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1 Introduction

This is the start of documentation for a Communications Toolbox for Octave. As func-
tions are written they should be documented here. In addition many of the existing functions
of Octave and Octave-Forge are important in this Toolbox and their documentation should
perhaps be repeated here.

This is preliminary documentation and you are invited to improve it and submit patches.
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2 Random Signals

The purpose of the functions described here is to create and add random noise to a
signal, to create random data and to analyze the eventually errors in a received signal.
The functions to perform these tasks can be considered as either related to the creation or
analysis of signals and are treated separately below.

It should be noted that the examples below are based on the output of a random number
generator, and so the user can not expect to exactly recreate the examples below.

2.1 Signal Creation

The signal creation functions here fall into to two classes. Those that treat discrete data
and those that treat continuous data. The basic function to create discrete data is randint,
that creates a random matrix of equi-probable integers in a desired range. For example

octave:1> a = randint(3,3,[-1,1])
a =

0 1 0
-1 -1 1
0 1 1

creates a 3-by-3 matrix of random integers in the range -1 to 1. To allow for repeated
analysis with the same random data, the function randint allows the seed-value of the
random number generator to be set. For instance

octave:1> a = randint(3,3,[-1,1],1)
a =

0 1 1
0 -1 0
1 -1 -1

will always produce the same set of random data. The range of the integers to produce
can either be a two element vector or an integer. In the case of a two element vector all
elements within the defined range can be produced. In the case of an integer range M,
randint returns the equi-probable integers in the range [0 : 2m − 1].

The function randsrc differs from randint in that it allows a random set of symbols to
be created with a given probability. The symbols can be real, complex or even characters.
However characters and scalars can not be mixed. For example

octave:1> a = randsrc(2,2,"ab");
octave:2> b = randsrc(4,4,[1, 1i, -1, -1i,]);

are both legal, while
octave:1> a = randsrc(2,2,[1,"a"]);

is not legal. The alphabet from which the symbols are chosen can be either a row vector
or two row matrix. In the case of a row vector, all of the elements of the alphabet are
chosen with an equi-probability. In the case of a two row matrix, the values in the second
row define the probability that each of the symbols are chosen. For example
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octave:1> a = randsrc(5,5,[1, 1i, -1, -1i; 0.6 0.2 0.1 0.1])
a =

1 + 0i 0 + 1i 0 + 1i 0 + 1i 1 + 0i
1 + 0i 1 + 0i 0 + 1i 0 + 1i 1 + 0i
-0 - 1i 1 + 0i -1 + 0i 1 + 0i 0 + 1i
1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i
-1 + 0i -1 + 0i 1 + 0i 1 + 0i 1 + 0i

defines that the symbol ’1’ has a 60% probability, the symbol ’1i’ has a 20% probability
and the remaining symbols have 10% probability each. The sum of the probabilities must
equal one. Like randint, randsrc accepts a fourth argument as the seed of the random
number generator allowing the same random set of data to be reproduced.

The function randerr allows a matrix of random bit errors to be created, for binary
encoded messages. By default, randerr creates exactly one errors per row, flagged by a
non-zero value in the returned matrix. That is

octave:1> a = randerr(5,10)
a =

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1

The number of errors per row can be specified as the third argument to randerr. This
argument can be either a scalar, a row vector or a two row matrix. In the case of a scalar
value, exactly this number of errors will be created per row in the returned matrix. In the
case of a row vector, each element of the row vector gives a possible number of equi-probable
bit errors. The second row of a two row matrix defines the probability of each number of
errors occurring. For example

octave:1> n = 15; k = 11; nsym = 100;
octave:2> msg = randint(nsym,k); ## Binary vector of message
octave:3> code = encode(msg,n,k,"bch");
octave:4> berrs = randerr(nsym,n,[0, 1; 0.7, 0.3]);
octave:5> noisy = mod(code + berrs, 2) ## Add errors to coded message

creates a vector msg, encodes it with a [15,11] BCH code, and then add either none or
one error per symbol with the chances of an error being 30%. As previously, randerr accepts
a fourth argument as the seed of the random number generator allowing the same random
set of data to be reproduced.

All of the above functions work on discrete random signals. The functions wgn and
awgn create and add white Gaussian noise to continuous signals. The function wgn creates
a matrix of white Gaussian noise of a certain power. A typical call to wgn is then

octave:1> nse = wgn(10,10,0);

Which creates a 10-by-10 matrix of noise with a root mean squared power of 0dBW
relative to an impedance of 1Ω.

This effectively means that an equivalent result to the above can be obtained with
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octave:1> nse = randn(10,10);

The reference impedance and units of power to the function wgn can however be modified,
for example

octave:1> nse_30dBm_50Ohm = wgn(10000,1,30,50,"dBm");
octave:2> nse_0dBW_50Ohm = wgn(10000,1,0,50,"dBW");
octave:3> nse_1W_50Ohm = wgn(10000,1,1,50,"linear");
octave:4> [std(nse_30dBm_50Ohm), std(nse_0dBW_50Ohm), std(nse_1W_50Ohm)]
ans =

7.0805 7.1061 7.0730

All produce a 1W signal referenced to a 50Ω. impedance. Matlab uses the misnomer
"dB" for "dBW", and therefore "dB" is an accepted type for wgn and will be treated as
for "dBW".

In all cases, the returned matrix v, will be related to the input power p and the impedance
Z as

p =
∑

i

∑
j v(i, j)2

Z
Watts

By default wgn produces real vectors of white noise. However, it can produce both real
and complex vectors like

octave:1> rnse = wgn(10000,1,0,"dBm","real");
octave:2> cnse = wgn(10000,1,0,"dBm","complex");
octave:3> [std(rnse), std(real(cnse)), std(imag(cnse)), std(cnse)]
ans =

0.031615 0.022042 0.022241 0.031313

which shows that with a complex return value that the total power is the same as a real
vector, but that it is equally shared between the real and imaginary parts. As previously,
wgn accepts a fourth numerical argument as the seed of the random number generator
allowing the same random set of data to be reproduced. That is

octave:1> nse = wgn(10,10,0,0);

will always produce the same set of data.

The final function to deal with the creation of random signals is awgn, that adds noise
at a certain level relative to a desired signal. This function adds noise at a certain level to
a desired signal. An example call to awgn is

octave:1> x = [0:0.1:2*pi];
octave:2> y = sin(x);
octave:3> noisy = awgn(y, 10, "measured")

which produces a sine-wave with noise added as seen in Figure 1.
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Figure 1: Sine-wave with 10dB signal-to-noise ratio

which adds noise with a 10dB signal-to-noise ratio to the measured power in the desired
signal. By default awgn assumes that the desired signal is at 0dBW, and the noise is added
relative to this assumed power. This behavior can be modified by the third argument to
awgn. If the third argument is a numerical value, it is assumed to define the power in the
input signal, otherwise if the third argument is the string ’measured’, as above, the power
in the signal is measured prior to the addition of the noise.

The final argument to awgn defines the definition of the power and signal-to-noise ratio
in a similar manner to wgn. This final argument can be either ’dB’ or ’linear’. In the first
case the numerical value of the input power is assumed to be in dBW and the signal-to-noise
ratio in dB. In the second case, the power is assumed to be in Watts and the signal-to-noise
ratio is expressed as a ratio.

The return value of awgn will be in the same form as the input signal. In addition if the
input signal is real, the additive noise will be real. Otherwise the additive noise will also be
complex and the noise will be equally split between the real and imaginary parts.

As previously the seed to the random number generator can be specified as the last
argument to awgn to allow repetition of the same scenario. That is

octave:1> x = [0:0.1:2*pi];
octave:2> y = sin(x);
octave:3> noisy = awgn(y, 10, "dB", 0, "measured")

which uses the seed-value of 0 for the random number generator.

2.2 Signal Analysis

It is important to be able to evaluate the performance of a communications system in
terms of its bit-error and symbol-error rates. Two functions biterr and symerr exist within
this package to calculate these values, both taking as arguments the expected and the
actually received data. The data takes the form of matrices or vectors, with each element
representing a single symbol. They are compared in the following manner
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Both matrices
In this case both matrices must be the same size and then by default the the
return values are the overall number of errors and the overall error rate.

One column vector
In this case the column vector is used for comparison column-wise with the
matrix. The return values are row vectors containing the number of errors and
the error rate for each column-wise comparison. The number of rows in the
matrix must be the same as the length of the column vector.

One row vector
In this case the row vector is used for comparison row-wise with the matrix.
The return values are column vectors containing the number of errors and the
error rate for each row-wise comparison. The number of columns in the matrix
must be the same as the length of the row vector.

For the bit-error comparison, the size of the symbol is assumed to be the minimum num-
ber of bits needed to represent the largest element in the two matrices supplied. However,
the number of bits per symbol can (and in the case of random data should) be specified.
As an example of the use of biterr and symerr, consider the example

octave:1> m = 8;
octave:2> msg = randint(10,10,2^m);
octave:3> noisy = mod(msg + diag(1:10),2^m);
octave:4> [berr, brate] = biterr(msg, noisy, m)
berr = 32
brate = 0.040000
octave:5> [serr, srate] = symerr(msg, noisy)
serr = 10
srate = 0.10000

which creates a 10-by-10 matrix adds 10 symbols errors to the data and then finds the
bit and symbol error-rates.

Two other means of displaying the integrity of a signal are the eye-diagram and the
scatterplot. Although the functions eyediagram and scatterplot have different appearance,
the information presented is similar and so are their inputs. The difference between eyedi-
agram and scatterplot is that eyediagram segments the data into time intervals and plots
the in-phase and quadrature components of the signal against this time interval. While
scatterplot uses a parametric plot of quadrature versus in-phase components.

Both functions can accept real or complex signals in the following forms.

A real vector
In this case the signal is assumed to be real and represented by the vector x.

A complex vector
In this case the in-phase and quadrature components of the signal are assumed
to be the real and imaginary parts of the signal.

A matrix with two columns
In this case the first column represents the in-phase and the second the quadra-
ture components of a complex signal.

An example of the use of the function eyediagram is
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octave:1> n = 50;
octave:2> ovsp=50;
octave:3> x = 1:n;
octave:4> xi = [1:1/ovsp:n-0.1];
octave:5> y = randsrc(1,n,[1 + 1i, 1 - 1i, -1 - 1i, -1 + 1i]) ;
octave:6> yi = interp1(x,y,xi);
octave:7> noisy = awgn(yi,15,"measured");
octave:8> eyediagram(noisy,ovsp);

which produces a eye-diagram of a noisy signal as seen in Figure 2. Similarly an example
of the use of the function scatterplot is

Figure 2: Eye-diagram of a QPSK like signal with 15dB signal-to-noise ratio

octave:1> n = 200;
octave:2> ovsp=5;
octave:3> x = 1:n;
octave:4> xi = [1:1/ovsp:n-0.1];
octave:5> y = randsrc(1,n,[1 + 1i, 1 - 1i, -1 - 1i, -1 + 1i]) ;
octave:6> yi = interp1(x,y,xi);
octave:7> noisy = awgn(yi,15,"measured");
octave:8> hold off;
octave:9> scatterplot(noisy,1,0,"b");
octave:10> hold on;
octave:11> scatterplot(noisy,ovsp,0,"r+");

which produces a scatterplot of a noisy signal as seen in Figure 3.
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Figure 3: Scatterplot of a QPSK like signal with 15dB signal-to-noise ratio
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3 Source Coding

3.1 Quantization

An important aspect of converting an analog signal to the digital domain is quantization.
This is the process of mapping a continuous signal to a set of defined values. Octave contains
two functions to perform quantization, lloyds creates an optimal mapping of the continous
signal to a fixed number of levels and quantiz performs the actual quantization.

The set of quantization points to use is represented by a partitioning table (table) of
the data and the signal levels (codes to which they are mapped. The partitioning table is
monotonicly increasing and if x falls within the range given by two points of this table then
it is mapped to the corresponding code as seen in Table 1.

Table 1: Table quantization partitioning and coding

x < table(1) codes(1)
table(1) <= x < table(2) codes(2)
... ...
table(i-1) <= x < table(i) codes(i)
... ...
table(n-1) <= x < table(n) codes(n)
table(n-1) <= x codes(n+1)

These partition and coding tables can either be created by the user of using the function
lloyds. For instance the use of a linear mapping can be seen in the following example.

octave:1> m = 8;
octave:2> n = 1024;
octave:3> table = 2*[0:m-1]/m - 1 + 1/m;
octave:4> codes = 2*[0:m]/m - 1;
octave:5> x = 4*pi*[0:(n-1)]/(n-1);
octave:6> y = cos(x);
octave:7> [i,z] = quantiz(y, table, codes);

If a training signal is known that well represents the expected signals, the quantization
levels can be optimized using the lloyds function. For example the above example can be
continued

octave:8> [table2, codes2] = lloyds(y, table, codes);
octave:9> [i,z2] = quantiz(y, table2, codes2);

Which the mapping suggested by the function lloyds. It should be noted that the map-
ping given by lloyds is highly dependent on the training signal used. So if this signal does
not represent a realistic signal to be quantized, then the parititioning suggested by lloyds
will be sub-optimal.

3.2 PCM Coding

The DPCM function dpcmenco, dpcmdeco and dpcmopt implement a form of preditive
quantization, where the predictability of the signal is used to further compress it. These
functions are not yet implemented.
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3.3 Arithmetic Coding

The arithmetic coding functions arithenco and arithdeco are not yet implemented.

3.4 Dynamic Range Compression

The final source coding function is compand which is used to compress and expand
the dynamic range of a signal. For instance consider a logarithm quantized by a linear
partitioning. Such a partitioning is very poor for this large dynamic range. compand can
then be used to compress the signal prior to quantization, with the signal being expanded
afterwards. For example

octave:1> mu = 1.95;
octave:2> x = [0.01:0.01:2];
octave:3> y = log(x);
octave:4> V = max(abs(y));
octave:5> [i,z,d] = quantiz(y,[-4.875:0.25:0.875],[-5:0.25:1]);
octave:6> c = compand(y,minmu,V,’mu/compressor’);
octave:7> [i2,c2] = quantiz(c,[-4.875:0.25:0.875],[-5:0.25:1]);
octave:8> z2 = compand(c2,minmu,max(abs(c2)),’mu/expander’);
octave:9> d2 = sumsq(y-z2) / length(y);
octave:10> [d, d2]
ans =

0.0053885 0.0029935

which demonstrates that the use of compand can significantly reduce the distortion due
to the quantization of signals with a large dynamic range.
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4 Block Coding

The error-correcting codes available in this toolbox are discussed here. These codes
work with blocks of data, with no relation between one block and the next. These codes
create codewords based on the messages to transmit that contain redundant information
that allow the recovery of the original message in the presence of errors.

4.1 Data Formats

All of the codes described in this section are binary and share similar data formats. The
exception is the Reed-Solomon coder which has a significantly longer codeword length in
general and therefore using a different manner to efficiently pass data. The user should
reference to the section about the Reed-Solomon codes for the data format for use with
Reed-Solomon codes.

In general k bits of data are considered to represent a single message symbol. These
k bits are coded into n bits of data representing the codeword. The data can therefore
be grouped in one of three manners, to emphasis this grouping into bits, messages and
codewords

A binary vector
Each element of the vector is either one or zero. If the data represents an
uncoded message the vector length should be an integer number of k in length.

A binary matrix
In this case the data is ones and zeros grouped into rows, with each representing
a single message or codeword. The number of columns in the matrix should be
equal to k in the case of a uncoded message or n in the case of a coded message.

A non-binary vector
In this case each element of the vector represents a message or codeword in an
integer format. The bits of the message or codeword are represented by the
bits of the vector elements with the least-significant bit representing the first
element in the message or codeword.

An example demonstrating the relationship between the three data formats can be seen
below.

octave:1> k = 4;
octave:2> bin_vec = randint(k*10,1); # Binary vector format
octave:3> bin_mat = reshape(bin_vec,k,10)’; # Binary matrix format
octave:4> dec_vec = bi2de(bin_mat); # Decimal vector format

The functions within this toolbox will return data in the same format to which it is
given. It should be noted that internally the binary matrix format is used, and thus if
the message or codeword length is large it is preferable to use the binary format to avoid
internal rounding errors.
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4.2 Binary Block Codes

All of the codes presented here can be characterized by their

Generator Matrix
A k-by-n matrix G to generate the codewords C from the messages T by the
matrix multiplication C = TG.

Parity Check Matrix
A ’n-k’-by-n matrix H to check the parity of the received symbols. If HR =
S 6= 0, then an error has been detected. S can be used with the syndrome table
to correct this error

Syndrome Table
A 2^k-by-n matrix ST with the relationship of the error vectors to the non-zero
parities of the received symbols. That is, if the received symbol is represented
as R = (T + E) mod 2, then the error vector E is ST(S).

It is assumed for most of the functions in this toolbox that the generator matrix will be
in a ’standard’ form. That is the generator matrix can be represented by

G =


g11 g12 . . . g1k 1 0 . . . 0
g21 g22 g2k 0 1 0
...

...
...

...
gk1 gk2 . . . gkk 0 0 . . . 1


or

G =


1 0 . . . 0 g11 g12 . . . g1k

0 1 0 g21 g22 g2k
...

...
...

...
0 0 . . . 1 gk1 gk2 . . . gkk


and similarly the parity check matrix can be represented by a combination of an identity

matrix and a square matrix.
Some of the codes can also have their representation in terms of a generator polynomial

that can be used to create the generator and parity check matrices. In the case of BCH
codes, this generator polynomial is used directly in the encoding and decoding without ever
explicitly forming the generator or parity check matrix.

The user can create their own generator and parity check matrices, or they can rely on
the functions hammgen, cyclgen and cyclpoly. The function hammgen creates parity check
and generator matrices for Hamming codes, while cyclpoly and cyclgen create generator
polynomials and matrices for generic cyclic codes. An example of their use is

octave:1> m = 3;
octave:2> n = 2^m -1;
octave:2> k = 4;
octave:3> [par, gen] = hammgen(m);
octave:4> [par2, gen2] = cyclgen(n,cyclpoly(n,k));

which create identical parity check and generator matrices for the [7,4] Hamming code.
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The syndrome table of the codes can be created with the function syndtable, in the
following manner

octave:1> [par, gen] = hammgen(3);
octave:2> st = syndtable(par);

There exists two auxiliary functions gen2par and gfweight, that convert between gen-
erator and parity check matrices and calculate the Hamming distance of the codes. For
instance

octave:1> par = hammgen(3);
octave:2> gen = gen2par(par);
octave:3> gfweight(gen)
ans = 3

It should be noted that for large values of n, the generator, parity check and syndrome
table matrices are very large. There is therefore an internal limitation on the size of the
block codes that can be created that limits the codeword length n to less than 64. Which
is still excessively large for the syndrome table, so use caution with these codes. These
limitations do not apply to the Reed-Solomon or BCH codes.

The top-level encode and decode functions are encode and decode, which can be used
with all codes, except the Reed-Solomon code. The basic call to both of these functions
passes the message to code/decode, the codeword length, the message length and the type
of coding to use. There are four basic types that are available with these functions

’linear’ Generic linear block codes

’cyclic’ Cyclic linear block codes

’hamming’ Hamming codes

’bch’ Bose Chaudhuri Hocquenghem (BCH) block codes

It is not possible to distinguish between a binary vector and a decimal vector coding of
the messages that just happens to only have ones and zeros. Therefore the functions encode
and decode must be told the format of the messages in the following manner.

octave:1> m = 3;
octave:2> n = 7;
ocatve:3> k = 4;
octave:4> msg_bin = randint(10,k);
octave:5> cbin = encode(msg_bin, n, k, "hamming/binary");
octave:5> cdec = encode(bi2de(msg), n, k, "hamming/decimal");

which codes a binary matrix and a non-binary vector representation of a message, re-
turning the coded message in the same format. The functions encode and decode by default
accept binary coded messages. Therefore ’hamming’ is equivalent to ’hamming/binary’.

Except for the BCH codes, the function encode and decode internally create the gener-
ator, parity check and syndrome table matrices. Therefore if repeated calls to encode and
decode are made it will often be faster to create these matrices externally, and pass them
as an argument. For example

n = 15;
k = 11;
[par, gen] = hammgen(4);
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code1 = code2 = zeros(100,15)
for i=1:100
msg = get_msg(i);
code1(i,:) = encode(msg, n, k, ’linear’, gen); # This is faster
code2(i,:) = encode(msg, n, k, ’hamming’); # than this !!!

end

In the case of the BCH codes the low-level functions described in the next section are
used directly by the encode and decode functions.

4.3 BCH Codes

The BCH coder used here is based on code written by Robert Morelos-Zaragoza
(r.morelos-zaragoza@ieee.org). This code was originally written in C and has been
converted for use as an octave oct-file.

Called without arguments, bchpoly returns a table of valid BCH error correcting codes
and their error-correction capability as seen in Table 1.

Table 2: Table of valid BCH codes with codeword length less than 511.

N K T N K T N K T N K T
7 4 1 127 36 15 255 45 43 511 268 29
15 11 1 127 29 21 255 37 45 511 259 30
15 7 2 127 22 23 255 29 47 511 250 31
15 5 3 127 15 27 255 21 55 511 241 36
31 26 1 127 8 31 255 13 59 511 238 37
31 21 2 255 247 1 255 9 63 511 229 38
31 16 3 255 239 2 511 502 1 511 220 39
31 11 5 255 231 3 511 493 2 511 211 41
31 6 7 255 223 4 511 484 3 511 202 42
63 57 1 255 215 5 511 475 4 511 193 43
63 51 2 255 207 6 511 466 5 511 184 45
63 45 3 255 199 7 511 457 6 511 175 46
63 39 4 255 191 8 511 448 7 511 166 47
63 36 5 255 187 9 511 439 8 511 157 51
63 30 6 255 179 10 511 430 9 511 148 53
63 24 7 255 171 11 511 421 10 511 139 54
63 18 10 255 163 12 511 412 11 511 130 55
63 16 11 255 155 13 511 403 12 511 121 58
63 10 13 255 147 14 511 394 13 511 112 59
63 7 15 255 139 15 511 385 14 511 103 61
127 120 1 255 131 18 511 376 15 511 94 62
127 113 2 255 123 19 511 367 17 511 85 63
127 106 3 255 115 21 511 358 18 511 76 85
127 99 4 255 107 22 511 349 19 511 67 87
127 92 5 255 99 23 511 340 20 511 58 91
127 85 6 255 91 25 511 331 21 511 49 93
127 78 7 255 87 26 511 322 22 511 40 95
127 71 9 255 79 27 511 313 23 511 31 109
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127 64 10 255 71 29 511 304 25 511 28 111
127 57 11 255 63 30 511 295 26 511 19 119
127 50 13 255 55 31 511 286 27 511 10 127
127 43 14 255 47 42 511 277 28

The first returned column of bchpoly is the codeword length, the second the message
length and the third the error correction capability of the code. Called with one argument,
bchpoly returns similar output, but only for the specified codeword length. In this manner
codes with codeword length greater than 511 can be found.

In general the codeword length is of the form 2^m-1, where m is an integer. However if
[n,k] is a valid BCH code, then it is also possible to use a shortened BCH form of the form
[n-x,k-x].

With two or more arguments, bchpoly is used to find the generator polynomial of a valid
BCH code. For instance

octave:1> bchpoly(15,7)
ans =

1 0 0 0 1 0 1 1 1

octave:2> bchpoly(14,6)
ans =

1 0 0 0 1 0 1 1 1

show that the generator polynomial of a [15,7] BCH code with the default primitive
polynomial is

1 + x4 + x6 + x7 + x8

Using a different primitive polynomial to define the Galois Field over which the BCH
code is defined results in a different generator polynomial as can be seen in the example.

octave:1> bchpoly([1 1 0 0 1], 7)
ans =

1 0 0 0 1 0 1 1 1

octave:2> bchpoly([1 0 0 1 1], 7)
ans =

1 1 1 0 1 0 0 0 1

It is recommend not to convert the generator polynomials created by bchpoly into gen-
erator and parity check matrices with the BCH codes, as the underlying BCH software is
faster than the generic coding software and can treat significantly longer codes.

As well as using the encode and decode functions previously discussed, the user can
directly use the low-level BCH functions bchenco and bchdeco. In this case the messages
must be in the format of a binary matrix with k columns

octave:1> n = 31;
octave:2> pgs = bchpoly(n);
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octave:3> pg = pgs(floor(rand(1,1)*(size(pgs,1) + 1)),:); # Pick a poly
octave:4> k = pg(2);
octave:5> t = pg(3);
octave:6> msg = randint(10,k);
octave:7> code = bchenco(msg,n,k);
octave:8> noisy = code + [ones(10,1), zeros(10,n-1)];
octave:9> dec = bchdeco(code,k,t);

4.4 Reed-Solomon Codes

4.4.1 Representation of Reed-Solomon Messages

The Reed-Solomon coder used in this package is based on code written by Phil Karn
(http://www.ka9q.net/code/fec). This code was originally written in C and has been con-
verted for use as an octave oct-file.

Reed-Solomon codes are based on Galois Fields of even characteristics GF(2^M). Many
of the properties of Galois Fields are therefore important when considering Reed-Solomon
coders.

The representation of the symbols of the Reed-Solomon code differs from the other block
codes, in that the other block codes use a binary representation, while the Reed-Solomon
code represents each m-bit symbol by an integer. The elements of the message and codeword
must be elements of the Galois Field corresponding to the Reed-Solomon code. Thus to
code a message with a [7,5] Reed-Solomon code an example is

octave:1> m = 3;
octave:2> n = 7;
octave:3> k = 5;
octave:4> msg = gf(floor(2^m*rand(2,k)),m)
msg =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

5 0 6 3 2
4 1 3 1 2

octave:5> code = rsenc(msg,n,k)
code =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

5 0 6 3 2 3 5
4 1 3 1 2 6 3

The variable n is the codeword length of the Reed-Solomon coder, while k is the message
length. It should be noted that k should be less than n and that n - k should be even. The
error correcting capability of the Reed-Solomon code is then (n-k)/2 symbols. m is the
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number of bits per symbol, and is related to n by n = 2^m - 1. For a valid Reed-Solomon
coder, m should be between 3 and 16.

4.4.2 Creating and Decoding Messages

The Reed-Solomon encoding function requires at least three arguments. The first msg
is the message in encodes, the second is n the codeword length and k is the message length.
Therefore msg must have k columns and the output will have n columns of symbols.

The message itself is many up of elements of a Galois Field GF(2^M). Normally, The
order of the Galois Field (M), is related to the codeword length by n = 2^m - 1. Another
important parameter when determining the behavior of the Reed-Solomon coder is the
primitive polynomial of the Galois Field (see gf ). Thus the messages

octave:1> msg0 = gf([0, 1, 2, 3],3);
octave:2> msg1 = gf([0, 1, 2, 3],3,13);

will not result in the same Reed-Solomon coding. Finally, the parity of the Reed-Solomon
code are generated with the use of a generator polynomial. The parity symbols are then
generated by treating the message to encode as a polynomial and finding the remainder
of the division of this polynomial by the generator polynomial. Therefore the generator
polynomial must have as many roots as n - k. Whether the parity symbols are placed
before or afterwards the message will then determine which end of the message is the
most-significant term of the polynomial representing the message. The parity symbols are
therefore different in these two cases. The position of the parity symbols can be chosen by
specifying ’beginning’ or ’end’ to rsenc and rsdec. By default the parity symbols are placed
after the message.

Valid generator polynomials can be constructed with the rsgenpoly function. The roots
of the generator polynomial are then defined by

g = (x−Abs)(x−A(b+1)s) · · · (x−A(b+2t−1)s).

where t is (n-k)/2, A is the primitive element of the Galois Field, b is the first consecu-
tive root, and s is the step between roots. Generator polynomial of this form are constructed
by rsgenpoly and can be passed to both rsenc and rsdec. It is also possible to pass the b
and s values directly to rsenc and rsdec. In the case of rsdec passing b and s can make the
decoding faster.

Consider the example below.
octave:1> m = 8;
octave:2> n = 2^m - 1;
octave:3> k = 223;
octave:4> prim = 391;
octave:5> b = 112;
octave:6> s = 11;
octave:7> gg = rsgenpoly(n, k, prim, b, s);
octave:8> msg = gf(floor(2^m*rand(17,k)), m, prim);
octave:9> code = rsenc(msg, n, k, gg);
octave:10> noisy = code + [toeplitz([ones(1,17)], ...
zeros(1,17)), zeros(17,238)];
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octave:11> [dec, nerr] = rsdec(msg, n, k, b, s);
octave:13> nerr’
ans =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -1

octave:12> any(msg’ != dec’)
ans =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

This is an interesting example in that it demonstrates many of the additional arguments
of the Reed-Solomon functions. In particular this example approximates the CCSDS stan-
dard Reed-Solomon coder, lacking only the dual-basis lookup tables used in this standard.
The CCSDS uses non-default values to all of the basic functions involved in the Reed-
Solomon encoding, since it has a non-default primitive polynomial, generator polynomial,
etc.

The example creates 17 message blocks and adds between 1 and 17 error symbols to these
block. As can be seen nerr gives the number of errors corrected. In the case of 17 introduced
errors nerr equals -1, indicating a decoding failure. This is normal as the correction ability
of this code is up to 16 error symbols. Comparing the input message and the decoding it
can be seen that as expected, only the case of 17 errors has not been correctly decoded.

4.4.3 Shortened Reed-Solomon Codes

In general the codeword length of the Reed-Solomon coder is chosen so that it is related
directly to the order of the Galois Field by the formula n = 2^m = 1. Although, the under-
lying Reed-Solomon coding must operate over valid codeword length, there are sometimes
reasons to assume the the codeword length will be shorter. In this case the message is
padded with zeros before coding, and the zeros are stripped from the returned block. For
example consider the shortened [6,4] Reed-Solomon below

octave:1> m = 3;
octave:2> n = 6;
octave:3> k = 4;
octave:4> msg = gf(floor(2^m*rand(2,k)),m)
msg =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

7 0 2 5
1 5 7 1

octave:5> code = rsenc(msg,n,k)
code =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =
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7 0 2 5 2 3
1 5 7 1 0 2
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5 Convolutional Coding

To be written.
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6 Modulations

To be written.
Currently have functions amodce, ademodce, apkconst, demodmap, modmap, qaskdeco,

qaskenco, genqammod, pamdemod, pammod, pskdemod and pskmod.
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7 Special Filters

To be written.
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8 Galois Fields

8.1 Galois Field Basics

A Galois Field is a finite algebraic field. This package implements a Galois Field type
in Octave having 2^M members where M is an integer between 1 and 16. Such fields are
denoted as GF(2^M) and are used in error correcting codes in communications systems.
Galois Fields having odd numbers of elements are not implemented.

The primitive element of a Galois Field has the property that all elements of the Galois
Field can be represented as a power of this element. The primitive polynomial is the
minimum polynomial of some primitive element in GF(2^M) and is irreducible and of order
M. This means that the primitive element is a root of the primitive polynomial.

The elements of the Galois Field GF(2^M) are represented as the values 0 to 2^M -1 by
Octave. The first two elements represent the zero and unity values of the Galois Field and
are unique in all fields. The element represented by 2 is the primitive element of the field
and all elements can be represented as combinations of the primitive element and unity as
follows
Integer Binary Element of GF(2^M)
0 000 0
1 001 1
2 010 A
3 011 A + 1
4 100 A^2
5 101 A^2 + 1
6 110 A^2 + A
7 111 A^2 + A + 1

It should be noted that there is often more than a single primitive polynomial of
GF(2^M). Each Galois Field over a different primitive polynomial represents a different
realization of the Field. The representations above however rest valid.

This code was written as a challenge by Paul Kienzle (octave forge) to convert a Reed-
Solomon coder I had in octave to be compatible with Matlab communications toolbox R13.
This forced the need to have a complete library of functions over the even Galois Fields.
Although this code was written to be compatible with the equivalent Matlab code, I did
not have access to a version of Matlab with R13 installed, and thus this code is based on
Matlab documentation only. No compatibility testing has been performed and so I am most
interested in comments about compatibility at the e-mail address dbateman@free.fr.

8.1.1 Creating Galois Fields

To work with a Galois Field GF(2^M) in Octave, you must first create a variable that
Octave recognizes as a Galois Field. This is done with the function gf(a,m) as follows.

octave:1> a = [0:7];
octave:2> b = gf(a,4)
b =
GF(2^4) array. Primitive Polynomial = D^4+D+1 (decimal 19)
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Array elements =

0 1 2 3 4 5 6 7

This creates an array b with 8 elements that Octave recognizes as a Galois Field. The
field is created with the default primitive polynomial for the field GF(2^4). It can be verified
that a variable is in fact a Galois Field with the functions isgalois or whos.

octave:3> isgalois(a)
ans = 0
octave:4> isgalois(b)
ans = 1
octave:5> whos

*** local user variables:

prot type rows cols name
==== ==== ==== ==== ====
rwd matrix 1 8 a
rwd galois 1 8 b

It is also possible to create a Galois Field with an arbitrary primitive polynomial. How-
ever, if the polynomial is not a primitive polynomial of the field, and error message is
returned. For instance.

octave:1> a = [0:7];
octave:2> b = gf(a,4,25)
b =
GF(2^4) array. Primitive Polynomial = D^4+D^3+1 (decimal 25)

Array elements =

0 1 2 3 4 5 6 7

octave:3> c = gf(a,4,21)
error: primitive polynomial (21) of Galois Field must be irreducible
error: unable to initialize Galois Field
error: evaluating assignment expression near line 3, column 3

The function gftable is included for compatibility with Matlab. In Matlab this function
is used to create the lookup tables used to accelerate the computations over the Galois
Field and store them to a file. However octave stores these parameters for all of the fields
currently in use and so this function is not required, although it is silently accepted.

8.1.2 Primitive Polynomials

The function gf(a,m) creates a Galois Field using the default primitive polynomial.
However there exists many possible primitive polynomials for most Galois Fields.
Two functions exist for identifying primitive polynomials, isprimitive and primpoly.
primpoly(m,opt) is used to identify the primitive polynomials of the fields GF(2^M). For
example
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octave:1> primpoly(4)

Primitive polynomial(s) =

D^4+D+1

ans = 19

identifies the default primitive polynomials of the field GF(2^M), which is the same as
primpoly(4,"min"). All of the primitive polynomials of a field can be identified with the
function primpoly(m,"all"). For example

octave:1> primpoly(4, "all")

Primitive polynomial(s) =

D^4+D+1
D^4+D^3+1

ans =

19 25

while primpoly(m,"max") returns the maximum primitive polynomial of the field, which
for the case above is 25. The function primpoly can also be used to identify the primitive
polynomials having only a certain number of non-zero terms. For instance

octave:1> primpoly(5, 3)

Primitive polynomial(s) =

D^5+D^2+1
D^5+D^3+1

ans =

37 41

identifies the polynomials with only three terms that can be used as primitive polynomi-
als of GF(2^5). If no primitive polynomials existing having the requested number of terms
then primpoly returns an empty vector. That is

octave:1> primpoly(5,2)
primpoly: No primitive polynomial satisfies the given constraints

ans = [](1x0)

As can be seen above, primpoly displays the polynomial forms the the polynomials that
it finds. This output can be suppressed with the ’nodisplay’ option, while the returned
value is left unchanged.

octave:1> primpoly(4,"all","nodisplay")
ans =

19 25
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isprimitive(a) identifies whether the elements of a can be used as primitive polynomi-
als of the Galois Fields GF(2^M). Consider as an example the fields GF(2^4). The primitive
polynomials of these fields must have an order m and so their integer representation must
be between 16 and 31. Therefore isprimitive can be used in a similar manner to primpoly
as follows

octave:1> find(isprimitive(16:31)) + 15
ans =

19 25

which finds all of the primitive polynomials of GF(2^4).

8.1.3 Accessing Internal Fields

Once a variable has been defined as a Galois Field, the parameters of the field of
this structure can be obtained by adding a suffix to the variable. Valid suffixes are ’.m’,
’.prim poly’ and ’.x’, which return the order of the Galois Field, its primitive polynomial
and the data the variable contains respectively. For instance

octave:1> a = [0:7];
octave:2> b = gf(a,4);
octave:3> b.m
ans = 4
octave:4> b.prim_poly
ans = 19
octave:5> c = b.x;
octave:6> whos

*** local user variables:

prot type rows cols name
==== ==== ==== ==== ====
rwd matrix 1 8 a
rwd galois 1 8 b
rwd matrix 1 8 c

Please note that it is explicitly forbidden to modify the galois field by accessing these
variables. For instance

octave:1> a = gf([0:7],3);
octave:2> a.prim_poly = 13;

is explicitly forbidden. The result of this will be to replace the Galois array a with
a structure a with a single element called ’.prim poly’. To modify the order or primitive
polynomial of a field, a new field must be created and the data copied. That is

octave:1> a = gf([0:7],3);
octave:2> a = gf(a.x,a.m,13);

8.1.4 Function Overloading

An important consideration in the use of the Galois Field package is that many of the
internal functions of Octave, such as roots, can not accept Galois Fields as an input. This



Chapter 8: Galois Fields 27

package therefore uses the dispatch function of Octave-Forge to overload the internal Octave
functions with equivalent functions that work with Galois Fields, so that the standard
function names can be used. However, at any time the Galois field specific version of the
function can be used by explicitly calling its function name. The correspondence between
the internal function names and the Galois Field versions is as follows
conv - gconv, convmtx - gconvmtx, diag - gdiag,

deconv - gdeconv, det - gdet, exp - gexp,

filter - gfilter, inv - ginv, log - glog,

lu - glu, prod - gprod, reshape - greshape,

rank - grank, roots - groots, sum - gsum,

sumsq - gsumsq.

The version of the function that is chosen is determined by the first argument of the
function. So, considering the filter function, if the first argument is a Matrix, then the
normal version of the function is called regardless of whether the other arguments of the
function are Galois vectors or not.

Other Octave functions work correctly with Galois Fields and so overloaded versions are
not necessary. This include such functions as size and polyval.

It is also useful to use the ’.x’ option discussed in the previous section, to extract the
raw data of the Galois field for use with some functions. An example is

octave:1> a = minpol(gf(14,5));
octave:2> b = de2bi(a.x,"left-msb");

converts the polynomial form of the minimum polynomial of 14 in GF(2^5) into an
integer.

8.1.5 Known Problems

Before reporting a bug compare it to this list of known problems

Concatenation
For versions of Octave prior to 2.1.58, the concatenation of Galois arrays returns
a Matrix type. That is [gf([1, 0],m) gf(1, m)] returns a matrix went it
should return another Galois array. The workaround is to explicitly convert
the returned value back to the correct Galois field using gf([gf([1, 0],m)
gf(1,m)],m).
Since Octave version 2.1.58, [gf([1, 0],m) gf(1, m)] returns another Galois
array as expected.

Saving and loading Galois variables
Saving of Galois variables is only implemented in versions of octave later than
2.1.53. If you are using a recent version of octave then saving a Galois variable
is as simple as

octave:2> save a.mat a

where a is a Galois variable. To reload the variable within octave, the Galois
type must be installed prior to a call to load. That is
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octave:1> dummy = gf(1);
octave:2> load a.mat

With versions of octave later than 2.1.53, Galois variables can be saved in the
octave binary and ascii formats, as well as the HDF5 format. If you are using
an earlier version of octave, you can not directly save a Galois variable. You can
however save the information it contains and reconstruct the data afterwards
by doing something like

octave:2> x = a.x; m = a.m; p = a.prim_poly;
octave:3> save a.mat x m p;

Logarithm of zero does not return NaN
The logarithm of zero in a Galois field is not defined. However, to avoid seg-
mentation faults in later calculations the logarithm of zero is defined as 2^m-1,
whose value is not the logarithm of any other value in the Galois field. A
warning is however printed to tell the user about the problem. For example

octave:1> m = 3;
octave:2> a = log(gf([0:2^m-1],m))
warning: log of zero undefined in Galois field
a =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

7 0 1 3 2 6 4 5

To fix this problem would require a major rewrite of all code, adding an excep-
tion for the case of NaN to all basic operators. These exceptions will certainly
slow the code down.

Speed The code was written piece-meal with no attention to optimum code. Now
that I have something working I should probably go back and tidy the code up,
optimizing it at the same time.

8.2 Manipulating Galois Fields

8.2.1 Expressions, manipulation and assignment

Galois variables can be treated in similar manner to other variables within Octave. For
instance Galois fields can be accessed using index expressions in a similar manner to all
other Octave matrices. For example

octave:1> a = gf([[0:7];[7:-1:0]],3)
a =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

0 1 2 3 4 5 6 7
7 6 5 4 3 2 1 0
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octave:2> b = a(1,:)
b =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

0 1 2 3 4 5 6 7

Galois arrays can equally use indexed assignments. That is, the data in the array can
be partially replaced, on the condition that the two fields are identical. An example is

octave:1> a = gf(ones(2,8),3);
octave:2> b = gf(zeros(1,8),3);
octave:3> a(1,:) = b
a =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

Implicit conversions between normal matrices and Galois arrays are possible. For in-
stance data can be directly copied from a Galois array to a real matrix as follows.

octave:1> a = gf(ones(2,8),3);
octave:2> b = zeros(2,8);
octave:3> b(2,:) = a(2,:)
b =

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

The inverse is equally possible, with the proviso that the data in the matrix is valid in
the Galois field. For instance

octave:1> a = gf([0:7],3);
octave:2> a(1) = 1;

is valid, while
octave:1> a = gf([0:7],3);
octave:2> a(1) = 8;

is not, since 8 is not an element of GF(2^3). This is a basic rule of manipulating Galois
arrays. That is matrices and scalars can be used in conjunction with a Galois array as long
as they contain valid data within the Galois field. In this case they will be assumed to be
of the same field.

As Octave supports concatenation of typed matrices only for version 2.1.58 and later,
matrix concatenation will force the Galois array back to a normal matrix for earlier version.
For instance for Octave 2.1.58 and later.

octave:1> a = [gf([0:7],3); gf([7:-1:0],3)];
octave:2> b = [a, a];
octave:3> whos
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*** local user variables:

Prot Name Size Bytes Class
==== ==== ==== ===== =====
rwd a 2x8 64 galois
rwd b 2x16 128 galois

Total is 49 elements using 192 bytes

and for previous versions of Octave
octave:1> a = [gf([0:7],3); gf([7:-1:0],3)];
octave:2> b = [a, a];
octave:3> whos

*** local user variables:

prot type rows cols name
==== ==== ==== ==== ====
rwd matrix 2 8 a
rwd matrix 2 16 b

This has the implication that many of the scripts included with Octave that should
work with Galois fields, won’t work correctly for versions earlier than 2.1.58. If you wish to
concatenate Galois arrays with earlier versions, use the syntax

octave:1> a = gf([0:7],3);
octave:2> b = gf([a, a], a.m, a.prim_poly);

which explicitly reconverts b to the correct Galois Field. Other basic manipulations of
Galois arrays are

isempty Returns true if the Galois array is empty.

size Returns the number of rows and columns in the Galois array.

length Returns the length of a Galois vector, or the maximum of rows or columns of
Galois arrays.

find Find the indexes of the non-zero elements of a Galois array.

diag Create a diagonal Galois array from a Galois vector, or extract a diagonal from
a Galois array.

reshape Change the shape of the Galois array.

8.2.2 Unary operations

The same unary operators that are available for normal Octave matrices are also available
for Galois arrays. These operations are

+x Unary plus. This operator has no effect on the operand.

-x Unary minus. Note that in a Galois Field this operator also has no effect on
the operand.
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!x Returns true for zero elements of Galois Array.

x’ Complex conjugate transpose. As the Galois Field only contains integer values,
this is equivalent to the transpose operator.

x.’ Transpose of the Galois array.

8.2.3 Arithmetic operations

The available arithmetic operations on Galois arrays are the same as on other Octave
matrices. It should be noted that both operands must be in the same Galois Field. If one
operand is a Galois array and the second is a matrix or scalar, then the second operand is
silently converted to the same Galois Field. The element(s) of these matrix or scalar must
however be valid members of the Galois field. Thus

octave:1> a = gf([0:7],3);
octave:2> b = a + [0:7];

is valid, while
octave:1> a = gf([0:7],3);
octave:2> b = a + [1:8];

is not, since 8 is not a valid element of GF(2^3). The available arithmetic operators are

x + y Addition. If both operands are Galois arrays or matrices, the number of rows
and columns must both agree. If one operand is a is a Galois array with a
single element or a scalar, its value is added to all the elements of the other
operand. The + operator on a Galois Field is equivalent to an exclusive-or on
normal integers.

x .+ y Element by element addition. This operator is equivalent to +.

x - y As both + and - in a Galois Field are equivalent to an exclusive-or for normal
integers, - is equivalent to the + operator

x .- y Element by element subtraction. This operator is equivalent to -.

x * y Matrix multiplication. The number of columns of x must agree with the number
of rows of y.

x .* y Element by element multiplication. If both operands are matrices, the number
of rows and columns must both agree.

x / y Right division. This is conceptually equivalent to the expression
(inverse (y’) * x’)’

but it is computed without forming the inverse of y’.
If the matrix is singular then an error occurs. If the matrix is under-determined,
then a particular solution is found (but not minimum norm). If the solution
is over-determined, then an attempt is made to find a solution, but this is not
guaranteed to work.

x ./ y Element by element right division.

x \ y Left division. This is conceptually equivalent to the expression
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inverse (x) * y

but it is computed without forming the inverse of x.
If the matrix is singular then an error occurs. If the matrix is under-determined,
then a particular solution is found (but not minimum norm). If the solution
is over-determined, then an attempt is made to find a solution, but this is not
guaranteed to work.

x .\ y Element by element left division. Each element of y is divided by each corre-
sponding element of x.

x ^ y
x ** y Power operator. If x and y are both scalars, this operator returns x raised to

the power y. Otherwise x must be a square matrix raised to an integer power.

x .^ y

x .** y Element by element power operator. If both operands are matrices, the number
of rows and columns must both agree.

8.2.4 Comparison operations

Galois variables can be tested for equality in the usual manner. That is
octave:1> a = gf([0:7],3);
octave:2> a == ones(1,8)
ans =

0 1 0 0 0 0 0 0

octave:3> a ~= zeros(1,8)
ans =

0 1 1 1 1 1 1 1

Likewise, Galois vectors can be tested against scalar values (whether they are Galois or
not). For instance

octave:4> a == 1
ans =

0 1 0 0 0 0 0 0

To test if any or all of the values in a Galois array are non-zero, the functions any and
all can be used as normally.

In addition the comparison operators >, >=, < and <= are available. As elements of the
Galois Field are modulus 2^m, all elements of the field are both greater than and less than
all others at the same time.Thus these comparison operators don’t make that much sense
and are only included for completeness. The comparison is done relative to the integer value
of the Galois Field elements.

8.2.5 Polynomial manipulations

A polynomial in GF(2^M) can be expressed as a vector in GF(2^M). For instance if a
is the primitive element, then the example
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octave:1> poly = gf([2, 4, 5, 1],3);

represents the polynomial

poly = ax3 + a2x2 + (a2 + 1)x+ 1

Arithmetic can then be performed on these vectors. For instance to add to polynomials
an example is

octave:1> poly1 = gf([2, 4, 5, 1],3);
octave:2> poly2 = gf([1, 2],3);
octave:3> sumpoly = poly1 + [0, 0, poly2]
sumpoly =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

2 4 4 3

Note that poly2 must be zero padded to the same length as poly1 to allow the addition
to take place.

Multiplication and division of Galois polynomials is equivalent to convolution and de-
convolution of vectors of Galois elements. Thus to multiply two polynomials in GF(2^3).

octave:4> mulpoly = conv(poly1, poly2)
mulpoly =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

2 0 6 0 2

Likewise the division of two polynomials uses the de-convolution function as follows

octave:5> [poly, remd] = deconv(mulpoly,poly2)
poly =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

2 4 5 1

remd =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

0 0 0 0 0

Note that the remainder of this division is zero, as we performed the inverse operation
to the multiplication.

To evaluate a polynomial for a certain value in GF(2^M), use the Octave function polyval.
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octave:1> poly1 = gf([2, 4, 5, 1],3); ## a*x^3+a^2*x^2+(a^2+1)*x+1
octave:2> x0 = gf([0, 1, 2],3);
octave:3> y0 = polyval(poly1, x0);
y0 =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

1 2 0

octave:4> a = gf(2,3); ## The primitive element
octave:5> y1 = a .* x0.^3 + a.^2 .* x0.^2 + (a.^2 + 1) .* x0 + 1
y1 =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

1 2 0

It is equally possible to find the roots of Galois polynomials with the roots function.
Using the polynomial above over GF(2^3), we can find its roots in the following manner

octave:1> poly1 = gf([2, 4, 5, 1], 3);
octave:2> root1 = roots(poly1)
root1 =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

2
5
5

Thus the example polynomial has 3 roots in GF(2^3) with one root of multiplicity 2.
We can check this answer with the polyval function as follows

octave:3> check1 = polyval(poly1, root1)
check1 =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

0
0
0

which as expected gives a zero vector. It should be noted that both the number of roots
and their value, will depend on the chosen field. Thus for instance

octave:1> poly3 = gf([2, 4, 5, 1],3, 13);
octave:2> root3 = roots(poly3)
root3 =
GF(2^3) array. Primitive Polynomial = D^3+D^2+1 (decimal 13)
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Array elements =

5

shows that in the field GF(2^3) with a different primitive polynomial, has only one root
exists.

The minimum polynomial of an element of GF(2^M) is the minimum degree polynomial
in GF(2), excluding the trivial zero polynomial, that has that element as a root. The fact
that the minimum polynomial is in GF(2) means that its coefficients are one or zero only.
The minpol function can be used to find the minimum polynomial as follows

octave:1> a = gf(2,3); ## The primitive element
octave:2> b = minpol(a)
b =
GF(2) array.

Array elements =

1 0 1 1

Note that the minimum polynomial of the primitive element is the primitive polynomial.
Elements of GF(2^M) sharing the same minimum polynomial form a partitioning of the field.
This partitioning can be found with the cosets function as follows

octave:1> c = cosets(3)
c =
{
[1,1] =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

1

[2,1] =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

2 4 6

[3,1] =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

3 5 7

}

which returns a cell array containing all of the the elements of the GF(2^3), partitioned
into groups sharing the same minimum polynomial. The function cosets can equally ac-
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cept a second argument defining the primitive polynomial to use in its calculations (i.e.
cosets(a,p)).

8.2.6 Linear Algebra

The basic linear algebra operation of this package is the LU factorization of a the Galois
array. That is the Galois array a is factorized in the following way

octave:2> [l, u, p] = lu(a)

such that p * a = l * u. The matrix p contains row permutations of a, such that l and
u are strictly upper and low triangular. The Galois array a can be rectangular.

All other linear algebra operations within this package are based on this LU factorization
of a Galois array. An important consequence of this is that no solution can be found for
singular matrices, only a particular solution will be found for under-determined systems of
equation and the solution found for over-determined systems is not always correct. This is
identical to the way Matlab R13 treats this.

For instance consider the under-determined linear equation
octave:1> A = gf([2, 0, 3, 3; 3, 1, 3, 1; 3, 1, 1, 0], 2);
octave:2> b = [0:2]’;
octave:3> x = A \ b;

gives the solution x = [2, 0, 3, 2]. There are in fact 4 possible solutions to this linear
system; x = [3, 2, 2, 0], x = [0, 3, 1, 1], x = [2, 0, 3, 2] and x = [1, 1, 0, 3]. No
particular selection criteria are applied to the chosen solution.

In addition the fact that singular matrices are not treated, unless you know the matrix
is not singular, you should test the determinant of the matrix prior to solving the linear
system. For instance

octave:1> A = gf(floor(2^m * rand(3)), 2);
octave:2> b = [0:2]’;
octave:3> if (det(A) ~= 0); x = A \ b; y = b’ / A; end;
octave:4> r = rank(A);

solves the linear systems A * x = b and y * A = b. Note that you do not need to take
into account rounding errors in the determinant, as the determinant can only take values
within the Galois Field. So if the determinant equals zero, the array is singular.

8.2.7 Signal Processing with Galois Fields

Signal processing functions such as filtering, convolution, de-convolution and Fourier
transforms can be performed over Galois Fields. For instance the filter function can be
used with Galois vectors in the same manner as usual. For instance

octave:1> b = gf([2, 0, 0, 1, 0, 2, 0, 1],2);
octave:2> a = gf([2, 0, 1, 1],2);
octave:3> x = gf([1, zeros(1,20)],2);
octave:4> y = filter(b, a, x)
y =
GF(2^2) array. Primitive Polynomial = D^2+D+1 (decimal 7)

Array elements =
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1 0 3 0 2 3 1 0 1 3 3 1 0 1 3 3 1 0 1 3 3

gives the impulse response of the filter defined by a and b.
Two equivalent ways are given to perform the convolution of two Galois vectors. Firstly

the function conv can be used, or alternatively the function convmtx can be used. The first
of these function is identical to the convolution function over real vectors, and has been
described in the section about multiplying two Galois polynomials.

In the case where many Galois vectors will be convolved with the same vector, the second
function convmtx offers an alternative method to calculate the convolution. If a is a column
vector and x is a column vector of length n, then

octave:1> m = 3;
octave:2> a = gf(floor(2^m*rand(4,1)),m);
octave:3> b = gf(floor(2^m*rand(4,1)),m);
octave:4> c0 = conv(a,b)’;
octave:5> c1 = convmtx(a,length(b)) * b;
octave:6> check = all(c0 == c1)
check = 1

shows the equivalence of the two functions. The de-convolution function has been pre-
viously described above.

The final signal processing function available in this package are the functions to perform
Fourier transforms over a Galois field. Three functions are available, fft, ifft and dftmtx.
The first two functions use the third to perform their work. Given an element a of the Galois
field GF(2^M), dftmtx returns the 2^M - 1 square matrix used in the Fourier transforms
with respect to a. The minimum polynomial of a must be primitive in GF(2^M). In the
case of the fft function dftmtx is called with the the primitive element of the Galois Field
as an argument. As an example

octave:1> m = 4;
octave:2> n = 2^m -1;
octave:2> alph = gf(2, m);
octave:3> x = gf(floor(2^m*rand(n,1)), m);
octave:4> y0 = fft(x);
octave:5> y1 = dftmtx(alph) * x;
octave:6> z0 = ifft(y0);
octave:7> z1 = dftmtx(1/alph) * y1;
octave:8> check = all(y0 == y1) & all(z0 == x) & all(z1 == x)
check = 1

In all cases, the length of the vector to be transformed must be 2^M -1. As the dftmtx
creates a matrix representing the Fourier transform, to limit the computational task only
Fourier transforms in GF(2^M), where M is less than or equal to 8, can be treated.
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9 Function Reference

9.1 Functions by Category

9.1.1 Random Signals

awgn Add white Gaussian noise to a voltage signal

biterr Compares two matrices and returns the number of bit errors and the bit error
rate.

eyediagram
Plot the eye-diagram of a signal.

randerr Generate a matrix of random bit errors.

randint Generate a matrix of random binary numbers.

randsrc Generate a matrix of random symbols.

scatterplot
Display the scatter plot of a signal.

symerr Compares two matrices and returns the number of symbol errors and the symbol
error rate.

wgn Returns a M-by-N matrix Y of white Gaussian noise.

bsc Send DATA into a binary symetric channel with probability P of error one each
symbol

9.1.2 Source Coding

arithenco Not implemented

arithdeco Not implemented

compand Compresses and expanding the dynamic range of a signal using a mu-law or or
A-law algorithm

dpcmdeco Not implemented

dpcmenco Not implemented

dpcmopt Not implemented

huffmandeco
Returns the original signal that was Huffman encoded signal using ‘huffma-
nenco’.

huffmandict
Builds a Huffman code, given a probability list.

huffmanenco
Returns the Huffman encoded signal using DICT.
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lloyds Optimize the quantization table and codes to reduce distortion.

lz77deco Lempel-Ziv 77 source algorithm decoding implementation.

lz77enco Lempel-Ziv 77 source algorithm implementation.

quantiz Quantization of an arbitrary signal relative to a paritioning

shannonfanodict
Returns the code dictionary for source using shanno fano algorithm Dictionary
is built from SYMBOL PROBABILITIES using the shannon fano scheme.

shannonfanoenco
Returns the Shannon Fano encoded signal using DICT This function uses a
DICT built from the ‘shannonfanodict’ and uses it to encode a signal list into a
shannon fano code Restrictions include a signal set that strictly belongs in the
‘range [1,N]’ with ‘N=length(dict)’.

shannonfanodeco
Returns the original signal that was Shannonfano encoded.

rleenco Returns run-length encoded MESSAGE.

rledeco Returns decoded run-length MESSAGE The RLE encoded MESSAGE has to
be in the form of a row-vector.

riceenco Returns the Rice encoded signal using K or optimal K Default optimal K is
chosen between 0-7.

ricedeco Returns the Rice decoded signal vector using CODE and K Compulsory K
is need to be specified A restrictions is that a signal set must strictly be non-
negative The value of code is a cell array of row-vectors which have the encoded
rice value for a single sample.

fiboenco Returns the cell-array of encoded fibonacci value from the column vectors NUM
Universal codes like fibonacci codes have a useful synchronization property, only
for 255 maximum value we have designed these routines.

fibodeco Returns the decoded fibonacci value from the binary vectors CODE Universal
codes like fibonacci codes Have a useful synchronization property, only for 255
maximum value we have designed these routines.

fibosplitstream
Returns the split data stream at the word boundaries Assuming the stream
was originally encoded using ‘fiboenco’ and this routine splits the stream at the
points where ’11’ occur together & gives us the code-words which can later be
decoded from the ‘fibodeco’ This however doesnt mean that we intend to verify
if all the codewords are correct, and infact the last symbol in th return list can
or can-not be a valid codeword

golombenco
Returns the Golomb coded signal as cell array Also total length of output code
in bits can be obtained This function uses a M need to be supplied for encoding
signal vector into a golomb coded vector.
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golombdeco
Returns the Golomb decoded signal vector using CODE and M Compulsory m
is need to be specified.

9.1.3 Block Interleavers

intrlv Interleaved elements of DATA according to ELEMENTS See also: deintrlv

algintrlv Not implemented

helscanintrlv
Not implemented

matintrlv Interleaved elements of DATA with a tempory matrix of size NROWS-by-
NCOLS See also: matdeintrlv

randintrlv Interleaves elements of DATA with a random permutation See also:
intrlv,deintrlv

deintrlv Restore elements of DATA according to ELEMENTS See also: intrlv

matdeintrlv
Restore elements of DATA with a tempory matrix of size NROWS-by-NCOLS
See also: matintrlv

randdeintrlv
Restore elements of DATA with a random permutation See also:
randintrlv,intrlv,deintrlv

9.1.4 Block Coding

bchdeco Decodes the coded message CODE using a BCH coder.

bchenco Encodes the message MSG using a [N,K] BCH coding.

bchpoly Calculates the generator polynomials for a BCH coder.

convenc Not implemented

cyclgen Produce the parity check and generator matrix of a cyclic code.

cyclpoly This function returns the cyclic generator polynomials of the code [N,K].

decode Top level block decoder.

encode Top level block encoder.

egolaydec Given R, the received Extended Golay code, this function tries to decode R us-
ing the Extended Golay code parity check matrix Extended Golay code (24,12)
which can correct upto 3 errors

egolayenc Given M, encode M using the Extended Golay code

egolaygen Returns the Extended Golay code (24,12) generator matrix, which can correct
upto 3 errors.

gen2par Converts binary generator matrix GEN to the parity chack matrix PAR and
visa-versa.
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hammgen Produce the parity check and generator matrices of a Hamming code.

reedmullerdec
Decode the received code word VV using the RM-generator matrix G, of order
R, M, returning the code-word C.

reedmullerenc
Definition type construction of Reed Muller code, of order R, length 2^M.

reedmullergen
Definition type construction of Reed Muller code, of order R, length 2^M.

rsgenpoly Creates a generator polynomial for a Reed-Solomon coding with message length
of K and codelength of N.

rsdec Decodes the message contained in CODE using a [N,K] Reed-Solomon code.

rsdecof Decodes an ascii file using a Reed-Solomon coder.

rsenc Encodes the message MSG using a [N,K] Reed-Solomon coding.

rsencof Encodes an ascii file using a Reed-Solomon coder.

systematize
Given G, extract P partiy check matrix.

syndtable Create the syndrome decoding table from the parity check matrix H.

vitdec Not implemented

9.1.5 Modulations

ademod Not implemented

ademodce Baseband demodulator for analog signals.

amod Not implemented

amodce Baseband modulator for analog signals.

ammod Create the AM modulation of the signal x with carrier frequency fs.

amdemod Compute the amplitude demodulation of the signal S with a carrier frequency
of FC and a sample frequency of FS See also: ammod

apkconst Plots a ASK/PSK signal constellation.

ddemod Not implemented

ddemodce Not implemented

demodmap
Demapping of an analog signal to a digital signal.

dmod Not implemented

dmodce Not implemented

fmmod Create the FM modulation of the signal x with carrier frequency fs.
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fmdemod Create the FM demodulation of the signal x with carrier frequency fs.

genqammod
Modulates an information sequence of intergers X in the range ‘[0 ... M-1]’ onto
a quadrature amplitude modulated signal Y, where ‘M = length(c) - 1’ and C
is a 1D vector specifing the signal constellation mapping to be used.

genqamdemod
General quadrature amplitude demodulation.

modmap Mapping of a digital signal to an analog signal.

pamdemod
Demodulates a pulse amplitude modulated signal X into an information se-
quence of integers in the range ‘[0 ... M-1]’ PHI controls the initial phase and
TYPE controls the constellation mapping.

pammod Modulates an information sequence of integers X in the range ‘[0 ... M-1]’ onto
a pulse amplitude modulated signal Y PHI controls the initial phase and TYPE
controls the constellation mapping.

pskdemod Demodulates a complex-baseband phase shift keying modulated signal into an
information sequence of integers in the range ‘[0 ... M-1]’.

pskmod Modulates an information sequence of integers X in the range ‘[0 ... M-1]’ onto
a complex baseband phase shift keying modulated signal Y.

qaskdeco Demaps an analog signal using a square QASK constellation.

qaskenco Map a digital signal using a square QASK constellation.

qammod Create the QAM modulation of x with a size of alphabet m See also: qamde-
mod,pskmod,pskdemod

qamdemod
Create the QAM demodulation of x with a size of alphabet m See also: qam-
mod,pskmod,pskdemod

9.1.6 Special Filters

hank2sys Not implemented

hilbiir Not implemented

rcosflt Not implemented

rcosiir Not implemented

rcosine Not implemented

rcosfir Not implemented
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9.1.7 Galois Fields of Even Characateristic

+ - Addition and subtraction in a Galois Field.

* / \ Matrix multiplication and division of Galois arrays.

.* ./ .\ Element by element multiplication and division of Galois arrays.

** ^ Matrix exponentiation of Galois arrays.

.** .^ Element by element matrix exponentiation of Galois arrays.

’ .’ Matrix transpose of Galois arrays.

== ~= != > >= < <=
Logical operators on Galois arrays.

all Not implemented

any Not implemented

cosets Finds the elements of GF(2^M) with primitive polynomial PRIM, that share
the same minimum polynomial.

gconv Convolve two Galois vectors

gconvmtx Create matrix to perform repeated convolutions with the same vector in a Galois
Field.

gdeconv Deconvolve two Galois vectors

gdet Compute the determinant of the Galois array A.

gdftmtx Form a matrix, that can be used to perform Fourier transforms in a Galois Field

gdiag Return a diagonal matrix with Galois vector V on diagonal K.

gexp Compute the anti-logarithm for each element of X for a Galois array.

gf Creates a Galois field array GF(2^M) from the matrix X.

gfft If X is a column vector, finds the FFT over the primitive element of the Galois
Field of X.

gfilter Digital filtering of vectors in a Galois Field.

gftable This function exists for compatiability with matlab.

gfweight Calculate the minimum weight or distance of a linear block code.

gifft If X is a column vector, finds the IFFT over the primitive element of the Galois
Field of X.

ginv Compute the inverse of the square matrix A.

ginverse See ginv.

gisequal Return true if all of X1, X2, ... are equal See also: isequalwithequalnans

glog Compute the natural logarithm for each element of X for a Galois array.

glu Compute the LU decomposition of A in a Galois Field.
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gprod Product of elements along dimension DIM of Galois array.

gsqrt Compute the square root of X, element by element, in a Galois Field.

grank Compute the rank of the Galois array A by counting the independent rows and
columns.

greshape Return a matrix with M rows and N columns whose elements are taken from
the Galois array A.

groots For a vector V with N components, return the roots of the polynomial over a
Galois Field

gsum Sum of elements along dimension DIM of Galois array.

gsumsq Sum of squares of elements along dimension DIM of Galois array.

isempty Not implemented

isgalois Return 1 if the value of the expression EXPR is a Galois Field.

isprimitive Returns 1 is the polynomial represented by A is a primitive polynomial of
GF(2).

length Not implemented

minpol Finds the minimum polynomial for elements of a Galois Field.

polyval Not implemented

primpoly Finds the primitive polynomials in GF(2^M).

size Not implemented

9.1.8 Galois Fields of Odd Characteristic

gfadd Not implemented

gfconv Not implemented

gfcosets Not implemented

gfdeconv Not implemented

gfdiv Not implemented

gffilter Not implemented

gflineq Not implemented

gfminpol Not implemented

gfmul Not implemented

gfpretty Not implemented

gfprimck Not implemented

gfprimdf Not implemented

gfprimfd Not implemented
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gfrank Not implemented

gfrepcov Not implemented

gfroots Not implemented

gfsub Not implemented

gftrunc Not implemented

gftuple Not implemented

9.1.9 Utility Functions

comms Manual and test code for the Octave Communications toolbox.

bi2de Convert bit matrix to a vector of integers

de2bi Convert a non-negative integer to bit vector

oct2dec Convert octal to decimal values See also: base2dec,bin2dec,dec2bi

istrellis Not implemented

poly2trellis
Not implemented

vec2mat Converts the vector V into a C column matrix with row priority arrangement
and with the final column padded with the value D to the correct length.

qfunc Compute the Q function See also: erfc, erf

qfuncinv Compute the inverse Q function See also: erfc, erf

marcumq Compute the Marcum Q function

9.2 Functions Alphabetically

9.2.1 ademodce

Function Filey = ademodce (x,Fs,’amdsb-tc’,offset)
Function Filey = ademodce (x,Fs,’amdsb-tc/costas’,offset)
Function Filey = ademodce (x,Fs,’amdsb-sc’)
Function Filey = ademodce (x,Fs,’amdsb-sc/costas’)
Function Filey = ademodce (x,Fs,’amssb’)
Function Filey = ademodce (x,Fs,’qam’)
Function Filey = ademodce (x,Fs,’qam/cmplx’)
Function Filey = ademodce (x,Fs,’fm’,dev)
Function Filey = ademodce (x,Fs,’pm’,dev)
Function Filey = ademodce (x,[Fs,iphs],...)
Function Filey = ademodce (...,num,den)

Baseband demodulator for analog signals. The input signal is specified by x, its
sampling frequency by Fs and the type of modulation by the third argument, typ.
The default values of Fs is 1 and typ is ’amdsb-tc’
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If the argument Fs is a two element vector, the the first element represents the
sampling rate and the second the initial phase

The different types of demodulations that are available are

’am’
’amdsb-tc’ Double-sideband with carrier

’amdsb-tc/costas’
Double-sideband with carrier and Costas phase locked loop

’amdsb-sc’ Double-sideband with suppressed carrier

’amssb’ Single-sideband with frequency domain Hilbert filtering

’qam’ Quadrature amplitude demodulation. In-phase in odd-columns and
quadrature in even-columns

’qam/cmplx’
Quadrature amplitude demodulation with complex return value

’fm’ Frequency demodulation

’pm’ Phase demodulation

Additional arguments are available for the demodulations ’amdsb-tc’, ’fm’, ’pm’.
These arguments are

offset The offset in the input signal for the transmitted carrier

dev The deviation of the phase and frequency modulation

It is possible to specify a low-pass filter, by the numerator num and denominator den
that will be applied to the returned vector

See also: ademodce,dmodce

9.2.2 amdemod

Function File[m] = amdemod (s, fc, fs)
Compute the amplitude demodulation of the signal s with a carrier frequency of fc
and a sample frequency of fs See also: ammod

9.2.3 ammod

Function Fileammod (x,fc,fs)
Create the AM modulation of the signal x with carrier frequency fs. Where x is
sample at frequency fs See also: amdemod,fmmod,fmdemod
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9.2.4 amodce

Function Filey = amodce (x,Fs,’amdsb-tc’,offset)
Function Filey = amodce (x,Fs,’amdsb-sc’)
Function Filey = amodce (x,Fs,’amssb’)
Function Filey = amodce (x,Fs,’amssb/time’,num,den)
Function Filey = amodce (x,Fs,’qam’)
Function Filey = amodce (x,Fs,’fm’,dev)
Function Filey = amodce (x,Fs,’pm’,dev)
Function Filey = amodce (x,[Fs,iphs],...)

Baseband modulator for analog signals. The input signal is specified by x, its sampling
frequency by Fs and the type of modulation by the third argument, typ. The default
values of Fs is 1 and typ is ’amdsb-tc’

If the argument Fs is a two element vector, the the first element represents the
sampling rate and the second the initial phase

The different types of modulations that are available are

’am’
’amdsb-tc’ Double-sideband with carrier

’amdsb-sc’ Double-sideband with suppressed carrier

’amssb’ Single-sideband with frequency domain Hilbert filtering

’amssb/time’
Single-sideband with time domain filtering. Hilbert filter is used by de-
fault, but the filter can be specified

’qam’ Quadrature amplitude modulation

’fm’ Frequency modulation

’pm’ Phase modulation

Additional arguments are available for the modulations ’amdsb-tc’, ’fm, ’pm’ and
’amssb/time’. These arguments are

offset The offset in the input signal for the transmitted carrier

dev The deviation of the phase and frequency modulation

num
den The numerator and denominator of the filter transfer function for the

time domain filtering of the SSB modulation

See also: ademodce,dmodce

9.2.5 apkconst
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Function Fileapkconst (nsig)
Function Fileapkconst (nsig,amp)
Function Fileapkconst (nsig,amp,phs)
Function Fileapkconst (...,"n")
Function Fileapkconst (...,str)
Function Filey = apkconst (...)

Plots a ASK/PSK signal constellation. Argument nsig is a real vector whose length
determines the number of ASK radii in the constellation The values of vector nsig
determine the number of points in each ASK radii
By default the radii of each ASK modulated level is given by the index of nsig. The
amplitudes can be defined explictly in the variable amp, which is a vector of the same
length as nsig

By default the first point in each ASK radii has zero phase, and following points are
coding in an anti-clockwise manner. If phs is defined then it is a vector of the same
length as nsig defining the initial phase in each ASK radii
In addition apkconst takes two string arguments ’n’ and and str If the string ’n’
is included in the arguments, then a number is printed next to each constellation
point giving the symbol value that would be mapped to this point by the modmap
function. The argument str is a plot style string (example ’r+’) and determines the
default gnuplot point style to use for plot points in the constellation
If apskconst is called with a return argument, then no plot is created. However the
return value is a vector giving the in-phase and quadrature values of the symbols in
the constellation

See also: dmod,ddemod,modmap,demodmap

9.2.6 awgn

Function Filey = awgn (x,snr)
Function Filey = awgn (x,snr,pwr)
Function Filey = awgn (x,snr, pwr,seed)
Function Filey = awgn (..., ’type’)

Add white Gaussian noise to a voltage signal
The input x is assumed to be a real or complex voltage signal. The returned value
y will be the same form and size as x but with Gaussian noise added. Unless the
power is specified in pwr, the signal power is assumed to be 0dBW, and the noise of
snr dB will be added with respect to this. If pwr is a numeric value then the signal
x is assumed to be pwr dBW, otherwise if pwr is ’measured’, then the power in the
signal will be measured and the noise added relative to this measured power
If seed is specified, then the random number generator seed is initialized with this
value
By default the snr and pwr are assumed to be in dB and dBW respectively. This
default behaviour can be chosen with type set to ’dB’. In the case where type is set
to ’linear’, pwr is assumed to be in Watts and snr is a ratio

See also: randn,wgn
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9.2.7 bchdeco

Loadable Functionmsg = bchdeco (code,k,t)
Loadable Functionmsg = bchdeco (code,k,t,prim)
Loadable Functionmsg = bchdeco (...,parpos)
Loadable Function[msg, err] = bchdeco (...)
Loadable Function[msg,err,ccode] = bchdeco (...)

Decodes the coded message code using a BCH coder. The message length of the coder
is defined in variable k, and the error corerction capability of the code is defined in t.
The variable code is a binary array with n columns and an arbitrary number of rows.
Each row of code represents a single symbol to be decoded by the BCH coder. The
decoded message is returned in the binary array msg containing k columns and the
same number of rows as code.
The use of bchdeco can be seen in the following short example.

m = 3; n = 2^m -1; k = 4; t = 1;
msg = randint(10,k);
code = bchenco(msg, n, k);
noisy = mod(randerr(10,n) + code,2);
[dec err] = bchdeco(msg, k, t);

Valid codes can be found using bchpoly. In general the codeword length n should
be of the form 2^m-1, where m is an integer. However, shortened BCH codes can
be used such that if [2^m-1,k] is a valid code [2^m-1-x,k-x] is also a valid code
using the same generator polynomial.
By default the BCH coding is based on the properties of the Galois Field GF(2^m).
The primitive polynomial used in the Galois can be overridden by a primitive polyno-
mial in prim. Suitable primitive polynomials can be constructed with primpoly. The
form of prim maybe be either a integer representation of the primitve polynomial as
given by primpoly, or a binary representation that might be constructed like

m = 3;
prim = de2bi(primpoly(m));

By default the parity symbols are assumed to be placed at the beginning of the
coded message. The variable parpos controls this positioning and can take the values
’beginning’ or ’end’.

See also: bchpoly,bchenco,decode,primpoly

9.2.8 bchenco

Loadable Functioncode = bchenco (msg,n,k)
Loadable Functioncode = bchenco (msg,n,k,g)
Loadable Functioncode = bchenco (...,parpos)

Encodes the message msg using a [n,k] BCH coding. The variable msg is a binary
array with k columns and an arbitrary number of rows. Each row of msg represents
a single symbol to be coded by the BCH coder. The coded message is returned in the
binary array code containing n columns and the same number of rows as msg.
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The use of bchenco can be seen in the following short example.
m = 3; n = 2^m -1; k = 4;
msg = randint(10,k);
code = bchenco(msg, n, k);

Valid codes can be found using bchpoly. In general the codeword length n should
be of the form 2^m-1, where m is an integer. However, shortened BCH codes can
be used such that if [2^m-1,k] is a valid code [2^m-1-x,k-x] is also a valid code
using the same generator polynomial.
By default the generator polynomial used in the BCH coding is based on the properties
of the Galois Field GF(2^m). This default generator polynomial can be overridden by
a polynomial in g. Suitable generator polynomials can be constructed with bchpoly.
By default the parity symbols are placed at the beginning of the coded message. The
variable parpos controls this positioning and can take the values ’beginning’ or ’end’.

See also: bchpoly,bchdeco,encode

9.2.9 bchpoly

Function Filep = bchpoly ()
Function Filep = bchpoly (n)
Function Filep = bchpoly (n,k)
Function Filep = bchpoly (prim,k)
Function Filep = bchpoly (n,k,prim)
Function Filep = bchpoly (...,probe)
Function File[p,f ] = bchpoly (...)
Function File[p,f,c] = bchpoly (...)
Function File[p,f,c,par] = bchpoly (...)
Function File[p,f,c,par,t] = bchpoly (...)

Calculates the generator polynomials for a BCH coder. Called with no input argu-
ments bchpoly returns a list of all of the valid BCH codes for the codeword length
7, 15, 31, 63, 127, 255 and 511. A three column matrix is returned with each row
representing a seperate valid BCH code. The first column is the codeword length, the
second the message length and the third the error correction capability of the code
Called with a single input argument, bchpoly returns the valid BCH codes for the
specified codeword length n. The output format is the same as above
When called with two or more arguments, bchpoly calculates the generator polyno-
mial of a particular BCH code. The generator polynomial is returned in p as a vector
representation of a polynomial in GF(2). The terms of the polynomial are listed
least-significant term first
The desired BCH code can be specified by its codeword length n and its message length
k. Alternatively, the primitive polynomial over which to calculate the polynomial can
be specified as prim If a vector representation of the primitive polynomial is given,
then prim can be specified as the first argument of two arguments, or as the third
argument. However, if an integer representation of the primitive polynomial is used,
then the primitive polynomial must be specified as the third argument
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When called with two or more arguments, bchpoly can also return the factors f of the
generator polynomial p, the cyclotomic coset for the Galois field over which the BCH
code is calculated, the parity check matrix par and the error correction capability
t. It should be noted that the parity check matrix is calculated with cyclgen and
limitations in this function means that the parity check matrix is only available for
codeword length upto 63. For codeword length longer than this par returns an empty
matrix
With a string argument probe defined, the action of bchpoly is to calculate the error
correcting capability of the BCH code defined by n, k and prim and return it in p.
This is similar to a call to bchpoly with zero or one argument, except that only a
single code is checked. Any string value for probe will force this action
In general the codeword length n can be expressed as 2^m-1, where m is an integer.
However, if [n,k] is a valid BCH code, then a shortened BCH code of the form [n-x,k-x]
can be created with the same generator polynomial

See also: cyclpoly,encode,decode,cosets

9.2.10 bi2de

Function Filed = bi2de (b)
Function Filed = bi2de (b,p)
Function Filed = bi2de (b,p,f )

Convert bit matrix to a vector of integers
Each row of the matrix b is treated as a single integer represented in binary form.
The elements of b, must therefore be ’0’ or ’1’
If p is defined then it is treated as the base of the decomposition and the elements of
b must then lie between ’0’ and ’p-1’
The variable f defines whether the first or last element of b is considered to be the
most-significant. Valid values of f are ’right-msb’ or ’left-msb’. By default f is ’right-
msb’

See also: de2bi

9.2.11 biterr

Function File[num, rate] = biterr (a,b)
Function File[num, rate] = biterr (...,k)
Function File[num, rate] = biterr (...,flag)
Function File[num, rate ind] = biterr (...)

Compares two matrices and returns the number of bit errors and the bit error rate.
The binary representations of the variables a and b are treated and a and b can be
either:

Both matrices
In this case both matrices must be the same size and then by default the
the return values num and rate are the overall number of bit errors and
the overall bit error rate
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One column vector
In this case the column vector is used for bit error comparision column-
wise with the matrix. The returned values num and rate are then row
vectors containing the num of bit errors and the bit error rate for each
of the column-wise comparisons. The number of rows in the matrix must
be the same as the length of the column vector

One row vector
In this case the row vector is used for bit error comparision row-wise with
the matrix. The returned values num and rate are then column vectors
containing the num of bit errors and the bit error rate for each of the
row-wise comparisons. The number of columns in the matrix must be
the same as the length of the row vector

This behaviour can be overridden with the variable flag. flag can take the value
’column-wise’, ’row-wise’ or ’overall’. A column-wise comparision is not possible with
a row vector and visa-versa
By default the number of bits in each symbol is assumed to be give by the number
required to represent the maximum value of a and b The number of bits to represent
a symbol can be overridden by the variable k

9.2.12 bsc

Function Filey = bsc (data, p)
Send data into a binary symetric channel with probability p of error one each symbol

9.2.13 comms

Function Filecomms (’help’)
Function Filecomms (’info’)
Function Filecomms (’info’, mod)
Function Filecomms (’test’)
Function Filecomms (’test’, mod)

Manual and test code for the Octave Communications toolbox. There are 5 possible
ways to call this function

comms (’help’)
Display this help message. Called with no arguments, this function also
displays this help message

comms (’info’)
Open the Commumications toolbox manual

comms (’info’, mod)
Open the Commumications toolbox manual at the section specified by
mod

comms (’test’)
Run all of the test code for the Communications toolbox
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comms (’test’, mod)
Run only the test code for the Communications toolbox in the module
mod

Valid values for the varibale mod are

’all’ All of the toolbox

’random’ The random signal generation and analysis package

’source’ The source coding functions of the package

’block’ The block coding functions

’convol’ The convolution coding package

’modulation’
The modulation package

’special’ The special filter functions

’galois’ The Galois fields package

Please note that this function file should be used as an example of the use of this
toolbox

9.2.14 compand

Function Filey = compand (x, mu, V, ’mu/compressor’)
Function Filey = compand (x, mu, V, ’mu/expander’)
Function Filey = compand (x, mu, V, ’A/compressor’)
Function Filey = compand (x, mu, V, ’A/expander’)

Compresses and expanding the dynamic range of a signal using a mu-law or or A-law
algorithm

The mu-law compressor/expander for reducing the dynamic range, is used if the fourth
argument of compand starts with ’mu/’. Whereas the A-law compressor/expander is
used if compand starts with ’A/’ The mu-law algorithm uses the formulation

y =
V log(1 + µ/V x)

log(1 + µ)
sgn(x)

while the A-law algorithm used the formulation

y =


A/(1 + logA)x, 0 <= x <= V/A

V log(1+log(A/V x))

1+logA
, V/A < x <= V

Neither converts from or to audio file ulaw format. Use mu2lin or lin2mu instead

See also: m2ulin, lin2mu
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9.2.15 cosets

Function Filecosets (m, prim)
Finds the elements of GF(2^m) with primitive polynomial prim, that share the same
minimum polynomial. Returns a cell array of the paratitioning of GF(2^m)

9.2.16 cyclgen

Loadable Functionh = cyclgen (n,p)
Loadable Functionh = cyclgen (n,p,typ)
Loadable Function[h, g] = cyclgen (...)
Loadable Function[h, g, k] = cyclgen (...)

Produce the parity check and generator matrix of a cyclic code. The parity check
matrix is returned as a m by n matrix, representing the [n,k] cyclic code. m is the
order of the generator polynomial p and the message length k is given by n - m.
The generator polynomial can either be a vector of ones and zeros, and length m
representing,

p0 + p1x+ p2x
2 + · · ·+ pmx

m−1

The terms of the polynomial are stored least-significant term first. Alternatively, p
can be an integer representation of the same polynomial.
The form of the parity check matrix is determined by typ. If typ is ’system’, a
systematic parity check matrix is produced. If typ is ’nosys’ and non-systematic
parity check matrix is produced.
If requested cyclgen also returns the k by n generator matrix g.

See also: hammgen,gen2par,cyclpoly

9.2.17 cyclpoly

Loadable Functiony = cyclpoly (n,k)
Loadable Functiony = cyclpoly (n,k,opt)
Loadable Functiony = cyclpoly (n,k,opt,rep)

This function returns the cyclic generator polynomials of the code [n,k]. By default
the the polynomial with the smallest weight is returned. However this behavior can
be overridden with the opt flag. Valid values of opt are:

’all’ Returns all of the polynomials of the code [n,k]

’min’ Returns the polynomial of minimum weight of the code [n,k]

’max’ Returns the polynomial of the maximum weight of the code [n,k]

l Returns the polynomials having exactly the weight l

The polynomials are returns as row-vectors in the variable y. Each row of y represents
a polynomial with the least-significant term first. The polynomials can be returned
with an integer representation if rep is ’integer’. The default behaviour is given if rep
is ’polynomial’.

See also: gf,isprimitive
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9.2.18 de2bi

Function Fileb = de2bi (d)
Function Fileb = de2bi (d,n)
Function Fileb = de2bi (d,n,p)
Function Fileb = de2bi (d,n,p,f )

Convert a non-negative integer to bit vector
The variable d must be a vector of non-negative integers. de2bi then returns a matrix
where each row represents the binary representation of elements of d. If n is defined
then the returned matrix will have n columns. This number of columns can be either
larger than the minimum needed and zeros will be added to the msb of the binary
representation or smaller than the minimum in which case the least-significant part
of the element is returned
If p is defined then it is used as the base for the decomposition of the returned values.
That is the elements of the returned value are between ’0’ and ’p-1’
The variable f defines whether the first or last element of b is considered to be the
most-significant. Valid values of f are ’right-msb’ or ’left-msb’. By default f is ’right-
msb’

See also: bi2de

9.2.19 decode

Function Filemsg = decode (code,n,k)
Function Filemsg = decode (code,n,k,typ)
Function Filemsg = decode (code,n,k,typ,opt1)
Function Filemsg = decode (code,n,k,typ,opt1,opt2)
Function File[msg, err] = decode (...)
Function File[msg, err, ccode] = decode (...)
Function File[msg, err, ccode, cerr] = decode (...)

Top level block decoder. This function makes use of the lower level functions such as
cyclpoly, cyclgen, hammgen, and bchenco. The coded message to decode is pass in
code, the codeword length is n and the message length is k. This function is used to
decode messages using either:

A [n,k] linear block code defined by a generator matrix
A [n,k] cyclic code defined by a generator polynomial
A [n,k] Hamming code defined by a primitive polynomial
A [n,k] BCH code code defined by a generator polynomial
The type of coding to use is defined by the variable typ. This variable is a string
taking one of the values

’linear’ or ’linear/binary’
A linear block code is assumed with the message msg being in a binary
format. In this case the argument opt1 is the generator matrix, and is
required. Additionally, opt2 containing the syndrome lookup table (see
syndtable) can also be passed
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’cyclic’ or ’cyclic/binary’
A cyclic code is assumed with the message msg being in a binary format.
The generator polynomial to use can be defined in opt1 The default
generator polynomial to use will be cyclpoly(n,k). Additionally, opt2
containing the syndrome lookup table (see syndtable) can also be passed

’hamming’ or ’hamming/binary’
A Hamming code is assumed with the message msg being in a binary
format. In this case n must be of an integer of the form 2^m-1, where m
is an integer. In addition k must be n-m. The primitive polynomial to
use can be defined in opt1. The default primitive polynomial to use is the
same as defined by hammgen. The variable opt2 should not be defined

’bch’ or ’bch/binary’
A BCH code is assumed with the message msg being in a binary format.
The primitive polynomial to use can be defined in opt2 The error correc-
tion capability of the code can also be defined in opt1. Use the empty
matrix [] to let the error correction capability take the default value

In addition the argument ’binary’ above can be replaced with ’decimal’, in which case
the message is assumed to be a decimal vector, with each value representing a symbol
to be coded. The binary format can be in two forms

An x-by-n matrix
Each row of this matrix represents a symbol to be decoded

A vector with length divisible by n
The coded symbols are created from groups of n elements of this vector

The decoded message is return in msg. The number of errors encountered is returned
in err. If the coded message format is ’decimal’ or a ’binary’ matrix, then err is a
column vector having a length equal to the number of decoded symbols. If code is a
’binary’ vector, then err is the same length as msg and indicated the number of errors
in each symbol. If the value err is positive it indicates the number of errors corrected
in the corresponding symbol. A negative value indicates an uncorrectable error. The
corrected code is returned in ccode in a similar format to the coded message msg.
The variable cerr contains similar data to err for ccode

It should be noted that all internal calculations are performed in the binary format.
Therefore for large values of n, it is preferable to use the binary format to pass the
messages to avoid possible rounding errors. Additionally, if repeated calls to decode
will be performed, it is often faster to create a generator matrix externally with the
functions hammgen or cyclgen, rather than let decode recalculate this matrix at each
iteration. In this case typ should be ’linear’. The exception to this case is BCH codes,
where the required syndrome table is too large. The BCH decoder, decodes directly
from the polynomial never explicitly forming the syndrome table

See also: encode,cyclgen,cyclpoly,hammgen,bchdeco,bchpoly,syndtable

9.2.20 deintrlv
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Function Filedeintrlvd = deintrlv (data, elements)
Restore elements of data according to elements See also: intrlv

9.2.21 demodmap

Function Filez = demodmap (y,fd,fs,’ask’,m)
Function Filez = demodmap (y,fd,fs,’fsk’,m,tone)
Function Filez = demodmap (y,fd,fs,’msk’)
Function Filez = demodmap (y,fd,fs,’psk’,m)
Function Filez = demodmap (y,fd,fs,’qask’,m)
Function Filez = demodmap (y,fd,fs,’qask/cir’,nsig,amp,phs)
Function Filez = demodmap (y,fd,fs,’qask/arb’,inphase,quadr)
Function Filez = demodmap (y,fd,fs,’qask/arb’,map)
Function Filez = demodmap (y,[fd, off ],...)

Demapping of an analog signal to a digital signal. The function demodmap must have
at least three input arguments and one output argument. Argument y is a complex
variable representing the analog signal to be demapped. The variables fd and fs are
the sampling rate of the of digital signal and the sampling rate of the analog signal
respectively. It is required that fs/fd is an integer

The available mapping of the digital signal are

’ask’ Amplitude shift keying

’fsk’ Frequency shift keying

’msk’ Minimum shift keying

’psk’ Phase shift keying

’qask’
’qsk’
’qam’ Quadraure amplitude shift keying

In addition the ’qask’, ’qsk’ and ’qam’ method can be modified with the flags ’/cir’
or ’/arb’. That is ’qask/cir’ and ’qask/arb’, etc are valid methods and give circular-
and arbitrary-qask mappings respectively. Also the method ’fsk’ and ’msk’ can be
modified with the flag ’/max’, in which case y is assumed to be a matrix with m
columns, representing the symbol correlations

The variable m is the order of the modulation to use. By default this is 2, and in
general should be specified

For ’qask/cir’, the additional arguments are the same as for apkconst, and you are
referred to apkconst for the definitions of the additional variables

For ’qask/arb’, the additional arguments inphase and quadr give the in-phase and
quadrature components of the mapping, in a similar mapping to the outputs of
qaskenco with one argument. Similar map represents the in-phase and quadrature
components of the mapping as the real and imaginary parts of the variable map

See also: modmap,ddemodce,ademodce,apkconst,qaskenco
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9.2.22 egolaydec

Function Fileegolaydec (R)
Given R, the received Extended Golay code, this function tries to decode R using the
Extended Golay code parity check matrix Extended Golay code (24,12) which can
correct upto 3 errors

The received code R, needs to be of length Nx24, for encoding. We can decode several
codes at once, if they are stacked as a matrix of 24columns, each code in a separate
row

The generator G used in here is same as obtained from the function egolaygen

The function returns the error-corrected code word from the received word. If decod-
ing failed, the second return value is 1, otherwise it is 0

Extended Golay code (24,12) which can correct upto 3 errors. Decoding algorithm
follows from Lin & Costello

Ref: Lin & Costello, pg 128, Ch4, ’Error Control Coding’, 2nd ed, Pearson
M=[rand(10,12)>0.5];
C1=egolayenc(M);
C1(:,1)=mod(C1(:,1)+1,2)
C2=egolaydec(C1)

See also: egolaygen,egolayenc

9.2.23 egolayenc

Function Fileegolayenc (M)
Given M, encode M using the Extended Golay code

The message M, needs to be of size Nx12, for encoding We can encode several mes-
sages, into codes at once, if they are stacked in the order suggested

The generator G used in here is same as obtained from the function egolaygen. Ex-
tended Golay code (24,12) which can correct upto 3 errors

M=(rand(10,12)>0.5);
C=egolayenc(M)

See also: egolaygen,egolaydec

9.2.24 egolaygen

Function Fileegolaygen ()
Returns the Extended Golay code (24,12) generator matrix, which can correct upto
3 errors. The second argument is the partiy check matrix, for this code

See also: egolaydec,egolayenc
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9.2.25 encode

Function Filecode = encode (msg,n,k)
Function Filecode = encode (msg,n,k,typ)
Function Filecode = encode (msg,n,k,typ,opt)
Function File[code, added] = encode (...)

Top level block encoder. This function makes use of the lower level functions such as
cyclpoly, cyclgen, hammgen, and bchenco. The message to code is pass in msg, the
codeword length is n and the message length is k. This function is used to encode
messages using either:

A [n,k] linear block code defined by a generator matrix
A [n,k] cyclic code defined by a generator polynomial
A [n,k] Hamming code defined by a primitive polynomial
A [n,k] BCH code code defined by a generator polynomial
The type of coding to use is defined by the variable typ. This variable is a string
taking one of the values

’linear’ or ’linear/binary’
A linear block code is assumed with the coded message code being in a
binary format. In this case the argument opt is the generator matrix,
and is required

’cyclic’ or ’cyclic/binary’
A cyclic code is assumed with the coded message code being in a binary
format. The generator polynomial to use can be defined in opt The
default generator polynomial to use will be cyclpoly(n,k)

’hamming’ or ’hamming/binary’
A Hamming code is assumed with the coded message code being in a
binary format. In this case n must be of an integer of the form 2^m-
1, where m is an integer. In addition k must be n-m. The primitive
polynomial to use can be defined in opt. The default primitive polynomial
to use is the same as defined by hammgen

’bch’ or ’bch/binary’
A BCH code is assumed with the coded message code being in a binary
format. The generator polynomial to use can be defined in opt The
default generator polynomial to use will be bchpoly(n,k)

In addition the argument ’binary’ above can be replaced with ’decimal’, in which case
the message is assumed to be a decimal vector, with each value representing a symbol
to be coded. The binary format can be in two forms

An x-by-k matrix
Each row of this matrix represents a symbol to be coded

A vector The symbols are created from groups of k elements of this vector If the
vector length is not divisble by k, then zeros are added and the number
of zeros added is returned in added
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It should be noted that all internal calculations are performed in the binary format.
Therefore for large values of n, it is preferable to use the binary format to pass the
messages to avoid possible rounding errors. Additionally, if repeated calls to encode
will be performed, it is often faster to create a generator matrix externally with the
functions hammgen or cyclgen, rather than let encode recalculate this matrix at each
iteration. In this case typ should be ’linear’. The exception to this case is BCH codes,
whose encoder is implemented directly from the polynomial and is significantly faster

See also: decode,cyclgen,cyclpoly,hammgen,bchenco,bchpoly

9.2.26 eyediagram

Function Fileeyediagram (x,n)
Function Fileeyediagram (x,n,per)
Function Fileeyediagram (x,n,per,off )
Function Fileeyediagram (x,n,per,off,str)
Function Fileeyediagram (x,n,per,off,str,h)
Function Fileh = eyediagram (...)

Plot the eye-diagram of a signal. The signal x can be either in one of three forms

A real vector
In this case the signal is assumed to be real and represented by the vector
x. A single eye-diagram representing this signal is plotted

A complex vector
In this case the in-phase and quadrature components of the signal are
plotted seperately

A matrix with two columns
In this case the first column represents the in-phase and the second the
quadrature components of a complex signal

Each line of the eye-diagram has n elements and the period is assumed to be given
by per. The time axis is then [-per/2 per/2] By default per is 1
By default the signal is assumed to start at -per/2. This can be overridden by the off
variable, which gives the number of samples to delay the signal
The string str is a plot style string (example ’r+’), and by default is the default gnuplot
line style
The figure handle to use can be defined by h. If h is not given, then the next available
figure handle is used. The figure handle used in returned on hout

See also: scatterplot

9.2.27 fibodeco

Function Filefibodeco (code)
Returns the decoded fibonacci value from the binary vectors code Universal codes
like fibonacci codes Have a useful synchronization property, only for 255 maximum
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value we have designed these routines. We assume user has partitioned the code into
several unique segments based on the suffix property of unique strings "11" and we
just decode the parts. Partitioning the stream is as simple as identifying the "11"
pairs that occur, at the terminating ends. This system implements the standard
binaary Fibonacci codes, which means that row vectors can only contain 0 or 1. Ref:
http://en.wikipedia.org/wiki/Fibonacci_coding

fibodeco({[0 1 0 0 1 1]}) %decoded to 10
fibodeco({[1 1],[0 1 1],[0 0 1 1],[1 0 1 1]}) %[1:4]

See also: fiboenco

9.2.28 fiboenco

Function Filefiboenco (num)
Returns the cell-array of encoded fibonacci value from the column vectors num
Universal codes like fibonacci codes have a useful synchronization property, only
for 255 maximum value we have designed these routines. We assume user has
partitioned the code into several unique segments based on the suffix property of
unique elements [1 1] and we just decode the parts. Partitioning the stream is
as simple as identifying the [1 1] pairs that occur, at the terminating ends. This
system implements the standard binaary Fibonacci codes, which means that row
vectors can only contain 0 or 1. Ref: http://en.wikipedia.org/wiki/Fibonacci coding
Ugly O(k.N^2) encoder.Ref: Wikipedia article accessed March, 2006
http://en.wikipedia.org/wiki/Fibonacci_coding, UCI Data Compression
Book, http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html, (accessed October
2006)

fiboenco(10) #= code is {[ 0 1 0 0 1 1]}
fiboenco(1:4) #= code is {[1 1],[0 1 1],[0 0 1 1],[1 0 1 1]}

See also: fibodeco

9.2.29 fibosplitstream

Function Filefibosplitstream (code)
Returns the split data stream at the word boundaries Assuming the stream was
originally encoded using fiboenco and this routine splits the stream at the points
where ’11’ occur together & gives us the code-words which can later be decoded from
the fibodeco This however doesnt mean that we intend to verify if all the codewords
are correct, and infact the last symbol in th return list can or can-not be a valid
codeword
A example use of fibosplitstream would be

fibodeco(fibosplitstream([fiboenco(randint(1,100,[0 255])){:}]))
fibodeco(fibosplitstream([fiboenco(1:10){:}]))

See also: fiboenco,fibodeco
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9.2.30 fmdemod

Function Filefmdemod (x,fc,fs)
Create the FM demodulation of the signal x with carrier frequency fs. Where x is
sample at frequency fs See also: ammod,amdemod,fmmod

9.2.31 fmmod

Function Filefmmod (x,fc,fs)
Create the FM modulation of the signal x with carrier frequency fs. Where x is sample
at frequency fs See also: ammod,fmdemod,amdemod

9.2.32 gconv

Function Filegconv (a, b)
Convolve two Galois vectors

y = gconv (a, b) returns a vector of length equal to length (a) + length (b) - 1
If a and b are polynomial coefficient vectors, gconv returns the coefficients of the
product polynomial

See also: gdeconv,conv,deconv

9.2.33 gconvmtx

Function Filegconvmtx (a, n)
Create matrix to perform repeated convolutions with the same vector in a Galois
Field. If a is a column vector and x is a column vector of length n, in a Galois Field
then

gconvmtx(a, n) * x

gives the convolution of of a and x and is the same as gconv(a, x). The difference
is if many vectors are to be convolved with the same vector, then this technique is
possibly faster

Similarly, if a is a row vector and x is a row vector of length n, then

x * gconvmtx(a, n)

is the same as gconv(x, a)

See also: gconv,convmtx,conv
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9.2.34 gdeconv

Function Filegdeconv (y, a)
Deconvolve two Galois vectors
[b, r] = gdeconv (y, a) solves for b and r such that y = gconv (a, b) + r

If y and a are polynomial coefficient vectors, b will contain the coefficients of the
polynomial quotient and r will be a remander polynomial of lowest order

See also: gconv,deconv,conv

9.2.35 gdet

Loadable Functiond = gdet (a)
Compute the determinant of the Galois array a.

See also: det

9.2.36 gdftmtx

Function Filed = gdftmtx (a)
Form a matrix, that can be used to perform Fourier transforms in a Galois Field
Given that a is an element of the Galois Field GF(2^m), and that the minimum value
for k for which a ^ k is equal to one is 2^m - 1, then this function produces a k-by-k
matrix representing the discrete Fourier transform over a Galois Field with respect
to a. The Fourier transform of a column vector is then given by gdftmtx(a) * x

The inverse Fourier transform is given by gdftmtx(1/a)

See also: dftmtx

9.2.37 gdiag

Loadable Functiongdiag (v, k)
Return a diagonal matrix with Galois vector v on diagonal k. The second argument
is optional. If it is positive, the vector is placed on the k-th super-diagonal. If it is
negative, it is placed on the -k-th sub-diagonal. The default value of k is 0, and the
vector is placed on the main diagonal. For example,

gdiag (gf([1, 2, 3],2), 1)
ans =
GF(2^2) array. Primitive Polynomial = D^2+D+1 (decimal 7)

Array elements =

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

See also: diag
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9.2.38 gen2par

Function Filepar = gen2par (gen)
Function Filegen = gen2par (par)

Converts binary generator matrix gen to the parity chack matrix par and visa-versa.
The input matrix must be in standard form That is a generator matrix must be k-by-n
and in the form [eye(k) P] or [P eye(k)], and the parity matrix must be (n-k)-by-n
and of the form [eye(n-k) P’] or [P’ eye(n-k)]

See also: cyclgen,hammgen

9.2.39 genqamdemod

Loadable Functiony = genqamdemod (x, C)
General quadrature amplitude demodulation. The complex envelope quadrature am-
plitude modulated signal x is demodulated using a constellation mapping specified
by the 1D vector C.

9.2.40 genqammod

Function Filey = genqammod (x, c)
Modulates an information sequence of intergers x in the range [0 ... M-1] onto a
quadrature amplitude modulated signal y, where M = length(c) - 1 and c is a 1D
vector specifing the signal constellation mapping to be used. An example of combined
4PAM-4PSK is

d = randint(1,1e4,8);
c = [1+j -1+j -1-j 1-j 1+sqrt(3) j*(1+sqrt(3)) -1-sqrt(3) -j*(1+sqrt(3))];
y = genqammod(d,c);
z = awgn(y,20);
plot(z,’rx’)

See also: genqamdemod

9.2.41 gexp

Loadable Functiongexp (x)
Compute the anti-logarithm for each element of x for a Galois array.

See also: exp
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9.2.42 gf

Loadable Functiony = gf (x)
Loadable Functiony = gf (x, m)
Loadable Functiony = gf (x, m, primpoly)

Creates a Galois field array GF(2^m) from the matrix x. The Galois field has 2^m
elements, where m must be between 1 and 16. The elements of x must be between 0
and 2^m - 1. If m is undefined it defaults to the value 1.
The primitive polynomial to use in the creation of Galois field can be specified with
the primpoly variable. If this is undefined a default primitive polynomial is used. It
should be noted that the primitive polynomial must be of the degree m and it must
be irreducible.
The output of this function is recognized as a Galois field by Octave and other matrices
will be converted to the same Galois field when used in an arithmetic operation with
a Galois field.

See also: isprimitive,primpoly

9.2.43 gfft

Function Filegfft (x)
If x is a column vector, finds the FFT over the primitive element of the Galois Field
of x. If x is in the Galois Field GF(2^m), then x must have 2^m - 1 elements

See also: fft

9.2.44 gfilter

Loadable Functiony = gfilter (b, a, x)
Loadable Function[y, sf ] = gfilter (b, a, x, si)

Digital filtering of vectors in a Galois Field. Returns the solution to the following
linear, time-invariant difference equation over a Galois Field:

N∑
k=0

ak+1yn−k =
M∑

k=0

bk+1xn−k, 1 ≤ n ≤ P

where a ∈ <N−1, b ∈ <M−1, and x ∈ <P . An equivalent form of this equation is:

yn = −
N∑

k=1

ck+1yn−k +
M∑

k=0

dk+1xn−k, 1 ≤ n ≤ P

where c = a/a1 and d = b/a1.
If the fourth argument si is provided, it is taken as the initial state of the system and
the final state is returned as sf. The state vector is a column vector whose length is
equal to the length of the longest coefficient vector minus one. If si is not supplied,
the initial state vector is set to all zeros.

See also: filter
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9.2.45 gftable

Function Filegftable (m, primpoly)
This function exists for compatiability with matlab. As the octave galois fields store
a copy of the lookup tables for every field in use internally, there is no need to use
this function

See also: gf

9.2.46 gfweight

Function Filew = gfweight (gen)
Function Filew = gfweight (gen,’gen’)
Function Filew = gfweight (par,’par’)
Function Filew = gfweight (p,n)

Calculate the minimum weight or distance of a linear block code. The code can be
either defined by its generator or parity check matrix, or its generator polynomial.
By default if the first argument is a matrix, it is assumed to be the generator matrix
of the code. The type of the matrix can be defined by a flag ’gen’ for the generator
matrix or ’par’ for the parity check matrix
If the first argument is a vector, it is assumed that it defines the generator polynomial
of the code. In this case a second argument is required that defines the codeword
length

See also: hammgen,cyclpoly,bchpoly

9.2.47 gifft

Function Filegifft (x)
If x is a column vector, finds the IFFT over the primitive element of the Galois Field
of x. If x is in the Galois Field GF(2^m), then x must have 2^m - 1 elements

See also: ifft

9.2.48 ginv

Loadable Function[x, rcond] = ginv (a)
Compute the inverse of the square matrix a. Return an estimate of the reciprocal
condition number if requested, otherwise warn of an ill-conditioned matrix if the
reciprocal condition number is small.

See also: inv

9.2.49 ginverse

Loadable Functionginverse (a)
See ginv.
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9.2.50 gisequal

Function Filegisequal (x1, x2, ...)
Return true if all of x1, x2, . . . are equal See also: isequalwithequalnans

9.2.51 glog

Loadable Functionglog (x)
Compute the natural logarithm for each element of x for a Galois array.

See also: log

9.2.52 glu

Loadable Function[l, u, p] = glu (a)
Compute the LU decomposition of a in a Galois Field. The result is returned in a
permuted form, according to the optional return value p. For example, given the
matrix a = gf([1, 2; 3, 4],3),

[l, u, p] = glu (a)

returns
l =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

1 0
6 1

u =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

3 4
0 7

p =

0 1
1 0

Such that p * a = l * u. If the argument p is not included then the permutations are
applied to l so that a = l * u. l is then a pseudo- lower triangular matrix. The matrix
a can be rectangular.

See also: lu
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9.2.53 golombdeco

Function Filegolombdeco (code, m)
Returns the Golomb decoded signal vector using code and m Compulsory m is need
to be specified. A restrictions is that a signal set must strictly be non-negative. The
value of code is a cell array of row-vectors which have the encoded golomb value for
a single sample. The Golomb algorithm is, used to encode the ’code’ and only that
can be meaningfully decoded. code is assumed to have been of format generated
by the function golombenco. Also the parameter m need to be a non-zero number,
unless which it makes divide-by-zero errors This function works backward the Golomb
algorithm see golombenco for more detials on that Reference: Solomon Golomb, Run
length Encodings, 1966 IEEE Trans Info’ Theory

An exmaple of the use of golombdeco is

golombdeco(golombenco(1:4,2),2)

See also: golombenco

9.2.54 golombenco

Function Filegolombenco (sig, m)
Returns the Golomb coded signal as cell array Also total length of output code in
bits can be obtained This function uses a m need to be supplied for encoding signal
vector into a golomb coded vector. A restrictions is that a signal set must strictly
be non-negative. Also the parameter m need to be a non-zero number, unless which
it makes divide-by-zero errors The Golomb algorithm [1], is used to encode the data
into unary coded quotient part which is represented as a set of 1’s separated from
the K-part (binary) using a zero. This scheme doesnt need any kind of dictionar-
ies, it is a parameterized prefix codes Implementation is close to O(N^2), but this
implementation *may be* sluggish, though correct. Details of the scheme are, to
encode the remainder(r of number N) using the floor(log2(m)) bits when rem is in
range 0:(2^ceil(log2(m)) - N), and encode it as r+(2^ceil(log2(m)) - N), using total of
2^ceil(log2(m)) bits in other instance it doesnt belong to case 1. Quotient is coded
simply just using the unary code. Also accroding to [2] Golomb codes are optimal for
sequences using the bernoulli probability model: P(n)=p^n-1.q & p+q=1, and when
M=[1/log2(p)], or P=2^(1/M)

Reference: 1. Solomon Golomb, Run length Encodings, 1966 IEEE Trans Info’ The-
ory. 2. Khalid Sayood, Data Compression, 3rd Edition

An exmaple of the use of golombenco is

golombenco(1:4,2) #
golombenco(1:10,2) #

See also: golombdeco
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9.2.55 gprod

Loadable Functiongprod (x, dim)
Product of elements along dimension dim of Galois array. If dim is omitted, it defaults
to 1 (column-wise products).

See also: prod

9.2.56 grank

Loadable Functiond = grank (a)
Compute the rank of the Galois array a by counting the independent rows and
columns.

See also: rank

9.2.57 greshape

Loadable Functiongreshape (a, m, n)
Return a matrix with m rows and n columns whose elements are taken from the Galois
array a. To decide how to order the elements, Octave pretends that the elements of
a matrix are stored in column-major order (like Fortran arrays are stored).

For example,

greshape (gf([1, 2, 3, 4],3), 2, 2)
ans =
GF(2^3) array. Primitive Polynomial = D^3+D+1 (decimal 11)

Array elements =

1 3
2 4

The greshape function is equivalent to

retval = gf(zeros (m, n), a.m, a.prim_poly);
retval (:) = a;

but it is somewhat less cryptic to use reshape instead of the colon operator. Note
that the total number of elements in the original matrix must match the total number
of elements in the new matrix.

See also: reshape,‘:’

9.2.58 groots
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Function Filegroots (v)
For a vector v with N components, return the roots of the polynomial over a Galois
Field

v1z
N−1 + · · ·+ vN−1z + vN

The number of roots returned and their value will be determined by the order and
primitive polynomial of the Galios Field

See also: roots

9.2.59 gsqrt

Loadable Functiongsqrt (x)
Compute the square root of x, element by element, in a Galois Field.

See also: exp

9.2.60 gsum

Loadable Functiongsum (x, dim)
Sum of elements along dimension dim of Galois array. If dim is omitted, it defaults
to 1 (column-wise sum).

See also: sum

9.2.61 gsumsq

Loadable Functiongsumsq (x, dim)
Sum of squares of elements along dimension dim of Galois array. If dim is omitted,
it defaults to 1 (column-wise sum of squares).
This function is equivalent to computing

gsum (x .* conj (x), dim)

but it uses less memory.

See also: sumsq

9.2.62 hammgen

Function Fileh = hammgen (m)
Function Fileh = hammgen (m,p)
Function File[h,g] = hammgen (...)
Function File[h,g,n,k] = hammgen (...)

Produce the parity check and generator matrices of a Hamming code. The variable
m defines the [n,k] Hamming code where n = 2 ^ m - 1 and k = n - m m must be
between 3 and 16
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The parity check matrix is generated relative to the primitive polynomial of GF(2^m).
If p is specified the default primitive polynomial of GF(2^m) is overridden. p must
be a valid primitive polynomial of the correct order for GF(2^m)

The parity check matrix is returned in the m by n matrix h, and if requested the
generator matrix is returned in the k by n matrix g

See also: gen2par

9.2.63 huffmandeco

Function Filesig = huffmandeco (hcode, dict)
Returns the original signal that was Huffman encoded signal using huffmanenco. This
function uses a dict built from the huffmandict and uses it to decode a signal list
into a huffman list. A restriction is that hcode is expected to be a binary code The
returned signal set that strictly belongs in the range [1,N] with N = length(dict).
Also dict can only be from the huffmandict routine. Whenever decoding fails, those
signal values a re indicated by -1, and we successively try to restart decoding from
the next bit that hasn’t failed in decoding, ad-infinitum. An exmaple of the use of
huffmandeco is

hd = huffmandict(1:4,[0.5 0.25 0.15 0.10])
hcode = huffmanenco(1:4,hd) # [ 1 0 1 0 0 0 0 0 1 ]
huffmandeco(hcode,h d) # [1 2 3 4]

See also: huffmandict, huffmanenco

9.2.64 huffmandict

Function Filehuffmandict (symb, prob)
Function Filehuffmandict (symb, prob, toggle)
Function Filehuffmandict (symb, prob, toggle, minvar)

Builds a Huffman code, given a probability list. The Huffman codes per symbol are
output as a list of strings-per-source symbol. A zero probability symbol is NOT
assigned any codeword as this symbol doesn’t occur in practice anyway

toggle is an optional argument with values 1 or 0, that starts building a code based
on 1’s or 0’s, defaulting to 0. Also minvar is a boolean value that is useful in choosing
if you want to optimize buffer for transmission in the applications of Huffman coding,
however it doesn’t affect the type or average codeword length of the generated code.
An example of the use of huffmandict is
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huffmandict(symbols, [0.5 0.25 0.15 0.1]) => CW(0,10,111,110)
huffmandict(symbols, 0.25*ones(1,4)) => CW(11,10,01,00)

prob=[0.5 0 0.25 0.15 0.1]
dict=huffmandict(1:5,[0.5 0 0.25 0.15 0.1],1)
entropy(prob)
laverage(dict,prob)

x = [0.20000 0.40000 0.20000 0.10000 0.10000];
illustrates the minimum variance thing
huffmandict(1,x,0,true) #min variance tree
huffmandict(1,x) #normal huffman tree

Reference: Dr.Rao’s course EE5351 Digital Video Coding, at UT-Arlington

See also: huffmandeco, huffmanenco

9.2.65 huffmanenco

Function Filehuffmanenco (sig, dict)
Returns the Huffman encoded signal using dict. This function uses a dict built from
the huffmandict and uses it to encode a signal list into a huffman list. A restrictions is
that a signal set must strictly belong in the range [1,N] with N = length(dict) Also
dict can only be from the huffmandict routine An exmaple of the use of huffmanenco
is

hd = huffmandict(1:4,[0.5 0.25 0.15 0.10])
huffmanenco(1:4,hd) # [ 1 0 1 0 0 0 0 0 1 ]

See also: huffmandict, huffmandeco

9.2.66 intrlv

Function Fileintrlvd = intrlv (data, elements)
Interleaved elements of data according to elements See also: deintrlv

9.2.67 isgalois

Loadable Functionisgalois (expr)
Return 1 if the value of the expression expr is a Galois Field.

9.2.68 isprimitive

Loadable Functiony = isprimitive (a)
Returns 1 is the polynomial represented by a is a primitive polynomial of GF(2).
Otherwise it returns zero.

See also: gf,primpoly
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9.2.69 lloyds

Function File[table, codes] = lloyds (sig,init codes)
Function File[table, codes] = lloyds (sig,len)
Function File[table, codes] = lloyds (sig,...,tol)
Function File[table, codes] = lloyds (sig,...,tol,type)
Function File[table, codes, dist] = lloyds (...)
Function File[table, codes, dist, reldist] = lloyds (...)

Optimize the quantization table and codes to reduce distortion. This is based on the
article by Lloyd

S. Lloyd Least squared quantization in PCM, IEEE Trans Inform Thoery, Mar 1982,
no 2, p129-137

which describes an iterative technique to reduce the quantization error by making the
intervals of the table such that each interval has the same area under the PDF of the
training signal sig. The initial codes to try can either be given in the vector init codes
or as scalar len. In the case of a scalar the initial codes will be an equi-spaced vector
of length len between the minimum and maximum value of the training signal

The stopping criteria of the iterative algorithm is given by
abs(dist(n) - dist(n-1)) < max(tol, abs(eps*max(sig))

By default tol is 1.e-7. The final input argument determines how the updated table
is created. By default the centroid of the values of the training signal that fall within
the interval described by codes are used to update table. If type is any other string
than "centroid", this behaviour is overriden and table is updated as follows

table = (code(2:length(code)) + code(1:length(code-1))) / 2

The optimized values are returned as table and code. In addition the distortion of the
the optimized codes representing the training signal is returned as dist. The relative
distortion in the final iteration is also returned as reldist

See also: quantiz

9.2.70 lz77deco

Function Filem = lz77deco (c, alph, la, n)
Lempel-Ziv 77 source algorithm decoding implementation. Where

m message decoded (1xN)

c encoded message (Mx3)

alph size of alphabet

la lookahead buffer size

n sliding window buffer size

See also: lz77enco



Chapter 9: Function Reference 74

9.2.71 lz77enco

Function Filec = lz77enco (m, alph, la, n)
Lempel-Ziv 77 source algorithm implementation. Where

c encoded message (Mx3)

alph size of alphabet

la lookahead buffer size

n sliding window buffer size

See also: lz77deco

9.2.72 marcumq

Function File[Q] = marcumq (a, b, m)
Compute the Marcum Q function

9.2.73 matdeintrlv

Function Fileintrlvd = matdeintrlv (data, nrows, ncols)
Restore elements of data with a tempory matrix of size nrows-by-ncols See also:
matintrlv

9.2.74 matintrlv

Function Fileintrlvd = matintrlv (data, nrows, ncols)
Interleaved elements of data with a tempory matrix of size nrows-by-ncols See also:
matdeintrlv

9.2.75 minpol

Function Fileminpol (v)
Finds the minimum polynomial for elements of a Galois Field. For a vector v with N
components, representing N values in a Galois Field GF(2^m), return the minimum
polynomial in GF(2) representing thos values

9.2.76 modmap
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Function Filemodmap (method,...)
Function Filey = modmap (x,fd,fs,’ask’,m)
Function Filey = modmap (x,fd,fs,’fsk’,m,tone)
Function Filey = modmap (x,fd,fs,’msk’)
Function Filey = modmap (x,fd,fs,’psk’,m)
Function Filey = modmap (x,fd,fs,’qask’,m)
Function Filey = modmap (x,fd,fs,’qask/cir’,nsig,amp,phs)
Function Filey = modmap (x,fd,fs,’qask/arb’,inphase,quadr)
Function Filey = modmap (x,fd,fs,’qask/arb’,map)

Mapping of a digital signal to an analog signal. With no output arguments modmap
plots the constellation of the mapping. In this case the first argument must be the
string method defining one of ’ask’, ’fsk’, ’msk’, ’qask’, ’qask/cir’ or ’qask/arb’. The
arguments following the string method are generally the same as those after the
corresponding string in the fucntion call without output arguments The exception is
modmap(’msk’,Fd)

With an output argument, y is the complex mapped analog signal. In this case the
arguments x, fd and fs are required. The variable x is the digital signal to be mapped,
fd is the sampling rate of the of digital signal and the fs is the sampling rate of the
analog signal. It is required that fs/fd is an integer

The available mapping of the digital signal are

’ask’ Amplitude shift keying

’fsk’ Frequency shift keying

’msk’ Minimum shift keying

’psk’ Phase shift keying

’qask’
’qsk’
’qam’ Quadraure amplitude shift keying

In addition the ’qask’, ’qsk’ and ’qam’ method can be modified with the flags ’/cir’
or ’/arb’. That is ’qask/cir’ and ’qask/arb’, etc are valid methods and give circular-
and arbitrary-qask mappings respectively

The additional argument m is the order of the modulation to use m must be larger
than the largest element of x. The variable tone is the FSK tone to use in the
modulation

For ’qask/cir’, the additional arguments are the same as for apkconst, and you are
referred to apkconst for the definitions of the additional variables

For ’qask/arb’, the additional arguments inphase and quadr give the in-phase and
quadrature components of the mapping, in a similar mapping to the outputs of
qaskenco with one argument. Similar map represents the in-phase and quadrature
components of the mapping as the real and imaginary parts of the variable map

See also: demodmap,dmodce,amodce,apkconst,qaskenco
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9.2.77 oct2dec

Function Filed = oct2dec(c)
Convert octal to decimal values See also: base2dec,bin2dec,dec2bi

9.2.78 pamdemod

Function Filey = pamdemod (x, m)
Function Filey = pamdemod (x, m, phi)
Function Filey = pamdemod (x, m, phi, type)

Demodulates a pulse amplitude modulated signal x into an information sequence of
integers in the range [0 ... M-1] phi controls the initial phase and type controls
the constellation mapping. If type is set to ’Bin’ will result in binary encoding, in
contrast, if set to ’Gray’ will give Gray encoding An example of Gray-encoded 8-PAM
is

d = randint(1,1e4,8);
y = pammod(d,8,0,’Gray’);
z = awgn(y,20);
d_est = pamdemod(z,8,0,’Gray’);
plot(z,’rx’)
biterr(d,d_est)

See also: pammod

9.2.79 pammod

Function Filey = pammod (x, m)
Function Filey = pammod (x, m, phi)
Function Filey = pammod (x, m, phi, type)

Modulates an information sequence of integers x in the range [0 ... M-1] onto a
pulse amplitude modulated signal y phi controls the initial phase and type controls
the constellation mapping. If type is set to ’Bin’ will result in binary encoding, in
contrast, if set to ’Gray’ will give Gray encoding An example of Gray-encoded 8-PAM
is

d = randint(1,1e4,8);
y = pammod(d,8,0,’Gray’);
z = awgn(y,20);
plot(z,’rx’)

See also: pamdemod

9.2.80 primpoly
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Loadable Functiony = primpoly (m)
Loadable Functiony = primpoly (m, opt)
Loadable Functiony = primpoly (m, ... ’nodisplay’)

Finds the primitive polynomials in GF(2^m).
The first form of this function returns the default primitive polynomial of GF(2^m).
This is the minimum primitive polynomial of the field. The polynomial representation
is printed and an integer representation of the polynomial is returned
The call primpoly (m, opt) returns one or more primitive polynomials. The output
of the function is dependent of the value of opt. Valid values of opt are:

’all’ Returns all of the primitive polynomials of GF(2^m)

’min’ Returns the minimum primitive polynomial of GF(2^m)

’max’ Returns the maximum primitive polynomial of GF(2^m)

k Returns the primitive polynomials having exactly k non-zero terms

The call primpoly (m, ... \’nodisplay\’) disables the output of the polynomial
forms of the primitives. The return value is not affected.

See also: gf,isprimitive

9.2.81 pskdemod

Function Filey = pamdemod (x, m)
Function Filey = pamdemod (x, m, phi)
Function Filey = pamdemod (x, m, phi, type)

Demodulates a complex-baseband phase shift keying modulated signal into an infor-
mation sequence of integers in the range [0 ... M-1]. phi controls the initial phase
and type controls the constellation mapping. If type is set to ’Bin’ will result in
binary encoding, in contrast, if set to ’Gray’ will give Gray encoding. An example of
Gray-encoded 8-PSK is

d = randint(1,1e3,8);
y = pskmod(d,8,0,’Gray’);
z = awgn(y,20);
d_est = pskdemod(z,8,0,’Gray’);
plot(z,’rx’)
biterr(d,d_est)

See also: pskmod

9.2.82 pskmod

Function Filey = pskmod (x, m)
Function Filey = pskmod (x, m, phi)
Function Filey = pskmod (x, m, phi, type)

Modulates an information sequence of integers x in the range [0 ... M-1] onto a
complex baseband phase shift keying modulated signal y. phi controls the initial
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phase and type controls the constellation mapping. If type is set to ’Bin’ will result
in binary encoding, in contrast, if set to ’Gray’ will give Gray encoding. An example
of Gray-encoded QPSK is

d = randint(1,5e3,4);
y = pskmod(d,4,0,’Gray’);
z = awgn(y,30);
plot(z,’rx’)

See also: pskdemod

9.2.83 qamdemod

Function Fileqamdemod (x,m)
Create the QAM demodulation of x with a size of alphabet m See also: qam-
mod,pskmod,pskdemod

9.2.84 qammod

Function Fileqammod (x,m)
Create the QAM modulation of x with a size of alphabet m See also: qamde-
mod,pskmod,pskdemod

9.2.85 qaskdeco

Function Filemsg = qaskdeco (c,m)
Function Filemsg = qaskdeco (inphase,quadr,m)
Function Filemsg = qaskdeco (...,mnmx)

Demaps an analog signal using a square QASK constellation. The input signal maybe
either a complex variable c, or as two real variables inphase and quadr representing
the in-phase and quadrature components of the signal

The argument m must be a positive integer power of 2. By deafult the same constel-
lation as created in qaskenco is used by qaskdeco If is possible to change the values
of the minimum and maximum of the in-phase and quadrature components of the
constellation to account for linear changes in the signal values in the received signal.
The variable mnmx is a 2-by-2 matrix of the following form

| min in-phase , max in-phase |
| min quadrature , max quadrature |

If sqrt(m) is an integer, then qaskenco uses a Gray mapping. Otherwise, an at-
tempt is made to create a nearly square mapping with a minimum Hamming distance
between adjacent constellation points

See also: qaskenco
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9.2.86 qaskenco

Function Fileqaskenco (m)
Function Fileqaskenco (msg,m)
Function Filey = qaskenco (...)
Function File[inphase, quadr] = qaskenco (...)

Map a digital signal using a square QASK constellation. The argument m must be a
positive integer power of 2. With two input arguments the variable msg represents
the message to be encoded. The values of msg must be between 0 and m-1. In all
cases qaskenco(M) is equivalent to qaskenco(1:m,m)

Three types of outputs can be created depending on the number of output arguments.
That is

No output arguments
In this case qaskenco plots the constellation. Only the points in msg are
plotted, which in the case of a single input argument is all constellation
points

A single output argument
The returned variable is a complex variable representing the in-phase and
quadrature components of the mapped message msg. With, a single input
argument this effectively gives the mapping from symbols to constellation
points

Two output arguments
This is the same as two ouput arguments, expect that the in-phase and
quadrature components are returned explicitly. That is

octave> c = qaskenco(msg, m);
octave> [a, b] = qaskenco(msg, m);
octave> all(c == a + 1i*b)
ans = 1

If sqrt(m) is an integer, then qaskenco uses a Gray mapping. Otherwise, an at-
tempt is made to create a nearly square mapping with a minimum Hamming distance
between adjacent constellation points

See also: qaskdeco

9.2.87 qfunc

Function File[y] = qfunc (x)
Compute the Q function See also: erfc, erf

9.2.88 qfuncinv

Function File[y] = qfuncinv (x)
Compute the inverse Q function See also: erfc, erf
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9.2.89 quantiz

Function Fileqidx = quantiz (x, table)
Function File[qidx, q] = quantiz (x, table, codes)
Function File[ qidx, q, d] = quantiz (...)

Quantization of an arbitrary signal relative to a paritioning

qidx = quantiz(x, table)
Determine position of x in strictly monotonic table. The first interval,
using index 0, corresponds to x <= table(1) Subsequent intervals are
table(i-1) < x <= table(i)

[qidx, q] = quantiz(x, table, codes)
Associate each interval of the table with a code. Use codes(1) for x <=
table(1) and codes(n+1) for table(n) < x <= table(n+1)

[qidx, q, d] = quantiz(...)
Compute distortion as mean squared distance of x from the corresponding
quantization values

9.2.90 randdeintrlv

Function Fileintrlvd = randdeintrlv (data, state)
Restore elements of data with a random permutation See also: randin-
trlv,intrlv,deintrlv

9.2.91 randerr

Function Fileb = randerr (n)
Function Fileb = randerr (n,m)
Function Fileb = randerr (n,m,err)
Function Fileb = randerr (n,m,err,seed)

Generate a matrix of random bit errors. The size of the matrix is n rows by m
columns. By default m is equal to n Bit errors in the matrix are indicated by a 1

The variable err determines the number of errors per row. By default the return
matrix b has exactly one bit error per row If err is a scalar, there each row of b has
exactly this number of errors per row. If err is a vector then each row has a number
of errors that is in this vector. Each number of errors has an equal probability. If err
is a matrix with two rows, then the first row determines the number of errors and the
second their probabilities

The variable seed allows the random number generator to be seeded with a fixed
value. The initial seed will be restored when returning
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9.2.92 randint

Function Fileb = randint (n)
Function Fileb = randint (n,m)
Function Fileb = randint (n,m,range)
Function Fileb = randint (n,m,range,seed)

Generate a matrix of random binary numbers. The size of the matrix is n rows by m
columns. By default m is equal to n

The range in which the integers are generated will is determined by the variable
range. If range is an integer, the value will lie in the range [0,range-1], or [range+1,0]
if range is negative. If range contains two elements the intgers will lie within these
two elements, inclusive. By default range is assumed to be [0:1]
The variable seed allows the random number generator to be seeded with a fixed
value. The initial seed will be restored when returning

9.2.93 randintrlv

Function Fileintrlvd = randintrlv (data, state)
Interleaves elements of data with a random permutation See also: intrlv,deintrlv

9.2.94 randsrc

Function Fileb = randsrc (n)
Function Fileb = randsrc (n,m)
Function Fileb = randsrc (n,m,alphabet)
Function Fileb = randsrc (n,m,alphabet,seed)

Generate a matrix of random symbols. The size of the matrix is n rows by m columns.
By default m is equal to n

The variable alphabet can be either a row vector or a matrix with two rows. When
alphabet is a row vector the symbols returned in b are chosen with equal probability
from alphabet. When alphabet has two rows, the second row determines the prob-
abilty with which each of the symbols is chosen. The sum of the probabilities must
equal 1. By default alphabet is [-1 1]
The variable seed allows the random number generator to be seeded with a fixed
value. The initial seed will be restored when returning

9.2.95 reedmullerdec

Function Filereedmullerdec (VV,G,R,M)
Decode the received code word VV using the RM-generator matrix G, of order R,
M, returning the code-word C. We use the standard majority logic vote method due
to Irving S. Reed. The received word has to be a matrix of column size equal to to
code-word size (i.e 2ˆm). Each row is treated as a separate received word
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The second return value is the message M got from C

G is obtained from definition type construction of Reed Muller code, of order R,
length 2ˆM . Use the function reedmullergen, for the generator matrix for the (R,M)
order RM code
Faster code constructions (also easier) exist, but since finding permutation order of
the basis vectors, is important, we stick with the standard definitions. To use decoder
function reedmullerdec, you need to use this specific generator function
see: Lin & Costello, Ch.4, "Error Control Coding", 2nd Ed, Pearson

G=reedmullergen(2,4);
M=[rand(1,11)>0.5];
C=mod(M*G,2);
[dec_C,dec_M]=reedmullerdec(C,G,2,4)

See also: reedmullergen,reedmullerenc

9.2.96 reedmullerenc

Function Filereedmullerenc (MSG,R,M)
Definition type construction of Reed Muller code, of order R, length 2ˆM . This
function returns the generator matrix for the said order RM code
Encodes the given message word/block, of column size k, corresponding to the
RM(R,M), and outputs a code matrix C, on each row with corresponding codeword
The second return value is the G, which is generator matrix used for this code

MSG=[rand(10,11)>0.5];
[C,G]=reedmullerenc(MSG,2,4);

See also: reedmullerdec,reedmullergen

9.2.97 reedmullergen

Function Filereedmullergen (R,M)
Definition type construction of Reed Muller code, of order R, length 2ˆM . This
function returns the generator matrix for the said order RM code
RM(r,m) codes are characterized by codewords, sum ( (m,0) + (m,1) + ... + (m,r)
Each of the codeword is got through spanning the space, using the finite set of m-basis
codewords Each codeword is 2ˆM elements long see: Lin & Costello, "Error Control
Coding", 2nd Ed
Faster code constructions (also easier) exist, but since finding permutation order of
the basis vectors, is important, we stick with the standard definitions. To use decoder
function reedmullerdec, you need to use this specific generator function

G=reedmullergen(2,4);

See also: reedmullerdec,reedmullerenc
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9.2.98 ricedeco

Function Filericedeco (code, K)
Returns the Rice decoded signal vector using code and K Compulsory K is need
to be specified A restrictions is that a signal set must strictly be non-negative The
value of code is a cell array of row-vectors which have the encoded rice value for a
single sample. The Rice algorithm is used to encode the ’code’ and only that can
be meaningfully decoded. code is assumed to have been of format generated by the
function riceenco

Reference: Solomon Golomb, Run length Encodings, 1966 IEEE Trans Info’ Theory
An exmaple of the use of ricedeco is

ricedec(riceenco(1:4,2),2)

See also: riceenco

9.2.99 riceenco

Function Filericeenco (sig, K)
Returns the Rice encoded signal using K or optimal K Default optimal K is chosen
between 0-7. Currently no other way to increase the range except to specify explicitly.
Also returns K parameter used (in case it were to be chosen optimally) and Ltot
the total length of output code in bits This function uses a K if supplied or by
default chooses the optimal K for encoding signal vector into a rice coded vector A
restrictions is that a signal set must strictly be non-negative The Rice algorithm is
used to encode the data into unary coded quotient part which is represented as a set
of 1’s separated from the K-part (binary) using a zero. This scheme doesnt need any
kind of dictionaries and its close to O(N), but this implementation *may be* sluggish,
though correct
Reference: Solomon Golomb, Run length Encodings, 1966 IEEE Trans Info’ Theory
An exmaple of the use of riceenco is

riceenco(1:4) #
riceenco(1:10,2) #

See also: ricedeco

9.2.100 rledeco

Function Filerledeco (message)
Returns decoded run-length message The RLE encoded message has to be in the form
of a row-vector. The message format (encoded RLE) is like repetition [factor, value]+
An example use of rledeco is

message=[1 5 2 4 3 1];
rledeco(message) #gives
ans = [ 5 4 4 1 1 1]

See also: rledeco
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9.2.101 rleenco

Function Filerleenco (message)
Returns run-length encoded message. The rle form is built from message. The original
message has to be in the form of a row-vector. The encoded message format (encoded
RLE) is like [repetition factor]+, values

An example use of rleenco is

message=[ 5 4 4 1 1 1]
rleenco(message) #gives
ans = [1 5 2 4 3 1];

See also: rleenco

9.2.102 rsdec

Loadable Functionmsg = rsdec (code,n,k)
Loadable Functionmsg = rsdec (code,n,k,g)
Loadable Functionmsg = rsdec (code,n,k,fcr,prim)
Loadable Functionmsg = rsdec (...,parpos)
Loadable Function[msg,nerr]= rsdec (...)
Loadable Function[msg,nerr,ccode]= rsdec (...)

Decodes the message contained in code using a [n,k] Reed-Solomon code. The variable
code must be a Galois array with n columns and an arbitrary number of rows. Each
row of code represents a single block to be decoded by the Reed-Solomon coder. The
decoded message is returned in the variable msg containing k columns and the same
number of rows as code.

If n does not equal 2^m-1, where m is an integer, then a shorten Reed-Solomon
decoding is used where zeros are added to the start of each row to obtain an allowable
codeword length. The returned msg has these prepending zeros stripped.

By default the generator polynomial used in the Reed-Solomon coding is based on
the properties of the Galois Field in which msg is given. This default generator
polynomial can be overridden by a polynomial in g. Suitable generator polynomials
can be constructed with rsgenpoly. fcr is an integer value, and it is taken to be the
first consecutive root of the generator polynomial. The variable prim is then the
primitive element used to construct the generator polynomial. By default fcr and
prim are both 1. It is significantly faster to specify the generator polynomial in terms
of fcr and prim, since g is converted to this form in any case.

By default the parity symbols are placed at the end of the coded message. The
variable parpos controls this positioning and can take the values ’beginning’ or ’end’.
If the parity symbols are at the end, the message is treated with the most-significant
symbol first, otherwise the message is treated with the least-significant symbol first.

See also: gf,rsenc,rsgenpoly
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9.2.103 rsdecof

Function Filersdecof (in,out)
Function Filersdecof (in,out,t)

Decodes an ascii file using a Reed-Solomon coder. The input file is defined by in and
the result is written to the output file out The type of coding to use is determined
by whether the input file is 7- or 8-bit. If the input file is 7-bit, the default coding is
[127,117] while the default coding for an 8-bit file is a [255, 235]. This allows for 5 or
10 error characters in 127 or 255 symbols to be corrected respectively. The number
of errors that can be corrected can be overridden by the variable t

If the file is not an integer multiple of the message size (127 or 255) in length, then
the file is padded with the EOT (ascii character 4) character before decoding

See also: rsencof

9.2.104 rsenc

Loadable Functioncode = rsenc (msg,n,k)
Loadable Functioncode = rsenc (msg,n,k,g)
Loadable Functioncode = rsenc (msg,n,k,fcr,prim)
Loadable Functioncode = rsenc (...,parpos)

Encodes the message msg using a [n,k] Reed-Solomon coding. The variable msg is
a Galois array with k columns and an arbitrary number of rows. Each row of msg
represents a single block to be coded by the Reed-Solomon coder. The coded message
is returned in the Galois array code containing n columns and the same number of
rows as msg.
The use of rsenc can be seen in the following short example.

m = 3; n = 2^m -1; k = 3;
msg = gf([1 2 3; 4 5 6], m);
code = rsenc(msg, n, k);

If n does not equal 2^m-1, where m is an integer, then a shorten Reed-Solomon
coding is used where zeros are added to the start of each row to obtain an allowable
codeword length. The returned code has these prepending zeros stripped.
By default the generator polynomial used in the Reed-Solomon coding is based on
the properties of the Galois Field in which msg is given. This default generator
polynomial can be overridden by a polynomial in g. Suitable generator polynomials
can be constructed with rsgenpoly. fcr is an integer value, and it is taken to be
the first consecutive root of the generator polynomial. The variable prim is then
the primitive element used to construct the generator polynomial, such that g =
(x−Ab)(x−Ab+p) · · · (x−Ab+2tp−1).
where b is equal to fcr * prim. By default fcr and prim are both 1.
By default the parity symbols are placed at the end of the coded message. The
variable parpos controls this positioning and can take the values ’beginning’ or ’end’.

See also: gf,rsdec,rsgenpoly
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9.2.105 rsencof

Function Filersencof (in,out)
Function Filersencof (in,out,t)
Function Filersencof (...,pad)

Encodes an ascii file using a Reed-Solomon coder. The input file is defined by in and
the result is written to the output file out The type of coding to use is determined
by whether the input file is 7- or 8-bit. If the input file is 7-bit, the default coding is
[127,117] while the default coding for an 8-bit file is a [255, 235]. This allows for 5 or
10 error characters in 127 or 255 symbols to be corrected respectively. The number
of errors that can be corrected can be overridden by the variable t

If the file is not an integer multiple of the message size (127 or 255) in length, then the
file is padded with the EOT (ascii character 4) characters before coding. Whether
these characters are written to the output is defined by the pad variable. Valid
values for pad are "pad" (the default) and "nopad", which write or not the padding
respectively

See also: rsdecof

9.2.106 rsgenpoly

Function Fileg = rsgenpoly (n,k)
Function Fileg = rsgenpoly (n,k,p)
Function Fileg = rsgenpoly (n,k,p,b,s)
Function Fileg = rsgenpoly (n,k,p,b)
Function File[g, t] = rsgenpoly (...)

Creates a generator polynomial for a Reed-Solomon coding with message length of k
and codelength of n. n must be greater than k and their difference must be even. The
generator polynomial is returned on g as a polynomial over the Galois Field GF(2^m)
where n is equal to 2^m-1. If m is not integer the next highest integer value is used
and a generator for a shorten Reed-Solomon code is returned
The elements of g represent the coefficients of the polynomial in descending order. If
the length of g is lg, then the generator polynomial is given by

g0x
lg−1 + g1x

lg−2 + · · ·+ glg−1x+ glg

If p is defined then it is used as the primitive polynomial of the the Galois Field
GF(2^m). The default primitive polynomial will be used if p is equal to []
The variables b and s determine the form of the generator polynomial in the following
manner

g = (x−Abs)(x−A(b+1)s) · · · (x−A(b+2t−1)s)

where t is (n-k)/2, and A is the primitive element of the Galois Field. Therefore b is
the first consecutive root of the generator polynomial and s is the primitive element
to generate the the polynomial roots
If requested the variable t, which gives the error correction capability of the the
Reed-Solomon code

See also: gf,rsenc,rsdec
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9.2.107 scatterplot

Function Filescatterplot (x)
Function Filescatterplot (x,n)
Function Filescatterplot (x,n,off )
Function Filescatterplot (x,n,off,str)
Function Filescatterplot (x,n,off,str,h)
Function Fileh = scatterplot (...)

Display the scatter plot of a signal. The signal x can be either in one of three forms

A real vector
In this case the signal is assumed to be real and represented by the vector
x. The scatterplot is plotted along the x axis only

A complex vector
In this case the in-phase and quadrature components of the signal are
plotted seperately on the x and y axes respectively

A matrix with two columns
In this case the first column represents the in-phase and the second the
quadrature components of a complex signal and are plotted on the x and
y axes respectively

Each point of the scatter plot is assumed to be seperated by n elements in the signal.
The first element of the signal to plot is determined by off. By default n is 1 and off
is 0
The string str is a plot style string (example ’r+’), and by default is the default gnuplot
point style
The figure handle to use can be defined by h. If h is not given, then the next available
figure handle is used. The figure handle used in returned on hout

See also: eyediagram

9.2.108 shannonfanodeco

Function Fileshannonfanodeco (hcode,dict)
Returns the original signal that was Shannonfano encoded. The signal was encoded
using shannonfanoenco. This function uses a dict built from the shannonfanodict
and uses it to decode a signal list into a shannonfano list. Restrictions include hcode
is expected to be a binary code; returned signal set that strictly belongs in the range
[1,N], with N=length(dict). Also dict can only be from the shannonfanodict(...)
routine. Whenever decoding fails, those signal values are indicated by -1, and we
successively try to restart decoding from the next bit that hasnt failed in decoding,
ad-infinitum
An example use of shannonfanodeco is

hd=shannonfanodict(1:4,[0.5 0.25 0.15 0.10])
hcode=shannonfanoenco(1:4,hd) # [ 1 0 1 0 0 0 0 0 1 ]
shannonfanodeco(hcode,hd) # [1 2 3 4]
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See also: shannonfanoenco, shannonfanodict

9.2.109 shannonfanodict

Function Fileshannonfanodict (symbols,symbol probabilites)
Returns the code dictionary for source using shanno fano algorithm Dictionary is built
from symbol probabilities using the shannon fano scheme. Output is a dictionary cell-
array, which are codewords, and correspond to the order of input probability

CW=shannonfanodict(1:4,[0.5 0.25 0.15 0.1]);
assert(redundancy(CW,[0.5 0.25 0.15 0.1]),0.25841,0.001)
shannonfanodict(1:5,[0.35 0.17 0.17 0.16 0.15])
shannonfanodict(1:8,[8 7 6 5 5 4 3 2]./40)

See also: shannonfanoenc, shannonfanodec

9.2.110 shannonfanoenco

Function Fileshannonfanoenco (hcode,dict)
Returns the Shannon Fano encoded signal using dict This function uses a dict built
from the shannonfanodict and uses it to encode a signal list into a shannon fano
code Restrictions include a signal set that strictly belongs in the range [1,N] with
N=length(dict). Also dict can only be from the shannonfanodict() routine An
example use of shannonfanoenco is

hd=shannonfanodict(1:4,[0.5 0.25 0.15 0.10])
shannonfanoenco(1:4,hd) # [ 0 1 0 1 1 0 1 1 1 0]

See also: shannonfanodeco, shannonfanodict

9.2.111 symerr

Function File[num, rate] = symerr (a,b)
Function File[num, rate] = symerr (...,flag)
Function File[num, rate ind] = symerr (...)

Compares two matrices and returns the number of symbol errors and the symbol error
rate. The variables a and b can be either:

Both matrices
In this case both matrices must be the same size and then by default the
the return values num and rate are the overall number of symbol errors
and the overall symbol error rate

One column vector
In this case the column vector is used for symbol error comparision
column-wise with the matrix. The returned values num and rate are
then row vectors containing the num of symbol errors and the symbol
error rate for each of the column-wise comparisons. The number of rows
in the matrix must be the same as the length of the column vector
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One row vector
In this case the row vector is used for symbol error comparision row-wise
with the matrix. The returned values num and rate are then column
vectors containing the num of symbol errors and the symbol error rate
for each of the row-wise comparisons. The number of columns in the
matrix must be the same as the length of the row vector

This behaviour can be overridden with the variable flag. flag can take the value
’column-wise’, ’row-wise’ or ’overall’. A column-wise comparision is not possible with
a row vector and visa-versa

9.2.112 syndtable

Loadable Functiont = syndtable (h)
Create the syndrome decoding table from the parity check matrix h. Each row of
the returned matrix t represents the error vector in a recieved symbol for a certain
syndrome. The row selected is determined by a conversion of the syndrome to an
integer representation, and using this to reference each row of t.

See also: hammgen,cyclgen

9.2.113 systematize

Function Filesystematize (G)
Given G, extract P partiy check matrix. Assume row-operations in GF(2) G is of size
KxN, when decomposed through row-operations into a I of size KxK identity matrix,
and a parity check matrix P of size Kx(N-K)
Most arbitrary code with a given generator matrix G, can be converted into its sys-
tematic form using this function
This function returns 2 values, first is default being Gx the systematic version of the
G matrix, and then the parity check matrix P

G=[1 1 1 1; 1 1 0 1; 1 0 0 1];
[Gx,P]=systematize(G);

Gx = [1 0 0 1; 0 1 0 0; 0 0 1 0];
P = [1 0 0];

See also: bchpoly,biterr

9.2.114 vec2mat

Function Filem = vec2mat (v, c)
Function Filem = vec2mat (v, c, d)
Function File[m, add] = vec2mat (...)

Converts the vector v into a c column matrix with row priority arrangement and with
the final column padded with the value d to the correct length. By default d is 0.
The amount of padding added to the matrix is returned in add
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9.2.115 wgn

Function Filey = wgn (m,n,p)
Function Filey = wgn (m,n,p,imp)
Function Filey = wgn (m,n,p,imp,seed,)
Function Filey = wgn (...,’type’)
Function Filey = wgn (...,’output’)

Returns a M-by-N matrix y of white Gaussian noise. p specifies the power of the
output noise, which is assumed to be referenced to an impedance of 1 Ohm, unless
imp explicitly defines the impedance
If seed is defined then the randn function is seeded with this value
The arguments type and output must follow the above numerial arguments, but can
be specified in any order. type specifies the units of p, and can be ’dB’, ’dBW’, ’dBm’
or ’linear’. ’dB’ is in fact the same as ’dBW’ and is keep as a misnomer of Matlab.
The units of ’linear’ are in Watts
The output variable should be either ’real’ or ’complex’. If the output is complex
then the power p is divided equally betwen the real and imaginary parts
See also: randn,awgn
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