not already classify it as a known issue.

http://home.cs.tum.edu/{accent "7E }kasper/ad/index.html#download
http://octave.sf.net
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3 Using AD in Octave

3.1 User Interface and Class Gradient

The function D provides an intuitive interface to AD-functionality while hiding the ugly and
potentially confusing details from the user. Let us have a look at its signature:

octave:3> help D
-- Function File: [Y, J] = D (F, X, VARARGIN)

Evaluate F for a given input X and compute the jacobian, such that

d
J(i,j) = ----- Y(i) where Y = F (X, VARARGIN{:})

dX(j)

If X is complex, the above holds for the directional derivatives
along the real axis

Derivatives are computed analytically via Automatic Differentiation

See also: use sparse jacobians.

Note that F must be a function handle, not a character string. A simple use-case scenario
could look as follows. Suppose you want to find a root of the non-linear function

octave:4> function y = foo (x)
> y(1) = 100 * (x(1) - x(2)^2)^2;
> y(2) = (1 - x(1))^2;
> y = y(:) / 2;
> endfunction

One way to go about this is to iteratively refine a random initial guess by Newton-steps
octave:5> x = rand (2, 1);
octave:6> for k = 1:30, [y, J] = D (@foo, x); x = x - J \ y; endfor
octave:7> x, res = norm (foo (x))
x =

1.0000
1.0000

res = 1.1696e-009

Note that D is a mere convenience function which wraps up the steps outlined in the intro-
ductory section. Thus, [y, J] = D (@F, x) essentially is a shortcut for

result = F (gradinit (x));
y = result.x;
J = result.J;

With gradinit you specify the independent variables to differentiate with respect to along
with their initial values. In the resulting gradient you find the argument x augmented by the
jacobian which evaluates to the identity matrix of size numel (x)

octave:5> g = gradinit ([-1; 2])
g =

value =
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-1
2

(partial) derivative(s) =

1 0
0 1

Gradients represent a class of their own and are listed as such by the interpreter. Use
isgradient for type-checking:

octave:8> who -long g
*** local user variables:

Prot Name Size Bytes Class
==== ==== ==== ===== =====
rwd g 2x1 48 gradient

Total is 2 elements using 48 bytes

octave:9> isgradient (g)
ans = 1

Each of the two members (value and partial derivatives) can be accessed by suffixing the
variable with ”.x” and ”.J” respectively. (For obvious reasons, however, they should only be
read out and never be assigned to directly.) Analytical expressions in one or more variables of
type gradient automatically evaluate to gradients:

octave:10> foo (g)
ans =

value =

1250
2

(partial) derivative(s) =

-500 2000
-2 -0

At any time their members satisfy g.J(i,j) = d/dx(j)[g.x(i)], with x(j) the variables
previously passed to gradinit. Beware that this relation is independent of shape and extends
to arrays of arbitrary dimension. Thus, operations which preserve the linear order of elements
(like reshape, for instance, or a transposal on column-vectors) do not alter the jacobian.

3.2 Sparse Storage Mode

You may ask that partial derivatives be stored as a sparse matrix by invoking use_sparse_
jacobians with a nonzero value. As with increasing dimension jacobians tend to be sparsely
occupied, doing so may eventually pay off in terms of both memory consumption and speed.

octave:11> use sparse jacobians (1);
octave:12> [y, J] = D (@cumprod, reshape (1:9, 3, 3), 2)

y =
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1 4 28
2 10 80
3 18 162

J =

Compressed Column Sparse (rows = 9, cols = 9, nnz = 18)

(1, 1) -> 1
(4, 1) -> 4
(7, 1) -> 28
(2, 2) -> 1
(5, 2) -> 5
(8, 2) -> 40
(3, 3) -> 1
(6, 3) -> 6
(9, 3) -> 54
(4, 4) -> 1
(7, 4) -> 7
(5, 5) -> 2
(8, 5) -> 16
(6, 6) -> 3
(9, 6) -> 27
(7, 7) -> 4
(8, 8) -> 10
(9, 9) -> 18

This is a best effort service, however, and there is no guarantee as to whether the returned
jacobian will in fact be sparse. It certainly helps when the involved operands are:

octave:13> A = rand (6); b = rand (6);
octave:14> x = sparse (A) \ gradinit (b);
octave:15> spy (x.J, 0.5), issparse (x.J)
ans = 1

3.3 Complex-valued Domains

Although primarily designing for functions with a real domain, the author does not think fit
to impose any restriction here. Users should bear in mind though, when working with complex
input, that what they get is the directional derivative along the real axis. It then may – or may
not, for that matter – coincide with the derivative, depending on whether the function is locally
holomorphic or not.

octave:16> [z, dz] = D (@abs, 1 + i)
z = 1.4142
dz = 0.70711
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4 Limitations

Beware that operator overloading is frail when it comes to interfacing with low-level routines.
If you are in the habit of writing good portions of code in C++ or Fortran as DLD-functions
– and there may well be good a reasons for it –, you will definitely run into trouble. The same
caveat applies even to some functions of the Octave core API, in which case you should incur
an error message like the one below:

octave:17> gamma (gradinit (4))
error: AD-rule unknown or function not overloaded

One might consider adding rules as the need arises. On the other hand, balancing the benefit
against the extra effort, it is often more reasonable to fall back on numerical differentiation for
less common operations and use numgradient instead. In any event, the algebra provided by
the extension makes no claim for completeness and there certainly would be no point in trying.
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5 Index

5.1 Functions by Category

5.1.1 Overloaded Operators

+ no restriction

- no restriction

* no restriction

/ operand 2 must have maximal rank

ldiv operand 1 must have maximal rank

pow both operands must be scalar or, if op1 is square, op2 must be a non-negative integer.
This implies that in the latter case op2 cannot be a gradient, since int Z = ∅

.* no restriction

./ no restriction

elpow no restriction

5.1.2 Utility Functions

ga Testscript for the gradient algebra implemented by the package AD

D Evaluate F for a given input x and compute the jacobian

gradinit Create a gradient with value x and derivative eye(numel(x))

isgradient Return 1 if x is a gradient, otherwise return 0

use sparse jacobians
Query or set the storage mode for AD

5.1.3 Overloaded Functions

gradabs overloads built-in mapper ‘abs’ for a gradient X

gradacos overloads built-in mapper ‘acos’ for a gradient X

gradacosh overloads built-in mapper ‘acosh’ for a gradient X

gradasin overloads built-in mapper ‘asin’ for a gradient X

gradasinh overloads built-in mapper ‘asinh’ for a gradient X

gradatan overloads built-in mapper ‘atan’ for a gradient X

gradatanh overloads built-in mapper ‘atanh’ for a gradient X

gradconj overloads built-in mapper ‘conj’ for a gradient X

gradcos overloads built-in mapper ‘cos’ for a gradient X

gradcosh overloads built-in mapper ‘cosh’ for a gradient X

gradcot overloads mapping function ‘cot’ for a gradient X
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gradcumprod
overloads built-in function ‘cumprod’ for a gradient X

gradcumsum
overloads built-in function ‘cumsum’ for a gradient X

gradexp overloads built-in mapper ‘exp’ for a gradient X

gradfind overloads built-in function ‘find’ for a gradient X

gradimag overloads built-in mapper ‘imag’ for a gradient X

gradlog overloads built-in mapper ‘log’ for a gradient X

gradlog10 overloads built-in mapper ‘log10’ for a gradient X

gradprod overloads built-in function ‘prod’ for a gradient X

gradreal overloads built-in mapper ‘real’ for a gradient X

gradsin overloads built-in mapper ‘sin’ for a gradient X

gradsinh overloads built-in mapper ‘sinh’ for a gradient X

gradsqrt overloads built-in mapper ‘sqrt’ for a gradient X

gradsum overloads built-in function ‘sum’ for a gradient X

gradtan overloads built-in mapper ‘tan’ for a gradient X

gradtanh overloads built-in mapper ‘tanh’ for a gradient X

5.2 Functions Alphabetically

5.2.1 ga

Function Filega (name, varargin)
Function Filega (fid)

Testscript for the gradient algebra implemented by the package AD
If the first argument is a character string, assert functionality name complies with the
specification. Otherwise run a set of predefined tests and report failures to the stream fid
(defaulting to stderr)
Intended use is:

fid = fopen ("errors.log", "wt");
ga (fid)
⇒ PASSES [#] out of [#] tests ([#] expected failures)

See also: test

Function File[y, J] = D (F, x, varargin)
Evaluate F for a given input x and compute the jacobian, such that

Ji,j =
∂yi

∂xj

, y = F (x, varargin{:})

If x is complex, the above holds for the directional derivatives along the real axis
Derivatives are computed analytically via Automatic Differentiation

See also: use sparse jacobians
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5.2.2 gradabs

Mapping Functiongradabs (x)
overloads built-in mapper abs for a gradient x

See also: abs

5.2.3 gradacos

Mapping Functiongradacos (x)
overloads built-in mapper acos for a gradient x

See also: acos

5.2.4 gradacosh

Mapping Functiongradacosh (x)
overloads built-in mapper acosh for a gradient x

See also: acosh

5.2.5 gradasin

Mapping Functiongradasin (x)
overloads built-in mapper asin for a gradient x

See also: asin

5.2.6 gradasinh

Mapping Functiongradasinh (x)
overloads built-in mapper asinh for a gradient x

See also: asinh

5.2.7 gradatan

Mapping Functiongradatan (x)
overloads built-in mapper atan for a gradient x

See also: atan

5.2.8 gradatanh

Mapping Functiongradatanh (x)
overloads built-in mapper atanh for a gradient x

See also: atanh
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5.2.9 gradconj

Mapping Functiongradconj (x)
overloads built-in mapper conj for a gradient x

See also: conj

5.2.10 gradcos

Mapping Functiongradcos (x)
overloads built-in mapper cos for a gradient x

See also: cos

5.2.11 gradcosh

Mapping Functiongradcosh (x)
overloads built-in mapper cosh for a gradient x

See also: cosh

5.2.12 gradcot

Mapping Functiongradcot (x)
overloads mapping function cot for a gradient x

See also: cot

5.2.13 gradcumprod

Function Filey = gradcumprod (x)
Function Filey = gradcumprod (x, dim)

overloads built-in function cumprod for a gradient x

See also: cumprod

5.2.14 gradcumsum

Function Filey = gradcumsum (x)
Function Filey = gradcumsum (x, dim)

overloads built-in function cumsum for a gradient x

See also: cumsum

5.2.15 gradexp

Mapping Functiongradexp (x)
overloads built-in mapper exp for a gradient x

See also: exp
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5.2.16 gradfind

Function Filegradfind (x)
overloads built-in function find for a gradient x

See also: find

5.2.17 gradimag

Mapping Functiongradimag (x)
overloads built-in mapper imag for a gradient x

See also: imag

5.2.18 gradinit

Loadable Functiong = gradinit (x)
Create a gradient with value x and derivative eye(numel(x))
Substituting x 7→ g in an analytical expression F depending on x will then produce at
once F(x) and the jacobian DF(x). See example below:

a = gradinit ([1; 2]);
b = [a.’ * a; 2 * a]
⇒
b =

value =

5
2
4

(partial) derivative(s) =

2 4
2 0
0 2

Members can be accessed by suffixing the variable with .x and .J respectively

See also: use sparse jacobians

5.2.19 gradlog

Mapping Functiongradlog (x)
overloads built-in mapper log for a gradient x

See also: log
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5.2.20 gradlog10

Mapping Functiongradlog10 (x)
overloads built-in mapper log10 for a gradient x

See also: log10

5.2.21 gradprod

Function Filey = gradprod (x)
Function Filey = gradprod (x, dim)

overloads built-in function prod for a gradient x

See also: prod

5.2.22 gradreal

Mapping Functiongradreal (x)
overloads built-in mapper real for a gradient x

See also: real

5.2.23 gradsin

Mapping Functiongradsin (x)
overloads built-in mapper sin for a gradient x

See also: sin

5.2.24 gradsinh

Mapping Functiongradsinh (x)
overloads built-in mapper sinh for a gradient x

See also: sinh

5.2.25 gradsqrt

Mapping Functiongradsqrt (x)
overloads built-in mapper sqrt for a gradient x

See also: sqrt

5.2.26 gradsum

Function Filey = gradsum (x)
Function Filey = gradsum (x, dim)

overloads built-in function sum for a gradient x

See also: sum
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5.2.27 gradtan

Mapping Functiongradtan (x)
overloads built-in mapper tan for a gradient x

See also: tan

5.2.28 gradtanh

Mapping Functiongradtanh (x)
overloads built-in mapper tanh for a gradient x

See also: tanh

5.2.29 isgradient

Loadable Functionisgradient (x)
Return 1 if x is a gradient, otherwise return 0

5.2.30 use sparse jacobians

Loadable Functionval = use sparse jacobians ()
Loadable Functionval = use sparse jacobians (new val)

Query or set the storage mode for AD. If nonzero, gradients will try to store partial
derivatives as a sparse matrix


	Concept
	Octave AD-Extension
	License Information and Disclaimer
	Prerequisites
	New Features
	Download and Installation
	Testsuite

	Using AD in Octave
	User Interface and Class Gradient
	Sparse Storage Mode
	Complex-valued Domains

	Limitations
	Index
	Functions by Category
	Overloaded Operators
	Utility Functions
	Overloaded Functions

	Functions Alphabetically
	{@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}}{@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}}ga{@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}}{@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}}
	gradabs
	gradacos
	gradacosh
	gradasin
	gradasinh
	gradatan
	gradatanh
	gradconj
	gradcos
	gradcosh
	gradcot
	gradcumprod
	gradcumsum
	gradexp
	gradfind
	gradimag
	gradinit
	gradlog
	gradlog10
	gradprod
	gradreal
	gradsin
	gradsinh
	gradsqrt
	gradsum
	gradtan
	gradtanh
	isgradient
	use{@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}}sparse{@unhbox @voidb@x @kern .06em @vbox {@hrule width.3em height.1ex}}jacobians



